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Introduction

It is our great pleasure to present the Proceedings of the SIGDIAL 2011 Conference, the 12th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. The conference is held in Portland,
Oregon, June 17-18, 2011, co-located with the ACL conference.

We received 68 paper submissions: 51 as long papers, 17 as short papers. The members of the
Program Committee did a superb job in reviewing the submitted papers, providing helpful comments
and contributing to discussions when required. We wish to thank all of them for their advice in selecting
the accepted papers and for helping to maintain the high quality of the program. Special thanks go to
Nicholas Asher, Dan Bohus, Deborah Dahl, Curry Guinn, Staffan Larsson, Andrei Popescu-Belis, and
Antoine Raux for helping out with last minute review requests. Many submissions received strong
recommendations from the Program Committee. In line with the SIGDIAL tradition, our aim has been
to create a balanced program that could accommodate as many favorably rated papers as possible. Of
the 68 submissions, 36 were accepted: 18 of 51 long paper submissions papers were accepted as full
papers for plenary presentation, 7 were accepted as long papers for poster presentation, and 5 were
accepted as as short papers for poster presentation. In addition, 6 of the 17 short paper submissions
were accepted for poster presentation, for a total of 18 posters. Of special note this year, four papers
were accepted as part of a Special Theme on situated dialogue. In addition, 7 of the 8 demo submissions
were presented; the 8th was accepted but withdrawn.

This year, the review process continued the mentoring program that was initiated last year, and was
coordinated by Ronnie Smith. The mentoring goal is to assist authors of papers that contain innovative
ideas to improve their quality regarding English language usage or paper organization. Compared with
the first year, reviewers accepted fewer papers that required mentoring, but we hope the initiative will
continue and expand. Our thanks go to Ronnie Smith and the Program Committee members who
volunteered to serve as mentors.

We are also grateful to the two keynote speakers whose topics expanded on the special theme of situated
dialogue: Professor Alex Lascarides (The University of Edinburgh) and Professor Michael Tanenhaus
(University of Rochester).

We would like to thank Peter Heeman, Local chair, and Pat Dickerson and Ethan Selfridge, the members
of the local committee for taking care of the many details for the local arrangements. For on-site
assistance, we thank the student volunteers, Lin Chen, Joanna Drummond, Joshua Gordon, Elnaz Nouri,
Ethan Selfridge and William Wang. For help on the design of the conference bag, we thank Anabel-
Franco-Heurta and Jennifer Wohlner.

We would like to thank Jason Williams, Sponsorships chair, for recruiting and liaising with our
conference sponsors. The sponsorship program enables valuable aspects of the program, such as
the invited speakers, conference reception and dinner, and best paper awards. We would also like
to thank our sponsors. General conference sponsors include Microsoft Research, Vlingo, and AVIOS.
The banquet is sponsored by Honda Research. AT&T Research sponsored the best paper award, and
IBM Research sponsored the best student paper award.

We would like to thank last year’s program co-chairs Raquel Fernández and Oliver Lemon for their
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advice, and responses to our questions. We thank last year’s General co-chair Mikio Nakano for
updates to the conference chair kit, and much helpful advice. Thanks also go to Kazunori Komatani
and Guodong Zhou for answering our questions related to assembling the conference proceedings.

We would like to thank Priscilla Rasmussen at ACL for handling the financial transactions, including
advance registration. We would also like to thank Drago Radev, ACL Secretary, for helpful advice.
Thanks to SoftConf for use of the START conference management systems as well as helpful responses
on its use. Thanks also to the SIGDIAL board, in particular Tim Paek, Amanda Stent, and Kristiina
Jokinen, for their advice and support in all matters.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Johanna D. Moore and David R. Traum
General Co-Chairs

Joyce Y. Chai and Rebecca J. Passonneau
Technical Program Co-Chairs
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Regulating Dialogue with Gestures—Towards an Empirically Grounded Simulation with
Conversational Agents
Kirsten Bergmann, Hannes Rieser and Stefan Kopp

Multiparty Turn Taking in Situated Dialog: Study, Lessons, and Directions
Dan Bohus and Eric Horvitz

12:30 - 14:00 Business meeting and sponsor presentations (boxed lunch included)

xv



Saturday June 18, 2011 (continued)

14:00 - 14:15 Break

14:15 - 15:55 Oral Presentation Session 4

Stability and Accuracy in Incremental Speech Recognition
Ethan Selfridge, Iker Arizmendi, Peter Heeman and Jason Williams

Predicting the Micro-Timing of User Input for an Incremental Spoken Dialogue System
that Completes a User’s Ongoing Turn
Timo Baumann and David Schlangen

An Empirical Evaluation of a Statistical Dialog System in Public Use
Jason Williams

“The day after the day after tomorrow?” A machine learning approach to adaptive tem-
poral expression generation: training and evaluation with real users
Srinivasan Janarthanam, Helen Hastie, Oliver Lemon and Xingkun Liu

15:55 - 16:20 Coffee Break

16:20 - 17:35 Oral Presentation Session 5

Detecting Levels of Interest from Spoken Dialog with Multistream Prediction Feedback
and Similarity Based Hierarchical Fusion Learning
William Yang Wang and Julia Hirschberg

Exploring User Satisfaction in a Tutorial Dialogue System
Myroslava O. Dzikovska, Johanna D. Moore, Natalie Steinhauser and Gwendolyn Camp-
bell

Modeling and Predicting Quality in Spoken Human-Computer Interaction
Alexander Schmitt, Benjamin Schatz and Wolfgang Minker

17:35 - 17:50 Best Paper Awards and Closing

xvi



Poster Session (Friday, June 17)

Topics as Contextual Indicators for Word Choice in SMS Conversations
Ute Winter, Roni Ben-Aharon, Daniel Chernobrov and Ron Hecht

Multilingual Annotation and Disambiguation of Discourse Connectives for Machine
Translation
Thomas Meyer, Andrei Popescu-Belis, Sandrine Zufferey and Bruno Cartoni

Commitments to Preferences in Dialogue
Anaı̈s Cadilhac, Nicholas Asher, Farah Benamara and Alex Lascarides

Using Performance Trajectories to Analyze the Immediate Impact of User State Misclas-
sification in an Adaptive Spoken Dialogue System
Kate Forbes-Riley and Diane Litman

Comparing Triggering Policies for Social Behaviors
Rohit Kumar and Carolyn Rosé
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Models of conversation that rely on a robust notion of cooperation don't model dialogues where 
the agents' goals conflict; for instance, negotiation over restricted resources, courtroom cross ex-
amination and political debate.  We aim to provide a framework in which both cooperative and 
non-cooperative conversation can be analyzed.  We develop a logic that links the public com-
mitments that agents make through their utterances to private attitudes---e.g., belief, desire and 
intention. This logic incorporates a qualitative model of human action and decision making that 
approximates principles from game theory: e.g., choose actions that maximize expected utility.  
However, unlike classical game theory, our model supports reasoning about action even when 
knowledge of one's own preferences and those of others is incomplete and/or changing as the 
dialogue proceeds---an essential feature of many conversations.  The logic validates decidable 
inferences from utterances to mental states during interpretation, and from mental states to dia-
logue actions during language production.  In a context where the agents' preferences align we 
derive axioms of co-operativity that are treated as primitive in BDI logics for analyzing dialogue.  
Thus models of cooperative conversation are a special case in our framework. 
 
The research presented in this talk is joint work with Nicholas Asher. 
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Abstract 

The Spoken Dialog Challenge 2010 was an 
exercise to investigate how different spo-
ken dialog systems perform on the same 
task.  The existing Let’s Go Pittsburgh Bus 
Information System was used as a task and 
four teams provided systems that were first 
tested in controlled conditions with speech 
researchers as users. The three most stable 
systems were then deployed to real callers.  
This paper presents the results of the live 
tests, and compares them with the control 
test results. Results show considerable 
variation both between systems and be-
tween the control and live tests.  Interest-
ingly, relatively high task completion for 
controlled tests did not always predict 
relatively high task completion for live 
tests.  Moreover, even though the systems 
were quite different in their designs, we 
saw very similar correlations between word 
error rate and task completion for all the 
systems.  The dialog data collected is 
available to the research community. 

1 Background 

The goal of the Spoken Dialog Challenge (SDC) is 
to investigate how different dialog systems per-
form on a similar task.  It is designed as a regularly 
recurring challenge. The first one took place in 
2010. SDC participants were to provide one or 
more of three things: a system; a simulated user, 
and/or an evaluation metric.   The task chosen for 
the first SDC was one that already had a large 
number of real callers. This had several advan-

tages. First, there was a system that had been used 
by many callers. Second, there was a substantial 
dataset that participants could use to train their sys-
tems.  Finally, there were real callers, rather than 
only lab testers.  Past work has found systems 
which appear to perform well in lab tests do not 
always perform well when deployed to real callers, 
in part because real callers behave differently than 
lab testers, and usage conditions can be considera-
bly different [Raux et al 2005, Ai et al 2008].  De-
ploying systems to real users is an important trait 
of the Spoken Dialog Challenge. 

The CMU Let’s Go Bus Information system 
[Raux et al 2006] provides bus schedule informa-
tion for the general population of Pittsburgh.  It is 
directly connected to the local Port Authority, 
whose evening calls for bus information are redi-
rected to the automated system.  The system has 
been running since March 2005 and has served 
over 130K calls. 

The software and the previous years of dialog 
data were released to participants of the challenge 
to allow them to construct their own systems.  A 
number of sites started the challenge, and four sites 
successfully built systems, including the original 
CMU system. 

An important aspect of the challenge is that 
the quality of service to the end users (people in 
Pittsburgh) had to be maintained and thus an initial 
robustness and quality test was carried out on con-
tributed systems.  This control test provided sce-
narios over a web interface and required 
researchers from the participating sites to call each 
of the systems.  The results of this control test were 
published in [Black et al. 2010] and by the individ-
ual participants [Williams et al. 2010, Thomson et 
al. 2010, Hastie et al, 2010] and they are repro-
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duced below to give the reader a comparison with 
the later live tests. 

Important distinctions between the control 
test callers and the live test callers were that the 
control test callers were primarily spoken dialog 
researchers from around the world.  Although they 
were usually calling from more controlled acoustic 
conditions, most were not knowledgeable about 
Pittsburgh geography.     

As mentioned above, four systems took part 
in the SDC.  Following the practice of other chal-
lenges, we will not explicitly identify the sites 
where these systems were developed. We simply 
refer to them as SYS1-4 in the results.  We will, 
however, state that one of the systems is the system 
that has been running for this task for several 
years. The architectures of the systems cover a 
number of different techniques for building spoken 
dialog systems, including agenda based systems, 
VoiceXML and statistical techniques. 

2 Conditions of Control and Live tests 

For this task, the caller needs to provide the depar-
ture stop, the arrival stop and the time of departure 
or arrival in order for the system to be able to per-
form a lookup in the schedule database. The route 
number can also be provided and used in the 
lookup, but it is not necessary. The present live 
system covers the East End of Pittsburgh.  Al-
though the Port Authority message states that other 
areas are not covered, callers may still ask for 
routes that are not in the East End; in this case, the 
live system must say it doesn’t have information 
available.  Some events that affect the length of the 
dialog include whether the system uses implicit or 
explicit confirmation or some combination of both, 
whether the system has an open-ended first turn or 
a directed one, and whether it deals with requests 
for the previous and/or following bus (this latter 
should have been present in all of the systems). 

Just before the SDC started, the Port Author-
ity had removed some of its bus routes. The sys-
tems were required to be capable of informing the 
caller that the route had been canceled, and then 
giving them a suitable alternative. 

SDC systems answer live calls when the Port 
Authority call center is closed in the evening and 
early morning.  There are quite different types and 
volumes of calls over the different days of the 
week.  Weekend days typically have more calls, in 

part because the call center is open fewer hours on 
weekends.  Figure 1 shows a histogram of average 
calls per hour for the evening and the early morn-
ing of each day of the week. 
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Figure 1: average number of calls per hour on weekends 
(dark bars) and weekdays. Listed are names of days and 
times before and after midnight when callers called the 
system. 
 

The control tests were set up through a simple 
web interface that presented 8 different scenarios 
to callers. Callers were given a phone number to 
call; each caller spoke to each of the 4 different 
systems twice.  A typical scenario was presented 
with few words, mainly relying on graphics in or-
der to avoid influencing the caller’s choice of vo-
cabulary.  An example is shown in Figure 2. 
 
 

 
Figure 2: Typical scenario for the control tests.  This 
example requests that the user find a bus from the cor-
ner of Forbes and Morewood (near CMU) to the airport, 
using bus route 28X, arriving by 10:45 AM. 
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3 Control Test Results 

The logs from the four systems were labeled for 
task success by hand.  A call is successful if any of 
the following outputs are correctly issued: 
 

• Bus schedule for the requested departure and 
arrival stops for the stated bus number (if giv-
en). 

• A statement that there is no bus available for 
that route. 

• A statement that there is no scheduled bus at 
that time. 

 

We additionally allowed the following boundary 
cases: 
 

• A departure/arrival stop within 15 minutes 
walk. 

• Departure/arrival times within one hour of re-
quested time. 

• An alternate bus number that serves the re-
quested route. 

 

In the control tests, SYS2 had system connection 
issues that caused a number of calls to fail to con-
nect, as well as a poorer task completion.  It was 
not included in the live tests.  It should be pointed 
out that SYS2 was developed by a single graduate 
student as a class project while the other systems 
were developed by teams of researchers.  The re-
sults of the Control Tests are shown in Table 1 and 
are discussed further below. 

 
Table 1. Results of hand analysis of the four systems in 
the control test 
 The three major classes of system response 
are as follows.  no_info: this occurs when the sys-
tem gives neither a specific time nor a valid excuse 
(bus not covered, or none at that time).  no_info 
calls can be treated as errors (even though there 
maybe be valid reasons such as the caller hangs up 
because the bus they are waiting for arrives).  
donthave: identifies calls that state the requested 
bus is not covered by the system or that there is no 

bus at the requested time. pos_out: identifies calls 
where a specific time schedule is given.  Both 
donthave and pos_out calls may be correct or er-
roneous (e.g the given information is not for the 
requested bus,  the departure stop is wrong, etc). 

4 Live Tests Results 

In the live tests the actual Pittsburgh callers had 
access to three systems: SYS1, SYS3, and SYS4.  
Although engineering issues may not always be 
seen to be as relevant as scientific results, it is im-
portant to acknowledge several issues that had to 
be overcome in order to run the live tests. 

Since the Pittsburgh Bus Information System 
is a real system, it is regularly updated with new 
schedules from the Port Authority. This happens 
about every three months and sometimes includes 
changes in bus routes as well as times and stops. 
The SDC participants were given these updates 
and were allowed the time to make the changes to 
their systems. Making things more difficult is the 
fact that the Port Authority often only releases the 
schedules a few days ahead of the change. Another 
concern was that the live tests be run within one 
schedule period so that the change in schedule 
would not affect the results.   

The second engineering issue concerned 
telephony connectivity. There had to be a way to 
transfer calls from the Port Authority to the par-
ticipating systems (that were run at the participat-
ing sites, not at CMU) without slowing down or 
perturbing service to the callers.  This was 
achieved by an elaborate set of call-forwarding 
mechanisms that performed very reliably.  How-
ever, since one system was in Europe, connections 
to it were sometimes not as reliable as to the US-
based systems.  
 

 SYS1 SYS3 SYS4 
Total Calls 678 451 742 
Non-empty calls 633 430 670 
no_ info 18.5% 14.0% 11.0% 
donthave 26.4% 30.0% 17.6% 

donthave_corr 47.3% 40.3% 37.3% 
donthave_incorr 52.7% 59.7% 62.7% 

pos_out 55.1% 56.0% 71.3% 
pos_out_corr 86.8% 93.8% 91.6% 

pos_out_incorr 13.2% 6.2% 8.4% 
 
Table 2. Results of hand analysis of the three systems in 
the live tests.  Row labels are the same as in Table 1. 

 SYS1 SYS2 SYS3 SYS4 
Total Calls 91 61 75 83 
no_ info 3.3% 37.7% 1.3% 9.6% 
donthave 17.6% 24.6% 14.7% 9.6% 

donthave_corr 68.8% 33.3% 100.0% 100.0% 
donthave_incorr 31.3% 66.7% 0.0% 0.0% 
pos_out 79.1% 37.7% 84.0% 80.7% 

pos_out_corr 66.7% 78.3% 88.9% 80.6% 
pos_out_incorr 33.3% 21.7% 11.1% 19.4% 
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We ran each of the three systems for multiple two 
day periods over July and August 2010.  This de-
sign gave each system an equal distribution of 
weekdays and weekends, and also ensured that 
repeat-callers within the same day experienced the 
same system. 

One of the participating systems (SYS4) 
could support simultaneous calls, but the other two 
could not and the caller would receive a busy sig-
nal if the system was already in use.  This, how-
ever, did not happen very often. 

Results of hand analysis of real calls are 
shown in Table 4 alongside the results for the Con-
trol Test for easy comparison.  In the live tests we 
had an additional category of call types – empty 
calls (0-turn calls) – which are calls where there 
are no user turns, for example because the caller 
hung up or was disconnected before saying any-
thing.  Each system had 14 days of calls and exter-
nal daily factors may change the number of calls. 
We do suspect that telephony issues may have pre-
vented some calls from getting through to SYS3 on 
some occasions.   

Table 3 provides call duration information for 
each of the systems in both the control and live 
tests. 

 
 

 Length (s) Turns/call Words/turn 
SYS1 control 155 18.29 2.87 (2.84) 
SYS1 live 111 16.24 2.15 (1.03) 
SYS2 control 147 17.57 1.63 (1.62) 

SYS3 control 96 10.28 2.73 (1.94) 

SYS3 live 80 9.56 2.22 (1.14) 

SYS4 control 154 14.70 2.25 (1.78) 

SYS4 live 126 11.00 1.63 (0.77) 

 
Table 3: For live tests, average length of each call, aver-
age number of turns per call, and average number of 
words per turn (numbers in brackets are standard devia-
tions). 

 
Each of the systems used a different speech 

recognizer.  In order to understand the impact of 
word error rate on the results, all the data were 
hand transcribed to provide orthographic transcrip-
tions of each user turn.   Summary word error sta-
tistics are shown in Table 4.   However, summary 
statistics do not show the correlation between word 
error rate and dialogue success.  To achieve this, 
following Thomson et al (2010), we computed a 

logistic regression of success against word error 
rate (WER) for each of the systems. Figure 3 
shows the regressions for the Control Tests and 
Figure 4 for the Live Tests.  

 
 SYS1 SYS3 SYS4 
Control 38.4 27.9 27.5 
Live 43.8 42.5 35.7 

 
Table 4: Average dialogue word error rate (WER). 
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Figure 3: Logistic regression of control test success vs 

WER for the three fully tested systems 
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Figure 4: Logistic regression of live success vs WER for 

the three fully tested systems 
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In order to compare the control and live tests, 
we can calculate task completion as the percentage 
of calls that gave a correct result.  We include only 
non-empty calls (excluding 0-turn calls), and treat 
all no_info calls as being incorrect, even though 
some may be due to extraneous reasons such as the 
bus turning up (Table 5). 
 
 SYS1 SYS3 SYS4 
Control 64.9% (5.0%) 89.4% (3.6%) 74.6% (4.8%) 
Live 60.3% (1.9%) 64.6% (2.3%) 71.9% (1.7%) 

 
Table 5: Live and control test task completion (std. err).  

 

5 Discussion 

All systems had lower WER and higher task com-
pletion in the controlled test vs. the live test.  This 
agrees with past work [Raux et al 2005, Ai et al 
2008], and underscores the challenges of deploying 
real-world systems. 

For all systems, dialogs with controlled sub-
jects were longer than with live callers – both in 
terms of length and number of turns.  In addition, 
for all systems, live callers used shorter utterances 
than controlled subjects.  Controlled subjects may 
be more patient than live callers, or perhaps live 
callers were more likely to abandon calls in the 
face of higher recognition error rates.   

Some interesting differences between the sys-
tems are evident in the live tests.  Looking at dia-
log durations, SYS3 used confirmations least often, 
and yielded the fastest dialogs (80s/call).  SYS1 
made extensive use of confirmations, yielding the 
most turns of any system and slightly longer dia-
logs (111s/call).  SYS4 was the most system-
directed, always collecting information one ele-
ment at a time.  As a result it was the slowest of the 
systems (126s/call), but because it often used im-
plicit confirmation instead of explicit confirmation, 
it had fewer turns/call than SYS1.   

For task completion, SYS3 performed best in 
the controlled trials, with SYS1 worst and SYS4 in 
between.  However in the live test, SYS4 per-
formed best, with SYS3 and SYS1 similar and 
worse.  It was surprising that task completion for 
SYS3 was the highest for the controlled tests yet 
among the lowest for the live tests.  Investigating 
this, we found that much of the variability in task 
completion for the live tests appears to be due to 
WER.  In the control tests SYS3 and SYS4 had 

similar error rates but the success rate of SYS3 was 
higher.  The regression in Figure 3 shows this 
clearly.   In the live tests SYS3 had a significantly 
higher word error rate and average success rate 
was much lower than in SYS4.   

It is interesting to speculate on why the rec-
ognition rates for SYS3 and SYS4 were different 
in the live tests, but were comparable in the control 
tests.  In a spoken dialogue system the architecture 
has a considerable impact on the measured word 
error rate.  Not only will the language model and 
use of dialogue context be different, but the dia-
logue design and form of system prompts will in-
fluence the form and content of user inputs.   Thus, 
word error rates do not just depend on the quality 
of the acoustic models – they depend on the whole 
system design.  As noted above, SYS4 was more 
system-directed than SYS3 and this probably con-
tributed to the comparatively better ASR perform-
ance with live users.   In the control tests, the 
behavior of users (research lab workers) may have 
been less dependent on the manner in which users 
were prompted for information by the system.  
Overall, of course, it is user satisfaction and task 
success which matter. 

6 Corpus Availability and Evaluation 

The SDC2010 database of all logs from all systems 
including audio plus hand transcribed utterances, 
and hand defined success values is released 
through CMU’s Dialog Research Center 
(http://dialrc.org). 

One of the core goals of the Spoken Dialog 
Challenge is to not only create an opportunity for 
researchers to test their systems on a common plat-
form with real users, but also create common data 
sets for testing evaluation metrics.  Although some 
work has been done on this for the control test data 
(e.g. [Zhu et al 2010]), we expect further evalua-
tion techniques will be applied to these data. 

One particular issue which arose during this 
evaluation concerned the difficulty of defining pre-
cisely what constitutes task success.  A precise de-
finition is important to developers, especially if 
reinforcement style learning is being used to opti-
mize the success.  In an information seeking task 
of the type described here, task success is straight-
forward when the user’s requirements can be satis-
fied but more difficult if some form of constraint 
relaxation is required.   For example, if the user 
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asks if there is a bus from the current location to 
the airport – the answer “No.” may be strictly cor-
rect but not necessarily helpful.  Should this dia-
logue be scored as successful or not?  The answer 
“No, but there is a stop two blocks away where 
you can take the number 28X bus direct to the air-
port.” is clearly more useful to the user.  Should 
success therefore be a numeric measure rather than 
a binary decision?  And if a measure, how can it be 
precisely defined?  A second and related issue is 
the need for evaluation algorithms which deter-
mine task success automatically.   Without these, 
system optimization will remain an art rather than 
a science. 

7 Conclusions 

This paper has described the first attempt at an ex-
ercise to investigate how different spoken dialog 
systems perform on the same task.  The existing 
Let’s Go Pittsburgh Bus Information System was 
used as a task and four teams provided systems 
that were first tested in controlled conditions with 
speech researchers as users. The three most stable 
systems were then deployed “live” with real call-
ers. Results show considerable variation both be-
tween systems and between the control and live 
tests.  Interestingly, relatively high task completion 
for controlled tests did not always predict rela-
tively high task completion for live tests.  This 
confirms the importance of testing on live callers, 
not just usability subjects. 
 The general organization and framework 
of the evaluation worked well.  The ability to route 
audio telephone calls to anywhere in the world us-
ing voice over IP protocols was critical to the suc-
cess of the challenge since it provides a way for 
individual research labs to test their in-house sys-
tems without the need to port them to a central co-
ordinating site. 
 Finally, the critical role of precise evalua-
tion metrics was noted and the need for automatic 
tools to compute them.  Developers need these at 
an early stage in the cycle to ensure that when sys-
tems are subsequently evaluated, the results and 
system behaviors can be properly compared.  
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Abstract

We investigate how to jointly explain the per-
formance and behavioral differences of two
spoken dialogue systems. The Join Evalu-
ation and Differences Identification (JEDI),
finds differences between systems relevant
to performance by formulating the problem
as a multi-task feature selection question.
JEDI provides evidence on the usefulness of
a recent method, `1/`p-regularized regres-
sion (Obozinski et al., 2007). We evaluate
against manually annotated success criteria
from real users interacting with five different
spoken user interfaces that give bus schedule
information.

1 Introduction

This paper addresses the problem of how to deter-
mine which differences between two versions of a
system affect their behavior. Researchers in Spo-
ken Dialogue Systems (SDSs) can be perplexed as to
which of the differences between alternative systems
affect performance metrics (Bacchiani et al., 2008).
For example, when testing on real users at differ-
ent periods of time, the variance of the performance
metrics might be higher than the difference between
systems, causing (i) significantly different scores in
identical systems deployed at different times, and
(ii) the same score on different systems (González-
Brenes et al., 2009).

We approach the problem of finding which system
differences matter by describing dialogues as feature
vectors constructed from the logs of dialogs gener-
ated by the SDSs interacting with real users. Hence,
we aim to identify features that jointly characterize
the system differences and the performance of the

SDS being evaluated. These features should be able
to (i) predict a performance metric and (ii) distin-
guish between the two SDS being evaluated.

The main contribution of this paper is a novel al-
gorithm for detecting differences between two sys-
tems that can explain performance. Additionally, we
provide details on how to implement state-of-the-art
multi-task learning for SDSs.

The rest of this manuscript is organized as fol-
lows. Section 2 reviews multi-task feature selection.
Section 3 describes two algorithms to find which
system differences matter. Section 4 describes the
specific SDS used to illustrate our algorithms. Sec-
tion 5 presents some experimental results. Section 6
reviews related prior work. Section 7 presents some
concluding remarks and future work. Appendix A
provides implementation details of the multi-task
learning approach we used.

2 Feature Selection

In this section we describe how we use regression to
perform feature selection. Feature selection meth-
ods construct and select subsets of features in order
to build a good predictor. We focus our attention on
feature selection methods that use complexity (regu-
larization) penalties, because of their recent theoret-
ical and experimental success (Yuan and Lin, 2006;
Park and Hastie, 2007). We provide a more rigorous
description of how to implement this formulation as
an optimization problem in Appendix A.

We use labels to encode the output we want to
predict. For example, if our performance metric is
binary, we label successful dialogues with a +1, and
unsuccesful dialogues with a −1. Given a training
set consisting of labeled dialogues, we want to learn
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a model that assigns a label to unseen dialogues. We
follow an approach called empirical risk minimiza-
tion (Obozinski et al., 2007), that aims to minimize
the error of fitting the training data, while penalizing
the complexity of the model:

Minimize Model loss + λ Complexity (1)

Here the hyper-parameter λ controls the trade-off
between a better fit to the training data (with a higher
risk of over-fitting it), and a simpler model, with
fewer features selected (and less predictive power).
We now review the two components of risk mini-
mization, model loss and complexity penalty.

2.1 Model Loss
We model probabilistically the loss of our model
against the real-life phenomenon studied. Given a
dialogue x, with correct label l, its loss using a
model β is:

lossβ(ŷ, x) ≡ P (y = l|x; reality)− P (ŷ = l|x;β)
(2)

Here ŷ is the predicted value of the event y. Since l
is the true label, P (y = l|x; reality) = 1. To get the
overall loss of the model, we aggregate over the pre-
diction loss of each of the dialogues in the training
set by summing their individual loss calculated with
Equation 2. Let X = {x(1), x(2), . . . x(n)} be the n
dialogues in the training set. Then the overall loss of
model β is:

lossβ(y
(1), x(1)) + · · ·+ lossβ(y

(n), x(n))

Since we use discrete labels, we use a logistic
function to model their probability. Let x1, . . . xk
be the k features extracted from dialogue x. Then
the logistic regression model is:

P (ŷ = +1|x;β) =
1

Z
exp(β1x1 + · · ·+ βkxk)

Here β1...βk are the parameters of the model, and
Z simply normalizes P to ensure that P is a valid
probability function (the range of P should be 0 to
1):

Z = 1 + exp(β1x1 + · · ·+ βkxk)

Multi-task learning solves related regression
problems at the same time using a shared representa-
tion. We now describe the risk-minimization formu-
lation for multi-task learning. Let ym be the value

of the performance metric. Let ys be the label of the
system that generated the dialogue. The individual
dialogue loss of using models βm and βs is:

lossβm(ŷm, x) + lossβs(ŷs, x)

2.2 Complexity Penalties
We consider a feature xi to be selected into the
model if its regression coefficient βi is non-zero.
Complexity penalties encourage selecting only a few
features. We review several commonly used penal-
ties (Zou and Hastie, 2005):

• `2 Penalty. Under some circumstances `2
penalties perform better than other types of
penalties (Zou and Hastie, 2005). The `2
penalty for a model β is:

||β||`2 ≡
√

(β1)2 + · · ·+ (βk)2

• `1 Penalty. An `1 penalty induces sparsity by
setting many parameters of the model β to ex-
actly zero (Tibshirani, 1996).

||β||`1 ≡ |β1|+ · · ·+ |βk|

• `1/`2 Penalty. Yuan and Lin (2006) proposed
a group penalty for penalizing groups of fea-
tures simultaneously. Previous work has shown
that grouping features between tasks encour-
ages features to be used either by all tasks or
by none (Turlach et al., 2005; Obozinski et
al., 2007; Lounici et al., 2009; Puniyani et al.,
2010). Our `1/`2 penalty is:∣∣∣∣√(βm1 )2 + (βs1)

2

∣∣∣∣+ ...+

∣∣∣∣√(βmk )2 + (βsk)
2

∣∣∣∣
3 Finding Features that Predict

Performance and System Differences

We find system differences that are predictive of
SDS performance, relying on:

• Describing dialogues as feature vectors. The
behavior of the systems must be describable
by features extracted from the logs of the sys-
tems. A discussion of feature engineering for
dialogue systems is found in (González-Brenes
and Mostow, 2011).
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• Finding system differences. The features of a
classifier that distinguishes between SDSs, can
be used to identify their differences (González-
Brenes et al., 2009). When comparing two
SDSs, we label the baseline system with −1,
and the alternate version with +1.

• Modeling performance. Although our ap-
proach does not depend on a specific perfor-
mance metric, in this paper we use dialogue
success, a binary indicator that triggers that
the user’s query was answered by the SDS.
Task completion is cheaper to compute than di-
alogue success, as it does not require a man-
ual human labeled reference, but we consider
that dialogue success is a more accurate metric.
Task completion is used in commercial applica-
tions (Bacchiani et al., 2008), and has been ex-
tensively studied in the literature (Walker et al.,
2001; Walker et al., 2002; Hajdinjak and Mi-
helic, 2006; Levin and Pieraccini, 2006; Möller
et al., 2007; Möller et al., 2008; Schmitt et
al., 2010). We encode success of dialogues by
manually annotating them with a binary vari-
able that distinguishes if the user query is ful-
filled by the SDS.

We now present two algorithms to find what dif-
ferences matter between systems. We introduce Se-
rial EvaluatioN Analysis (SERENA) as a scaffold
for the Join Evaluation and Differences Identifica-
tion (JEDI) algorithm.

3.1 SERENA algorithm
The input to SERENA is a collection of log files

created by two different SDSs and two functions that
represent the correct label for the regression tasks.
In our case these functions should return binary la-
bels (+1,−1): one task distinguishes between suc-
cessful and unsuccessful dialogues, and the other
task distinguishes a baseline from an alternative SDS
version. SERENA’s objective is to select features
from one task, and use them to predict the other task.
For example, SERENA selects features that predict
differences between versions, and uses them to pre-
dict performance.

Algorithm 1 provides the pseudo-code for SER-
ENA. Line 1 builds the training set X from parsing
the logs of the SDSs. Lines 2 and 3 create the output

Algorithm 1 SERENA algorithm
Require: Logs1, Logs2 are the collections of SDS

logs of two systems. task1, task2 are func-
tions that return the value of a performance met-
ric, and which system is being evaluated (−1 if
is the baseline, +1 otherwise).

1: X← extract features(Log1,Log2)

2: yt1 ←
[

task1(Logs1)
task1(Logs2)

]
3: yt2 ←

[
task2(Logs1)
task2(Logs2)

]
4: // Select features that explain both tasks:
5: for λ = {0.1, 0.2, . . . } do
6: βt1 ← regression`1(X,y

t1 , λ)
7: // Get feature weights:
8: X′ ← X; where xk|∀xk ∈ X′, βt1k 6= 0
9: β∗ ← regression`2(X

′,yt2 , λc)
10: end for
11: return β∗

variables y for the regression tasks. Line 6 returns
the most predictive features using `1 regularization
as described in Section 2. Line 8 builds a new train-
ing set, removing the features that were not selected
in line 6. Line 9 builds the final coefficients by fitting
a `2-regularized model using a constant λc. We cal-
culate the coefficients using an `2 penalty, because
it has a better fit to the data (Zou and Hastie, 2005).
Moreover, by using the same penalty, we control for
the idiosyncrasies different penalties have in param-
eter learning. In the experiments described in Sec-
tion 5, all of our experiments are reported fitting a
`2-regularized models.

SERENA is not conmutative with regards to the
order of the tasks: selecting the features that predict
performance and using them to predict system dif-
ferences is not the same as the reverse. More impor-
tantly, SERENA only searches in one of the tasks at
a time. We are interested in finding the features that
explain both tasks simultaneously. In the next sub-
section we describe JEDI which makes use of recent
advances in multi-task feature selection in order to
find the features for both tasks at the same time.

3.2 JEDI algorithm

Algorithm 2 provides the pseudo-code for JEDI.
JEDI uses multi-task regression to find the fea-
tures that affect performance and system differences
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Algorithm 2 JEDI algorithm
Require: Logs1, Logs2 are the collections of SDS

logs of two systems. task1, task2 are func-
tions that return the value of a performance met-
ric, and which system is being evaluated (−1 if
is the baseline, +1 otherwise).

1: X← extract features(Log1,Log2)

2: yt1 ←
[

task1(Logs1)
task1(Logs2)

]
3: yt2 ←

[
task2(Logs1)
task2(Logs2)

]
4: // Select features that explain both tasks:
5: for λ = {0.1, 0.2, . . . } do
6: βt1βt2 ← regression`1/`2(X, ~y

t1 , ~yt2 , λ)
7: // Get feature weights:
8: X′ ← X; where xk|∀xk ∈ X′, βt1k 6= 0
9: β∗ ← regression`2(X

′,yt2 , λc)
10: end for
11: return β∗

jointly. To ensure a sparse feature set across the
tasks, it applies a `1/`2 penalty. In this way, a feature
is either selected to predict performance and system
differences, or it is not selected at all. In the next
section we review a concrete example of a SDS in
which we apply SERENA and JEDI.

4 Case Study

We use data collected from Let’s Go!, an experi-
mentary SDS available for research purposes1 that
provides bus planning information to the Pittsburgh
East End community (Raux et al., 2006). Figure 1
shows a sample dialogue.

We assembled three disjoint datasets to have di-
alogues just before and after what we considered
important architectural differences of Let’s Go’s im-
plementation. By going through the change log, we
realize that the magnitude of the differences varies
widely. Table 1 describes the date the systems were
deployed, the description of the change in the SDS,
and the number of dialogues in each set. From the
86 dialogues of “Set A”, half are a random sam-
ple of the logs before the acoustic model was re-
trained (Log1), and the other half is a sample af-
ter the acoustic model was retrained (Log2). In the
case of the 84 dialogues of “Set B”, half of the logs

1http://www.dialrc.org/

System: Welcome to the CMU Let’s Go!
Bus Information System. How
may I help you?

User: I’d like to go to Forbes and Mur-
ray.

System: To Forbes and Murray. Where
are you leaving from?

User: Carnegie Mellon.
System: From Carnegie Mellon. There

are five buses running between
Carnegie Mellon and Forbes and
Murray: the 501, the 59U, the
61A, the 61B, and the 61C.
What else can I do for you?

User: When is the next one?
System: The next 61C going to Forbes

and Murray will leave Carnegie
Mellon at 5:13 PM.

Figure 1: Example of a Let’s Go dialogue, from (Raux et
al., 2006)

use an older version of the Olympus SDS infrastruc-
ture (Bohus et al., 2007), and the other half uses
Olympus II. Since each system was deployed in a
different period of time, we want to corroborate that
we are modeling the differences among systems, and
not seasonal. Hence, for control conditions, we also
chose a data set that contained no major change to
the system or to other conditions (Set C).

Sets were built by randomly sampling from the
collection of logs. They have the same number of di-
alogues from each SDS version (baseline/alternate).
Each dialogue was manually annotated to indicate
whether the user’s query was fulfilled, and we re-
moved from our analysis the two dialogues that were
only partially fulfilled. The number of successful di-
alogues is different from the number of unsuccessful
dialogues.

We created a script to extract features from the log
files of Let’s Go!. The script has an explicit list of
features to extract from the event logs, such as the
words that were identified by the Automatic Speech
Recognizer. Although this script is dependent on our
specific log format, it should be a simple program-
ming task to adapt it to a different dialogue system,
provided its logs are comprehensive enough. The
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Table 1: Dataset Description

Set Size Description Date

A 86
Baseline 8/05 10/05
New acoustic model 12/05 2/05

B 86
Baseline 8/06 10/06
New SDS architecture 6/07 7/07

C 84
Baseline 10/07 11/07
No change 11/07 12/07

script performs the standard transformation of cen-
tering feature values as z-scores with mean zero and
standard deviation one.

Table 2 summarizes the properties we are inter-
ested to model. Dialogue properties are the features
that summarize the behavior of the whole dialogue,
and turn properties work at a finer-grain. We encode
turn properties into features in the following way:

• Global average. Turn properties are averaged
over the entire dialogue.

• Beginning window. Turn properties are aver-
aged across an initial window. Based on pre-
liminary experiments, we defined the window
as the first 5 turns.

• State. We relied on the fact that SDSs are of-
ten engineered as finite state automata (Bohus
et al., 2007). Properties are averaged across the
states that belong to a specific dialogue state
(for example, asking departure place). Because
we are interested in early identification of dif-
ferences, we restricted state features to be in-
side the beginning window.

5 Evaluation

We assess the performance of our algorithms by
evaluating the classification accuracy using the fea-
tures selected. To facilitate assessment of SDS, we
only consider models that select up to 15 features.
Figure 2 reports mean classification accuracy using
five-fold cross-validation. Its first column describes
how well the features selected perform on detecting
system differences, and the second column describes
how well they predict task success as a performance
metric. We compare JEDI and SERENA against the
following approaches:

Table 2: Features
Dialogue Properties

# of re-prompted turns
# of turns
Mean Dialogue length
is evening?, is weekend?, 0-23 hour
Turn Properties

Occurrences of word w
# of parse errors
# of unrecognized words
# of words
# of repeated words
# of unique words
Turn length
Words per minute
Failed prompts (number and percentage)
Mean Utterance Length
Barge-in (in seconds)
Machine-user pause (in seconds)
User-machine pause (in seconds)
Amplitude (power) statistics

• Majority classifier baseline. A classifier that
always selects the majority class (datasets B
and C are not balanced in the number of suc-
cessful dialogues).

• Same Task Classifier We report the classifica-
tion accuracy of the model trained and tested
on the same task. Features are selected using
an `1 penalty, and the coefficients are estimated
with `2-regularized logistic regression. For ex-
ample, in the column of the left, SERENA uses
the most predictive features of system differ-
ences to predict success, while the same task
classifier uses them to predict system differ-
ences. The same task classifier does not answer
“which system differences matter”, it is just an
interesting benchmark.

We used a one-sample t-test to check for sta-
tistically significant differences against the classifi-
cation accuracy of the majority classifier baseline.
We used a paired-sample t-test to check for sig-
nificant differences in classification accuracy be-
tween classifiers. Paired samples have the same λ
hyper-parameter, which was described in the risk-
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Figure 2: Classification accuracy of different feature se-
lection techniques

minimization formulation explained in Section 2.
This hyper-parameter is related to the number of fea-
tures selected – as λ increases, the number of fea-
tures selected decreases. We use 5% as the signif-
icance level at which to reject the null hypothesis.
When checking for statistical differences, we tested
on the range of λs computed2.

First we investigate the performance of the sim-
pler algorithm SERENA. For Dataset A, SERENA
does not yield significant differences over the ma-
jority classifier baseline. For Dataset B, SERENA
is significantly better than the majority classifier in
predicting system differences, but is significantly
worse for predicting success. This means that the or-
der in which we choose the tasks in SERENA affects
its performance. SERENA performs significantly
worse in the Control Set C. We conclude that SER-

2λ = {100, 30, 25, 20, 19, 18, . . . , 1, 0.5, 0.25, 0.1}

Table 3: Features selected in Dataset A
Feature Suc. Diff. JEDI
System-user pause 5 5
Weekend night? 3
% of failed prompts 4
“Forbes St.” word 5 3
User’s max. power 5

Table 4: Features selected in Dataset B
Feature Suc. Diff. JEDI
% of failed prompts 5 4
User’s power std.dev. 5
Weekend night? 3
Unrecognized word 5
Words/min. 4
User-system pause 5
Turn length 5 5

ENA is not very reliable in predicting which system
differences matter.

We now discuss how well JEDI is able to fill-in for
the deficiencies of SERENA. As an “upper-bound”,
we will compare it to a classifier trained and tested
in the same task. This classifier significantly dom-
inates over the majority baseline, even for the the
Control Set C, where there were no changes in the
SDS. This suggests that the classifier might be pick-
ing up on seasonal differences. For Set A, JEDI per-
forms significantly better than the majority classi-
fier and than SERENA. For Set B, there are no sig-
nificant differences between the upper-bound clas-
sifier and JEDI when predicting for changes in the
SDS. Again, JEDI dominates over SERENA and the
majority baseline. For the Control Set C, JEDI is
not statistically different from the majority baseline.
This is the expected behavior, since the difference in
performance cannot be explained by the differences
between the SDS. We hypothesize that the classifi-
cation accuracy of JEDI could be used as a distance
function between SDS: The closer the accuracy of
distinguishing SDS is to 50%, the more similar the
SDSs are. Conversely, when JEDI is able to classify
system differences closer to 100%, it is because the
SDSs are more different.

Tables 3 and 4 describe the features selected for
Sets A and B respectively. The numbers indicate
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in how many folds the feature was selected by JEDI
and by classifiers trained to predict Success and SDS
differences using five-fold cross validation. The λ
used is selected to contain the closest to five features
(ties are resolved randomly). We only report fea-
tures that appeared in at least three folds. In Dataset
A we see that time of day is selected to predict di-
alogue success. Anecdotally, we have noticed that
many users during weekend nights appear to be in-
toxicated when calling the system. JEDI does not
select “is weekend night” as a feature, because it
has little predictive power to detect system differ-
ences. In Dataset A, JEDI selects a speech recogni-
tion feature (the token “Forbes St” was recognized),
and an end-pointing feature. Since in Dataset A, the
difference between systems correspond to a differ-
ent acoustic model, these features make sense intu-
itively. In Dataset B, JEDI detected that the features
most predictive with system differences and success
are percentage of failed prompts and the length of
the turn. The models for both systems make sense
after the fact. However, neither model was known
beforehand, nor did we know which of many fea-
tures considered would turn out to be informative.
Anecdotally, the documentation of the history of
changes of Let’s Go! is maintained manually. Some-
times, because of human error, this history is incom-
plete. The ability of JEDI to identify system differ-
ences has been able to help completing the history
of changes (González-Brenes et al., 2009).

6 Relation to Prior Work

The scientific literature offers several performance
metrics to assess SDS performance (Polifroni et al.,
1992; Danieli and Gerbino, 1995; Bacchiani et al.,
2008; Suendermann et al., 2010). SDS are eval-
uated using different objective and subjective met-
rics. Examples of objective metrics are the mean
number of turns in the dialogue, and dialogue suc-
cess. Subjective evaluations study measure satisfac-
tion through controlled user studies. Ai et al. (2007)
studied the differences in using assessment metrics
with real users and paid users.

PARADISE, a notable example of a SDS subjec-
tive evaluation, finds linear predictors of a satisfac-
tion score using automatic and hand-labeled features
(Hajdinjak and Mihelic, 2006; Walker et al., 2001),

or only automatic features (Hastie et al., 2002). Sat-
isfaction scores are calibrated using surveys in con-
trolled experiments (Möller et al., 2007; Möller et
al., 2008). Alternatively, Eckert et al. (1998) pro-
posed simulated users to evaluate SDSs. Their per-
formance metric has to be tuned with a subjective
evaluation as well, in which they refer to the PAR-
ADISE methodology. Our approach does not re-
quire user surveys to be calibrated. Moreover, it
would be feasible to adapt JEDI to regress to PAR-
ADISE, or other performance metrics. Our work ex-
tends previous studies that define performance met-
rics, in proposing an algorithm that finds how system
differences are related to performance.

7 Conclusions and Future Work

We have presented JEDI, a novel algorithm that finds
features describing system differences relevant to a
success metric. This is a novel, automated “glass
box” assessment in the sense of linking changes in
overall performance to specific behavioral changes.
JEDI is an application of feature selection using reg-
ularized regression.

We have presented empirical evidence suggesting
that JEDI’s use of multi-task feature selection per-
forms better than single-task feature selection. Fu-
ture work could extend JEDI to quantify the vari-
ability in performance explained by the differences
found. Common techniques in econometrics, such
as the Seemingly Unrelated Regressions (SUR) for-
mulation (Zellner, 1962), may prove useful for this.

In our approach we used a single binary evalu-
ation criterion. By using a different loss function,
JEDI can be extended to allow continuous-valued
metrics. Moreover, previous work has argued that
evaluating SDSs should not be based on just a sin-
gle criterion (Paek, 2001). JEDI’s multi-task for-
mulation can be extended to include more than one
performance criterion at the same time, and may
prove helpful to understand trade-offs among differ-
ent evaluation criteria.

A Implementation Details of Feature
Selection

In this appendix we review how to set-up multi-task
feature selection as an optimization problem.
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A.1 `1-Regularized Regression for Single-Task
Feature Selection

We first review using regression with `1 regulariza-
tion for single-task feature selection. Given a train-
ing set represented by X, denoting a n × k matrix,
where n is the number of dialogues, and k is the
number of features extracted for each dialogue, we
want to find the coefficients of the parameter vector
~β, that can predict the output variables described in
the vector ~y of length n.

For this, we find the parameter vector that mini-
mizes the loss function J , penalized by a regulariza-
tion term (Tibshirani, 1996):

argmin
~β

J(X, ~β, ~y) + λ||~β||`1 (3)

In the case of binary classification, outputs are bi-
nary (any given y = ±1). A commonly used loss
function J is the Logistic Loss:

Jlog(x, β, y) ≡
1

1 + ey(x·β)
(4)

The `p-norm of a vector ~β is defined as:

||~β||`p ≡
( k∑
i=1

|βi|p
)1/p

The `∞-norm is defined as ||~β||`∞ ≡
max(β1, β2, . . . , βk).

The regularization term ||~β||`1 in Equation 3 con-
trols model complexity: The higher the value of the
hyper-parameter λ, the smaller number of features
selected. Conversely, the smaller the value of λ,
the better the fit to the training data, with higher
risk of over-fitting it. Thus, Equation 3 jointly per-
forms feature selection and parameter estimation; it
induces sparsity by setting many coefficients of ~β
to zero (Tibshirani, 1996). Features with non-zero
coefficients are considered the features selected.

A.2 `1-Regularized Regression for Multi-Task
Feature Selection

`1 regularization can be used to learn a classifier for
each of T prediction task independently. In our case
we are interested in only two prediction tasks: ver-
sion and success. We will index tasks with super-
script t, and we define Xt as the n × k training

data for task t, used to predict the output variable ~yt.
Learning each model separately yields the following
optimization problem (Obozinski et al., 2007):

argmin
~β

t

T∑
t=1

J(Xt, ~β
t
, ~yt) + λ||~β

t
||`1 (5)

Solving this problem leads to individual sparsity in
each task (each ~β

t
has many zeros), but the model

does not enforce a common subset of features for
all of the related output variables simultaneously
(Turlach et al., 2005). In the next subsection we
study how to achieve global sparsity across tasks.

A.3 `1/`p-Regularized Regression for
Multi-task Feature Selection

Although `1-regularization is very successful at se-
lecting individual features, it does not perform ad-
equately when a group of features should enter
or leave the model simultaneously (Yuan and Lin,
2006). Group LASSO (Yuan and Lin, 2006), which
relies on `1/`p-regularization to overcome this lim-
itation, by allowing groups of feature entering or
leaving the model simultaneously. `1/`p regular-
ization has been studied for multi-task learning by
grouping each of the k features across the T learning
tasks (Turlach et al., 2005; Obozinski et al., 2007;
Lounici et al., 2009; Puniyani et al., 2010).

Let us define B as a n× T matrix, whose tth col-
umn is the parameter vector for the task t. For ex-
ample, since we have two tasks B = [~β

t=1
, ~β

t=2
].

Let ~βg denote the gth row of B. In the context of
multi-task learning, the `1/`p-norm of a matrix B is
defined as (Obozinski et al., 2007; Puniyani et al.,
2010):

||B||`1/`p ≡
k∑
g=1

||~βg||`p (6)

Multi-task feature selection with `1/`p regular-
ization is formulated as (Obozinski et al., 2007;
Puniyani et al., 2010):

argmin
B

T∑
t=1

J(Xt, ~β
t
, ~yt) + λ||B||`1/`2 (7)

When T = 1, the multi-task problem of Equation 7
reduces to the single-task problem of Equation 5.
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A.4 Optimization procedure

Puniyani et al. (2010) describe that finding the pa-
rameter coefficients B of Equation 7 can be achieved
more easily by transforming the problem into an
equivalent single-task multivariate regression. We
follow their procedure to create ~yg, ~βg and Xg:

1. Concatenate the vectors ~yt’s into a single vec-
tor ~yg of length n × T . In our case, since we
have only two tasks (T = 2), we get the vector
~yg =

[ ~yt=1

~yt=2

]
.

2. Similarly, we concatenate the ~β
t
’s into a k× T

vector ~βg, in our case ~βg =
[ ~βt=1

~β
t=2

]
.

3. Build a (n · T )× (k · T ) block-diagonal matrix
Xg, where Xt’s are placed along the diagonal,
and the rest of the elements are set to zero. In
our case since we only have two tasks this is
Xg =

[
Xt=1 ∅
∅ Xt=2

]
, where each ∅ denotes a

n × k zero-matrix. The expanded notation of
Xg is:

Xg ≡



xt=1(1)
1 ... xt=1(1)

k 0 ... 0
...

...
...

...
xt=1(n)

1 ... xt=1(n)
k 0 ... 0

0 ... 0 xt=2(1)
1 ... xt=2(1)

k
...

...
...

...
0 ... 0 xt=2(n)

1 ... xt=2(n)
k


Thus, the multi-task learning problem from Equa-

tion 7 is equivalent to (Yuan and Lin, 2006; Puniyani
et al., 2010):

argmin
B

J(Xg, ~βg, ~yg) + λ||B||`1/`2 (8)

In this work we solve this optimization problem us-
ing an existing3 implementation of Block Coordi-
nate Descent (Schmidt et al., 2008) that solves re-
gression problems with a `1/`p penalty.
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S. Möller, K.P. Engelbrecht, and R. Schleicher. 2008.
Predicting the quality and usability of spoken dialogue
services. Speech Communication, 50(8-9):730–744.

G. Obozinski, B. Taskar, and M.I. Jordan. 2007. Multi-
task feature selection. In The Workshop of Struc-
tural Knowledge Transfer for Machine Learning in the
23rd International Conference on Machine Learning
(ICML), Pittsburgh, PA.

T. Paek. 2001. Empirical methods for evaluating dia-
log systems. In ACL 2001 Workshop on Evaluation
Methodologies for Language and Dialogue systems,
pages 3–10.

M.Y. Park and T. Hastie. 2007. L1-regularization path al-
gorithm for generalized linear models. Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 69(19):659–677.

J. Polifroni, L. Hirschman, S. Seneff, and V. Zue. 1992.
Experiments in evaluating interactive spoken language
systems. In Proceedings of the workshop on Speech
and Natural Language, pages 28–33. Association for
Computational Linguistics.

K. Puniyani, S. Kim, and E.P. Xing. 2010. Multi-
population GWA mapping via multi-task regularized
regression. Bioinformatics, 26(12):208.

A. Raux, D. Bohus, B. Langner, A.W. Black, and M. Es-
kenazi. 2006. Doing research on a deployed spoken
dialogue system: one year of Let’s Go! experience. In
Ninth International Conference on Spoken Language
Processing. ISCA.

M. Schmidt, K. Murphy, G. Fung, and R. Rosales. 2008.
Structure learning in random fields for heart motion
abnormality detection. In Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1 –8.

A. Schmitt, M. Scholz, W. Minker, J. Liscombe, and
D. Suendermann. 2010. Is it possible to predict task
completion in automated troubleshooters? In INTER-
SPEECH, pages 94–97.

D. Suendermann, J. Liscombe, R. Pieraccini, and
K. Evanini. 2010. “How am I Doing?”: A new frame-

work to effectively measure the performance of auto-
mated customer care contact centers. In A. Neustein,
editor, Advances in Speech Recognition: Mobile Envi-
ronments, Call Centers, and Clinics, pages 155–180.
Springer.

R. Tibshirani. 1996. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 58(1):267–288.

B.A. Turlach, W.N. Venables, and S.J. Wright. 2005.
Simultaneous variable selection. Technometrics,
47(3):349–363.

M. Walker, C. Kamm, and D. Litman. 2001. Towards de-
veloping general models of usability with PARADISE.
Natural Language Engineering, 6(3):363–377.

M. A. Walker, I. Langkilde-Geary, H. W. Hastie,
J. Wright, and A. Gorin. 2002. Automatically train-
ing a problematic dialogue predictor for a spoken di-
alogue system. Journal of Artificial Intelligence Re-
search, 16:293–319.

M. Yuan and Y. Lin. 2006. Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.

A. Zellner. 1962. An efficient method of estimating
seemingly unrelated regressions and tests for aggrega-
tion bias. Journal of the American Statistical Associa-
tion, 57(298):pp. 348–368.

H. Zou and T. Hastie. 2005. Regularization and vari-
able selection via the Elastic Net. Journal of the Royal
Statistical Society, 67:301–320.

17



Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 18–29,
Portland, Oregon, June 17-18, 2011. c©2011 Association for Computational Linguistics

A Two-Stage Domain Selection Framework for Extensible Multi-Domain

Spoken Dialogue Systems

Mikio Nakano

Honda Research Institute Japan

Wako, Saitama, Japan

nakano@jp.honda-ri.com

Shun Sato

Tokyo Denki University

Hatoyama, Saitama, Japan

rela.relakuma@gmail.com

Kazunori Komatani

Nagoya University

Nagoya, Aichi, Japan

komatani@nuee.nagoya-u.ac.jp

Kyoko Matsuyama∗

Kyoto University

Kyoto, Kyoto, Japan

matuyama@kuis.kyoto-u.ac.jp

Kotaro Funakoshi

Honda Research Institute Japan

Wako, Saitama, Japan

funakoshi@jp.honda-ri.com

Hiroshi G. Okuno

Kyoto University

Kyoto, Kyoto, Japan

okuno@i.kyoto-u.ac.jp

Abstract

This paper describes a general and effective

domain selection framework for multi-domain

spoken dialogue systems that employ dis-

tributed domain experts. The framework con-

sists of two processes: deciding if the current

domain continues and estimating the probabil-

ities for selecting other domains. If the current

domain does not continue, the domain with

the highest activation probability is selected.

Since those processes for each domain expert

can be designed independently from other ex-

perts and can use a large variety of informa-

tion, the framework achieves both extensibil-

ity and robustness against speech recognition

errors. The results of an experiment using

a corpus of dialogues between humans and

a multi-domain dialogue system demonstrate

the viability of the proposed framework.

1 Introduction

As spoken dialogue interfaces are becoming more

widely utilized, they will be expected to be able to

engage in dialogues in a wide variety of topics. Par-

ticularly, spoken dialogue interfaces for office robots

(Asoh et al., 1999) and multimodal kiosk systems

(Gustafson and Bell, 2000) are expected to deal with

people’s various requests, unlike automated call cen-

ter systems that are dedicated to specific tasks.

One effective methodology to build such a sys-

tem is to integrate systems in small domains by

employing distributed multi-domain system archi-

tecture. This architecture has distributed modules

∗Currently with Panasonic Corporation.

that independently manage their own dialogue state

and knowledge for speech understanding and ut-

terance generation (e.g., Lin et al. (1999)). From

an engineering viewpoint, such architecture has an

advantage in that each domain expert can be de-

signed independently and that it is easy to add new

domains. It enables each domain expert to em-

ploy a dialogue strategy very different from those

for other domains. For example, the strategy may

be frame-based mixed-initiative, finite-state-based

system-initiative, or plan-based dialogue manage-

ment (McTear, 2004).

One of the crucial issues with distributed multi-

domain spoken dialogue systems is how to select an

appropriate domain for each user utterance so that

the system can appropriately understand it and an-

swer it. So far several methods have been proposed

but none of them satisfy two basic requirements at

the same time: the ability to be used with a variety

of domain experts (extensibility) and being robust

against ASR (Automatic Speech Recognition) errors

(robustness). We suspect that this is one of the

main reasons why not many multi-domain spoken

dialogue systems have been developed even though

their utility is widely recognized.

This paper presents a new general framework for

domain selection that satisfies the above two require-

ments. In our framework, each expert needs to have

two additional submodules: one for estimating the

probability that it is newly activated, and one for de-

ciding domain continuation when it is already acti-

vated. Since these submodules can be designed in-

dependently from those of other experts, there is no

restriction on designing experts in our framework,
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and thus extensibility is achieved. Robustness is also

achieved because those submodules can be designed

so that they can utilize domain-dependent informa-

tion, including information on speech understanding

and dialogue history, without detracting from ex-

tensibility. Especially the submodule for deciding

domain continuation has the ability to utilize dia-

logue history to avoid erroneous domain shifts that

often occur in previous approaches. Note that we do

not focus on classifying each utterance without con-

textual information (e.g., Chu-Carroll and Carpenter

(1999)). Rather, we try to estimate the user inten-

tion with regard to continuing and shifting domains

in the course of dialogues.

In what follows, Section 2 explains the distributed

multi-domain spoken dialogue system architecture

and requirements for domain selection. Section 3

discusses previous work, and Section 4 presents our

proposed framework. Section 5 describes an exam-

ple implementation and its evaluation results, and

Section 6 concludes the paper.

2 Domain Selection in Multi-Domain

Spoken Dialogue Systems

2.1 Distributed Architecture

In distributed multi-domain spoken dialogue archi-

tecture (Figure 1), distributed modules indepen-

dently manage their own dialogue state and knowl-

edge for speech understanding and utterance gener-

ation (Lin et al., 1999; Salonen et al., 2004; Pakucs,

2003; Nakano et al., 2008). Although those modules

are referred to with various names in that literature,

we call them domain experts in this paper. In this

architecture, when an input utterance is received, its

ASR results are sent to domain experts. They try to

understand the ASR results using their own knowl-

edge for understanding. The domain selector gathers

information from those experts and decides which

expert should deal with the utterance and then de-

cide on the system utterances. In this paper, the do-

main expert engaging in understanding user utter-

ances and deciding system utterances is called acti-

vated.

2.2 Example Systems

So far many multi-domain spoken dialogue sys-

tems based on distributed architecture have been

user 
utterance

information 
for domain selection

domain selector
activate/

deactivate

system 
utterance
(from the 
activated

expert)

speech 
understanding

utterance 
generation

domain 
expert 1

domain expert 2

domain expert 3

dialogue
history

Figure 1: Distributed multi-domain spoken dialogue sys-

tem architecture.

built and have demonstrated their ability to engage

in dialogues in a variety of domains. For exam-

ple, several systems integrated information provid-

ing and database searches in multiple domains (Lin

et al., 1999; Komatani et al., 2006; O’Neill et al.,

2004; Gustafson and Bell, 2000). Some other sys-

tems integrated domain experts that employ very

different dialogue strategies. Lee et al. (2009) and

Nakano et al. (2006) integrated task-oriented and

non-task-oriented dialogue managements. Nakano

et al. (2008) integrated domain experts for not only

dialogues but also tasks requiring physical actions.

Below we explain an example system that we

used to collect dialogue data for the domain se-

lection experiment described in Section 5. It is a

Japanese system that can provide information on

UNESCO World Heritage Sites using speech, slides,

and Microsoft Agent1 gestures. It employs the fol-

lowing ten domain experts:

A question answering (QA) expert: It has a

database consisting of question-answer pairs on

World Heritage Sites (Narimatsu et al., 2010). Each

question-answer pair consists of a set of example

question sentences and answers to them. The an-

swers consist of one or more utterances, plus slides.

Keyphrase-based matching is used to select an ex-

ample question that matches the input utterance.

Eight interactive presentation (IP) experts: Each

of them explains in detail a famous World Her-

itage Site and adds a detailed explanation or skips

some explanation according to the user’s interrup-

tions (Nishimura et al., 2007). Patterns of interrup-

tion utterances are described in the expert’s knowl-

edge base.

1http://www.microsoft.com/MSAgent/
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utterance expert

S1: Hello. I can answer questions about fa-

mous World Heritage Sites in Italy, Ger-

many, Greece, and other areas. I can also

explain some World Heritage Sites in de-

tail. Please ask me anything.

QA

U1: Show me the list of the World Heritage

Sites in Italy.

QA

S2: (show a slide of the list) I can tell you about

the World Heritage Sites in these areas in

Italy.

QA

U2: Can you show me the list of World Her-

itage Sites you can explain in detail?

QA

S3: (show a slide of the list) I can explain these

in detail.

QA

U3: Can you explain Maritime Greenwich? RU

S4: Maritime Greenwich, right? RU

U4: Yes. RU

S5: (show a slide on Greenwich) Okay. I’ll ex-

plain Maritime Greenwich, a historic port

town known for Greenwich Mean Time.

IP1

U5: What is Greenwich Mean Time? IP1

S6: Greenwich Mean Time is the mean solar

time at the Royal Greenwich Observatory.

IP1

S means system utterance and U means user utterance.

IP1 is one of the IP experts.

Figure 2: An example dialogue with the system for data

collection (translation from Japanese).

A request understanding (RU) expert: It under-

stands the user’s request to start one of the interac-

tive presentations explained above, and engages in

a dialogue to confirm the request. When the under-

standing finishes, the understood request is sent to

a module called task planner (Nakano et al., 2008;

Nakano et al., 2011). The task planner then activates

another expert to perform the requested presentation

(S5 in Figure 2).

Figure 2 shows an example dialogue between a

human and this system. Note that user utterances

are relatively short and include words related to spe-

cific World Heritage Sites or area names. If those

words are misrecognized, domain selection is diffi-

cult unless dialogue context information is used.

This figure also indicates the domain experts that

understood each user utterance and selected each

system utterance. The domain expert that should

deal with a user utterance is decided based on the set

of user utterances that the expert is designed to deal

with. The domains of utterances U1 and U3 are dif-

ferent because the QA expert has knowledge for un-

derstanding U1 and the RU expert has knowledge for

understanding U3. Thus, in this study, the domain of

each utterance is determined based on the design of

the experts employed in the system. If none of the

experts can deal with an utterance, it is considered

as an out-of-domain utterance. Sometimes the cor-

rect domain needs to be determined using contextual

information. For example, utterance U4 “Yes” can

appear in all domains, but, since this is a reply to S4,

its domain is RU.

This definition of domain is different from that of

domain (or topic) recognition and adaptation stud-

ies in text, monologue, and human-human conver-

sation processing, in which reference domains are

annotated based on human perspectives rather than

system perspectives. From a human perspective, all

user utterances in Figure 2 may be in “World Her-

itage Site” domain. However, it is not always easy

to build domain experts according to such domain

definitions, because different dialogue tasks in one

such domain may require different dialogue strate-

gies (such as question answering and request under-

standing).

2.3 Requirements for Domain Selection

We pursue a method for domain selection that can

be used in distributed architecture. Such a method

must satisfy the following two requirements.

Extensibility It must not detract from the extensi-

bility of distributed architecture, that is, any kind of

expert must be able to be incorporated, and each ex-

pert must be able to be designed independently from

other experts. This requires the interface between

each domain expert and the domain selector to be as

simple as possible.

Robustness It needs to be robust against ASR er-

rors; that is, the system needs to be able to avoid

erroneous domain transition caused by ASR errors.

3 Previous Work

So far various methods for domain selection have

been proposed, but, as far as we know, no method

satisfies both extensibility and robustness. Isobe et

al. (2003) estimate a score for each domain from the

20



ASR result and select the domain with the highest

score (hereafter referred to as RECSCORE). Since

each domain expert has only to output a numeric

score, it satisfies extensibility. However, because

this method does not take into account dialogue con-

text, it tends to erroneously shift domains when the

score of some experts becomes high by chance. For

example, if U4:“Yes” in Figure 2 is recognized as

“Italy” with a high recognition score in the QA ex-

pert, the domain erroneously shifts to QA and the

system explains about World Heritage Sites in Italy.

Thus this method is not robust.

To avoid erroneous domain shifts, Lin et al.

(1999) give preference to the preceding domain

(the domain in which the previous system utterance

was made) by adding a certain value to the score

of the preceding domain (hereafter called REC-

SCORE+BIAS ). However, to what extent the do-

main tends to continue varies depending on the dia-

logue context. For example, if a dialogue task in one

domain finishes (e.g., when an IP expert finishes its

presentation and says “This is the end of the presen-

tation. Do you have any questions?”), the domain is

likely to shift. So, adding a fixed score does not al-

ways work. O’Neill et al.’s (2004) system does not

change the dialogue domain until it finishes a task

in the domain, but it cannot recover from erroneous

domain shifts.

To achieve robustness against ASR errors, several

domain selection methods based on a classifier that

uses features concerning dialogue history as well as

ones concerning speech understanding results have

been developed (Komatani et al., 2006; Ikeda et al.,

2008; Lee et al., 2009). These studies, however, use

some features available only in some specific type

of domain experts, such as features concerning slot-

filling, so they cannot be used with other kinds of

domain experts. That is, these methods do not sat-

isfy extensibility.

Methods that use classifiers based on word (and

n-gram) frequencies have been developed for utter-

ance classification (e.g., Chu-Carroll and Carpenter

(1999)), topic estimation for ASR of speech cor-

pora (e.g., Hsu and Glass (2006) and Heidel and

Lee (2007)) and human-human dialogues (Lane and

Kawahara, 2005). These methods can be applied to

domain selection in multi-domain spoken dialogue

systems. However, since they require training data

in the same set of domains as the target system, it

detracts from extensibility. In addition, they are not

robust because they cannot utilize a variety of di-

alogue and understanding related features. Word

frequencies are not always effective when two do-

mains share words as in our system described in Sec-

tion 2.2.

4 Proposed Framework

4.1 Basic Idea

To achieve extensibility, we need to restrict the infor-

mation that each expert sends to the domain selector

to a simple one such as numeric scores. Although

RECSCORE and RECSCORE+BIAS satisfy this, they

would not achieve high accuracy as explained above.

One possible extension to those methods to im-

prove accuracy is to use not only recognition scores

but also various expert-dependent features such as

ones concerning dialogue history and speech under-

standing. Each expert first estimates the probability

that the input utterance is in its domain using such

features, and then the expert with the highest proba-

bility is selected (hereafter called MAXPROB). This

method retains extensibility because the domain se-

lector does not directly use those expert-dependent

features. However, it suffers from the same prob-

lem as RECSCORE and RECSCORE+BIAS; if one of

the experts other than the preceding domain’s expert

outputs a high probability by mistake, the domain

shifts regardless of the dialogue state in the preced-

ing domain’s expert.

We focus attention on the fact that the domain

does not often shift. Our idea is to decide if the do-

main continues or not by using information available

in the preceding domain’s expert. This prevents er-

roneous domain shifts when the utterance is consid-

ered not to change the domain. When it is decided

that the currently active domain does not continue,

each remaining expert estimates the probability of

being newly activated using information available in

the expert, and the expert whose probability is the

highest is selected as the new domain expert.

We further refine this idea in two ways. One is by

taking into account how likely the input utterance is

to activate one of the other domain experts. We pro-

pose to use the maximum value of probabilities for

other experts’ activation (maximum activation prob-
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Figure 3: Two-stage domain selection framework.

ability) in the decision regarding domain continua-

tion. Since the maximum activation probability is

just a numeric score, this does not spoil extensibil-

ity. Unlike RECSCORE and RECSCORE+BIAS, in

our method, even if the maximum activation prob-

ability is very high, the preceding domain’s expert

can decide to continue or not to continue based on

its internal state. This makes it possible to retain ro-

bustness.

The other refinement is to explicitly deal with ut-

terances that are not in any domains (out-of-domain

(OOD) utterances). They include fillers and mur-

murs. They should be treated separately, because

they appear context-independently. So we make the

expert detect OOD utterances when deciding do-

main continuation. That is, it performs three-fold

classification, continue, not-continue, and OOD.

4.2 Two-Stage Domain Selection Framework

This idea can be summarized as a domain selection

framework which consists of two stages (Figure 3).

It assumes that each domain expert has two submod-

ules: activation probability estimator and a domain

continuation decision maker, which use information

available in the expert itself.

When a new input utterance is received, at Stage

1, the activation probability estimators of all non-

activated experts estimate probabilities and send

them to the domain selector. Then at Stage 2, the

domain selector sends their maximum value to the

expert of the preceding domain and asks it to decide

whether it continues to deal with the new input utter-

ances or does not continue, or it deals with the utter-

ance as out-of-domain. If it decides not to continue,

the domain selector selects the expert that outputs

the highest probability at Stage 1.

The reason we use the term “framework” is that

it does not specify the details of the algorithm and

features used in each domain expert’s submodules

for domain selection. It rather specifies the inter-

faces of those submodules. Note that RECSCORE,

RECSCORE+BIAS, and MAXPROB can be consid-

ered as one of the implementations of this frame-

work. This framework, however, allows developers

to use a wider variety of features and gives flexibility

in designing those submodules.

5 Example Implementation and

Evaluation

Since the proposed framework is an extension of

the previous methods, if the activation probability

estimator and domain continuation decision maker

for each expert are designed well and trained using

enough data, it should outperform previous methods

that satisfy extensibility. We believe that this theo-

retical consideration and an experimental result us-

ing a human-system dialogue corpus show the via-

bility of the framework. Below we explain our im-

plementation and an experiment.

5.1 Data

For the implementation and evaluation, we used a

corpus of dialogues between human users and the

World Heritage Site information system described

in Section 2.2. Domain selection of this system was

performed using hand-crafted rules.

35 participants (17 males and 18 females) whose

ages range from 19 to 57 were asked to engage in
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domain preceding training training test

domain data A data B data

RU RU 134 169 145

QA 51 102 59

IP 21 16 23

subtotal 206 287 227

QA RU 46 55 51

QA 783 870 888

IP 59 87 66

subtotal 888 1,012 1,005

IP RU 2 1 3

QA 7 11 18

IP 311 305 277

subtotal 320 317 298

OOD RU 24 19 39

QA 168 155 183

IP 66 68 113

subtotal 258 242 335

total 1,672 1,858 1,865

Table 1: Number of utterances in each domain in the

training and test data.

conversation with the system four times. Each ses-

sion lasted eight minutes. For each utterance, the

correct domain or an OOD label was manually an-

notated. We also annotated its preceding domain,

i.e., the domain in which the previous system utter-

ance was made. It can be different from the previous

user utterance’s domain because of the system’s er-

roneous domain selection. Utterances including re-

quests in two domains at the same time should be

given an OOD label but there are no such utterances.

We used data from 23 participants (3,530 utterances)

for training and those from the remaining 12 par-

ticipants (1,865 utterances) for testing. We further

split the training data into training data A (1,672

utterances) and B (1,858 utterances) to train each

of the two submodules. Each training data set in-

cludes data from two sessions for each participant.

Table 1 shows detailed numbers of utterances in the

data sets.

5.2 Implementation

5.2.1 Expert Classes

Among the ten experts, eight IP (Interactive Pre-

sentation) experts have the same dialogue strategy

and most of the predicted user utterance patterns. In

addition, the number of training utterances for each

expert class QA IP RU

LM for ASR trigram trigram finite-state

grammar

language keyphrase keyphrase finite-state

understanding -based -based transducer

vocabulary 1,140 407 79

size (word)

phone error 10.95 19.47 23.60

rate (%)

Table 2: Speech understanding in each expert.

IP expert’s domain is small. We therefore used all

training utterances in the IP domains to build a com-

mon ASR language model (LM), a common acti-

vation probability estimator, and a common domain

continuation decision maker for all IP experts. Here-

after we call the set of IP experts the IP expert class.

The RU (Request Understanding) expert and the QA

(Question Answer) expert are themselves also expert

classes.

5.2.2 Speech Understanding

For all experts, we used the Julius speech recog-

nizer and the acoustic model in the Japanese model

repository (Kawahara et al., 2004).2 Features of

speech understanding in each expert class are shown

in Table 2. Compared to the system used for data

collection, LMs are enhanced based on the training

data. We obtained the ASR performance on the ut-

terances in each domain in the test data in terms of

phone error rates. This is because Japanese has no

standard word boundaries so it is not easy to cor-

rectly compute word error rates. The poor perfor-

mance of ASR for IP is mainly due to the small

amount of training utterances for LM and that for

RU is mainly due to out-of-grammar utterances.

5.2.3 Stage 1

For Stage 1, we used logistic regression to es-

timate the probability that a non-activated expert

would be activated by a user utterance. Features for

logistic regression include those concerning speech

recognition and understanding results as well as dia-

logue history (see Table 5 for the full list of features).

These features are expert-dependent. This makes it

possible to estimate how the input utterance is suit-

2Multiple LMs can be used at the same time with Julius.
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able to the dialogue context more precisely than us-

ing just features available in any kind of expert.

To train the activation probability estimators, we

fitted logistic regression coefficients using Weka

data mining toolkit ver.3.6.2 (Witten and Frank,

2005)3 and training data A. In the training for each

expert class, we used utterances whose preceding

domain was not that of the class because activation

probabilities are estimated only for such utterances

during domain selection. If the utterance is in a do-

main of the expert class, it is assigned an activate la-

bel and otherwise not-activate. Next, we performed

feature selection to avoid overfitting. We used back-

ward stepwise selection so that the weighted (by the

sizes of activate and not-activate labels) average of

the F1 scores for training set B could be maximized.

Table 6 lists the remaining features and their sig-

nificances in terms of the F1 score obtained when

each feature is removed. Then, we duplicated the

activate-labeled utterances in the training data A so

that the ratio of activate-labeled utterances to not-

activate-labeled utterances became 1 to 3. This is

because the training data include a larger number of

not-activate-labeled utterances and thus the results

would be biased. The ratio was decided by trial and

error so that the weighted average of the F1 scores

for training data B becomes high.

5.2.4 Stage 2

For Stage 2, we used multi-class support vector

machines (SVMs)4 to decide if the activated expert

should continue to be activated, should not continue,

or should regard the input utterance as OOD. We

used the same set of features as Stage 1 as well

as the maximum activation probability obtained at

Stage 1. The training data for the SVM of each ex-

pert class is the set of utterances in training data B

whose preceding domain is in that expert class, be-

cause domain continuation is decided only for such

utterances during domain selection. They are la-

beled continue, not-continue, or OOD. Next, we

performed backward stepwise feature selection so

that the weighted average of F1 scores for continue,

not-continue, and OOD utterance detection on train-

ing data A could be maximized. Remaining fea-

3Multinominal logistic regression model with a ridge esti-

mator with Weka’s default values.
4Weka’s SMO with the linear kernel and its default values.

tures are listed in Table 7. The maximum activa-

tion probability was found to be significant in all ex-

pert classes. This suggests our two-stage framework

that uses maximum activation probability is viable.

Then, we duplicated utterances with not-continue la-

bel and OOD label in the training data so that the

ratio of continue, not-continue, and OOD utterances

became 3:1:1. This is because the number of utter-

ances with the continue label is far greater than oth-

ers. The ratio was experimentally decided by trial

and error so that the weighted average of F1 scores

on training data A becomes high.

5.3 Evaluation

5.3.1 Compared Methods

We compared the full implementation described in

Section 5.2 (FULLIMPL hereafter) with the follow-

ing four methods which satisfy extensibility. Note

that the first three methods were mentioned in Sec-

tion 4.

RECSCORE: This chooses the expert class whose

recognition score is the maximum (Isobe et al.,

2003). We used the ASR acoustic score normalized

by the duration of the utterance. If the IP expert class

was chosen, the IP expert that had been most re-

cently activated was chosen, because, in this system,

domain shifts to other IP experts never occur due to

the system constraints and the user did not try to do

it. If none of the experts had a higher score than a

fixed threshold, it recognized the utterance as OOD.

The threshold was experimentally determined using

the training data so that the weighted (by the sizes

of OOD and non-OOD utterances) average of the

F1 scores of OOD/non-OOD classification is max-

imized.

RECSCORE+BIAS: This is the same as REC-

SCORE except that a fixed value (bias) is added to

the score used in RECSCORE for the expert of the

preceding domain. This is basically the same as Lin

et al.’s (1999) method but we use a different recog-

nition score since the recognition score they used

cannot be used in our system due to the difference

of speech understanding methods. The most appro-

priate bias for each expert class was decided using

the training data so that the weighted average of the

F1 scores could be maximized. OOD detection was

done in the same way as RECSCORE.
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method class recall prec- F1 weighted

ision ave. F1

RECSCORE cont. 0.763 0.867 0.812

shift 0.559 0.239 0.335

OOD 0.501 0.848 0.630 0.789

RECSCORE cont. 0.917 0.824 0.868

+BIAS shift 0.400 0.421 0.410

OOD 0.501 0.848 0.630 0.838

MAXPROB cont. 0.925 0.843 0.882

shift 0.282 0.264 0.273

OOD 0.275 0.477 0.348 0.832

NOACTIV cont. 0.875 0.890 0.882

PROB shift 0.464 0.385 0.421

OOD 0.785 0.843 0.813 0.849

FULLIMPL cont. 0.902 0.907 0.904

shift 0.591 0.565 0.578

OOD 0.824 0.829 0.826 0.883

CLASSIFIER cont. 0.956 0.881 0.917

(reference) shift 0.545 0.759 0.635

OOD 0.755 0.885 0.815 0.899

Table 3: Evaluation results (“cont.” means “continue.”).

MAXPROB: The activation probabilities for all ex-

perts were obtained using logistic regression and the

expert whose probability was the maximum was se-

lected. IP experts that had never been activated were

excluded because they cannot be activated due to

system constraint. For logistic regression, in addi-

tion to the features used in FULLIMPL, the previous

domain was used as a feature so that domain conti-

nuity was taken into account. Feature selection was

also performed. The probability that the utterance is

OOD was estimated in the same way using the fea-

tures concerning speech understanding. If the maxi-

mum probability of OOD detection was greater than

the maximum activation probability, then the utter-

ance was considered to be OOD.

NOACTIVPROB: This is the same as FULLIMPL

except that Stage 2 does not use the result of Stage

1, i.e., maximum activation probability.

5.3.2 Evaluation Results

To evaluate the domain selection, we focused on

domain shifts rather than the selected domain. We

classified the domain selection results into domain

continuations, domain shifts, and OOD utterance

detection. As the evaluation metric, we used the

weighted average of F1 scores for those classes.

Here the weight is the ratio of those classes of cor-

rect labels. Note that shifting to an incorrect do-

main is counted as a false positive when calculat-

ing precision for domain shifts. Table 3 shows the

results. In addition, the confusion matrices for the

three best methods are shown in Table 4. We found

FULLIMPL outperforms the other four methods. We

also found that the differences between the results of

the compared methods are all statistically significant

(p < .01) by two-tailed binomial tests.

For reference, we also evaluated a classifier-based

method that uses features from all the experts. Note

that this method does not satisfy extensibility be-

cause it requires training data in the same set of do-

mains as the target system. We evaluated this just

for estimating how well our proposed method works

while satisfying extensibility. It classifies each ut-

terance into one of four categories: the QA expert’s

domain, the RU expert’s domain, the most recently

activated IP expert’s domain, and OOD. If no IP ex-

pert has been activated before the utterance, three-

fold classification was performed. The training and

test data were split depending on whether one of the

IP experts has been activated before, and training

and testing were separately conducted. The training

data A was used for training SVM classifiers. Then

feature selection was performed using the training

data B. The performance of this method is shown

as CLASSIFIER in Tables 3 and 4. Although this

method outperforms FULLIMPL, FULLIMPL’s per-

formance is close to this method. This shows that

our method does not degrade its performance very

much even though it satisfies extensibility.

5.3.3 Discussion

One of the reasons why FULLIMPL outperforms

other methods is that its precision for domain shifts

is relatively higher than the other methods. This

suggests it can avoid erroneous domain shifts, thus

the proposed two-stage framework is more robust.

RECSCORE+BIAS performed relatively well despite

it used only limited features. We guess this is be-

cause adding preferences to the preceding domain

was effective since domain shifts are rare in these

data. Its low F1 score for OOD utterances suggests

using just recognition scores is insufficient to detect

them. The comparison of FULLIMPL with NOAC-

TIVPROB shows the effectiveness of using maxi-

mum activation probability in the second stage.

The F1 score for domain shifts is low even with
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RECSCORE+BIAS:
estimated result

correct cont. correct wrong OOD total

shift shift

continue 1,201 - 82 27 1,310

shift 115 88 14 3 220

OOD 142 - 25 168 335

total 1,458 88 121 198 1,865

NOACTIVPROB:
estimated result

correct cont. correct wrong OOD total

shift shift

continue 1,146 - 123 41 1,310

shift 92 102 18 8 220

OOD 50 - 22 263 335

total 1,288 102 163 312 1,865

FULLIMPL:
estimated result

correct cont. correct wrong OOD total

shift shift

continue 1,181 - 77 52 1,310

shift 70 130 15 5 220

OOD 51 - 8 276 335

total 1,302 130 100 333 1,865

CLASSIFIER (reference):

estimated result

correct cont. correct wrong OOD total

shift shift

continue 1,252 - 30 28 1310

shift 92 120 3 5 220

OOD 77 - 5 253 335

total 1,421 120 38 286 1,865

Table 4: Confusion matrices for the domain shifts.

FULLIMPL, although it is higher than those with

other methods. One typical reason for this is that

when one keyword in the ASR result of an utter-

ance to shift the domain is also in the vocabulary of

the preceding domain’s expert, the selection tends to

continue the previous domain by mistake. For ex-

ample, an utterance “tell me about other World Her-

itage Sites” to shift from an IP domain to the QA

domain is sometimes misclassified as an IP domain

utterance, because “World Heritage Sites” is also in

IP domains’ vocabulary. We think this is because

the training data do not include a sufficient amount

of utterances that shift domains, and that a larger

amount of training data would solve this problem.

6 Concluding Remarks

This paper presented a novel general framework for

domain selection in extensible multi-domain spoken

dialogue systems. This framework makes it possi-

ble to build a robust domain selector because of its

flexibility in exploiting features and taking into ac-

count domain continuity. An experiment with data

collected with an example multi-domain system sup-

ported the viability of the proposed framework. We

believe that this framework will promote the devel-

opment of multi-domain spoken dialogue systems

and conversational robots/agents.

Among future work is to investigate how accurate

the activation probability estimator and the domain

continuation decision maker in each domain expert

should be for achieving a reasonable accuracy in do-

main selection. We also plan to conduct experiments

with systems that have a larger number of domain

experts to verify the scalability of this framework.

In addition, we will explore a way to estimate the

confidence of the domain selection to reduce erro-

neous domain selections.

Acknowledgments

The authors would like to thank Hiroshi Tsujino,

Yuji Hasegawa, and Hiromi Narimatsu for their sup-

port for this research.

References

Hideki Asoh, Toshihiro Matsui, John Fry, Futoshi Asano,

and Satoru Hayamizu. 1999. A spoken dialog system

for a mobile office robot. In Proc. 6th Eurospeech,

pages 1139–1142.

Jennifer Chu-Carroll and Bob Carpenter. 1999. Vector-

based natural language call routing. Computational

Linguistics, 25(3):361–388.

Joakim Gustafson and Linda Bell. 2000. Speech tech-

nology on trial: Experiences from the August system.

Natural Language Engineering, 6(3&4):273–286.

Aaron Heidel and Lin-shan Lee. 2007. Robust topic in-

ference for latent semantic language model adaptation.

In Proc. ASRU-07, pages 177–182.

Bo-June (Paul) Hsu and James Glass. 2006. Style and

topic language model adaptation using HMM-LDA.

In Proc. EMNLP ’06, pages 373–381,.

Satoshi Ikeda, Kazunori Komatani, Tetsuya Ogata, and

Hiroshi G. Okuno. 2008. Extensibility verification

26



of robust domain selection against out-of-grammar ut-

terances in multi-domain spoken dialogue system. In

Proc. Interspeech-2008 (ICSLP), pages 487–490.

T. Isobe, S. Hayakawa, H. Murao, T. Mizutani,

K. Takeda, and F. Itakura. 2003. A study on do-

main recognition of spoken dialogue systems. In Proc.

Eurospeech-2003, pages 1889–1892.

Tatsuya Kawahara, Akinobu Lee, Kazuya Takeda, Kat-

sunobu Itou, and Kiyohiro Shikano. 2004. Recent

progress of open-source LVCSR engine Julius and

Japanese model repository. In Proc. Interspeech-2004

(ICSLP), pages 3069–3072.

Kazunori Komatani, Naoyuki Kanda, Mikio Nakano,

Kazuhiro Nakadai, Hiroshi Tsujino, Tetsuya Ogata,

and Hiroshi G. Okuno. 2006. Multi-domain spo-

ken dialogue system with extensibility and robustness

against speech recognition errors. In Proc. 7th SIGdial

Workshop, pages 9–17.

Ian R. Lane and Tatsuya Kawahara. 2005. Incorporating

dialogue context and topic clustering in out-of-domain

detection. In Proc. ICASSP-2005, pages 1045–1048.

Cheongjae Lee, Sangkeun Jung, Seokhwan Kim, and

Gary Geunbae Lee. 2009. Example-based dialog

modeling for practical multi-domain dialog system.

Speech Communication, 51(5):466–484.

Bor-shen Lin, Hsin-ming Wang, and Lin-shan Lee. 1999.

A distributed architecture for cooperative spoken dia-

logue agents with coherent dialogue state and history.

In Proc. ASRU-99.

Michael F. McTear. 2004. Spoken Dialogue Technology.

Springer.

Mikio Nakano, Atsushi Hoshino, Johane Takeuchi,

Yuji Hasegawa, Toyotaka Torii, Kazuhiro Nakadai,

Kazuhiko Kato, and Hiroshi Tsujino. 2006. A robot

that can engage in both task-oriented and non-task-

oriented dialogues. In Proc. Humanoids-2006, pages

404–411.

Mikio Nakano, Kotaro Funakoshi, Yuji Hasegawa, and

Hiroshi Tsujino. 2008. A framework for building con-

versational agents based on a multi-expert model. In

Proc. 9th SIGdial Workshop, pages 88–91.

Mikio Nakano, Yuji Hasegawa, Kotaro Funakoshi, Jo-

hane Takeuchi, Toyotaka Torii, Kazuhiro Nakadai,

Naoyuki Kanda, Kazunori Komatani, Hiroshi G.

Okuno, and Hiroshi Tsujino. 2011. A multi-expert

model for dialogue and behavior control of conversa-

tional robots and agents. Knowledge-Based Systems,

24(2):248–256.

Hiromi Narimatsu, Mikio Nakano, and Kotaro Fu-

nakoshi. 2010. A classifier-based approach to

supporting the augmentation of the question-answer

database for spoken dialogue systems. In Proc. 2nd

IWSDS, pages 182–187.

Yoshitaka Nishimura, Shinichiro Minotsu, Hiroshi Dohi,

Mitsuru Ishizuka, Mikio Nakano, Kotaro Funakoshi,

Johane Takeuchi, Yuji Hasegawa, and Hiroshi Tsujino.

2007. A markup language for describing interactive

humanoid robot presentations. In Proc. IUI’07, pages

333–336.

Ian O’Neill, Philip Hanna, Xingkun Liu, and Michael

McTear. 2004. Cross domain dialogue modelling:

an object-based approach. In Proc. Interspeech-2004

(ICSLP), pages 205–208.

Botond Pakucs. 2003. Towards dynamic multi-domain

dialogue processing. In Proc. Eurospeech-2003, pages

741–744.

Esa-Pekka Salonen, Mikko Hartikainen, Markku Tu-

runen, Jaakko Hakulinen, and J. Adam Funk. 2004.

Flexible dialogue management using distributed and

dynamic dialogue control. In Proc. Interspeech-2004

(ICSLP), pages 197–200.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Prac-

tical machine learning tools and techniques, 2nd Edi-

tion. Morgan Kaufmann, San Francisco.

27



expert Features

class

all Fi,r1 If SRRi,1 is obtained or not

classes Fi,r2 If SRRi,1 contains a filler or not

i = ru, Fi,r3 min (CMs of words in SRRi,1)

ip, qa Fi,r4 avg (CMs of words in SRRi,1)

Fi,r5 (acoustic score of SRRi,1) / duration

Fi,r6 LM score of SRRi,1

Fi,r7 # of words in SRRi,1

Fi,r8 # of words in SRRi,all

Fi,r9 (Fi,r5 - (acoustic score of SRRlv,1))

/ duration

RU Fru,r10 If SRRru,1 is an affirmative response

Fru,r11 If SRRru,1 is a denial response

Fru,r12 # of ASR results with LMru

Fru,r13 If SRRru,1 contains the name of a

World Heritage Site

Fru,r14 max (CMs of words comprising the

name of a World Heritage Site)

Fru,r15 ave (CMs of words comprising the

name of a World Heritage Site)

Fru,h1 If SRRru,1 is an affirmative response

(Stage 2 only)

Fru,h2 # of turns since this expert is acti-

vated

Fru,h3 # of denial responses recognized

since this expert is activated

Fru,h4 Fru,h4/Fru,h3

Fru,h5 If the previous system utterance is a

confirmation request to a user request

for starting a presentation

Fru,h6 If the previous system utterance is

an utterance to react to a non-

understandable user utterance

Fru,h7 If the system has made a confirma-

tion request to a user request for start-

ing a presentation since this expert

was activated

Fru,h8 If the system has made an utterance

to react to a non-understandable user

utterance since this expert was acti-

vated

Fru,h9 If the system has made a confirma-

tion request to a user request for start-

ing a presentation before

Fru,h10 If the system has made an utterance

to react to a non-understandable user

utterance before

expert Features

class

IP Fip,r10 If the SRRip,1 is out of database

Fip,r11

P

j
((# of keyphrases in SRRip,j) / (# of words in

SRRip,j) ) / (# of ASR results)

Fip,r12 mini( # of keyphrasei in SRRip,all / (# of ASR re-

sults))

Fip,r13 maxi( # of keyphrasei in SRRip,all / (# of ASR re-

sults))

Fip,r14 avg( CM of keyphrasei in SRRip,1)

Fip,r15 mini ( CM of keyphrasei in SRRip,1)

Fip,r16 maxi ( CM of keyphrasei in SRRip,1)

Fip,h1 If this expert has been activated before

Fip,h2 Same as Fru,h2

Fip,h3 If the previous system utterance is the final utter-

ance of the presentation

Fip,h4 If the previous system utterance is an utterance to

react to a user interruption

Fip,h5 Same as Fru,h6

Fip,h6 If the system has made the final utterance of the pre-

sentation since this expert was activated

Fip,h7 If the system has made an utterance to react to a user

interruption since this expert was activated

Fip,h8 Same as Fru,h8

Fip,h9 If the system has made the final utterance of the pre-

sentation before

Fip,h10 If the system has made an utterance to react to a user

interruption before

Fip,h11 Same as Fru,h10

QA Fqa,r10 Same as Fip,r12

Fqa,r11 Same as Fip,r13

Fqa,r12 Same as Fip,r14

Fqa,r13 Same as Fip,r15

Fqa,r14 Same as Fip,r16

Fqa,r15 Same as Fip,r17

Fqa,r16 If SRRqa,1 is an acknowledgment

Fqa,h1 Same as Fru,h1

Fqa,h2 Same as Fru,h2

Fqa,h3 Same as Fru,h3

Fqa,h4 Fqa,h4/Fqa,h3

Fqa,h5 If the previous system utterance is the final utter-

ance of an answer

Fqa,h6 Same as Fru,h6

Fqa,h7 If the system has made the final utterance of an an-

swer since this expert was activated

Fqa,h8 Same as Fru,h8

Fqa,h9 If the system has made the final utterance of an an-

swer before

Fqa,h10 Same as Fru,h10

SRRi,j means j-th speech recognition result with the language model (LM) for expert class i. SRRi,all means all the recognition

results in the n-best list. Fi,rx
are speech understanding related features and Fi,hx

are dialogue history related features. SRRlv,j

is an ASR result with a large-vocabulary (60,250 words) statistical model (Kawahara et al., 2004), which we used for utterance

verification. CM means confidence measure.

Table 5: Features used in the experiment.
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expert class

(F1 score

obtained

after feature

selection)

remaining features (F1 score obtained

when each feature is removed)

RU(0.948) Fru,r9 (0.922), Fru,h8 (0.939), Fru,r5

(0.940), Fru,r14 (0.941), Fru,r2

(0.944), Fru,h9 (0.944), Fru,h5

(0.944), Fru,r13 (0.945), Fru,h10

(0.945), Fru,r10 (0.946), Fru,r8

(0.946), Fru,r7 (0.946)

IP(0.837) Fip,r7 (0.771), Fip,r6 (0.772), Fip,h9

(0.781), Fip,h7 (0.781), Fip,h11

(0.786), Fip,r4 (0.79), Fip,r2 (0.799),

Fip,r16 (0.809), Fip,r5 (0.809), Fip,r3

(0.809), Fip,h4 (0.809), Fip,r9 (0.814),

Fip,r15 (0.833), Fip,r12 (0.834), Fip,r13

(0.835), Fip,h10 (0.836)

QA(0.836) Fqa,r14 (0.813), Fqa,r7 (0.817),

Fqa,r16 (0.817), Fqa,r10 (0.818),

Fqa,h6 (0.820), Fqa,r6 (0.822), Fqa,r3

(0.831), Fqa,r5 (0.832)

Table 6: Features that remained after feature selection at

Stage 1 and their significances in terms of the F1 score

obtained when each feature is removed.

expert class

(F1 score

obtained

after feature

selection)

remaining features (F1 score obtained

when each feature is removed)

RU(0.773) Fru,r3 (0.728), Fru,a (0.737), Fru,h5

(0.743), Fru,h1 (0.751), Fru,r9 (0.754),

Fru,h10 (0.757), Fru,h8 (0.757),

Fru,r5 (0.758), Fru,r2 (0.759), Fru,r13

(0.762), Fru,r14 (0.763), Fru,h9

(0.767), Fru,r15 (0.768), Fru,r10

(0.768), Fru,h3 (0.772)

IP(0.827) Fip,h5 (0.808), Fip,r5 (0.809), Fip,r4

(0.810), Fip,r6 (0.811), Fip,a (0.812),

Fip,h4 (0.812), Fip,r13 (0.813), Fip,h3

(0.817), Fip,r15 (0.818), Fip,r3 (0.818),

Fip,h10 (0.819), Fip,r12 (0.820),

Fip,h7 (0.821), Fip,r11 (0.822), Fip,r10

(0.822), Fip,h8 (0.822), Fip,h6 (0.822),

Fip,r2 (0.824), Fip,r8 (0.824), Fip,h9

(0.824), Fip,h2 (0.825)

QA(0.873) Fqa,a (0.838), Fqa,r5 (0.857), Fqa,h1

(0.859), Fqa,r3 (0.862), Fqa,r6 (0.865),

Fqa,h8 (0.867), Fqa,r7 (0.868), Fqa,r15

(0.870), Fqa,r8 (0.870), Fqa,h7 (0.870),

Fqa,r12 (0.871), Fqa,r2 (0.871), Fqa,r16

(0.871), Fqa,h4 (0.871), Fqa,h3 (0.871),

Fqa,r11 (0.872), Fqa,h6 (0.872), Fqa,h5

(0.872)

Table 7: Features that remained after feature selection at

Stage 2 and their significances in terms of the F1 score

obtained when each feature is removed. Fru,a, Fip,a, and

Fqa,a are the maximum activation probabilities obtained

at Stage 1.
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Abstract
With the evolution of online communication
methods, conversations are increasingly han-
dled via email, internet forums and other such
methods. In this paper, we attempt to model
lexical information in a context sensitive man-
ner, encoding our belief that the use of lan-
guage depends on the participants in the con-
versation. We model the discourse as a com-
bination of the speaker, the addressee and
other participants in the conversation as well
as a context specific language model. In or-
der to do this, we introduce a novel method
based on an HMM with an exponential state
space to capture speaker-addressee context.
We also study the performance of topic model-
ing frameworks in conversational settings. We
evaluate the models on the tasks of identify-
ing the set of people present in any conver-
sation, as well as identifying the speaker for
every utterance in the conversation, and they
show significant improvement over the base-
line models.

1 Introduction

In this paper, we experiment with different methods
of automatically analyzing discourse. We present
and validate hypotheses on how conversations can
be better analyzed using information about the
speakers, as well as other participants in the con-
versation. We present a novel method of modeling
discourse using an exponential state Hidden Markov
Model where states are based on speakers and ad-
dressees. We also cast the problem into the popular
topic modeling frameworks, and compare the vari-
ous approaches.

Consider a small group of people that a person
knows well. Given a transcript of a discussion on
a topic of mutual interest, that person would likely
be able to identify who is likely to have said what,
based on his knowledge of the speakers and their in-
clinations on various topics. We would like to be
able to encode similar intelligence into a system that
could automatically learn about speakers based on
transcripts of prior conversations, and use that infor-
mation to analyze new conversations.

The scenario we consider in this work is as fol-
lows: we have a known set of characters, any subset
of whom could be present in a conversation. Given
the transcript of a conversation only, without speaker
annotations, we would like to : 1. Predict the set of
participants in the conversation from the character-
istics of the entire conversation, and 2. Identify the
individual speakers at each conversation turn.

In order to do this, we model each utterance in
a conversation as dependent on the speaker, the ad-
dressee and the other people present. As we shall
describe, our models encode the belief that people
speak/behave differently depending on other partic-
ipants in the conversation. This has a two-fold ben-
efit: first, it can help us discover social (or even,
professional) relationship structures; second, it can
help us understand how to respond to different peo-
ple, and incorporate that information into automated
conversational agents which can then behave in a
more context sensitive manner. The ability to auto-
matically model discourse as context specific in this
manner is also useful for other tasks such as directed
advertising and duplicity detection.

In Section 2, we describe relevant related work.
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Section 3 describes the dataset for our experiments,
Section 4 describes the problem, our use of topic
models, and the novel HMM based method, while
Section 5 summarizes the results and we conclude
in Section 6.

2 Related Work

The task of automatically segmenting speech and
then identifying speakers from audio (Reynolds
and Torres-Carrasquillo, 2005) is referred to as di-
arization and has been well-studied (Tranter and
Reynolds, 2006). More recently, approaches have
been developed to fuse information from both the
audio and video modalities (Noulas et al., 2011)
to improve diarization systems when video informa-
tion is available. In this paper, we attempt to under-
stand just how much information is available in the
text alone. Systems that can work with text only can
be used to improve audio-based systems which can
provide speech recognition output to a text-based
system. They can also be used to work with closed
caption streams, or on human-generated transcrip-
tions of meeting recordings.

Research on identifying speakers from text or lex-
ical information is limited in comparison to work
with audio data. However, efforts have been made
to use discourse level information to automatically
identify speakers to calibrate idiolectal differences
between speakers (Doddington, 2001). (Canseco et
al., 2005, ) investigated the use of lexical features
to automatically diarize (but not actually identify)
transcripts to determine if a current speaker contin-
ued or a previous speaker spoke or the next speaker
spoke. Lei and Mirghafori (2 007) attempted to in-
corporate idiolect based speaker information by us-
ing word conditioning of phone N -grams to recog-
nize speakers in dialogs with 2 speakers.

In our work, the models we use to identify speak-
ers are powerful enough to predict the addressee as
well. In this context, we note that several attempts
have been made recently to automatically identify
addressees in dialog settings. These approaches
have used information about the context and con-
tent of the utterance, using dialog acts and informa-
tion about the speaker’s gaze to aid classifier per-
formance (Jovanovic et al., 2006). Den Akker and
Traum (2009) proposed rule-based methods for ad-

dressee classification. Unlike in these works, we
attempt to jointly model both the speaker and the
addressee as one of our proposed approaches. This
is similar to the approach employed by (Otsuka et
al., 2005, ), who proposed a Dynamic Bayesian Net-
work model to understand multiparty conversation
structure using non-verbal cues only– eye gaze, fa-
cial expression, gesticulations and posture.

3 Data

The data for our experiments consists of fan-
sourced transcripts of the episodes of the sitcom
F.R.I.E.N.D.S. The structure of the data is as fol-
lows: we have a set of conversations as training data.
Each conversation contains a sequence of turns, with
each turn annotated with its speaker. We do not
have any information about the addressee from the
dataset. We do, however, have implicit informa-
tion of the set of speakers within a conversation seg-
ment (we make the assumption here that if a char-
acter doesn’t speak in a segment, he is not present).
Annotator notes appear periodically to indicate that
the scene changed or that new characters entered the
scene or that some characters left the scene. We
treat these annotator notes as conversation bound-
aries and the segment of turns between two such
boundaries constitutes one conversation instance.

The set of characters used for our experiments is
finite. The 6 primary characters in the sitcom (Chan-
dler, Joey, Monica, Phoebe, Rachel and Ross) are
retained. In addition to these 6 primary characters,
there are a number of supporting characters who ap-
pear occasionally. We use Other to denote all other
characters, as the amount of data for a number of the
supporting characters is quite small and would not
result in learning useful patterns regarding their be-
havior. As a result, we treat all of these characters
as one character that can be thought of as a univer-
sal supporting character. Hence, we have a total of
7 possible characters. Any subset of these 7 char-
acters could be part of a conversation. Below is an
example of a pair of conversations from our dataset:

[EVENT]
Paul: thank you! thank you so much!
Monica: stop!
Paul: no, i’m telling you last night was like umm,

all my birthdays, both graduations, plus the barn
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raising scene in witness.

Monica: we’ll talk later.

Paul: yeah. thank you.

[EVENT]

Joey: that wasn’t a real date?! what the hell do
you do on a real date?

Monica: shut up, and put my table back.

All: okayyy!

[EVENT]

The event markers are tags inserted at pre-
processing time, to denote transcriber annotations
such as characters entering or leaving scenes. The
sequence of turns between two event markers are
treated as one conversation. Also, note the character
Paul in the first conversation in the example above
– when training the system, the content of Paul’s ut-
terances are used to train the model for Other, since
Paul is not one of the primary characters that we
track. At test time, the input looks similar to the
above, except that the turns are not annotated by
speaker.

The transcripts used in our experiments are seg-
mented by speaker turns, so that consecutive turns
are uttered by different speakers. The entire set of
230 episodes was split randomly into training, de-
velopment and test splits. Sequential information
for the individual conversations were not used. Each
episode was further divided into conversations based
on the scene boundaries denoted by the transcribers.
For training, overall, we used 195 episodes from
F.R.I.E.N.D.S, with a total of 9,171 conversations
and a total 52,516 turns. The average length in num-
ber of turns for each conversation was 5.73. The
test set consisted of a total of 20 episodes with 855
conversations and 4,981 turns. The average length
of a conversation in the test set was 5.83. The re-
maining 15 episodes were used as development data
to tune hyperparameters – this set consisted of 529
conversations and 2,984 turns in total. The distribu-
tion of the number of utterances by speakers across
the training, test and development set are shown in
Figure 1. As one can observe, the distribution is not
particularly skewed for any of the speakers across
the splits of the dataset.

Figure 1: Distribution of #utterances for each speaker in
the dataset.

4 Conversation Models

Previous work in analyzing participants in a conver-
sation have used meeting data, with a fixed number
of participants. In our task, the total number of pos-
sible participants is finite, but we do not have in-
formation on how many of them are present at any
particular instant. Thus, our model first attempts to
detect the participants in a segment of conversation,
and then attempts to attribute speaker turns to indi-
viduals.

Our model for discourse structure is based on two
premises. First, we believe that what a person says
will depend on who he or she is speaking to. Intu-
itively, consider a person trying to make the same
point to his boss and (at a different time and place)
to his friend. It is likely that he will be more formal
with his boss than his friend. Second, if the speaker
addresses someone specifically in a group of people,
knowing who he addressed would likely help us pre-
dict better who would speak next. We assume that
the first hypothesis above also holds for groups of
people in conversations, where the topics and their
distribution in discussions (and words that affect the
tone of the discussion) depend on the participants.

As described earlier, we evaluate our models on
two tasks. First, we would like to identify the set of
characters present in any conversation. Given seg-
ments of conversation, we attempt to understand the
distribution of topics for specific subsets of charac-
ters present in that segment. To do this, we cast
this problem into a topic modeling framework – we
experiment with the Author-Topic model (Rosen-
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Zvi et al., 2004), described in Section 4.1, for this
task. We use the Author Topic Model to link the co-
occurrence information of characters with the words
in the conversation.

Second, we attempt to attribute speakers to ut-
terances, described in Section 4.2. We introduce a
novel approach using an HMM with an exponen-
tial state space to model speakers and addressees,
described in Section 4.2.1. We also use the Author
Topic Model and the Author-Recipient Topic Model
(McCallum et al., 2007), described in Section 4.2.2
for this task. The key difference between the HMM-
based model and the topic model based approaches
is that the former explicitly takes sequence informa-
tion into account.

4.1 Identifying Character Subset Presence
The premise behind attempting to model subsets of
characters is that the nature of the conversation de-
pends on the group of people participating. For in-
stance, it seems intuitively likely that the content of
a conversation between two friends would be differ-
ent if they were the only ones present than it would
be if their families were also present. To extend this
hypothesis to a general scenario, the content of each
speaker’s turn depends not only on the speaker, but
also on the person being spoken to as well as the
other people present. To model this, we require a
model that captures the distribution of the text for
entire conversation, for each possible subset of char-
acters. In this section, we describe the training of a
generic model for conversations, and use it to pro-
duce features for a discriminative classifier.

Let there be N characters who could participate
in a conversation. We assume a general scenario,
where any subset of these characters may be present.
Thus, there are 2N−1 character subsets that are pos-
sible. We can model this as a multi-class classifica-
tion problem (we will refer to this as subset model-
ing, henceforth).

The generative model for this task is as follows:
Each conversation segment is associated with a set
of utterances, and a set of characters. For each such
set of characters, we associate a distribution over
topics. For each word that is present in the seg-
ment, we select a topic from the subset-specific topic
distribution, and then we select the word from that
topic. Figure 2 shows the graphical model for this in

plate notation.

Figure 2: Graphical representation of the subset model in
plate notation

In the plate notation, the observed variables are
shaded and the latent variables are unshaded. Plates
encapsulate a set of variables which are repeatedly
sampled a fixed number of times, and the number at
the bottom right indicates this fixed number.
Sc represents a subset of the characters who were

present in the conversation segment. We have C
such conversations, and each conversation contains
Nc words. z represents the latent topic variable, and
θ represents the multinomial topic distribution for
each subset of characters (there are 2N such sub-
sets). The multinomial distribution of topics has a
prior distribution characterized by α. Similarly, ev-
ery topic (there are a set of T topics) has a multino-
mial distribution φ over the words in the vocabulary,
and φ has a prior distribution characterized by β.

For every conversation in the training corpus, the
set of characters present is known. The content of
the conversation is treated as a bag of words. From
the topic distribution for the subset of characters
present, we sample a topic. Based on the word dis-
tributions for this topic, we sample a word. This
process is repeated Nc times corresponding to the
number of words in the conversation. The entire
process of generating a conversation is repeated C
times, corresponding to the number of conversations
in the training corpus.

Depending on the value of N , the number of pos-
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sible classes may be very high. Training a large
number of models may lead to a data scarcity, es-
pecially given the high dimensionality of language
data. We therefore slightly modify the model, so that
instead of topic distributions for each possible sub-
set, we have a topic distribution for each character,
and the distribution of topics in the conversation is
a mixture of the topic distributions for each charac-
ter. This leads us to a graphical model that has been
well-studied in the past – the Author-Topic model
(ATM, henceforth) and is shown in Figure 3.

Figure 3: Graphical representation of the simplified sub-
set model in plate notation

Thus, given the set of characters present, we sam-
ple one of them (x) from a uniform distribution.
Then we generate a topic by sampling from the dis-
tribution of topics for that speaker. The rest of the
process remains the same.We use this model to help
us predict which subset of characters was present in
a given conversation.

We learn speaker-specific topic distributions us-
ing the ATM. In order to predict characters present
in a test conversation, we train binary SVM (Shawe-
Taylor and Cristianini, 2000) classifiers for each
speaker in the following manner: we compute the
distribution of the speaker-specific topics in each
conversation, and use these as the features of the
data point. If the speaker was present in the con-
versation, the data point corresponding to the con-
versation has a class label of +1, else -1. A linear
SVM classifier is trained over the data. At test time,

we compute the distribution of the speaker’s topics
in the conversation, and use the SVM to predict if
the speaker was present or not.

4.2 Identifying Speakers From Utterances

In this section, we describe our approach to identi-
fying speakers from the text of the utterance. The
ATM (as described above) treats all the participants
in the conversation as being potential contributors to
each turn. However, we can also use the ATM to
predict speakers directly. In this case, we will use
each turn as analogous to a document. Each such
document has only one author and the author topic
model can be used to learn models for each author.
The plate notation for this would look very similar
to the one in Figure 2, except that instead of a sub-
set of characters being observed, only one would be
observed, and the number of possible topic distribu-
tions would be equal to the number of characters.

The ATM for this task does not take any context
information into account. In the following subsec-
tion, we introduce a novel HMM based approach
that seeks to leverage information from the sequence
of turns.

4.2.1 Exponential State Hidden Markov Model
In this model, we assign a state to each speaker-

addressee combination possible. If our data consists
ofN characters, only one of theN characters will be
speaking at any given point. He/She may be speak-
ing to any combination of the remainingN−1 char-
acters. Thus, the number of states in this model is
N ×2(N−1). Note that the addressee is not observed
directly from the data.

The sequence of turns in a conversation is mod-
eled by a Hidden Markov Model (Rabiner, 1989).
At each time instant, the speaker corresponding to
the state speaks a turn, which is the observed emis-
sion, before transitioning to another state at the next
time instant. The state at the next time instant is con-
strained to have a different speaker.

The model is trained using the standard Baum-
Welch training. The emission probabilities are cap-
tured by a trigram language model, trained using
the SRILM toolkit (Stolcke, 2002). The parameters
of the model are initialized as follows: for emis-
sion probabilities, we take all the utterances by a
speaker and distributing them uniformly among the
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states that have that speaker, since we do not have
direct information about the addressees. For tran-
sition probabilities, we initialize with a bias instead
of uniformly. Given a conversation, for a state with
speaker A and set of addressees (R, say – Note
that R may have multiple characters), we give equal
probabilities of transitioning to all states that have
one of the characters in R as the speaker. Now, we
pick the set of speakers (call it M ) that uttered the
next three turns (essentially, we look ahead in the
data stream to see who the next 3 speakers are while
training). We add a bias to every state with A as
the speaker, and every possible combination of the
speakers in M , to encode the hypothesis that the ad-
dressee would be likely to speak pretty soon, if not
directly after.

The large state space in this model makes compu-
tation extremely expensive. However, an examina-
tion of the posterior probabilities show that a number
of states are rarely, or never, entered. We prune away
such states after every 5 iterations in the following
manner – we use the current parameters of the model
after each iteration to identify the speakers of each
turn on the development set. Decoding of a sequence
of turns at test time is done using the Viterbi algo-
rithm. However, instead of using the best path only,
we keep track of the top 10 best paths. Thus, after
an iteration of training, we test on the development
data, and obtain 10 possible sequences of speakers
for each conversation. Over 5 iterations, we have
the 50 best paths for each conversation. We then
compute the average number of states entered in all
the decoded paths obtained. If the average number
of times a state was entered is µ, then any state that
was entered less than k × µ times (k = 0.02, for
our experiments), according to the posterior proba-
bilities was pruned out. In order to set the value of
k, the development set was split into 2 halves, with
one half being used to compute the average number
of times a state is entered across the 10 best decodes
for data in that half. For different values of k, accu-
racy of speaker identification on the 1-best decode
was computed on the other half of the development
set, for values of k from 0.005 to 0.1.

The optimal state sequence at test time also con-
tains information about the addressee. For the tasks
we evaluate, this information is not directly used.
However, in other applications, such as those in-

volving automated agents, this information could be
valuable in triggering the agent.

4.2.2 Author-Recipient Topic Model
The Author Recipient Topic Model (McCallum et

al., 2007) (ARTM, henceforth) was used for discov-
ering topics and roles in social networks. It is built
over the Author-Topic Model discussed previously,
with the exception that messages are conditioned on
the sender as well as the receivers. The graphical
model in plate notation is shown in Figure 4.

Figure 4: Graphical representation of the Author-
Recipient Topic model in plate notation

Here, we model each turn as having a set of Nt

words. Each turn has one speaker S, and a set of
addressees At. The generative model works as fol-
lows: For each word in a turn, sample an addressee
a from the set of addressees. Topic distributions are
now conditioned over speaker-addressee pairs, in-
stead of only the speaker as we saw in the ATM.
A topic is now sampled from the speaker-addressee
specific topic distribution. A word is now sampled
from this topic using the topic specific word distri-
butions. The parameters α, β, and z have the same
meaning as in the ATM described earlier.

Note that the set of addressees in our setting is
not explicitly observed. We know the participants in
the conversation at training time, and we know the
speaker, but we do not know who was addressed.
Since we do not have information to make a better
choice of addressee, we model the entire set of par-
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ticipants without the speaker as the set of addressees,
in this model.

For the task of identifying the speaker who uttered
the turn, we employ an approach, similar to the one
used for ATM. We train speaker-addressee-specific
models. The feature set for this task includes fea-
tures not only from the turn itself, but also from
the context. Thus, we have the distribution of the
topics in the turn for every speaker-addressee pair
with the right speaker, the speakers of the previ-
ous two turns, and the distribution of topics of the
speaker of the current turn over the previous two
turns. (Thus, while the model does not explicitly
model sequence, as an HMM does, it utilizes con-
text information in its feature space.) Using these
features, we train a linear SVM to predict whether
or not the speaker uttered the turn. In this case, we
could potentially have multiple speakers (or none of
them) predicted to have uttered the same turn. In
that case, we choose the speaker with the maximum
distance from the margin.

4.3 Baseline Models

In this section, we set up simple baseline models to
evaluate our performance against. We describe how
we set up a random baseline, a Naive Bayes baseline
and an HMM baseline model.

4.3.1 Random Baseline

For the task of identifying the set of charac-
ters present in a conversation, the random baseline
would work as follows: it knows that the number of
characters present in any conversation lies between
1 and N (N = 7, in this case). (Note that monologues,
with only 1 person being present, are possible. Typ-
ically, in our data, they happen at the beginning or
end of scenes.) Thus, it randomly decides if each
of these characters are present or not in any given
conversation.

Suppose that the total number of characters are n
and r of them are actually present in the conversa-
tion. Let us say the random guess system predicts
t of the characters to be present. If we use the uni-
form distribution for picking t, then P (t) = 1

7 , ∀t ∈
[1, 2, ..., 7], in this case. For any given t, the proba-
bility that we get k correct is given by:

P (k|t) =

(
r
k

)
×
(
n−r
t−k

)(
n
t

) (1)

To compute the probability of getting k right, we
marginalize out the number of characters guessed to
be present, t:

P (k) =
∑

t

P (k, t) =
∑

t

P (k|t).P (t) (2)

Now we can compute the probability of getting k
correct by randomly guessing, for all k from 0 to r.
Using these, we can compute the expected number
of correct guesses, which turns out to be 0.571.r for
an average recall would be 57.1%.

For the task of identifying the characters, every
turn could have been uttered by one of the n charac-
ters (n = 7, for our case). Thus, the average accu-
racy at identifying turns would be 1

7 or 14.29%.

4.3.2 Naive Bayes Classifier
For the task of predicting the subset of speakers,

we set up a Naive Bayes using words as features.
We build up a term-document matrix, with each con-
versation treated as a document. For each charac-
ter, we train a binary classifier using the training
data- conversations where the character was present
were marked as a positive instance for that charac-
ter, and ones where he was not present were marked
as negative instances. We experimented both with
using priors based on the empirical distribution in
the training data and with using uniform prior (i.e.
P (character) = 0.5). Given a test conversation,
we use individual classifiers for each of the charac-
ters to determine whether he/she was present or not.

For the task of identifying speakers, given an ut-
terance, the Naive Bayes classifier is set up as fol-
lows: Again, we create term-document matrices for
each of the speakers, where a document is a turn ut-
tered by the speaker. Turns uttered by that speaker
are positive instances and those uttered by someone
else are negative instances. For each speaker, we
compute the Naive Bayes probability ratio (odds) of
him uttering the turn and not uttering the turn, in or-
der to decide. If multiple speakers are classified as
having uttered the turn, or no speaker is classified
as having uttered the turn, the speaker with the best
odds of having uttered the turn is selected.
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System Precision Recall
Author Topic Model 63.22% 74.71%
NB 52.33% 44.19%
NB-prior 68.31% 36.25%
Random Baseline 28.05% 57.1%

Table 1: Results for predicting subset of characters
present

4.3.3 Single Speaker HMM
This model is only used to attribute speakers to

turns. Section 4.2.1 described an HMM model
that captures speaker-addressee information. In the
single- speaker HMM, we have a state for each
speaker. Emission probabilities are given by a tri-
gram language model that is trained on the speaker’s
utterances in the training data. The transition proba-
bilities are initialized as per the empirical transitions
between speakers in the data. This model does not
capture any kind of addressee information.

5 Results

In this section, we present results of our experi-
ments with the models we described earlier, on the
two tasks, identifying the set of speakers in any
given conversation and identifying individual speak-
ers who uttered each turn in a conversation.

For the task of identifying the set of speakers in
any given conversation, we evaluate performance
using precision and recall, which are defined as fol-
lows: If the conversation actually contained r char-
acters, the system predicted that it contained t char-
acters, and got k right, then:

Precision =
k

t
;Recall =

k

r
(3)

The results are summarized in Table 1. In the ta-
ble, NB-prior indicates that the prior for the binary
classifier was determined based on the number of
conversations each character appeared in, while NB
indicates that the prior was uniform (i.e., for each
character, P (present) = P (absent) = 0.5). We
find that the results obtained using the author-topic
model are significantly better than each of the other
three models.

On average, the number of speakers in each con-
versation in the test data was 2.44 (the correspond-

System Accuracy
ESHMM 27.13%
Speaker-LM HMM 25.04%
ARTM 23.64%
Author Topic Model 26.2%
NB 23.41%
NB-prior 21.39%
Random Baseline 14.29%

Table 2: Results for predicting speakers of utterances

ing number in the training data appears to be some-
what higher at 2.65). Our attempts to restrict the set
of characters in a real setting plays a significant role
here as we shall discuss later.

The Naive Bayes classifier with empirical priors
on average predicted that there were 1.3 characters
present per conversation, while the version with uni-
form priors predicted 2.2 characters to be present per
conversation on average. The author-topic model,
on average, over-estimated the number of characters
at 2.86 characters per conversation.

For the task of predicting the speaker, given an ut-
terance, we have two kinds of Hidden Markov Mod-
els, the Exponential State HMM (ESHMM) and and
HMM with emission probabilities based on individ-
ual speaker language models (Speaker LM HMM).
We also have the topic model based systems- the
ARTM and the ATM. Finally, we have the baseline
models- the Naive Bayes with empirical priors and
with uniform priors, and the random baseline. Table
2 summarizes their performance. In this case, we
only report accuracy. Since each turn has only one
speaker, we can constrain each of the models to pro-
duce one speaker, in order to calculate the accuracy.

The HMM and topic based models all incorporate
sequence information in some form. In the case of
the HMM based models, state transitions are condi-
tioned on the previous speaker. In the case of the
topic model based systems, the feature vectors con-
tain context, although the task is modeled as a dis-
criminative classification task. The ESHMM model
worked the best on this dataset. With the exception
of the ATM and the speaker LM HMM (p < 0.10),
the improvements obtained by using the ESHMM
over all other models were statistically significant
(p < 0.05). Surprisingly, the single speaker LM
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HMM and the ATM both outperform the ARTM on
this task. One of the reasons for this could be that
the ARTM does not suitably capture what we hoped
it would, perhaps because of the fact that the recipi-
ents (addressees) are not observed.

6 Conclusion

In this paper, we presented a set of latent variable
model based approaches to analyzing conversation
structure using the text transcript of the conversa-
tions only. The initial set of experiments show
promising improvements over simple baseline meth-
ods, though the overall results leave considerable
room for improvement. Conversations are a dy-
namic process, with the content varying significantly
with time, and the use of formulations such as dy-
namic topic modeling (Blei and Lafferty, 2006) may
help.

We believe that the concept of modeling speak-
ers and addressees would be a powerful one in mod-
eling conversation structure and useful in applica-
tions such as those involving automated agents, or
in understanding discourse on discussion forums, as
well as understanding development of authority in
such forums. The state sequences predicted by the
ESHMM implicitly predict addressees for each turn.
This is not directly used in our tasks, but could be
useful for automated agents, in understanding appro-
priate moments to take its turn.

The dataset used in this case introduced some
noise. We decided to subsume everyone aside from
the 6 main characters under the moniker other, in or-
der to keep the state space manageable. In reality, it
was a collection of a few dozen characters, some of
whom appeared intermittently through the episodes.
As a result, the emission model for this state was not
a stable one. The system rarely predicted this class,
and had very low accuracy when it did.

Further, development of datasets with annotations
specifying the addressees explicitly would probably
accelerate development of methods that work well
in such settings.
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Abstract

We present a dialogue collection and enrich-
ment framework that is designed to explore
the learning and evaluation of dialogue poli-
cies for simple conversational characters us-
ing textual training data. To facilitate learning
and evaluation, our framework enriches a col-
lection of role-play dialogues with additional
training data, including paraphrases of user ut-
terances, and multiple independent judgments
by external referees about the best policy re-
sponse for the character at each point. As
a case study, we use this framework to train
a policy for a limited domain tactical ques-
tioning character, reaching promising perfor-
mance. We also introduce an automatic policy
evaluation metric that recognizes the validity
of multiple conversational responses at each
point in a dialogue. We use this metric to ex-
plore the variability in human opinion about
optimal policy decisions, and to automatically
evaluate several learned policies in our exam-
ple domain.

1 Introduction

There is a large class of potential users of dialogue
systems technology who lack the background for
many of the formal modeling tasks that typically
are required in the construction of a dialogue sys-
tem. The problematic steps include annotating the
meaning of user utterances in some semantic formal-
ism, developing a formal representation of informa-
tion state, writing detailed rules that govern dialogue
management, and annotating the meaning of system
utterances in support of language generation, among
other tasks.

In this paper, we explore data collection and ma-
chine learning techniques that enable the implemen-
tation of domain-specific conversational dialogue
policies through a relatively small data collection ef-
fort, and without any formal modeling. We present
a case study, which serves to illustrate some of
the possibilities in our framework. In contrast to
recent work on data-driven dialogue policy learn-
ing that learns dialogue behavior from existing data
sources (Gandhe and Traum, 2007; Jafarpour et al.,
2009; Ritter et al., 2010), we address the task of au-
thoring a dialogue policy from scratch with a spe-
cific purpose, task and scenario in mind. We exam-
ine the data collection, learning and evaluation steps.

The contributions of this work include a data col-
lection and enrichment framework without formal
modeling, and the creation of dialogue policies from
the collected data. We also propose a framework for
evaluating learned policies. We show, for the sce-
nario in our case study, that these techniques deliver
promising levels of performance, and point to possi-
ble future developments in data-driven dialogue pol-
icy creation and evaluation.

2 Case study

For our case study we selected an existing dialogue
system scenario designed for Tactical Questioning
training (Traum et al., 2008). The character targeted
in our study, Amani, is modeled closely after the
Amani Tactical Questioning character described by
Gandhe et al. (2009) and Artstein et al. (2009). Tac-
tical Questioning dialogues are those in which small
unit military personnel, usually on patrol, hold con-
versations with individuals to produce information
of military value. A tactical questioning dialogue
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system is a simulation training environment where
virtual characters play the role of a person being
questioned. Tactical questioning characters are de-
signed to be non-cooperative at times. They may
answer some of the interviewers questions in a coop-
erative manner, but may refuse to answer other ques-
tions, or intentionally provide incorrect answers.
Therefore the interviewer is encouraged to conduct
the interview in a manner that induces cooperation
from the character: building rapport with the char-
acter, addressing their concerns, making promises
and offers, as well as threatening or intimidating the
character; the purpose of the dialogue system is to
allow trainees to practice these strategies in a realis-
tic setting (Gandhe et al., 2009).

This type of scenario is a good testbed for our
proposed learning and evaluation framework, since
it involves both flexible conversational choices and
well-defined constraints regarding the disclosure of
specific information. In the Amani scenario, the user
plays the role of a commander of a small military
unit in Iraq whose unit had been attacked by sniper
fire. The user interviews a character named Amani
who was a witness to the incident and is thought to
have some information about the identity of the at-
tackers. Amani is willing to tell the interviewer ev-
erything she knows provided that the user promises
her safety, secrecy, and small monetary compensa-
tion for the information (Artstein et al., 2009).

An exhaustive formal definition of Amani’s ideal
dialogue policy might include a large number of
rules covering a wide range of user utterance types.
The key constraints for the training simulation, how-
ever, can be stated simply with a few rules governing
the release of five pieces of information that Amani
knows. Amani will only reveal one of these pieces of
information if a precondition is met. Table 1 shows
how certain information relates to each of the pre-
conditions in Amani’s dialogue policy. Amani can
only reveal a fact from the first column if the user
promised her an item from the second column. For
example, Amani can only tell the user the shooter’s
name if the user promised her safety. If the user
has not promised safety, Amani will ask him for
safety. If the user refuses to promise safety, Amani
will either decline to answer the question or lie to
the interviewer. Amani does keep track of the user’s
promises and once she is promised safety, she would

information precondition
about shooter’s name safety
about shooter’s description safety
about shooter’s location secrecy
about the occupant of the shop secrecy
about shooter’s daily routine money

Table 1: Amani’s dialogue policy.

not ask for it again.
While the key constraints for Amani’s policy, as

summarized in Table 1, may be easily expressed
in terms of rules involving dialogue-acts, the rest
of Amani’s behavior is more open-ended and un-
derspecified. Ideally, the system designers would
like for the character to obey conversational conven-
tions (such as responding appropriately to greetings,
thankings, etc.). Her responses to other user utter-
ances should match human intuition about what a
good response would be, but specific responses are
not generally dictated by the goals for the training
simulation. There is therefore room for some flex-
ibility, and also for the character to reply that she
does not understand. Of course, her conversational
repertoire is inevitably limited by the available au-
thoring and development effort as well as language
processing challenges.

3 Data collection

The exponential number of possible utterances and
dialogue paths in even a simple conversational dia-
logue scenario such as the Amani scenario suggests
that learning acceptable dialogue behavior from sur-
face text examples without annotation or formal
modeling would require a seemingly insurmount-
able quantity of dialogues to serve as training data.
We address this problem in a data collection frame-
work with four main characteristics: (1) we sidestep
the problem of learning natural language generation
by using a fixed predefined set of utterances for the
Amani character. This so-called “utterance selec-
tion” approach has been used in a number of dia-
logue systems (Zukerman and Marom, 2006; Sell-
berg and Jnsson, 2008; Kenny et al., 2007, for ex-
ample) and often serves as a reasonable approxima-
tion to generation (Gandhe and Traum, 2010); (2)
we collect dialogues from human participants who
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play the parts of Amani and the commander in a
structured role play framework (Section 3.1); (3) we
enrich the dialogues collected in the structured role
play step with additional paraphrases for the utter-
ances of the commander, in an attempt to deal with
large variability of natural language input, even for
a limited domain conversational dialogue scenario
(Section 3.2); (4) we further augment the existing
dialogue data by adding acceptable alternatives to
the dialogue acts of the Amani role through the use
of external referees (Section 3.3).

Our data collection procedure is designed to cap-
ture the necessary information for learning dialogue
policies and evaluating their quality by approxi-
mating the exponentially large dialogue variability
while keeping the data collection effort tractable.

3.1 Structured role play

To examine the hypothesis that dialogue policies
such as Amani’s can be learned from examples with-
out explicit rules or any kind of formal modeling,
we collected dialogue data through a constrained
form of role play, which we call structured role play,
where the person playing the role of Amani is en-
couraged, whenever possible, to only use utterances
from a fixed set. Each utterance in the available set
of Amani replies corresponds roughly to one of the
dialogue acts (consisting of an illocutionary force
and some semantic content) described by Artstein et
al. (2009) for their version of the Amani character.

The players in the roles of Amani and the com-
mander take turns producing one utterance at a time,
each in a separate terminal. The commander player,
who receives a natural language description of the
scenario and the goal of the commander, enters utter-
ances through a teletype (chat) interface. The Amani
player, who receives a natural language descrip-
tion of the scenario and of Amani’s dialogue policy,
chooses an utterance from a list for each dialogue
turn. The Amani player is encouraged to use an ut-
terance from this list whenever possible; however,
for user utterances that the Amani player judges can-
not possibly be handled by any existing response, a
new response can be authored (as English text) and
immediately used in the role play. Each player sees
the other’s utterance as text in their own terminal.
This closely resembles a Wizard-of-Oz setup, with
they key difference being that both dialogue partic-

ipants believe they are interacting with another per-
son, which is in fact the case, and the idea of a wiz-
ard controlling a system is not part of the exercise.
However, because the Amani player is encouraged
to limit Amani’s responses to a fixed utterance set,
and the dialogue is constrained to a strict turn-taking
setup that interleaves utterances from each partici-
pant, the situation also differs from conventional role
play.

We collected a total of 19 dialogues and 296 ut-
terances for Amani, for an average of 15.6 Amani
utterances per dialogue.

3.2 Paraphrase generation
The dialogues collected through structured role play
are intended for serving as training data from which
Amani’s dialogue policy can be learned. However,
to cover the natural language variability with which
dialogue acts from the commander can be expressed
would require a much larger number of dialogues
than it would be practical to collect, since a learned
system that deals only with the surface text in the
dialogues would need to deal both with the dia-
logue policy and natural language understanding for
the scenario. Instead, we require only that the di-
alogues collected cover the desired dialogue acts
for the player role in the scenario. To address the
language understanding problem (indirectly), we at-
tempt to cover the variability of expression of these
dialogue acts through the collection of paraphrases
for the commander utterances in the set of dialogues.

For each commander utterance in the 19 dialogues
we collected, we had annotators create a set of para-
phrases. In creating paraphrases, annotators were
asked to take not just the original utterance into ac-
count, but also its context in the dialogue. We did
not specify a fixed number of paraphrases per utter-
ance, but instead asked for as many paraphrases as
the annotator could quickly think of.

Figure 1 exemplifies the paraphrases created dur-
ing this process, for a target user utterance of can
you tell me what you know of the incident?. For this
utterance, a total of 6 paraphrases were generated.

We used a total of 9 annotators, who created para-
phrases for the 296 utterances in the 19 dialogues.
Most annotators were responsible for no more than
two dialogues, and took on average less than 30
minutes per dialogue. The average number of para-
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Previous Dialogue History
Lieutenant: hi amani

Amani: hello.
Lieutenant: how are you doing?

Amani: fine thank you.
Lieutenant: thank you for meeting with me

Amani: you’re welcome.
Target User Utterance

Lieutenant: can you tell me what you know of the incident?
Paraphrases:
please tell me what information you have about the incident
could you please tell me what you saw?
what can you tell me about the incident?
can you tell me about the incident?
please, tell me what you know about the incident
tell me what you saw, please

System Response
Amani: i saw all the shooting from my window. what do you want to know about it?

External Referees:
(3 referees) i saw all the shooting from my window. what do you want to know about it?
(2 referees) i remember that the gun fire was coming from the window on the second floor of assad’s
shop. the shop is only one story but there are apartments on top of the shop.
(1 referee) what is it you want to know about the incident?

Figure 1: An enriched dialogue turn from an Amani structured role play.

phrases collected per user utterance was 5.5.
Our 9 annotators had differing backgrounds, rang-

ing from transcribers and summer interns to experi-
enced NLP researchers. It should be noted that all
had at least some experience working with natural
language processing technologies. In future work,
we would like to explore using less experienced an-
notators for paraphrasing.

3.3 External referee annotation
Although the paraphrase generation step helps with
coverage of the language used by the commander
in our scenario, the combination of the original di-
alogues collected through structured role play and
the paraphrases do not address one crucial issue in
learning of data-driven dialogue policies, and their
automated evaluation: at each turn, a dialogue par-
ticipant has multiple valid dialogue acts that can be
performed, not a single correct one. In other words,
given the same dialogue history up to a given point,
multiple human dialogue participants following the
same underspecified policy may choose different di-
alogue acts to continue the dialogue, and each of
these different choices may be perfectly acceptable
and coherent. This is one of main challenges in cre-
ation and evaluation of data-driven policies, since
the exponentially many acceptable dialogue paths
are both difficult to model explicitly, and difficult

to recognize automatically when performed during
testing. Of course, the degree to which this is a prac-
tical problem in a specific dialogue scenario depends
on several factors, including how underspecified the
targeted dialogue policy is. In our case study, the
policy has a high level of underspecification, since
only behaviors related to the information in Table 1
are mentioned directly, and even those are only de-
scribed in natural language, without formal rigor.
The rest of the policy dictates only that human play-
ers in the part of Amani act according to their com-
monsense in playing the role of the Amani character.
However, we limit the otherwise potentially infinite
possibilities for dialogue behavior by strongly en-
couraging the Amani player to perform only one of a
set of predefined utterances corresponding to certain
dialogue acts in the scenario. In our experiments, the
number of utterances available for Amani was 96.

We first investigate this issue by attempting to
characterize the amount of human variation in the
choice of one of the 96 available dialogue acts at
any given point in a dialogue. To this end, we intro-
duce the idea of the external referee, who essentially
provides a “second opinion” for dialogue acts per-
formed by the original role player. The external ref-
eree annotation task works as follows: (1) Starting
with an existing dialogue containing n utterances
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〈u1, u2, ..., un〉 for the participant whose utterances
will be externally refereed (one of the dialogues
collected through structured role play, in our case
study, where we externally referee the Amani utter-
ances), produce n dialogue histories h1, h2, ..., hn,
with each hi consisting of every utterance from each
dialogue participant from the beginning of the dia-
logue down to, but not including, the ith utterance in
the dialogue. (2) For each dialogue history hi, the
external referee (who must not be the person who
played a part in the original dialogue) chooses an
utterance u′i from the choices available for the sce-
nario, without knowledge of the original utterance
ui in the dialogue from which the history was pro-
duced.

Figure 1 provides an example of the choices made
by 6 external referees for a single target user ut-
terance. Given the previous dialogue history and
the target user utterance (can you tell me what you
know of the incident?), each external referee inde-
pendently chose a single best utterance for the char-
acter to respond with. In the example in the figure,
it can be seen that 3 of the 6 external referees chose
the same response as the original Amani player, as-
serting that Amani did indeed witness the incident
and asking what the commander would like to know.
The other three chose alternative responses; two
of these selected a response asserting information
about where the gun fire was coming from, while
a third referee chose a response simply asking what
the commander would like to know. It is important
to note that all three of these alternative responses
would be acceptable from a design and training per-
spective.

In this annotation task, the task is not to pro-
vide alternative dialogues, but simply one charac-
ter response to each individual utterance, assuming
the fixed history of the original dialogue. In other
words, the annotator has no control or impact over
the dialogue history at any point, and provides only
additional reference utterances for possible immedi-
ate continuations for each dialogue history. It is for
this reason we call the annotator an external referee.

Annotations from multiple external referees for
the dialogues collected through structured role play
do not result in a representation of the lattice of the
many possible dialogue paths in the scenario, but
rather an approximation that represents the possible

options in the immediate future of a given dialogue
history. The main difference is that the available his-
tories are limited to those in the original dialogues
from structured role play. While this may be a lim-
iting factor if one attempts to model dialogue be-
havior based on entire dialogue histories, since the
available histories represent only a very sparse sam-
ple of the space of valid histories, it is possible that
good approximate models can be achieved with fac-
torization of dialogues by sequences of a fixed num-
ber of consecutive turns, e.g. a model that makes a
second-order Markov assumption, considering only
the previous two turns in the dialogue as an approx-
imation of the entire history (Gandhe and Traum,
2007). This is in a way the same approximation used
in n-gram language models, but at the level of gran-
ularity of sentences, rather than words.

We collected annotations from 6 different exter-
nal referees, with each individual referee annotating
the entire set of 19 dialogues, and taking on average
about two hours to complete the annotation of the
entire set. All of our external referees were very fa-
miliar with the design of the Amani character, and
most had natural language processing expertise.

4 Evaluation of dialogue policies with
multiple external referees

4.1 External referee agreement

The dialogues and external referee annotations col-
lected using the procedure described in Section 3
provide a way to characterize the targeted policy
with respect to human variability in choosing utter-
ances from a fixed set, since the annotations include
the choices made by multiple external referees.

From the annotations of utterances chosen for
Amani in our 19 dialogues, we see that human an-
notators agree only 49.2% of the time when choos-
ing an utterance in the external referee framework.
That is, given the same dialogue history, we expect
that two human role players would agree on average
slightly less than 50% of the time on what the next
utterance should be1.

Based on this level of pairwise agreement, one
might conclude that using these data for either policy
learning or policy evaluation is a lost cause. How-

1This represents the averaged agreement over all pairs of
external referees.
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Figure 2: Distribution in number of distinct choices by
external referees

ever, this result does not necessarily indicate that hu-
man raters disagree on what the correct choice is; it
is more likely to reflect that there are in fact mul-
tiple “correct” (acceptable) choices, which we can
capture through multiple annotators.

The annotations from multiple external referees
in our case study support this view: Figure 2 shows
the number of distinct utterance choices made by
each of the six external referees for each specific ut-
terance in the 19 dialogues collected through struc-
tured role play. Each external referee chooses only
one utterance (out of 96 options) per Amani turn in
the 19 dialogues. Over the 296 Amani utterances
in the entire set of dialogues, all six referees agreed
unanimously on their utterance choice only 23.3%
of the time. The most frequent case, totaling almost
30% of all utterances, was that the set composed by
the single choice from each of the six wizards for
an utterance had exactly two distinct elements. For
only 1.3% of the 296 utterances did that set contain
the maximum number of distinct elements (six), in-
dicating complete disagreement among the external
referees. We note that, in this case, very low agree-
ment to complete disagreement reflects a situation
in dialogue where it is likely that there are many di-
alogue act choices considered acceptable by the col-
lective body of external referees. In our scenario,
there were at most two choices from the six referees
for more than 50% of the Amani turns, indicating
that in the majority of the cases there is only a small
set of acceptable dialogue acts (from the 296 avail-
able), while five or more options were chosen for
less than 10% of all Amani turns.

For a more direct characterization of dialogue sce-
narios, and also for the purposes of evaluation, we
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Figure 3: Weak agreement between external referees

now define a metric that reflects overall agreement
in a group of external referees. Instead of compar-
ing one choice from a single referee to another single
choice, we instead check for membership of a single
choice cij from a single referee Ri for utterance uj

in the set of choices {ckj |k 6= i} from all of the
other referees {Rk|k 6= i}. In the positive case, we
say that Ri weakly agrees with the rest of the raters
{Rk|k 6= i} on the annotation of utterance uj . We
define the weak agreement agrn for a set of N ex-
ternal referees over a set of m utterances to be rate
at which each rater Ri weakly agrees with the n− 1
raters {Rk|k 6= i}, for all integer values of i ranging
from 1 to N , inclusive. Intuitively, weak agreement
reflects two important questions: (1) how often is
the choice of a referee supported by the choice of
at least one more referee? and (2) given a set of
n − 1 referees, how much new information (in the
form of unseen choices) should I expect to see from
a new nth referee? Figure 3 addresses these ques-
tions for the scenario in our case study by showing
the weak agreement figures obtained for sets of in-
creasing numbers of external referees, from 2 to 6.
Each point in the graph corresponds to the average
of the weak agreement values obtained for all possi-
ble ways of holding out one external referee Ri, and
computing the weak agreement between Ri and the
other referees, assuming an overall pool containing
the given number of external referees.

We note that with the dialogue act choices of a
single person, coverage of the possible acceptable
options is quite poor, corresponding only to an aver-
age of 50% of the choices made by another person.
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The coverage increases rapidly as two more external
referees are added, and more slowly, although still
steadily from there. The rightmost point in Figure 3
indicates that with a set of five external referee we
should expect to cover almost 80% of the choices of
a sixth referee.

4.2 Dialogue policy evaluation with multiple
external referees

The weak agreement metric defined in the previ-
ous section can be used to measure the quality of
automatically learned policies, and to provide in-
sight into how a learned policy compares to human-
level performance. Because it recognizes the valid-
ity of multiple responses, the weak agreement metric
can help distinguish true policy errors from policy
choices that are consistent with the intuitions of at
least some human referees about what the character
should say.

In particular, given the choices made by five exter-
nal referees for our 19 Amani dialogues, we can ex-
pect their choices to cover about 80% of the choices
a sixth person would make for what Amani should
say at each turn in these dialogues. (I.e., we know
that the weak agreement among a group of six hu-
man referees is about 80% for this Amani scenario.)

We proceed to rate the quality of an automatic
policy by computing a one-vs-others version of
weak agreement—intuitively treating our policy as
if it were such a “sixth person”, and comparing it
to the other five. Instead of computing the average
weak agreement for referees randomly selected from
an entire group, as in the previous section, to eval-
uate a policy, we compute its weak agreement com-
pared to the combined set of human external refer-
ees, as follows. For every system utterance uj in our
set of role play dialogues, a given automatic policy
P is used to select a response c′j (corresponding to
a dialogue act in the domain). We then check for
membership of c′j in the set that contains only and
all dialogue act choices ckj for k ranging from 1 to
N , inclusive, where N is the number of external ref-
erees and ckj corresponds to the kth referee’s choice
for the jth utterance. Another way to interpret this
evaluation metric is to consider it a form of accuracy
that computes the number of correct choices made
by the policy divided by the total number of choices
made by the policy, where a choice is considered

“correct” if it matches any of the external referees’
choices for a specific utterance. For this reason, we
refer to this evaluation-focused one-vs-all version of
weak agreement as weak accuracy.

Based on the definition above, an automatic pol-
icy with quality indistinguishable from that of a
person choosing utterances for the Amani character
would have a weak accuracy of about 80% or higher
when measured using a set of five external referees.
We see then that this metric is far from perfect, since
it cannot rank two policies with weak accuracy lev-
els of, say, 80% and 90%. It is also possible for a
policy that results in dialogue behavior noticeably
inferior to that of a human referee to be rated at
the same weak accuracy value for a human referee
(80%). In practice, however, weak accuracy with
five or six external referees has far greater power for
discriminating between policies of varying quality,
and ranking them correctly, than a naive version of
accuracy, which corresponds to weak accuracy us-
ing a single referee. Furthermore, the addition of
only a few more external referees would very likely
increase the efficacy of the weak agreement metric.

Despite the shortcomings of weak accuracy as a
metric for evaluation of quality of dialogue poli-
cies, it opens up a wide range of opportunities for
development of learned policies. Without an auto-
mated metric, development of such techniques can
be only vaguely incremental, relying on either costly
or, more likely, infrequent human evaluations with
results that are difficult to optimize toward with cur-
rent machine learning techniques. The use of im-
perfect automated metrics in situations where ideal
metrics are unavailable or are impractical to deploy
is fairly common in natural language processing.
PARSEVAL (Abney et al., 1991), commonly used
for parser evaluation, and BLEU (Papineni et al.,
2002), commonly used in machine translation, are
two examples of well-known imperfect metrics that
have been the subject of much criticism, but that are
widely agreed to have been necessary for much of
the progress enjoyed by their respective fields. Un-
like BLEU, however, which has been shown to cor-
relate with certain types of human judgment on the
quality of machine translation systems, our notion
of weak accuracy has not yet been demonstrated to
correlate with human judgments on the quality of di-
alogue policies, and as such it is only hypothesized
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to have this property. We leave this important step
of validation as future work.

5 Learning dialogue policies from
examples without formal modeling

Equipped with a dataset with 19 dialogues in the
Amani scenario (including paraphrases for the un-
constrained commander utterances, and external ref-
eree annotations for the constrained Amani utter-
ances), and an automatic evaluation framework for
distinguishing quality differences in learned poli-
cies, we now describe our experiments on learning
dialogue policies from data collected in structured
role play sessions, and enriched with paraphrases
and external referee annotations.

In each of our experiments we attempt to learn
a dialogue policy as a maximum entropy classi-
fier (Berger et al., 1996) that chooses one utterance
out of the 96 possible utterances for Amani after
each commander utterance, given features extracted
from the dialogue history. This policy could be in-
tegrated in a dialogue system very easily, since it
chooses system utterances directly given previous
user and system utterances. We evaluate the dia-
logue policies learned in each experiment through
19-fold cross-validation of our set of 19 dialogues:
in each fold, we hold out one dialogue (and all of its
related information, such as external referee anno-
tations and user utterance paraphrases) and use the
remaining 18 dialogues as training data.

5.1 Learning from examples

Using only the dialogues collected in structured role
play sessions, and no additional information from
external referees or paraphrases, we train the maxi-
mum entropy classifier to choose a system utterance
si based on features extracted from the two previous
user utterances ui and ui−1 and the previous system
utterance si−1. The features extracted from these ut-
terances are the words present in each user utterance,
and the complete text of each system utterance. Low
frequency words occurring fewer than 5 times in the
corpus are excluded.

The weak accuracy for this simple policy is 43%,
a low value that indicates that for more than half its
turns the policy chooses an utterance that was not
chosen by any of the referees, giving us a reasonable

level of confidence that this policy is of poor quality.

5.2 Enhanced training with external referees

The next experiment expands the training set avail-
able to the maximum entropy classifier by adding
training instances based on the utterances chosen by
the external referees. For each of the training in-
stances (target utterance coupled with features from
ui, si−1 and ui−1) we add six new training instances,
each using the same features as the original train-
ing instance, but replacing the target class with the
choice made by an external referee. Note that this
creates identical training instances for cases when
the same utterance is chosen by multiple annotators,
which has the effect of weighting training examples.
With the additional information, weak accuracy for
this policy improves to 56%, which is a large gain
that still results in a mediocre dialogue policy.

5.3 Expanding training examples with
paraphrases

To help determine how much of difficulty in our
policy learning task is due to the related problem
of natural language understanding (NLU), and how
much is due to modeling dialogue behavior regard-
less of NLU, we performed manual annotation of
dialogue acts for the user utterances, and trained a
policy as in the previous section, but using manu-
ally assigned dialogue acts instead of the words for
user utterances in the dialogue history. With this
gold-standard NLU, weak accuracy improves from
56% to 67%, approaching the level of human perfor-
mance, and already at a level where two out of every
three choices made by the learned policy matches
the choice of a human referee.

To bridge the gap between learning purely from
surface text (with no formal modeling) and learn-
ing from manually assigned dialogue acts specifi-
cally designed to capture important information in
the scenario, we turn to the paraphrases collected
for user utterances in our 19 dialogues. These para-
phrases are used to create additional synthetic train-
ing material for the classifier, as follows: for each
training instance produced from a chosen system ut-
terance si and previous utterances ui, si−1 and ui−1

(see previous section), we create additional training
instances keeping the target system utterance si and
previous system utterance si−1 the same, but using
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a paraphrase u′i in the place of ui, and a paraphrase
u′i−1 in the place of ui−1. Training instances are
added for all possible combinations of the available
paraphrases for ui and ui−1, providing some (arti-
ficial) coverage for parts of the space of possible
dialogue paths that would be otherwise completely
ignored during training.

Training the classifier with material from the ex-
ternal referees (see previous section) and additional
synthetic training examples from paraphrases as de-
scribed above produces a dialogue policy with weak
accuracy of 66%, at the same level as the policy
learned with manually assigned speech acts. It is
noteworthy that this was achieved through a very
simple and intuitive paraphrase annotation task that
requires no technical knowledge about dialogue sys-
tems, dialogue acts or domain modeling. As men-
tioned in section 3.2, paraphrases for each of the 19
dialogues were generated in less than 30 minutes on
average.

6 Conclusion and future work

We introduced a framework for collection and en-
richment of scenario-specific dialogues based only
on tasks that require no technical knowledge. Data
collected in this framework support novel ap-
proaches not just for learning dialogue policies,
but perhaps more importantly for evaluating learned
policies, which allows us to examine different tech-
niques using an objective automatic metric.

Although research on both learning and evalu-
ating dialogue policies is still in early stages, this
case study and proof-of-concept experiments serve
to illustrate the basic ideas of external referee and
paraphrase annotation, and the use of multiple refer-
ence dialogue act choices in evaluation of dialogue
policies, in a way similar to how multiple reference
translations are used in evaluation of machine trans-
lation systems. We do not consider this line of re-
search a replacement for or an alternative to for-
mal modeling of domains and dialogue behavior,
but rather as an additional tool in the community’s
collective arsenal. There are many unexplored av-
enues for including data-driven techniques within
rule-based frameworks and vice-versa.

In future work we intend to further validate the
ideas presented in this paper by performing addi-

tional collection of dialogues in the Amani domain
to serve as a virgin test set, and applying these
techniques to other dialogue domains and scenar-
ios. We also plan to refine the weak accuracy and
weak agreement metrics to take into account the
level of agreement within utterances to reflect that
some parts of dialogues may be more open-ended
than others. Finally, we will conduct human evalu-
ations of different policies to begin validating weak
accuracy as an automatic metric for evaluation of di-
alogue policies.
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Abstract 

Human dialogue serves as a valuable model 
for learning the behavior of dialogue systems. 
Hidden Markov models’ sequential structure is 
well suited to modeling human dialogue, and 
their theoretical underpinnings are consistent 
with the conception of dialogue as a stochastic 
process with a layer of implicit, highly influen-
tial structure. HMMs have been shown to be 
effective for a variety of descriptive and pre-
dictive dialogue tasks. For task-oriented dia-
logue, understanding the learning behavior of 
HMMs is an important step toward building 
unsupervised models of human dialogue. This 
paper examines the behavior of HMMs under 
six experimental conditions including different 
task-oriented feature sets and preprocessing 
approaches. The findings highlight the im-
portance of providing HMM learning algo-
rithms with rich task-based information. 
Additionally, the results suggest how specific 
metrics should be used depending on whether 
the models will be employed primarily in a de-
scriptive or predictive manner.  

1 Introduction 

Human dialogue serves as a valuable model for 
learning the behavior of dialogue systems. For this 
reason, corpus-based approaches to dialogue man-
agement tasks have been an increasingly active area 
of research (Bangalore, Di Fabbrizio, & Stent, 
2006; Di Eugenio, Xie, & Serafin, 2010; Georgila, 
Lemon, Henderson, & Moore, 2009; Rotaru & 
Litman, 2009). Modeling the dialogue policies that 

humans employ permits us to directly extract con-
versational and task-based expertise. These tech-
niques hold great promise for scaling gracefully to 
large corpora, and for transferring well across do-
mains.    

The richness and flexibility of human dialogue 
introduce nondeterministic and complex patterns 
that present challenges for machine learning ap-
proaches. One approach that has been successfully 
employed in dialogue modeling is the hidden Mar-
kov model (HMM) (Rabiner, 1989). These models 
are well suited to the sequential nature of dialogue 
(Stolcke et al., 2000). Moreover, their theoretical 
underpinnings are consistent with the conception of 
dialogue as a stochastic process whose observations 
are influenced by a layer of implicit, yet highly rel-
evant, structure (Boyer et al., 2009; Woszczyna & 
Waibel, 1994).  

HMMs have been shown to perform well on 
important dialogue management tasks such as au-
tomatic dialogue act classification (Stolcke et al., 
2000). Our work has employed HMMs for a differ-
ent goal: learning dialogue policies, or strategies, 
from corpora (Boyer, Phillips, et al., 2010; Boyer, 
Phillips, Ingram, et al., in press). This work can be 
viewed from two perspectives. First, a descriptive 
goal of the work is to learn models that describe the 
nature of human dialogues in succinct probabilistic 
terms, in a way that facilitates important qualitative 
investigations. The second and complementary goal 
is predictive: learning models that accurately pre-
dict the dialogue moves of humans, in order to cap-
ture a dialogue policy that can be used within a 
system.   
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Both of these goals are of paramount im-
portance in tutorial dialogue, in which tutors and 
students engage in dialogue in support of a learning 
task (Boyer, Ha, et al., 2010; VanLehn et al., 2007). 
Descriptive modeling represents a critical step to-
ward more fully understanding the phenomena that 
contribute to the high effectiveness of human tutor-
ing, which has to date been unmatched by tutorial 
dialogue systems. Predictive models, on the other 
hand, may be used directly as dialogue policies 
within systems.  

The HMMs considered here were learned from 
an annotated corpus of textual human-human tuto-
rial dialogue. In this domain, HMMs have been 
shown to correspond qualitatively to widely held 
conceptions of tutorial dialogue strategies, and ad-
jacency pair analysis before model learning has 
been shown to enhance this qualitative correspond-
ence (Boyer et al., 2009). Moreover, HMMs can 
identify in an unsupervised fashion structural com-
ponents that correlate with student knowledge gain 
(Boyer, Phillips, Ingram, et al., in press).  

However, to date, several important questions 
have not been explored. The answers to these ques-
tions have implications for learning HMMs for 
task-oriented dialogues. The questions include the 
following: 1) How reliably does the HMM learning 
framework converge to the hyperparameter N, the 
best-fit number of hidden states? 2) What are the 
effects of preprocessing approaches, specifically, 
adjacency pair analysis, on the resulting HMMs? 
3) How do different feature sets for task-oriented 
dialogue impact the descriptive fit and predictive 
power of learned HMMs? This paper addresses 
these questions. The findings suggest that model 
stability and predictive power benefit from the 
richest possible input sequences, which include not 
only dialogue acts but also information about the 
task state and the absence of particular tutor dia-
logue moves. Additionally, we find that traditional 
measures of HMM goodness-of-fit may not identify 
the most highly predictive models under some con-
ditions. 

2 Background 

HMMs have been used for dialogue modeling tasks 
for many years. Early work utilized HMMs to 
model underlying linguistic structure for the pur-
poses of identifying speech acts and reducing per-
plexity for speech recognition (Stolcke et al., 2000; 

Woszczyna & Waibel, 1994). These projects treat-
ed underlying dialogue structure as the hidden lay-
er, and dialogue utterances as observations. This 
treatment is analogous to the work presented in this 
paper, except that our observations are dialogue act 
tags only, rather than being constituent words in 
each utterance. Our goals are also different: to cre-
ate a qualitatively interpretable model of dialogue 
structure that corresponds to widely accepted no-
tions of task-oriented dialogue, and to learn a high-
ly predictive dialogue policy from a human-human 
dialogue corpus.  

HMMs rely on treating dialogue as a sequential 
Markov process in which each observation depends 
only on a finite set of preceding observations. Some 
other approaches that rely on this assumption treat 
dialogue as a Markov decision process or partially 
observable Markov decision process, in which state 
changes are associated with actions and rewards 
(e.g., Young et al., 2010). Such work focuses on 
learning an optimal policy, typically utilizing a 
combination of human and simulated dialogue cor-
pora. Reinforcement learning techniques can then 
be applied to learn the optimal policy based on the 
observed rewards. In contrast, we start with a rich 
corpus of human-human dialogue, which may have 
poor coverage in some areas (though the dialogue 
act tags were empirically derived and therefore mit-
igate this problem to some extent), and subsequent-
ly learn a model that explains the variance in that 
human corpus as well as possible. 

Capturing the dialogue policy implicit within a 
corpus of human-human dialogue has been ex-
plored in other work in a catalogue-ordering do-
main (Bangalore, Di Fabbrizio, & Stent, 2006). 
That work utilized maximum entropy modeling to 
predict human agents’ dialogue moves within a 
vector-based framework. Although a vector-based 
approach differs in many regards from the sequen-
tial HMM approach described here, both approach-
es assume a dependence only on a finite history. 
HMMs accomplish this through graphical depend-
encies, while vector-based approaches accomplish 
it by including features for a restricted window of 
left-hand context. The results of this catalogue-
ordering project highlight how challenging it is to 
predict human agents’ dialogue moves in a task-
oriented domain. 
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3 Corpus  

The corpus was collected during a human-human 
tutoring study. Students solved an introductory 
computer programming problem in the Java pro-
gramming language. Tutors were located in a sepa-
rate room and communicated with students through 
textual dialogue while viewing a synchronized 
view of the student’s problem-solving workspace. 
Forty-eight students interacted for approximately 
one hour each with a tutor. Students exhibited sta-
tistically significant learning gains from pretest to 
posttest, indicating that the tutoring was effective 
(Boyer, Phillips, Ingram, et al., in press). The cor-
pus contains 1,468 student moves and 3,338 tutor 
moves. Overlapping utterances, which are common 
in dialogue platforms such as instant messaging, 
were prevented by permitting only one user to con-
struct a dialogue message at a time. Because the 
corpus is textual, utterances were segmented at tex-
tual message boundaries except when the lead dia-
logue annotator noted the presence of two separate 
dialogue acts within non-overlapping chunks of 
text. In these events the utterance was segmented 
by the primary annotator prior to being tagged by 
the second dialogue act annotator.  

In addition to dialogue act annotation, the cor-
pus was manually annotated for task structure and 
correctness (Section 3.2), and for delayed tutor 
feedback (Seciton 3.3). The appendix displays an 
excerpt from the annotated corpus.  

3.1 Dialogue Act Annotation 

As part of prior work, the corpus was annotated 
with dialogue acts for both tutor (Boyer, Phillips, 
Ingram, et al., in press) and student (Boyer, Ha, et 
al., 2010) utterances (Table 1). One annotator 
tagged the entire corpus, while a second annotator 
independently tagged a randomly selected 10% of 
tutoring sessions. The inter-annotator agreement 
Kappa score was 0.80.  

3.2 Task Annotation 

The corpus includes 97,509 keystroke-level task 
events (computer programming actions), all taken 
by the student. Tutors viewed synchronously, but 
could not edit, the computer program. The task ac-
tions were manually clustered and labeled for sub-
task structure (Boyer, Phillips, et al., 2010). The 
task structure annotation was hierarchical, with 

leaves corresponding to specific subtasks such as 
creating a temporary variable in order to swap two 
variables’ values (subtask 3-c-iii-2). Each problem-
solving cluster, or subtask, was then labeled for 
correctness (Table 2). These correctness labels are 
utilized in the models presented in this paper. The 
Kappa agreement statistic for the correctness anno-
tation on 20% of the corpus was 0.80. 

Table 1. Dialogue act tags 
Dialogue Act Tutor Example 

ASSESSING Q. Which type should that be? 
EXTRA-DOMAIN A coordinator will be there soon. 
GROUNDING Ok. 
LUKEWARM 
FDBK That’s close. 

LUKEWARM 
CONTENT FDBK 

Almost there, but the second 
parameter isn’t quite right. 

NEGATIVE FDBK That’s not right. 
NEGATIVE 
CONTENT FDBK No, the counter has to be an int. 

POSITIVE  FDBK Perfect. 
POSITIVE 
CONTENT FDBK 

Right, the array is a local varia-
ble. 

QUESTION Which approach do you prefer? 
RESPONSE It will be an int. 
STATEMENT They start at 0. 

Table 2. Task correctness tags 
Correctness 

Tag Description 

CORRECT Fully conforming to the require-
ments of the task. 

BUGGY 
Violating the requirements of the 
task. These task events typically 
require tutorial remediation. 

INCOMPLETE Not violating, but not yet fulfilling, 
the requirements of the task. 

DISPREFERRED 

Technically fulfilling requirements 
but not utilizing the target con-
cepts being tutored. These 
events typically require tutorial 
remediation. 

3.3 Annotation for Delayed Tutor Feedback 

The dialogue act and task annotations reflect posi-
tive evidence regarding what did occur in the dia-
logues. An additional annotation was introduced for 
what did not occur—specifically, instances in 
which tutors did not to make a dialogue move in 
response to students’ relevant task actions. The task 
in our corpus is computer programming, so bugs in 
the task correspond to errors either in syntax or se-
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mantics of the computer program compared to the 
desired outcome. The human tutors were working 
with only one student at a time and were carefully 
monitoring student task actions during the dialogue, 
so we take the absence of a dialogue move at a rel-
evant point to be an intentional choice by the tutor 
to delay feedback as part of the tutorial strategy. 
The automatic annotation for delayed feedback in-
troduced two new event tags: NO-MENTION of cor-
rectly completed subtasks, and NO-REMEDIATION 
of existing bugs within the task.  

The intuition behind these tags is that within a 
learned dialogue policy, specifically modeling 
when not to intervene is crucial. Typically human 
tutors mention correctly completed subtasks, but at 
times other tutorial goals eclipse the importance of 
doing so. The NO-MENTION tag captures these in-
stances. On the other hand, typically when working 
with novices, human tutors remediate an existing 
bug quickly. However, tutors may choose to delay 
this remediation for a variety of reasons such as 
remediating a different bug instead or asking a con-
ceptual question to encourage the student to reflect 
on the issue. The NO-REMEDIATION tag captures 
these instances of the absence of remediation given 
that a bug was present. These two annotations for 
delayed feedback were performed automatically 
(Boyer, Phillips, Ha, et al., in press).  

3.4 Adjacency Pair Modeling 

Prior work has demonstrated that adjacency pairs 
can be identified in an unsupervised fashion from a 
corpus (Midgley, Harrison, & MacNish, 2006). 
This technique relies on statistical analysis to de-
termine the significant dependencies that exist be-
tween pairs of dialogue acts, or in our task-oriented 
corpus, pairs of dialogue acts or task actions. After 
the pairs of dependent events are identified, they 
are joined within the corpus algorithmically (Boyer 
et al., 2009). Joining a pair of dependent moves in 
this way is equivalent to introducing a deterministic 
(probability=1) succession between observation 
symbols. This type of dependency cannot be 
learned in the traditional first-order HMM frame-
work, but is desirable when two observations are 
strongly linked.1 

                                                             
1 Enhanced HMM structures, such as autoregressive HMMs, 
which allow for direct graphical links between observation 
symbols, can learn such a dependency but only in stochastic 
terms. 

The experiment that is described in Section 4 
utilizes different feature sets to learn and compare 
HMMs. Table 3 shows these feature sets and their 
most highly statistically significant adjacency pairs. 

Table 3. Experimental conditions and top three ad-
jacency pairs (subscripts denote speaker, Student or 

Tutor) 

Condition Description 
Significant Adjacency 

Pairs 

DAONLY Dialogue acts 
only 

QS~RspT  
GroundS~GroundT 
AssessQT~PosFdbkS 

DATASK 

Dialogue acts 
& task cor-
rectness 
events 

QS~RspT 
CorrectTaskS~CorrectTaskS 
GroundS~GroundT 

DATASK-
DELAY 

Dialogue 
acts, task 
correctness, 
& delayed 
feedback  

QS~RspT 
NoRemediateT~BuggyTaskS 
CorrectTaskS~CorrectTaskS 

4 Models 

HMMs were selected as the modeling framework 
for this work because their sequential nature is well 
suited to the structure of human dialogue, and their 
“hidden” variable corresponds to widely held con-
ceptions of dialogue as having an unobservable, but 
influential, layer of stochastic structure. For exam-
ple, in tutoring, an “explanation” mode is common, 
in which the tutor presents new information and the 
student provides acknowledgments or takes task 
actions accordingly. Although the presence of the 
“explanation” goal is not directly observable in 
most dialogues, it may be inferred from the obser-
vations. These sequences correspond to the input 
observations for learning an HMM.  

4.1 Hidden Markov Models 

HMMs explicitly model hidden states within a 
doubly stochastic structure (Rabiner, 1989). A first-
order HMM, in which each hidden state depends 
only on the immediately preceding hidden state, is 
defined by the following components: 

• ∑ = {σ1, σ2, …, σM}, the observation sym-
bol alphabet 

• S = {s1,s2,…,sN}, the set of hidden states 
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• Π=[πi], i=1,…,N, the initial probability dis-
tribution, where πi is the probability of the 
model beginning in hidden state si in S  

• A=[aij], a transition probability distribution, 
where aij is the probability of the model 
transitioning from hidden state i to hidden 
state j for i,j=1,…,N 

• B=[bik], an emission probability distribu-
tion where bik is the probability of state i 
(i=1,…,N) emitting (or generating) obser-
vation symbol k (k=1,…,M). 

4.2 Dialogue Modeling with HMMs 

In this work, the observation symbol alphabet ∑ is 
given. For each experimental condition, ∑ is either 
1) all dialogue act tags, 2) all dialogue acts plus 
task correctness tags, or 3) dialogue act, task cor-
rectness, and delayed feedback tags. The transition 
probability distribution A, emission probability dis-
tribution B, and initial probability distribution Π are 
learned by the standard Baum-Welch algorithm for 
optimizing HMM parameters (Rabiner, 1989). This 
algorithm is susceptible to becoming trapped in 
local optima, so our approach uses ten-time random 
restart with new initial parameters for each model 
to reduce the probability of selecting a model that 
represents only a local optimum.  

The hyperparameter N, which is the best number 
of hidden states, is also learned rather than fixed. 
This process involves running the full HMM train-
ing algorithm, including random restarts in ten-fold 
cross-validation, across the data and selecting the N 
that corresponds to the best mean goodness-of-fit 
measure. For HMMs, a typical goodness-of-fit 
measure is log-likelihood, which captures how like-
ly the observations would be under the current 
model. The log is taken for practical reasons, to 
avoid numerical underflow. Higher log-likelihood 
corresponds to improved model fit. However, typi-
cally it is desirable to penalize a higher number of 
hidden states, since increasing the model complexi-
ty results in tradeoffs that may not be fully warrant-
ed by the improvement in model fit. In this work, 
we utilize the Akaike Information Criterion (AIC), 
a standard penalized log-likelihood metric (Akaike, 
1976).  

 
 
 

AIC = 2*N – 2*ln(likelihood) 
Lower values of AIC indicate better model fit. 

4.3 Experimental Conditions 

HMMs were learned using three separate feature 
sets, each providing a progressively more complete 
picture of the task-oriented dialogues: dialogue acts 
only (DAONLY), dialogue acts and task events 
(DATASK), and dialogue acts with both task cor-
rectness events and tags for delayed tutor feedback 
(DATASKDELAY).  

In addition to the three different feature sets, 
each condition included one of two types of pre-
processing. Each type of model was trained on un-
altered sequences of the annotated tags, which we 
refer to as the UNIGRAM condition. Additionally, 
each type of model was trained on sequences with 
statistically dependent adjacency pairs joined in a 
preprocessing step as described in Section 3.4. The 
UNIGRAM and ADJPAIR conditions were explored 
for each of the three feature sets, resulting in six 
experimental conditions. These conditions were 
chosen in order to explore the convergence behav-
ior of HMMs under the different feature sets and 
preprocessing, and to compare measures of descrip-
tive fit with measures of predictive power.  

4.4 Learned HMMs 

Figures 1 and 2 show a subset of the DAONLY 
UNIGRAM model and the DATASKDELAY ADJPAIR 
model. These figures depict the structure of our 
HMMs: each hidden state is associated with an 
emission probability distribution over the possible 
observation symbols.  

5 Goodness-of-Fit Curves 

The learning algorithm described in Section 4.2 
was applied to input sequences under the six exper-
imental conditions to learn the best-fit HMM pa-
rameters. Figure 3 displays these AIC results, 
which are discussed in detail in the remainder of 
this section.  
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Figure 1. Subset of learned HMM (N=13) for 

DAONLY UNIGRAM condition 
 

 
Figure 2. Subset of learned HMM (N=9) for 

DATASKDELAY ADJPAIR condition  

5.1 Impact of Experimental Conditions  

For the DAONLY condition, both the UNIGRAM and 
ADJPAIR models generally improve until N=12 or 
13, after which the fit generally worsens. A differ-

ent pattern emerges for the DATASK condition, in 
which the UNIGRAM sequences are optimally fit to 
a model with 16 states, while the ADJPAIR se-
quences are fit to a model with 8 states. Finally, for 
the DATASKDELAY condition, the UNIGRAM se-
quences are best fit by a model with 10 hidden 
states, while the ADJPAIR sequences are fit best 
by 9. Typically, we see that ADJPAIR sequences are 
fit to slightly simpler models in terms of the hy-
perparameter N, number of hidden states. 
  

Figure 3. Number of hidden states and cor-
responding adjusted AIC, shifted to a mini-
mum score of zero indicating the best-fit N 

A
dj

us
te

d 
A

IC
 

a) Dialogue ActsOnly (DAONLY) 

 
 N (number of hidden states) 

A
dj

us
te

d 
A

IC
 

b) Dialogue Act and Task Events (DATASK) 

 
 N (number of hidden states) 

A
dj

us
te

d 
A

IC
 

c) Dialogue Act, Task, & Delayed Feedback 
(DATASKDELAY)  

 
 N (number of hidden states) 

54



Stability in the hyperparameter N is an im-
portant consideration because an underlying as-
sumption of our work is that the hidden states 
correspond to unobserved stochastic structures of 
the real world process—that is, we hypothesize 
that a “true” value for N exists. We would like 
models to exhibit decreasing variation in goodness 
of fit measures around this true N. To examine this 
stability we consider the three best AIC values for 
each condition and their corresponding Ns: the set 
{Nk-best | k=1,2,3}. The range of this set indicates 
how “far apart” the best three Ns are: for example, 
in the DAONLY UNIGRAM condition, the top three 
models have Ns of {13,10,15}, yielding a range of 
5. Intuitively, a small value for this metric indicates 
that the model has converged tightly on N.  

Figure 4 shows the stability results for the six 
different experimental conditions. As shown in the 
figure, for the DATASK and DATASKDELAY condi-
tions, the ADJPAIR models achieve the smallest 
range among the top three values of N; these mod-
els converge most tightly to the “best” value.   

 
Figure 4. Stability of N (range of {N1best, N2best, 

N3best}) – smaller implies tighter convergence to 
“best” N 

6 Predictive Analysis 

Section 5 presented an analysis of the goodness-of-
fit curves of HMMs learned from the corpus. The 
measures of stability and discrimination for N cap-
ture important aspects of the behavior of HMMs 
toward this parameter, which is conceived of as 
representing “true” real-world stochastic behavior. 
In this way, Section 5 has presented a descriptive 
view of HMM dialogue models.  

This section presents a predictive view of the 
models. Specifically, we consider prediction accu-
racy, defined as the percent of tutor dialogue moves 

that the model is able to correctly predict given the 
dialogue history sequence up to that point.  

6.1 Impact of Dependent Adjacency Pairs 

We first explore whether the preprocessing step of 
joining dependent adjacency pairs impacted predic-
tion accuracy. The prediction accuracy of the best-
fit model in each condition is displayed in Figure 5. 
This figure includes prediction accuracy on training 
data, which were used to learn model parameters, 
as well as prediction accuracy on testing data, 
which were withheld from model training.  

 
Figure 5. Prediction accuracy for tutor moves 

 
As shown in Figure 5, joining the adjacency 

pairs improved model performance on the training 
sets of all three conditions, indicating that the varia-
tion within the training data was better explained 
by ADJPAIR models. (This measure of predictive 
power is different from a goodness-of-fit criterion 
as described in the previous section, a relationship 
that will be discussed further in Section 7.) In con-
trast to the training set performance, the ADJPAIR 
models performed better than UNIGRAM models for 
the testing set only in the DATASKDELAY condi-
tion.   

6.2 Impact of Task-Oriented Feature Sets 

As illustrated in Figure 5, the three feature sets per-
form similarly under the UNIGRAM condition. This 
performance is slightly above baseline (DAONLY 
and DATASK baselines = 0.38; DATASKDELAY 
baseline = 0.30), and diminishes little between the 
training and testing sets. In contrast, under the 
ADJPAIR condition, performance between condi-
tions and across training and testing sets varies. The 
DATask model performs far better on predicting 
observations in the training than the testing set, 
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suggesting possible overfitting to the training set. 
This relationship is discussed further in Section 7. 
The DATASKDELAY model performs well during 
both training and testing, though with a slight de-
crease in accuracy on the testing set.   

6.3 Relationship Between Predictive and De-
scriptive Metrics 

Measures of fit such as log-likelihood and AIC cap-
ture the likelihood of observing the data given a 
model. Predictive accuracy, on the other hand, 
measures the probability that the model can predict 
the next observation given a partial sequence. In 
general, we would expect these measures to corre-
late well; however, there is not perfect correlation 
between these metrics because the mechanism by 
which log-likelihood (and thereby AIC) is derived 
involves maximizing likelihood over complete se-
quences, while prediction is performed over partial 
sequences.  

To examine how well AIC and prediction accu-
racy correlate, Figure 6 displays these values for a 
subset of the models in the DAONLY UNIGRAM 
condition and the DATASKDELAY ADJPAIR condi-
tion. These two conditions represent the extremes 
of the experimental conditions, with DAONLY con-
taining the least information about the task-oriented 
dialogue while DATASKDELAY contains the most 
information.  

As shown in Figure 6, the correlation for 
DAONLY UNIGRAM roughly conforms to what 
would be expected: lower AIC, indicating better 
model fit, is associated with the highest prediction 
accuracies. The relationship is less clear for the 
DATASKDELAY ADJPAIR condition. While its 
worst AIC is associated with the lowest prediction 
accuracy as expected, the best AIC is not associated 
with the highest prediction accuracy. This phenom-
enon may be due to the lack of spread among AIC 
values overall for this condition; as seen in Figure 
3, the DATASKDELAY ADJPAIR condition has the 
flattest AIC curve of all conditions, indicating that 
for this condition the difference between best-fit 
and worst-fit models is smaller than for any other 
condition. The inconsistent relationship between 
AIC and prediction accuracy, therefore, may be the 
product of noise surrounding a large set of “good” 
models, whereas for the DAONLY UNIGRAM condi-
tion, the set of good models is smaller.  

 

 

7 Discussion 

The results suggest several important findings re-
garding feature sets and preprocessing for learning 
HMMs of task-oriented dialogue. First, the models’ 
convergence patterns to a best-fit N, number of 
hidden states, indicate that more information em-
bedded within the sequences may correspond with 
a flatter goodness-of-fit curve. Adding more infor-
mation to the input sequences may introduce some 
regularities that partly mitigate the limitations of 
even a poorly fit HMM. This additional infor-
mation may come in the form of adjacency pairs 
discovered in an unsupervised fashion, which im-
proved the stability of convergence on the best-fit 
N under the DATASK and DATASKDELAY condi-
tions. This increased stability is likely due to the 
fact that under these conditions, leveraging adja-
cency pair information augments the HMM’s struc-
ture with contextual dependencies that could 
otherwise not be learned under the traditional 
HMM framework.  

For predictive accuracy, the benefits of richer 
input sequences are also highlighted. The most 
highly predictive models included all three sources 
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Figure 6. Prediction accuracy vs. AIC 
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of information: dialogue acts, task events, and de-
layed feedback tags. However, with the addition of 
this rich information to the input sequences and the 
accompanying flatter goodness-of-fit curve as dis-
cussed above, we noted an irregular pattern of cor-
relation between goodness-of-fit and predictive 
accuracy that is worthy of future exploration. Spe-
cifically, it appears that the most highly predictive 
DATASKDELAY ADJPAIR model, which is the most 
highly predictive of all models in all conditions, 
does not correspond to the best (lowest) AIC for 
that condition (Figure 3). This finding suggests that 
when a predictive task is the primary goal, a predic-
tive metric should be used to select the best-fit 
model. Additional support for such an approach is 
provided by the close correspondence between 
training and testing set prediction accuracy. 

8 Conclusion 

Understanding how HMMs behave under different 
feature sets is an important step toward learning 
effective models of task-oriented dialogue. This 
paper has examined how HMMs converge to a best 
number of hidden states under different experi-
mental conditions. We have also considered how 
well HMMs under these conditions predict tutor 
dialogue acts within a corpus of task-oriented tutor-
ing, a crucial step toward learning dialogue policies 
from human corpora. The findings highlight the 
importance of adding rich task-based features to the 
input sequences in order to learn HMMs that con-
verge tightly on the best-fit number of hidden 
states. The results also indicate that caution should 
be used when utilizing traditional goodness-of-fit 
metrics, which are appropriate for descriptive ap-
plications, if the goal is to learn a highly predictive 
model.  

This line of research is part of a larger research 
program of learning unsupervised models of human 
task-oriented dialogue that can be used to define 
the behavior of dialogue systems. Developing a 
framework for learning a dialogue policy from hu-
man corpora, as discussed here, is a critical step 
toward that goal. Future work should focus on un-
supervised dialogue act classification, and address 
the challenges of user plan recognition.  
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Appendix. Excerpt from task-oriented textual human-human tutoring corpus. 

Speaker Utterance or Event Tag 

Student: [Task action on subtask 3-c-i-4] BUGGY 

Student: [Task action on subtask 3-c-ii-5] CORRECT 

Tutor: [Does not provide remediation for existing bug] NOREMEDIATION 

Student: [Task action on subtask 3-c-iii-1] BUGGY 

Student: i don't remember off the top of my head how the swap 
function worked. most of the time i just copied and 
pasted it from some of my older code 

NEGATIVECONTENTFDBK 

Tutor: The easiest way to swap x and y is to make a tempo-
rary variable 

 

Student: Ok ACK 

Student: do i need to pass the entire array and the indecies of the 
items to swap? 

ASSESSQ 

Tutor:  if you want to use a seperate method to swap, then yes, 
you'll have to pass those things 
 

POSCONTENTFDBK 

Tutor:  [Does not mention a correctly completed subtask]	   NOMENTIONCOMP 

Student: oh. i guess i could just swap it in the same method. it is 
problably easier that way, and less code. we were 
showed in class how to do it separately, but i had never 
thought of doing it the other way.  

STMT 

Student: [Task action on subtask 3-c-iii-2] DISPREFERRED 

Tutor:  Both ways work, but it’s definitely less code to just do 
it inside this method.  

STMT 

Student: Ok ACK 
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Abstract

We present a novel scheme of spoken dialogue
systems which uses the up-to-date informa-
tion on the web. The scheme is based on in-
formation extraction which is defined by the
predicate-argument (P-A) structure and real-
ized by semantic parsing. Based on the in-
formation structure, the dialogue system can
perform question answering and also proac-
tive information presentation. Feasibility of
this scheme is demonstrated with experiments
using a domain of baseball news. In order to
automatically select useful domain-dependent
P-A templates, statistical measures are intro-
duced, resulting to a completely unsupervised
learning of the information structure given a
corpus. Similarity measures of P-A structures
are also introduced to select relevant infor-
mation. An experimental evaluation shows
that the proposed system can make more rel-
evant responses compared with the conven-
tional ”bag-of-words” scheme.

1 Introduction

Recently, a huge amount of information is accumu-
lated and distributed on the web day by day. As a
result, many people get information via web rather
than the conventional mass media. On the other
hand, the amount of information on the web is so
huge that we often encounter the difficulty in finding
information we want. Keyword search is the most
widely-used means for the web information access.
However, this style is not necessarily the best for
information demands of all users who do not have
definite goals or just want to know what would be

interesting. To cope with user’s vague information
demands is an important mission for interactive spo-
ken dialogue systems. Moreover, supporting user’s
information collection in a small-talk style is one of
the new directions of spoken dialogue systems.

Existing spoken dialogue systems can be clas-
sified into two types (T.Kawahara, 2009): those
using relational databases (RDB) such as the Air-
line Travel Information System (ATIS) (D.A.Dahl,
1994), and those using information retrieval tech-
niques based on statistical document matching
(T.Misu and T.Kawahara, 2010). The first scheme
can achieve a well-defined task by using a struc-
tural database, but this scheme cannot be applied to
the web information in which the structure and task
are not well defined. The second scheme has been
studied to handle large-scale texts such as web, but
most of the conventional systems adopt a “bag-of-
words” model, and naive statistical matching often
generates irrelevant responses which have nothing
to do with the user’s requests. Our proposed scheme
solves this problem by using information extraction
based on semantic parsing from web texts, with-
out constructing an RDB. We adopt the predicate-
argument (P-A) structure generated by a parser as
a baseline, but every P-A structure is not useful for
information extraction and retrieval(Y.Kiyota et al.,
2002; M.O.Dzikovska et al., 2003; S.Harabagiu et
al., 2005). In fact, the useful information structure
is dependent on domains. Conventionally, the tem-
plates for information extraction were hand-crafted
(R.Grishman, 2003), but this heuristic process is so
costly that it cannot be applied to a variety of do-
mains on the web. In this paper, therefore, we pro-
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Figure 1:System overview.

pose a filtering method of predicate-argument (P-A)
patterns generated by the parser, in order to automat-
ically define the domain-dependent useful informa-
tion structure.

We also address flexible matching based on the P-
A structure, because the exact matching often fails
and does not generate any outputs. In order to re-
trieve most relevant information, we define similar-
ity measures of predicates and arguments, which are
also learned from a domain corpus.

In this paper, the proposed scheme is applied to a
domain of baseball news, and implemented as a spo-
ken dialogue system which can reply to the user’s
question as well as make proactive information pre-
sentation using a news website. An overview of this
system is described in Section 2, and the template
filtering method is presented in Section 3. Then, sys-
tem response generation based on flexible matching
is explained in Section 4. Finally, an evaluation of
the system is presented in Section 5.

2 System Overview

2.1 Architecture

The architecture of the proposed spoken dialogue
system is depicted in Fig. 1. First, information ex-
traction is conducted by parsing web texts in ad-
vance. A user’s query is also parsed to extract the
same information structure, and the system matches
the extracted information against the web informa-
tion. According to the matching result, the system
either answers the user’s question or makes proac-
tive presentation of information which should be
most relevant to the user’s request.

If the system finds some information which com-

EXTRACTED INFORMATION

DIALOGUE

Semantic Parsing

Lopez(agent),

three-run homer(object), hit

**(agent), hit

Ichiro(agent), home-run(object), hit

Nothing
Search

Search

Hit

SYSTEM PROCESS

System: Ichiro didn’t hit, but 

Lopez hit a three-run 

homer.

User: Did Ichiro hit home-run?

Kelly(agent), win

Lopez(agent), three-run homer(object), hit

Matsui(agent), double hit(object), hit

Figure 2: Example of information extraction and dia-
logue.

pletely matches the user’s query, the system makes
a response using the corresponding web text. When
the system cannot find exact information, it searches
for some information which matches partially. For
example, in Fig. 2, when a user asked “Did Ichiro
hit a home-run?”, the system cannot find exact in-
formation “[Ichiro (agent), home-run (object), hit]”,
but finds “[Lopez (agent), three-run homer (object),
hit]” which is partially matched and most relevant.
This information is used to generate a relevant re-
sponse that the user would expect.

In the conventional RDB-based dialogue scheme,
the system hardly makes relevant responses if it
finds no matched entries, thus usually replies “There
is no matched entries”. In the conventional question-
answering scheme, the same situation often hap-
pens. Occasionally, a set of close-matched answers
may be found by statistical matching, but the found
answers may not be relevant to the user’s query. In
the proposed scheme, we guarantee that the answer
is at least partially matched to the user’s query in
terms of the information structure.

2.2 Information Extraction based on P-A
Structure

We use the predicate argument (P-A) structure to de-
fine the information structure from web texts. The
P-A structure represents a sentence with a predicate,
arguments and their semantic cases, as shown in the
previous examples. There are some required se-
mantic cases depending on the type of the predicate
(verb), and also arbitrary semantic cases like time,
place, and other modifications. This structure is a
classic concept in natural language processing, but
recently, automatic semantic parsing has reached a
practical level thanks to corpus-based learning tech-
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niques (D.Kawahara and S.Kurohashi, 2006) and
has been used for several large-scale tasks (D.Shen
and M.Lapata, 2007; R.Wang and Y.Zhang, 2009;
D.Wu and P.Fung, 2009). We use KNP1 as a syntac-
tic and semantic parser.

3 Extraction of Domain-Dependent P-A
Templates

The P-A structure automatically generated by the
semantic parser provides useful information struc-
ture as a baseline. However, every P-A pair is not
meaningful in information navigation; actually, only
a fraction of the patterns are useful, and they are
domain-dependent. For example, in the baseball do-
main, key patterns include “[A (agent) beat B (ob-
ject)]” and “[A (agent) hit B (object)]”, and in the
business domain, “[A (agent) sell B (object)]” and
“[A (agent) acquire B (object)]”. We propose a
method to automatically extract these useful patterns
given a domain corpus. We assume each article in
the newspaper corpus/websites is annotated with a
domain such as sports-baseball and economy-stock.

The method is to filter P-A structure patterns
(=templates) based on some statistical measure
which accounts for the domain. The filtering pro-
cess is also expected to eliminate inappropriate pat-
terns caused by parsing errors. Moreover, in spoken
dialogue systems, errors in automatic speech recog-
nition (ASR) may result in erroneous matching. By
eliminating irrelevant patterns, we expect robust in-
formation extraction for spoken input.

Specifically, the following two significance mea-
sures are investigated in this work.

3.1 TF-IDF Measure

First, we use the TF-IDF measure to evaluate impor-
tance of wordwi in a particular domain or topict.

tfidf(wi, t) = P (wi|t) log
C(d)

C(d : wi ∈ d)
(1)

The TF term is the occurrence probability of word
wi, defined as:

P (wi|t) ≈ C(wi, t) + α∑
j

(
C(wj , t) + α

) (2)

1http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp.html

whereC(wi, t) is the occurrence count of wordwi

in the domaint in the corpus, andα is a smooth-
ing factor given by the Dirichlet process prior. The
IDF term is the inverse log probability of documents
containing wordwi:

C(d)

C(d : wi ∈ d)
≈ C(d) + β

C(d : wi ∈ d) + β
(3)

whereC(d) is the number of documents (=newspa-
per articles) in the corpus andC(d : wi ∈ d) is
the number of documents which containwi. β is
a smoothing factor given by the Dirichlet process
prior. We estimateα andβ by a likelihood function
using the training corpus. We compute the TF-IDF
value for a predicate and each argument, and then
compute their geometric mean to define the evalua-
tion measure for a P-A template.

3.2 Naive Bayes (NB) Model

The second measure is based on the Naive Bayes
model.

P (t|wi) =
C(wi, t) + Dtγ

C(wi) + γ
(4)

Here,γ is a smoothing factor andDt is a normal-
ization coefficient of the corpus size of the domain
t.

Dt =

∑
j C(wj , t)∑
k C(wk)

. (5)

The evaluation measure for a P-A pattern is ob-
tained by taking a geometric mean of the component
words.

3.3 Clustering of Named Entities

The statistical learning often falls in the data sparse-
ness problem, especially for proper nouns, for ex-
ample, name of persons. Moreover, there may be
mismatch in the set of named entities between the
training corpus and the test phase. For robust estima-
tion, we introduce classes for named entities (name
of persons, organizations, places). Note that unify-
ing all named entities in the corpus before comput-
ing the evaluation measure would weaken the sig-
nificance of these entities. Thus, we compute statis-
tics for every proper noun before clustering, and sum
up values for the class afterwards. For example, the
score for “[[person](agent), hit]” is computed as a
sum over all persons of this pattern.
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Table 1: Evaluation of template filtering.

model feature Precision Recall F
Baseline - 0.444 1 0.615
TF-IDF Predicate 0.587 0.840 0.691

Argument 0.658 0.730 0.692
P + A 0.513 0.843 0.638

NB Predicate 0.601 0.879 0.714
Argument 0.661 0.794 0.722

P + A 0.878 0.726 0.795

3.4 Evaluation of Template Filtering

We performed an experimental evaluation to com-
pare the effectiveness of the two significance mea-
sures (TF-IDF and Naive Bayes (NB)) in the
Japanese professional baseball domain. The mod-
els are trained with the Mainichi Newspaper cor-
pus 2008. The clustering of named entities is ap-
plied to both methods. The P-A templates hav-
ing larger significance scores are selected. We de-
termined a threshold for selecting templates using
a development set which was held out from the
test set by 10%. The test set was made from
Mainichi newspaper’s website which talks about
games played between April 21-23, 2010. Manual
annotation was made on typical predicates and se-
mantic cases which can be used for question answer-
ing and proactive presentation. The filtering was
performed on the test set by matching the patterns
defined by each measure, and evaluated against the
annotated answers in terms of recall, precision and
F-measure (F). Table 1 lists the result for the two
measures using predicate-only, argument-only, and
both of them.

In this result, using both predicates and arguments
in the Naive Bayes (NB) model performs the best.
Compared with the baseline without any filtering,
the proposed methods significantly improved pre-
cision with some degradation of recall. This prop-
erty is important in realizing informative response
generation robust against ASR and parsing errors.
Among the selected templates, we can find typical
and important patterns like “have a win”, “come into
pitch”, and “make it consecutive wins”. Most of re-
call errors are infrequent patterns, and majority of
precision errors are those patterns that are frequently
observed but not useful for presentation.

4 Presentation of Relevant Information

When the system fails to find exact information that
matches the user’s query, or the user does not speak
for a while, the system tries to make proactive in-
formation presentation. It is based on the partially
matched entries of the current or latest query. The
fall-back is similar to collaborative response gener-
ation in the conventional spoken dialogue systems
(D.Sadek, 1999), but it is intended for proactive in-
formation presentation using general documents.

4.1 Response generation based on partial
matching

For preference among multiple components in the
P-A pattern of the user query, we make use of the
significance measure defined in Section 3. Specifi-
cally, we relax (=ignore) the component of the least
significance score, then search for relevant informa-
tion. If any entry is not still matched, we relax the
next less significant component. If multiple entries
are found with this matching, we need to select the
most relevant entry. Thus, we introduce two scores
of relevance. The relevance measure is defined in
different manners for predicates (=verbs) and argu-
ments (=nouns). The measure for arguments is de-
fined based on the co-occurrence statistics in the cor-
pus. The measure for predicate is defined based on
distributional analysis of arguments.

4.2 Relevance measure of arguments

The relevance of argument words (=nouns)wi and
wj is defined as

simarg(wi, wj) =
{C(wi, wj)}2

C(wi)× C(wj)
. (6)

Here, wi is in the original query, and relaxed (ig-
nored) in the partial matching, andwj of the best
relevance score is retrieved for response generation.
In the example of Fig. 2,wi is “Ichiro” and wj is
“Lopez”.

4.3 Relevance measure of predicates

Distributional analysis (Z.Harris, 1951; Lin, 1998)
has been used to define similarity of words, assum-
ing that similar words have similar contexts. In this
paper, we use the distribution of arguments which
have a modification relation to predicates (Fig. 3)
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Figure 3:Distribution analysis of P-A structure.

(T.Shibata et al., 2008; P.Pantel et al., 2009). The
relevance of predicate wordswprei andwprej is de-
fined as a cosine distance of occurrence vectors of
the modifying arguments(J.Mitchell and M.Lapata,
2008; S.Thater et al., 2010). Here, argument en-
tries are distinguished by their semantic cases such
as Agent and Object, as shown in Fig 3. As the dis-
tribution of arguments is sparse and its reliable esti-
mation is difficult, we introduce smoothing by using
another distributional analysis of arguments, which
is similar to the one in the previous section.

4.4 Bag-of-Words (BOW) Model

If no entry is matched with all possible partial
matching, we resort to the naive “bag-of-words”
(BOW) model, in which a sentence is represented
with a vector of word occurrence and matching is
done based on this vector. This method is widely
used for document retrieval. We count only content
words. In this method, we make use of the signifi-
cance score for preference of the words when multi-
ple candidates are matched for a short query.

The overall matching strategy of the proposed
scheme is summarized in Fig. 4.

4.5 Selection of Relevant Information from
Sentence

Answer or information presentation is generated
based on the matched sentence in a newspaper ar-
ticle. As a sentence is often complex or made of
multiple predicates, simple presentation of the sen-
tence would be redundant or even irrelevant. There-
fore, we select the portion of the matched P-A struc-
ture, to generate a concise response relevant to the
user’s query. For example, when a sentence “Ichiro
hit a three-run homer in the seventh inning and
Mariners won the game” is matched by the pattern

1. Exact Matching of P-A templates.

2. Partial Matching using significance measure for query 
relaxation and relevance score for candidate selection.

3. Back-off to “Bag-of-Words” (BOW) model with 
significance measure for disambiguation.

Figure 4:Strategy for flexible matching in steps.

“[Ichiro(agent), hit]”, we select the former portion
of the sentence which exactly answers the user’s
query, and generate a response “Ichiro hit a three-
run homer in the seventh inning.”

5 System Evaluation

We have implemented a spoken dialogue system
based on the significance measure (Naive Bayes
model) and the relevance measures, which were
learned using the Mainichi Newspaper corpus of ten
years (2000-2009). For evaluation of the system, we
prepared 201 questions from news articles (Septem-
ber 19-26, 2010) seen at the website of Mainichi
Newspaper2. Correct answers to the test queries
were annotated manually. Evaluation was done with
the text input as well as speech input. A word N-
gram language model for ASR dedicated to the do-
main was trained using the relevant newspaper arti-
cle corpus. The word error rate was approximately
24%.

The system responses for the test queries are cat-
egorized into one of the following four: correct an-
swer only (“Correct”), case which includes the cor-
rect answer but also other redundant answers (“Am-
biguous”), incorrect answer (“Incorrect”), and (“No
Answer”). The ambiguous cases occur when mul-
tiple sentences or predicates are matched. We also
calculate recall, precision and F-measure by count-
ing individual answers separately even when multi-
ple answers are output. The results based on these
evaluation measures are summarized in Table 2 and
Table 3 for text input and speech input.

In the tables, the proposed method is broken down
into three phases as shown in Fig. 4: exact match-
ing of P-A structure (Section 3), incorporation of
the partial matching (Section 4.1), and back-off to
the “bag-of-words” (BOW) model (Section 4.4). For
comparison, we also tested the BOW model and

2http://www.mainichi.jp
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Table 2: Evaluation of system response.

Input Model Correct Ambiguous Incorrect No Answer
Text Exact 29.9% 0.5% 1.5% 68.1%

Exact+Partial 66.2% 5.0% 20.3% 8.5%
Exact+Partial+BOW 69.7% 5.0% 25.3% 0.0%

(cf) Bag-of-words (BOW) 46.8% 13.9% 39.3% 0.0%
(cf) Sequence-of-words (SOW) 54.2% 11.4% 34.3% 0.0%

Speech Exact 19.4% 1.0% 0.5% 79.1%
(ASR) Exact+Partial 57.2% 6.0% 18.9% 17.9%

Exact+Partial+BOW 64.1% 6.5% 28.9% 0.0%
(cf) Bag-of-words (BOW) 39.8% 9.4% 48.8% 0.0%

(cf) Sequence-of-words (SOW) 46.3% 10.4% 43.3% 0.0%

Table 3: Accuracy of system response.

Input Model Precision Recall F
Text Exact 93.8% 30.3% 45.8%

Exact+Partial 72.5% 71.1% 71.8%
Exact+Partial+BOW 70.1% 74.6% 72.3%

(cf) Bag-of-words (BOW) 49.8% 60.7% 54.7%
(cf) Sequence-of-words (SOW) 55.2% 65.6% 60.0%

Speech Exact 89.1% 20.4% 33.2%
(ASR) Exact+Partial 65.8% 63.2% 64.5%

Exact+Partial+BOW 61.7% 70.6% 65.9%
(cf) Bag-of-words (BOW) 42.9% 49.3% 45.9%

(cf) Sequence-of-words (SOW) 48.3% 56.7% 52.2%

“sequence-of-words” (SOW) model, which consider
the sequence order in the BOW model. The exact
matching assumes strong constraint of P-A patterns,
so the generated answers are almost correct, but no
answers are generated very often. By incorporat-
ing the partial matching and BOW model, the sys-
tem can output more relevant answers. Compared
with the BOW model, the proposed method achieves
much higher ratio or precision of correct answers. F-
measure is also higher by 17% absolute.

A similar tendency is observed for speech input,
although the overall accuracy is degraded because
of the ASR errors. However, degradation is rela-
tively small considering the word accuracy of 76%.
The partial matching works effectively even if the
exact matching fails due to ASR errors. Moreover,
the back-off to the BOW model is effective in ASR
input.

The proposed method generates concise re-
sponses by selecting the relevant portion as de-
scribed in Section 4.5, while the BOW method of-
ten generates long responses which includes many

redundant portions. This property is particularly im-
portant in the speech interface.

We show a dialogue example in Fig. 5 which is
in Japanese and translated to English for reference
(=Italic).

6 Domain Portability

In the proposed scheme, we construct a domain-
dependent system in a pre-determined domain. It
is straightforward to port the system to other do-
mains just by preparing a domain corpus. This sys-
tem uses a newspaper corpus for training domain-
dependent statistical models. Newspaper articles are
classified according to domain categories such as
sports/baseball and business/finance. Therefore, it is
straightforward to select relevant articles for a par-
ticular domain. In the proposed scheme, we do not
need any further annotations and all statistical mod-
els are trained in an unsupervised manner.
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User: Hanshin ha katta?
(Did Hanshin win the game?)

System: Hanshin ha nanakai ni Kanemoto, Hiyama
no daida kousei de katta yo.
(Hanshin won the game by Kanemoto and 
Hyama’s pinch-hiting in the seventh inning.)

User: Noumi ha touban shita?
(Did Noumi come in to pitch?)

System Noumi ga nanakai mushitten de kachitousyu
ni natta yo.
(Noumi was the winning pitcher, by shutting 
out for seven innings.)

User: Sanshin wo tori mashita ka?
(Did he get strikeout? (“he” is omitted.))

System: Noumi ha nishi ichi-nirui deha Abe wo
naikaku suraida- de sanshin ni totta yo.
(Noumi struck out Abe on a slider with two 
out two-on jam.) 

Figure 5:Dialogue example (original in Japanese, trans-
lated to English).

7 Conclusions

We have presented a new scheme of spoken dialogue
systems which can talk about web texts in an in-
teractive manner. The information extraction tech-
nique is adopted to conduct question answering as
well as proactive information presentation. Filtering
based on a statistical significant measure is intro-
duced to automatically select useful templates in a
given domain. Relevance measures are also defined
for predicate and argument in order to retrieve rele-
vant entries when the exact matching does not suc-
ceed. In experimental evaluations, we have demon-
strated that the filtering works effectively and the
system generates more relevant responses than the
conventional method.

Ongoing works include application to other do-
mains to demonstrate generality of the scheme.
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Abstract

Instruction giving can be used in several
applications, ranging from trainers in sim-
ulated worlds to non player characters for
virtual games. In this paper we present a
novel algorithm for rapidly prototyping virtual
instruction-giving agents from human-human
corpora without manual annotation. Automat-
ically prototyping full-fledged dialogue sys-
tems from corpora is far from being a reality
nowadays. Our approach is restricted in that
only the virtual instructor can perform speech
acts while the user responses are limited to
physical actions in the virtual worlds.

We have defined an algorithm that, given a
task-based corpus situated in a virtual world,
which contains human instructor’s speech acts
and the user’s responses as physical actions,
generates a virtual instructor that robustly
helps a user achieve a given task in the vir-
tual world. We explain how this algorithm
can be used for generating a virtual instructor
for a game-like, task-oriented virtual world.
We evaluate the virtual instructor with human
users using task-oriented as well as user satis-
faction metrics. We compare our results with
both human and rule-based virtual instructors
hand-coded for the same task.

1 Introduction

Virtual human characters constitute a promising
contribution to many fields, including simulation,
training and interactive games (Kenny et al., 2007;
Jan et al., 2009). The ability to communicate using
natural language is important for believable and ef-
fective virtual humans. Such ability has to be good

enough to engage the trainee or the gamer in the ac-
tivity. Nowadays, most conversational systems oper-
ate on a dialogue-act level and require extensive an-
notation efforts in order to be fit for their task (Rieser
and Lemon, 2010). Semantic annotation and rule
authoring have long been known as bottlenecks for
developing conversational systems for new domains.

In this paper, we present a novel algorithm for
generating virtual instructors from automatically an-
notated human-human corpora. Our algorithm,
when given a task-based corpus situated in a virtual
world, generates an instructor that robustly helps a
user achieve a given task in the virtual world of the
corpus. There are two main approaches toward au-
tomatically producing dialogue utterances. One is
the selection approach, in which the task is to pick
the appropriate output from a corpus of possible out-
puts. The other is the generation approach, in which
the output is dynamically assembled using some
composition procedure, e.g. grammar rules. The se-
lection approach to generation has only been used
in conversational systems that are not task-oriented
such as negotiating agents (Gandhe and Traum,
2007a), question answering characters (Kenny et al.,
2007), and virtual patients (Leuski et al., 2006). To
the best of our knowledge, our algorithm is the first
one proposed for doing corpus based generation and
interaction management for task-oriented systems.

The advantages of corpus based generation are
many. To start with, it affords the use of complex
and human-like sentences without detailed analysis.
Moreover, the system may easily use recorded au-
dio clips rather than speech synthesis and recorded
video for animating virtual humans. Finally, no
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rule writing by a dialogue expert or manual an-
notations is needed. The disadvantage of corpus
based generation is that the resulting dialogue may
not be fully coherent. For non-task oriented sys-
tems, dialogue management through corpus based
methods has shown coherence related problems.
Shawar and Atwell (2003; 2005) present a method
for learning pattern matching rules from corpora in
order to obtain the dialogue manager for a chat-
bot. Gandhe and Traum (2007b) investigate several
dialogue models for negotiating virtual agents that
are trained on an unannotated human-human corpus.
Both approaches report that the dialogues obtained
by these methods are still to be improved because
the lack of dialogue history management results in
incoherences. Since in task-based systems, the di-
alogue history is restricted by the structure of the
task, the absence of dialogue history management is
alleviated by tracking the current state of the task.

In the next section we introduce the corpora used
in this paper. Section 3 presents the two phases of
our algorithm, namely automatic annotation and di-
alogue management through selection. In Section 4
we present a fragment of an interaction with a virtual
instructor generated using the corpus and the algo-
rithm introduced in the previous sections. We evalu-
ate the virtual instructor in interactions with human
subjects using objective as well as subjective met-
rics. We present the results of the evaluation in Sec-
tion 5. We compare our results with both human
and rule-based virtual instructors hand-coded for the
same task. Finally, Section 7 discusses the weak-
nesses of the approach for developing instruction
giving agents, as well as its advantages and draw-
backs with respect to hand-coded systems. In this
last section we also discuss improvements on our al-
gorithms designed as a result of our error analysis.

2 The GIVE corpus

The Challenge on Generating Instructions in Vir-
tual Environments (GIVE; Koller et al. (2010)) is
a shared task in which Natural Language Gener-
ation systems must generate real-time instructions
that guide a user in a virtual world. In this paper,
we use the GIVE-2 Corpus (Gargett et al., 2010), a
freely available corpus of human instruction giving
in virtual environments. We use the English part of

the corpus which consists of 63 American English
written discourses in which one subject guided an-
other in a treasure hunting task in 3 different 3D
worlds.

The task setup involved pairs of human partners,
each of whom played one of two different roles. The
“direction follower” (DF) moved about in the vir-
tual world with the goal of completing a treasure
hunting task, but had no knowledge of the map of
the world or the specific behavior of objects within
that world (such as, which buttons to press to open
doors). The other partner acted as the “direction
giver” (DG), who was given complete knowledge of
the world and had to give instructions to the DF to
guide him/her to accomplish the task.

The GIVE-2 corpus is a multi-modal corpus
which consists of all the instructions uttered by the
DG, and all the object manipulations done by the DF
with the corresponding timestamp. Furthermore, the
DF’s position and orientation is logged every 200
milliseconds, making it possible to extract informa-
tion about his/her movements.

3 The unsupervised conversational model

Our algorithm consists of two phases: an annotation
phase and a selection phase. The annotation phase
is performed only once and consists of automatically
associating the DG instruction to the DF reaction.
The selection phase is performed every time the vir-
tual instructor generates an instruction and consists
of picking out from the annotated corpus the most
appropriate instruction at a given point.

3.1 The automatic annotation

The basic idea of the annotation is straightforward:
associate each utterance with its corresponding re-
action. We assume that a reaction captures the se-
mantics of its associated instruction. Defining re-
action involves two subtle issues, namely boundary
determination and discretization. We discuss these
issues in turn and then give a formal definition of
reaction.

We define the boundaries of a reaction as follows.
A reaction Rk to an instruction Uk begins right af-
ter the instruction Uk is uttered and ends right before
the next instruction Uk+1 is uttered. In the follow-
ing example, instruction 1 corresponds to the reac-
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tion 〈2, 3, 4〉, instruction 5 corresponds to 〈6〉, and
instruction 7 to 〈8〉.

DG(1): hit the red you see in the far room
DF(2): [enters the far room]
DF(3): [pushes the red button]
DF(4): [turns right]
DG(5): hit far side green
DF(6): [moves next to the wrong green]
DG(7): no
DF(8): [moves to the right green and pushes it]

As the example shows, our definition of bound-
aries is not always semantically correct. For in-
stance, it can be argued that it includes too much
because 4 is not strictly part of the semantics of 1.
Furthermore, misinterpreted instructions (as 5) and
corrections (e.g., 7) result in clearly inappropriate
instruction-reaction associations. Since we want to
avoid any manual annotation, we decided to use this
naive definition of boundaries anyway. We discuss
in Section 5 the impact that inappropriate associa-
tions have on the performance of a virtual instructor.

The second issue that we address here is dis-
cretization of the reaction. It is well known that there
is not a unique way to discretize an action into sub-
actions. For example, we could decompose action 2
into ‘enter the room’ or into ‘get close to the door
and pass the door’. Our algorithm is not dependent
on a particular discretization. However, the same
discretization mechanism used for annotation has to
be used during selection, for the dialogue manager
to work properly. For selection (i.e., in order to de-
cide what to say next) any virtual instructor needs
to have a planner and a planning problem: i.e., a
specification of how the virtual world works (i.e.,
the actions), a way to represent the states of the vir-
tual world (i.e., the state representation) and a way
to represent the objective of the task (i.e., the goal).
Therefore, we decided to use them in order to dis-
cretize the reaction.

For the virtual instructor we present in Section 4
we used the planner LazyFF and the planning prob-
lem provided with the GIVE Framework. The
planner LazyFF is a reimplementation (in Java) of
the classical artificial intelligence planner FF (Hoff-
mann and Nebel, 2001). The GIVE framework (Gar-
gett et al., 2010) provides a standard PDDL (Hsu et
al., 2006) planning problem which formalizes how

the GIVE virtual worlds work. Both the LazzyFF
planner and the GIVE planning problem are freely
available on the web1.

Now we are ready to define reaction formally. Let
Sk be the state of the virtual world when uttering in-
struction Uk, Sk+1 be the state of the world when ut-
tering the next utterance Uk+1 and Acts be the rep-
resentation of the virtual world actions. The reaction
to Uk is defined as the sequence of actions returned
by the planner with Sk as the initial state, Sk+1 as
the goal state and Acts as the actions.

Given this reaction definition, the annotation of
the corpus then consists of automatically associat-
ing each utterance to its (discretized) reaction. The
simple algorithm that implements this annotation is
shown in Figure 1. Moreover, we provide a fragment
of the resulting annotated corpus in Appendix A.

1: Acts← world possible actions
2: for all utterance Uk in the corpus do
3: Sk ← world state at Uk

4: Sk+1 ← world state at Uk+1

5: Uk.Reaction← plan(Sk, Sk+1, Acts)
6: end for

Figure 1: Annotation algorithm

3.2 Selecting what to say next
In this section we describe how the selection phase is
performed every time the virtual instructor generates
an instruction.

The instruction selection algorithm, displayed in
Figure 2, consists in finding in the corpus the set of
candidate utterances C for the current task plan P
(P is the sequence of actions that needs to be exe-
cuted in the current state of the virtual world in or-
der to complete the task). We define C = {U ∈
Corpus | P starts with U.Reaction}. In other words,
an utterance U belongs to C if the first actions of the
current plan P exactly match the reaction associated
to the utterance U . All the utterances that pass this
test are considered paraphrases and hence suitable in
the current context.

Whenever the plan P changes, as a result of the
actions of the DF, we call the selection algorithm in
order to regenerate the set of candidate utterances C.

1http://www.give-challenge.org/
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1: C ← ∅
2: Plan← current task plan
3: for all utterance U in the corpus do
4: if Plan starts with U.Reaction then
5: C ← C ∪ {U}
6: end if
7: end for
8: return C

Figure 2: Selection algorithm

While the plan P doesn’t change, because the
DF is staying still, the virtual instructor offers al-
ternative paraphrases of the intended instruction.
Each paraphrase is selected by picking an utterance
from C and verbalizing it, at fixed time intervals
(every 3 seconds). The order in which utterances
are selected depends on the length of the utterance
reaction (in terms of number of actions), starting
from the longest ones. Hence, in general, instruc-
tions such as “go back again to the room with the
lamp” are uttered before instructions such as “go
straight”, because the reaction of the former utter-
ance is longer than the reaction of the later.

It is important to notice that the discretization
used for annotation and selection directly impacts
the behavior of the virtual instructor. It is crucial
then to find an appropriate granularity of the dis-
cretization. If the granularity is too coarse, many
instructions in the corpus will have an empty reac-
tion. For instance, in the absence of the representa-
tion of the user orientation in the planning domain
(as is the case for the virtual instructor we evaluate
in Section 5), instructions like “turn left” and “turn
right” will have empty reactions making them indis-
tinguishable during selection. However, if the gran-
ularity is too fine the user may get into situations
that do not occur in the corpus, causing the selec-
tion algorithm to return an empty set of candidate
utterances. It is the responsibility of the virtual in-
structor developer to find a granularity sufficient to
capture the diversity of the instructions he wants to
distinguish during selection.

4 A virtual instructor for a virtual world

We implemented an English virtual instructor for
one of the worlds used in the corpus collection we

presented in Section 2. The English fragment of the
corpus that we used has 21 interactions and a total
of 1136 instructions. Games consisted on average
of 54.2 instructions from the human DG, and took
about 543 seconds on average for the human DF to
complete the task.

On Figures 4 to 7 we show an excerpt of an in-
teraction between the system and a user. The fig-
ures show a 2D map from top view and the 3D in-
game view. In Figure 4, the user, represented by a
blue character, has just entered the upper left room.
He has to push the button close to the chair. The
first candidate utterance selected is “red closest to
the chair in front of you”. Notice that the referring
expression uniquely identifies the target object us-
ing the spatial proximity of the target to the chair.
This referring expression is generated without any
reasoning on the target distractors, just by consid-
ering the current state of the task plan and the user
position.

Figure 4: “red closest to the chair in front of you”

After receiving the instruction the user gets closer
to the button as shown in Figure 5. As a result of the
new user position, a new task plan exists, the set of
candidate utterances is recalculated and the system
selects a new utterance, namely “the closet one”.

The generation of the ellipsis of the button or the
chair is a direct consequence of the utterances nor-
mally said in the corpus at this stage of the task plan
(that is, when the user is about to manipulate this ob-
ject). From the point of view of referring expression
algorithms, the referring expression may not be op-
timal because it is over-specified (a pronoun would
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L go
yes left
straight now go back
go back out now go back out
closest the door down the passage
go back to the hallway nowin to the shade room
go back out of the room out the way you came in
exit the way you entered ok now go out the same door
back to the room with the lamp go back to the door you came in
Go through the opening on the left okay now go back to the original room
okay now go back to where you came from ok go back again to the room with the lamp
now i ned u to go back to the original room Go through the opening on the left with the yellow wall paper

Figure 3: All candidate selected utterances when exiting the room in Figure 7

Figure 5: “the closet one”

Figure 6: “good”

be preferred as in “click it”), Furthermore, the in-
struction contains a spelling error (‘closet’ instead

Figure 7: “go back to the room with the lamp”

of ‘closest’). In spite of this non optimality, the in-
struction led our user to execute the intended reac-
tion, namely pushing the button.

Right after the user clicks on the button (Figure 6),
the system selects an utterance corresponding to the
new task plan. The player position stayed the same
so the only change in the plan is that the button no
longer needs to be pushed. In this task state, DGs
usually give acknowledgements and this is then what
our selection algorithm selects: “good”.

After receiving the acknowledgement, the user
turns around and walks forward, and the next ac-
tion in the plan is to leave the room (Figure 7). The
system selects the utterance “go back to the room
with the lamp” which refers to the previous interac-
tion. Again, the system keeps no representation of
the past actions of the user, but such utterances are
the ones that are found at this stage of the task plan.
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We show in Figure 3 all candidate utterances se-
lected when exiting the room in Figure 7. That is,
for our system purposes, all the utterances in the fig-
ure are paraphrases of the one that is actually uttered
in Figure 7. As we explained in Section 3.2, the
utterance with the longest reaction is selected first
(“go back to the room with the lamp”), the second
utterance with the longest reaction is selected sec-
ond (“ok go back again to the room with the lamp”),
and so on. As you can observe in Figure 3 the ut-
terances in the candidate set can range from tele-
graphic style like “L” to complex sentences like “Go
through the opening on the left with the yellow wall
paper”. Several kinds of instructions are displayed,
acknowledgements such as “yes”, pure moving in-
structions like “left” or “straight”, instructions that
refer to the local previous history such as “go back
out the room” or “ok now go out the same door” and
instructions that refer back to the global history such
as “okay now go back to the original room”.

Due to the lack of orientation consideration in our
system, some orientation dependent utterances are
inappropriate in this particular context. For instance,
“left” is incorrect given that the player does not have
to turn left but go straight in order to go through
the correct door. However, most of the instructions,
even if quite different among themselves, could have
been successfully used in the context of Figure 7.

5 Evaluation and error analysis

In this section we present the results of the evalu-
ation we carried out on the virtual instructor pre-
sented in Section 4 which was generated using the
dialogue model algorithm introduced in Section 3.

We collected data from 13 subjects. The partici-
pants were mostly graduate students; 7 female and
6 male. They were not English native speakers but
rated their English skills as near-native or very good.

The evaluation contains both objective measures
which we discuss in Section 5.1 and subjective mea-
sures which we discuss in Section 5.2.

5.1 Objective metrics

The objective metrics we extracted from the logs of
interaction are summarized in Table 1. The table
compares our results with both human instructors
and the three rule-based virtual instructors that were

top rated in the GIVE-2 Challenge. Their results cor-
respond to those published in (Koller et al., 2010)
which were collected not in a laboratory but con-
necting the systems to users over the Internet. These
hand-coded systems are called NA, NM and Saar.
We refer to our system as OUR.

Human NA Saar NM OUR
Task success 100% 47% 40% 30% 70%
Canceled 0% 24% n/a 35% 7%
Lost 0% 29% n/a 35% 23%
Time (sec) 543 344 467 435 692
Mouse actions 12 17 17 18 14
Utterances 53 224 244 244 194

Table 1: Results for the objective metrics

In the table we show the percentage of games that
users completed successfully with the different in-
structors. Unsuccessful games can be either can-
celed or lost. We also measured the average time
until task completion, and the average number of ut-
terances users received from each system. To ensure
comparability, we only counted successfully com-
pleted games.

In terms of task success, our system performs bet-
ter than all hand-coded systems. We duly notice that,
for the GIVE Challenge in particular (and proba-
bly for human evaluations in general) the success
rates in the laboratory tend to be higher than the suc-
cess rate online (this is also the case for completion
times) (Koller et al., 2009). Koller et al. justify this
difference by stating that the laboratory subject is
being discouraged from canceling a frustrating task
while the online user is not. However, it is also pos-
sible that people canceled less because they found
the interaction more natural and engaging as sug-
gested by the results of the subjective metrics (see
next section).

In any case, our results are preliminary given the
amount of subjects that we tested, but they are in-
deed encouraging. In particular, our system helped
users to identify better the objects that they needed
to manipulate in the virtual world, as shown by the
low number of mouse actions required to complete
the task (a high number indicates that the user must
have manipulated wrong objects). This correlates
with the subjective evaluation of referring expres-
sion quality (see next section).
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We performed a detailed analysis of the instruc-
tions uttered by our system that were unsuccessful,
that is, all the instructions that did not cause the in-
tended reaction as annotated in the corpus. From the
2081 instructions uttered in total (adding all the ut-
terances of the 13 interactions), 1304 (63%) of them
were successful and 777 (37%) were unsuccessful.

Given the limitations of the annotation discussed
in Section 3.1 (wrong annotation of correction utter-
ances and no representation of user orientation) we
classified the unsuccessful utterances using lexical
cues into 1) correction like “no” or “wrong”, 2) ori-
entation instruction such as “left” or “straight”, and
3) other. We found that 25% of the unsuccessful ut-
terances are of type 1, 40% are type 2, 34% are type
3 (1% corresponds to the default utterance “go” that
our system utters when the set of candidate utter-
ances is empty). In Section 7 we propose an im-
proved virtual instructor designed as a result of this
error analysis.

5.2 Subjective metrics

The subjective measures were obtained from re-
sponses to the GIVE-2 questionnaire that was pre-
sented to users after each game. It asked users to rate
different statements about the system using a contin-
uous slider. The slider position was translated to a
number between -100 and 100. As done in GIVE-
2, for negative statements, we report the reversed
scores, so that in Tables 2 and 3 greater numbers
indicates that the system is better (for example, Q14
shows that OUR system is less robotic than the rest).
In this section we compare our results with the sys-
tems NA, Saar and NM as we did in Section 5.1, we
cannot compare against human instructors because
these subjective metrics were not collected in (Gar-
gett et al., 2010).

The GIVE-2 Challenge questionnaire includes
twenty-two subjective metrics. Metrics Q1 to Q13
and Q22 assess the effectiveness and reliability of
instructions. For almost all of these metrics we got
similar or slightly lower results than those obtained
by the three hand-coded systems, except for three
metrics which we show in Table 2. We suspect that
the low results obtained for Q5 and Q22 relate to
the unsuccessful utterances identified and discussed
in Section 5.1 (for instance, corrections were some-
times contradictory causing confusion and resulting

in subjects ignoring them as they advanced in the in-
teraction). The high unexpected result in Q6, that
is indirectly assessing the quality of referring ex-
pressions, demonstrates the efficiency of the refer-
ring process despite the fact that nothing in the algo-
rithms is dedicated to reference. This good result is
probably correlated with the low number of mouse
actions mentioned in Section 5.1.

NA Saar NM OUR
Q5: I was confused about which direction to go in

29 5 9 -12
Q6: I had no difficulty with identifying the objects the
system described for me

18 20 13 40
Q22: I felt I could trust the system’s instructions

37 21 23 0

Table 2: Results for the significantly different subjective
measures assessing the effectiveness of the instructions
(the greater the number, the better the system)

Metrics Q14 to Q20 are intended to assess the nat-
uralness of the instructions, as well as the immer-
sion and engagement of the interaction. As Table 3
shows, in spite of the unsuccessful utterances, our
system is rated as more natural and more engaging
(in general) than the best systems that competed in
the GIVE-2 Challenge.

NA Saar NM OUR
Q14: The system’s instructions sounded robotic

-4 5 -1 28
Q15: The system’s instructions were repetitive

-31 -26 -28 -8
Q16: I really wanted to find that trophy

-11 -7 -8 7
Q17: I lost track of time while solving the task

-16 -11 -18 16
Q18: I enjoyed solving the task

-8 -5 -4 4
Q19: Interacting with the system was really annoying

8 -2 -2 4
Q20: I would recommend this game to a friend

-30 -25 -24 -28

Table 3: Results for the subjective measures assessing
the naturalness and engagement of the instructions (the
greater the number, the better the system)
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6 Portability to other virtual environments

The hand-coded systems, which we compared to, do
not need a corpus in a particular GIVE virtual world
in order to generate instructions for any GIVE vir-
tual world, while our system cannot do without such
corpus. These hand-coded systems are designed to
work on different GIVE virtual worlds without the
need of training data, hence their algorithms are
more complex (e.g. they include domain indepen-
dent algorithms for generation of referring expres-
sions) and take a longer time to develop.

Our algorithm is independent of any particular
virtual world. In fact, it can be ported to any other
instruction giving task (where the DF has to per-
form a physical task) with the same effort than re-
quired to port it to a new GIVE world. This is not
true for the hand-coded GIVE systems. The inputs
of our algorithm are an off-the-shelf planner, a for-
mal planning problem representation of the task and
a human-human corpus collected on the very same
task the system aims to instruct. It is important to
notice that any virtual instructor, in order to give in-
structions that are both causally appropriate at the
point of the task and relevant for the goal cannot do
without such planning problem representation. Fur-
thermore, it is quite a normal practice nowadays to
collect a human-human corpus on the target task do-
main. It is reasonable, then, to assume that all the
inputs of our algorithm are already available when
developing the virtual instructor, which was indeed
the case for the GIVE framework.

Another advantage of our approach is that vir-
tual instructor can be generated by developers with-
out any knowledge of generation of natural language
techniques. Furthermore, the actual implementation
of our algorithms is extremely simple as shown in
Figures 1 and 2. This makes our approach promising
for application areas such as games and simulation
training.

7 Future work and conclusions

In this paper we presented a novel algorithm for
automatically prototyping virtual instructors from
human-human corpora without manual annotation.
Using our algorithms and the GIVE corpus we have
generated a virtual instructor for a game-like vir-
tual environment. A video of our virtual instruc-

tor is available in http://cs.famaf.unc.edu.ar/

˜luciana/give-OUR. We obtained encouraging re-
sults in the evaluation with human users that we did
on the virtual instructor. In our evaluation, our sys-
tem outperforms rule-based virtual instructors hand-
coded for the same task both in terms of objective
and subjective metrics. We plan to participate in the
GIVE Challenge 20112 in order to get more evalua-
tion data from online users and to evaluate our algo-
rithms on multiple worlds.

The algorithms we presented solely rely on the
plan to define what constitutes the context of utter-
ing. It may be interesting though to make use of
other kinds of features. For instance, in order to inte-
grate spatial orientation and differentiate “turn left”
and “turn right”, the orientation can be either added
to the planning domain or treated as a context fea-
ture. While it may be possible to add orientation
in the planning domain of GIVE, it is not straight-
forward to include the diversity of possible features
in the same formalization, like modeling the global
discourse history or corrections. Thus we plan to in-
vestigate the possibility of considering the context of
an utterance as a set of features, including plan, ori-
entation, discourse history and so forth, in order to
extend the algorithms presented in terms of context
building and feature matching operations.

In the near future we plan to build a new version
of the system that improves based on the error anal-
ysis that we did. For instance, we plan to take ori-
entation into account during selection. As a result
of these extensions however we may need to enlarge
the corpus we used so as not to increase the number
of situations in which the system does not find any-
thing to say. Finally, if we could identify corrections
automatically, as suggested in (Raux and Nakano,
2010), we could get an increase in performance, be-
cause we would be able to treat them as corrections
and not as instructions as we do now.

In sum, this paper presents the first existing al-
gorithm for fully-automatically prototyping task-
oriented virtual agents from corpora. The generated
agents are able to effectively and naturally help a
user complete a task in a virtual world by giving
her/him instructions.

2http://www.give-challenge.org/research
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A Automatically annotated fragment of the GIVE corpus

Utterance: make a left and exit the room
Reaction: 〈move(b2-room-1-9,room-1-9), move(room-1-9,room-1-8), move(room-1-8,room-1-7),

move(room-1-7,room-1-6), move(room-1-6,room-1-3), move(room-1-3,room-1-4),
move(room-1-4,room-1-5), move(room-1-5,d3-room-1-5)〉

Utterance: go forward and turn 90 degrees
Reaction: 〈move(d3-room-1-5,d3-room-2), move(d3-room-2,room-2)〉

Utterance: go into the room on the right
Reaction: 〈move(room-2,d6-room-2), move(d6-room-2,a2-d6-room-3), move(a2-d6-room-3,room-3)〉

Utterance: push the green button to the left of the red button
Reaction: 〈move(room-3,b6-room-3), manipulate-stateless(b6), move(b6-room-3,room-3)〉

Utterance: go into the room on your right
Reaction: 〈move(room-3,d11-room-3), move(d11-room-3,d11-room-7), move(d11-room-7,room-7)〉

Utterance: turn 90 degrees right and push the red button
Reaction: 〈move(room-7,b11-room-7), manipulate(b11), move(b11-room-7,room-7)〉

Utterance: on your right, push the yellow button
Reaction: 〈move(room-7,b10-room-7), manipulate-stateless(b10), move(b10-room-7,room-7)〉

Utterance: turn 180 degrees and push the red button next to the plant
Reaction: 〈move(room-7,b12-room-7), manipulate-stateless(b12), move(b12-room-7,room-7)〉

Utterance: turn 180 degrees and push the blue button in the middle of the yellow and blue button
Reaction: 〈move(room-7,b8-b9-room-7), manipulate-stateless(b9), move(b8-b9-room-7,room-7)〉

Utterance: turn 90 degrees left
Reaction: 〈〉

Utterance: go into the room on the right
Reaction: 〈move(room-7,d10-room-7), move(d10-room-7,d10-room-6), move(d10-room-6,room-6)〉

Utterance: turn right and proceed down the room
Reaction: 〈〉

Utterance: push the red button next to the blue button on your right
Reaction: 〈move(room-6,b13-b14-room-6), manipulate(b14), move(b13-b14-room-6,room-6)〉

Utterance: turn left 120 degrees left
Reaction: 〈〉

Utterance: and walk through the hall
Reaction: 〈move(room-6,d9-room-6), move(d9-room-6,d9-room-5), move(d9-room-5,room-5)〉
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Abstract

Natural language generators are faced with a
multitude of different decisions during their
generation process. We address the joint opti-
misation of navigation strategies and referring
expressions in a situated setting with respect to
task success and human-likeness. To this end,
we present a novel, comprehensive framework
that combines supervised learning, Hierarchi-
cal Reinforcement Learning and a hierarchical
Information State. A human evaluation shows
that our learnt instructions are rated similar
to human instructions, and significantly better
than the supervised learning baseline.

1 Introduction

Natural Language Generation (NLG) systems are
typically faced with a multitude of decisions dur-
ing their generation process due to nondeterminacy
between a semantic input to a generator and its re-
alised output. This is especially true in situated set-
tings, where sudden changes of context can occur
at anytime. Sources of uncertainty include (a) the
situational context, such as visible objects, or task
complexity, (b) the user, including their behaviour
and reactions, and (c) the dialogue history, includ-
ing shared knowledge or patterns of linguistic con-
sistency (Halliday and Hasan, 1976) and alignment
(Pickering and Garrod, 2004).

Previous work on context-sensitive generation in
situated domains includes Stoia et al. (2006) and
Garoufi and Koller (2010). Stoia et al. present a
supervised learning approach for situated referring
expression generation (REG). Garoufi and Koller

use techniques from AI planning for the combined
generation of navigation instructions and referring
expressions (RE). More generally, the NLG prob-
lem of non-deterministic decision making has been
addressed from many different angles, including
PENMAN-style choosers (Mann and Matthiessen,
1983), corpus-based statistical knowledge (Langk-
ilde and Knight, 1998), tree-based stochastic models
(Bangalore and Rambow, 2000), maximum entropy-
based ranking (Ratnaparkhi, 2000), combinatorial
pattern discovery (Duboue and McKeown, 2001),
instance-based ranking (Varges, 2003), chart gen-
eration (White, 2004), planning (Koller and Stone,
2007), or probabilistic generation spaces (Belz,
2008) to name just a few.

More recently, there have been several approaches
towards using Reinforcement Learning (RL) (Rieser
et al., 2010; Janarthanam and Lemon, 2010) or Hi-
erarchical Reinforcement Learning (HRL) (Deth-
lefs and Cuayáhuitl, 2010) for NLG decision mak-
ing. All of these approaches have demonstrated that
HRL/RL offers a powerful mechanism for learn-
ing generation policies in the absence of complete
knowledge about the environment or the user. It
overcomes the need for large amounts of hand-
crafted knowledge or data in rule-based or super-
vised learning accounts. On the other hand, RL
can have difficulties to find an optimal policy in a
large search space, and is therefore often limited to
small-scale applications. Pruning the search space
of a learning agent by including prior knowledge is
therefore attractive, since it finds solutions faster, re-
duces computational demands, incorporates expert
knowledge, and scales to complex problems. Sug-

78



gestions to use such prior knowledge include Lit-
man et al. (2000) and Singh et al. (2002), who
hand-craft rules of prior knowledge obvious to the
system designer. Cuayáhuitl (2009) suggests us-
ing Hierarchical Abstract Machines to partially pre-
specify dialogue strategies, and Heeman (2007) uses
a combination of RL and Information State (IS)
to also pre-specify dialogue strategies. Williams
(2008) presents an approach of combining Partially-
Observable Markov Decision Processes with con-
ventional dialogue systems. The Information State
approach is well-established in dialogue manage-
ment (e.g., Bohlin et al. (1999) and Larsson and
Traum (2000)). It allows the system designer to
specify dialogue strategies in a principled and sys-
tematic way. A disadvantage is that random design
decisions need to be made in cases where the best
action, or sequence of actions, is not obvious.

The contribution of this paper consists in a com-
prehensive account of constrained Hierarchical Re-
inforcement Learning through a combination with
a hierarchical Information State (HIS), which is in-
formed by prior knowledge induced from decision
trees. We apply our framework to the generation
of navigation strategies and referring expressions in
a situated setting, jointly optimised for task suc-
cess and linguistic consistency. An evaluation shows
that humans prefer our learnt instructions to the su-
pervised learning-based instructions, and rate them
equal to human instructions. Simulation-based re-
sults show that our semi-learnt approach learns more
quickly than the fully-learnt baseline, which makes
it suitable for large and complex problems. Our ap-
proach differs from Heeman’s in that we transfer it
to NLG and to a hierarchical setting. Although Hee-
man was able to show that his combined approach
learns more quickly than pure RL, it is limited to
small-scale systems. Our ‘divide-and-conquer’ ap-
proach, on the other hand, scales up to large search
spaces and allows us to address complex problems.

2 The Generation Tasks

2.1 The GIVE-2 Domain

Our domain is the generation of navigation instruc-
tions and referring expressions in a virtual 3D world
in the GIVE scenario (Koller et al., 2010). In this
task, two people engage in a ‘treasure hunt’, where

an instruction giver (IG) navigates an instruction fol-
lower (IF) through the world, pressing a sequence of
buttons and completing the task by obtaining a tro-
phy. Pairs take part in three dialogues (in three dif-
ferent worlds); after the first dialogue, they switch
roles. The GIVE-2 corpus (Gargett et al., 2010) pro-
vides transcripts of such dialogues in English and
German. For this paper, we complemented the En-
glish dialogues of the corpus with a set of seman-
tic annotations.1 The feature set is organised in five
groups (Table 1). The first two groups cover manip-
ulation instructions (i.e., instructions to press a but-
ton), including distractors2 and landmarks (Gargett
et al., 2010). The third group describes high- and
low-level navigation, the fourth group describes the
user. The fifth group finally contains grammatical
information.

2.2 Navigation and Manipulation Instructions

Navigation instructions can take many forms, even
for the same route. For example, a way to another
room can be described as ‘go to the room with the
lamp’, ‘go left and through the door’, or ‘turn 90
degrees, left, straight’. Choosing among these vari-
ants is a highly context- and speaker-dependent task.
Figure 1 shows the six user strategies we identified
from the corpus based on an analysis of the combi-
nation of navigation level (‘high’ vs. ‘low’ ) and con-
tent (‘destination’, ‘direction’, ‘orientation’, ‘path’,
‘straight’). User models are based on the navigation
level and content decisions made in a sequence of in-
structions, so that different sequences, with a certain
distribution, lead to different user model classifica-
tions. The proportions are shown in Figure 1. We
found that 75% of all speakers use the same strat-
egy in consecutive rounds/games. 62.5% of pairs
are consistent over all three dialogues, indicating
inter-speaker alignment. These high measures of
human consistency suggest that this phenomenon
is worth modelling in a learning agent, and there-
fore provides the motivation of including linguis-
tic consistency in our agent’s behaviour. Manipula-
tion instructions were treated as an REG task, which
needs to be sensitive to the properties of the referent
and distractors (e.g, size, colour, or spatial relation

1The annotations are available on request.
2Distractors are objects of the same type as the referent.
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ID Feature Type Description

f1 absoluteproperty(referent) boolean Is the colour of the referent mentioned?
f2 absoluteproperty(distractor) boolean Is the colour of the distractor mentioned?
f3 discriminativecolour(referent) boolean Is the colour of the referent discriminating?
f4 discriminativecolour(distractor) boolean Is the colour of the distractor discriminating?
f5 mention(distractor) boolean Is a distractor mentioned?
f6 first mention(referent) boolean Is this the first reference to the referent?
f7 mention(macrolandmark) boolean Is a macro (non-movable) landmark mentioned?
f8 mention(microlandmark) boolean Is a micro (movable) landmark mentioned?
f9 num(distractors) integer How many distractors are present?
f10 num(microlandmarks) integer How many micro landmarks are present?
f11 spatialrel(referent,obj) string Which spatial relation(s) are used in the RE?
f12 taxonomicproperty(referent) boolean Is the type of the distractor mentioned?
f13 within field of vision(referent) boolean Is the referent within the user’s field of vision?

f14 mention(colour, lm) boolean Is the colour of a macro- / micro lm mentioned?
f15 mention(size, lm) boolean Is the size of a macro- / micro lm mentioned?

f16 abstractness(navinstruction) string Is the instructionexplicit or implicit?
f17 content(navinstruction) string Vals: destination, direction, orientation, path, straight

f18 level(navinstruction) string Is the instructionhigh-or low-level?

f19 position(user) string Is the useron track or off track?
f20 reaction(user) string Vals: takeaction, takewrong action, wait, req help

f21 type(user) string Vals: likes waiting, likes exploring, in between
f22 waits(user) boolean Is the user waiting for the next instruction?
f23 model(user) string User model/navig. strategy used (cf. Fig.1)?

f24 actor(instruction) boolean Is the actor of the instruction inserted?
f25 mood(instruction) boolean Is the mood of the instruction inserted?
f26 process(instruction) boolean Is the process of the instruction inserted?
f27 locationalphrase(instruction) boolean Is the loc. phrase (path, straight, etc.) inserted?

Table 1:Corpus annotation features that were used as knowledge of the learning agent and the Information State. Fea-
tures are presented in groups, describing the properties ofreferents in the environment (f1...f13) and their distractors
(f14...f15), features of high- and low-level navigation (f16...f18), the user (f19...f23), and grammatical information
about constituents (f24...f27).

with respect to the referent) to be natural and dis-
tinguishing. We also considered the visual salience
of objects, and the type of spatial relation involved,
since recent studies indicate the potential relevance
of these features (Viethen and Dale, 2008). Given
these observations, we aim to optimise thetask suc-
cessandlinguistic consistencyof instructions. Task
success is measured from user reactions after each
instruction (Section 5.1). Linguistic consistency is
achieved by rewarding the agent for generating in-
structions that belong to the same user model as the
previous one. The agent has the same probability
for choosing any pattern, but is then rewarded for

consistency. Table 3 (in Section 5.2) presents an ex-
ample dialogue generated by our system.

3 Constrained Hierarchical Reinforcement
Learning for NLG

3.1 Hierarchical Reinforcement Learning

Our idea of language generation as an optimisa-
tion problem is as follows: given a set of genera-
tion states, a set of actions, and an objective reward
function, an optimal generation strategy maximises
the objective function by choosing the actions lead-
ing to the highest reward for every reached state.
Such states describe the system’s knowledge about
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Figure 1: Decision tree for the classification of user
models (UM) defined by the use of navigation level and
content. UM 0=high-level, UM 1=low-level (LL), UM
2=orientation-based LL, UM 3=orientation-based mix-
ture (M), UM 4=path-based M, UM 5=pure M.

the generation task (e.g. navigation strategy, or re-
ferring expressions). The action set describes the
system’s capabilities (e.g.‘use high level naviga-
tion strategy’, ‘mention colour of referent’, etc.).
The reward function assigns a numeric value for
each action taken. In this way, language generation
can be seen as a finite sequence of states, actions
and rewards{s0, a0, r1, s1, a1, ..., rt−1, st}, where
the goal is to find an optimal strategy automatically.
To do this we use RL with a divide-and-conquer ap-
proach in order to optimise a hierarchy of generation
policies rather than a single policy. The hierarchy of
RL agents consists ofL levels andN models per
level, denoted asM i

j , wherej ∈ {0, ..., N − 1}
and i ∈ {0, ..., L − 1}. Each agent of the hierar-
chy is defined as a Semi-Markov Decision Process
(SMDP) consisting of a 4-tuple< Si

j, A
i
j , T

i
j , R

i
j >.

Si
j is a set of states,Ai

j is a set of actions,T i
j is

a transition function that determines the next state
s′ from the current states and the performed ac-
tion a, and Ri

j is a reward function that specifies
the reward that an agent receives for taking an ac-
tion a in states lasting τ time steps. The random
variableτ represents the number of time steps the
agent takes to complete a subtask. Actions can be
either primitive or composite. The former yield sin-
gle rewards, the latter correspond to SMDPs and
yield cumulative discounted rewards. The goal of
each SMDP is to find an optimal policy that max-

imises the reward for each visited state, according to
π∗i

j(s) = arg maxa∈Ai
j
Q∗i

j(s, a), whereQ∗i
j (s, a)

specifies the expected cumulative reward for exe-
cuting actiona in states and then following pol-
icy π∗i

j. We use HSMQ-Learning (Dietterich, 1999)
for learning a hierarchy of generation policies. This
hierarchical approach has been applied successfully
to dialogue strategy learning by Cuayáhuitl et al.
(2010).

3.2 Information State

The notion of an Information State has traditionally
been applied to dialogue, where it encodes all infor-
mation relevant to the current state of the dialogue.
This includes, for example, the context of the in-
teraction, participants and their beliefs, and the sta-
tus of grounding. An IS consists of a set ofinfor-
mational components, encoding the information of
the dialogue,formal representationsof these com-
ponents, a set ofdialogue movesleading to the up-
date of the IS, a set ofupdate ruleswhich govern the
update, and finally anupdate strategy, which speci-
fies which update rule to apply in case more than one
applies (Larsson and Traum (2000), p. 2-3). In this
paper, we apply the theory of IS to language gener-
ation. For this purpose we define the informational
components of an IS to represent the (situational and
linguistic) knowledge of the generator (Section 4.2).
Update rules are triggered by generator actions, such
as the decision to insert a new constituent into the
current logical form, or the decision to prefer one
word order sequence over another. We use the DIP-
PER toolkit (Bos et al., 2003)3 for our implementa-
tion of the IS.

3.3 Combining Hierarchical Reinforcement
Learning and Information State

Previous work has suggested the HSMQ-Learning
algorithm for optimizing text generation strategies
(Dethlefs and Cuayáhuitl, 2010). Because such an
algorithm uses all available actions in each state,
an important extension is to constrain the actions
available with some prior expert knowledge, aim-
ing to combine behaviour specified by human de-
signers and behaviour automatically inferred by re-
inforcement learning agents. To that end, we sug-

3http://www.ltg.ed.ac.uk/dipper
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Figure 2: (Left:) Hierarchy of learning agents executed from top to bottom for generating instructions. (Right:) State
representations for the agents shown in the hierarchy on theleft. The featuresf1...f27 refer back to the features used
in the annotation given in the first column of Table 1. Note that agents can share information across levels.

gest combining the Information State approach with
hierarchical reinforcement learning. We therefore
re-define the characterisation of each Semi-Markov
Decision Process (SMDP) in the hierarchy as a 5-
tuple modelM i

j =< Si
j, A

i
j , T

i
j , R

i
j , I

i
j >, where

Si
j, Ai

j, T i
j andRi

j are as before, and the additional
elementIi

j is an Information State used as knowl-
edge base and rule-based decision maker. In this ex-
tended model, action selection is based on a con-
strained set of actions provided by the IS update
rules. We assume that the names of update rules
in Ii

j represent the agent actionsAi
j . The goal of

each SMDP is then to find an optimal policy that
maximises the reward for each visited state, accord-
ing to π∗i

j(s) = arg maxa∈Ai
j
∩Ii

j
Q∗i

j(s, a), where

Q∗i
j (s, a) specifies the expected cumulative reward

for executing constrained actiona in states and then
following π∗i

j thereafter. For learning such poli-
cies we use a modified version of HSMQ-Learning.
This algorithm receives subtaskM i

j and Information
StateIi

j used to initialise states, performs similarly
to Q-Learning for primitive actions, but for compos-
ite actions it invokes recursively with a child sub-
task. In contrast to HSMQ-Learning, this algorithm
chooses actions from a subset derived by applying
the IS update rules to the current state of the world.
When the subtask is completed, it returns a cumu-
lative rewardrt+τ , and continues its execution until

finding a goal state for the root subtask. This process
iterates until convergence occurs to optimal context-
independent policies, as in HSMQ-Learning.

4 Experimental Setting

4.1 Hierarchy of Agents

Figure 2 shows a (hand-crafted) hierarchy of learn-
ing agents for navigating and acting in a situated en-
vironment. Each of these agents represents an indi-
vidual generation task. ModelM0

0 is the root agent
and is responsible for ensuring that a set of naviga-
tion instructions guide the user to the next referent,
where an RE is generated. ModelM1

0 is responsible
for the generation of the RE that best describes an
intended referent. SubtasksM2

0 ... M2
2 realise sur-

face forms of possible distractors, or macro- / micro
landmarks. ModelM1

2 is responsible for the gener-
ation of navigation instructions which smoothly fit
into the linguistic consistency pattern chosen. Part
of this task is choosing between a low-level (model
M2

3 ) and a high-level (modelM2
4 ) instruction. Sub-

tasksM3
0 ...M3

4 realise the actual instructions, des-
tination, direction, orientation, path, and ‘straight’,
respectively.4 Finally, modelM1

1 can repair previ-
ous system utterances.

4Note that navigation instructions and REs correspond to se-
quences of actions, not to a single one.

82



Model(s) Actions

M0

0
navigation, manipulation, confirmation, stop, repairsystemact, repairno systemact

M1
0 insertdistractor, insertno distractor, insertno absoluteproperty, insertmicro relatum, insertmacrorelatum

insertno taxonomicproperty, insertabsoluteproperty, insertno macrorelatum, inserttaxonomicproperty

M1
2 choosehigh level, chooselow level, getroute, chooseeasyroute, chooseshort route

M2

0
... M2

2
exp head, expno head, insertcolour, insertno colour, insertsize, insertno size, expspatialrelation

M2

3
chooseexplicit abstractness, chooseimplicit abstractness, destinationinstruction, pathinstruction

M2

4
chooseexplicit abstractness, chooseimplicit abstractness, directioninstr, orientationinstr, straightinstr

M3
0 ... M3

4 exp actor, expno actor, expmood, exploc phrase, expno loc phrase, expprocess, expno process

Table 2:Action set of the learning agents and Information States.

4.2 State and Action Sets

The HRL agent’s knowledge base consists of all sit-
uational and linguistic knowledge the agent needs
for decision making. Figure 2 shows the hierarchy
of learning agents together with the knowledge base
of the learning agent with respect to the semantic
features shown in Table 1 that were used for the an-
notation of the GIVE-2 corpus dialogues. The first
column of the table in Figure 2 indicates the respec-
tive model, also referred to as agent, or subtask, and
the second column refers to the knowledge variable
it uses (in the form of the feature index given in the
first column of Table 1). In the agent, boolean values
and strings were represented as integers. The HIS
shares all information of the learning agent, but has
an additional set of relational feature-value pairs for
each slot. For example, if the agent knows that the
slot content(nav instruction) has value1 (mean-
ing ‘filled’), the HIS knows also which value it was
filled with, such aspath. Such additional knowledge
is required for the supervised learning baseline (Sec-
tion 5). The action set of the hierarchical learning
agent and the hierarchical information state is given
in Table 2. The state-action space size of a flat learn-
ing agent would be|S ×A| = 1011, the hierarchical
setting has a state-action space size of2.4 × 107.
The average state-action space size of all subtasks is
|S × A|/14 = 1.7 × 107. Generation actions can
be primitive or composite. While the former corre-
spond to single generation decisions, the latter rep-
resent separate generation subtasks (Fig. 2).

4.3 Prior Knowledge

Prior knowledge can include decisions obvious to
the system designer, expert knowledge, or general

intuitions. In our case, we use a supervised learn-
ing approach to induce prior knowledge into our
HRL agent. We trained decision trees on our anno-
tated corpus data using Weka’s (Witten and Frank,
2005) J48 decision tree classifer. A separate tree
was trained for each semantic attribute (cf. Table
1). The obtained decision trees represent our super-
vised learning baseline. They achieved an accuracy
of 91% in a ten-fold cross-validation. For our semi-
learnt combination of HRL and HIS, we performed a
manual analysis of the resulting rules to assess their
impact on a learning agent.5 In the end, the fol-
lowing rules were used to constrain the agent’s be-
haviour: (1) In REs, always use a referent’s colour,
except in cases of repair when colour is not discrim-
inating; (2) mention a distractor or micro landmark,
if the colour of the referent is not discriminating;
(3) in navigation, always make orientation instruc-
tions explicit. All remaining behaviour was subject
to learning.

4.4 Reward Function

We use the following reward function to train the hi-
erarchy of policies of our HRL agent. It aims to re-
duce discourse length at maximal task success6 us-
ing a consistent navigation strategy.

R =



















0 for reaching the goal state
-2 for an already invoked subtask
+1 for generating instructionu con-

sistent with instructionu
−1

-1 otherwise.

5We excluded rules that always choose the same value, since
they would work against our aim of generating consistent, but
variable instructions.

6Task success is addressed by that the user has to ‘accept’
each instruction for a state transition.
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The third reward that encourages consistency of in-
structions rewards a sequence of actions that allow
the last generated instruction to be classified as be-
longing to the same navigation strategy/user model
as the previously generated instruction (cf. 2.2).

5 Experiments and Results

5.1 The Simulated Environment

The simulated environment contains two kinds of
uncertainties: (1) uncertainty regarding the state of
the environment, and (2) uncertainty concerning the
user’s reaction to a system utterance. The first aspect
is represented by a set of contextual variables de-
scribing the environment,7 and user behaviour.8 Al-
together, this leads to115 thousand different contex-
tual configurations, which are estimated from data
(cf. Section 2.1). The uncertainty regarding the
user’s reaction to an utterance is represented by a
Naive Bayes classifier, which is passed a set of
contextual features describing the situation, mapped
with a set of semantic features describing the utter-
ance.9 From these data, the classifier specifies the
most likely user reaction (after each system act) of
performdesiredaction, performundesiredaction, wait
andrequesthelp.10 The classifier was trained on the
annotated data and reached an accuracy of82% in a
ten-fold cross validation.

5.2 Learnt Policies

With respect to REs, thefully-learnt policy (only
HRL) uses colour when it is discriminating, and a
distractor or micro landmark otherwise. Thesemi-
learnt policy (HRL with HIS) behaves as defined in
Section 4.3. Thesupervised learning policy(only
HIS) uses the rules learnt by the decision trees. Both
learnt policies learn to maximise task success, and
to generate consistent navigation strategies.11 The

7previous system act, route length, route status
(known/unknown), objects within vision, objects within
dialogue history, number of instructions, alignment(proportion)

8previous user reaction, user position, user wait-
ing(true/false), user type(explorative/hesitant/medium)

9navigation level(high / low), abstractness(implicit / ex-
plicit), repair(yes / no), instruction type(destination /direction /
orientation / path / straight)

10User reactions measure the system’s task success.
11They thereby also learn to adapt their semantic choices to

those most frequently made by humans.
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Figure 3: Comparison of fully-learnt, semi-learnt, and su-
pervised learning (deterministic) behaviours.

supervised learning policy generates successful in-
structions from the start. Note that we are not ac-
tually learning dialogue strategies, but rather gen-
eration strategies using dialogue features. There-
fore the described policies, fully-learnt, semi-learnt
and supervised-learning, exclusively guide the sys-
tem’s behaviour in the interaction with the simulated
user. An example dialogue is shown in Table 3. We
can observe that the agent starts using a low level
navigation strategy, and then switches to high level.
When the user gets confused, the system temporar-
ily switches back to low level. For referring expres-
sions, it first attempts to locate the referent by ref-
erence to a distractor, and then repairs by using a
micro landmark. The surface forms of instructions
were realised from templates, since the NLG system
so far only generates a sequence of content selection
decisions. We address surface realisation in Dethlefs
and Cuayáhuitl (2011).

We compared our semi-learnt policy against a
fully-learnt, and a supervised learning baseline. All
policies were trained for40 thousand episodes. For
training, the step-size parameterα, which indicates
the learning rate, was initiated with1 and then re-
duced over time byα = 1

1+t
, wheret is the time step.

The discount rateγ, which indicates the relevance of
future rewards in relation to immediate rewards, was
set to0.99, and the probability of a random actionǫ
was0.01. See (Sutton and Barto, 1998) for details
on these parameters.

5.3 Comparison of Policies

Figure 3 compares the rewards averaged over 10
runs. In terms oflearning speed, we can see that
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Agent Policy Action (composite in italics) Utterance
Usr requestroute How do I get to the trophy?
Sys π0

0, π1
2 root, navigation, dontRepair, orientation

π2
3, π3

0 low level navigation, add direction+degrees First, turn 90 degrees left.
π2

3, π3
1 low level navigation, ‘straight’ Then go straight ahead.

Usr perform desiredaction
Sys π0

0 confirmation OK.
π2

4, π3
4, π3

2 high level navigation, destination, direction,
π2

4, π3
4, π3

2 addLocation Turn left at the end of the hallway.
Usr wait
Sys π1

1 repair system act, change navigation strategy
π2

3, π3
2 low level navigation, direction Turn right

π2
4, π3

3 high level navigation, path and go down the hallway.
Usr perform desiredaction
Sys π2

3, π3
2 low level navigation, direction Now turn left.

Usr perform desiredaction
Sys π0

0 confirmation OK.
π2

4, π3
4 high level navigation, destination,

π2
4, π3

4 addLocation Enter to the room in front of you.
Usr perform desiredaction
Sys π1

0, π2
1 manipulation, use colour, use distractor Press the red button beside the blue.

Usr requesthelp
Sys π1

1 repair system act, change granularity
π2

4, π1
0 high level navigation, manipulation

π3
4, π2

2 destination, use colour, use micro landmarkGo to the red button beside the chair.
Usr perform desiredaction
Sys π1

0 manipulation Press it.
Usr perform desiredaction
Sys π0

0 confirmation Well done.

Table 3: Sample dialogue in the GIVE-2 scenario showing the dynamics of generation policies. See Figure 2 for the
corresponding hierarchy models, and Table 2 for the action set. See Section 5.2 for an explantation of the dialogue.

while the semi-learnt behaviour is able to follow a
near-optimal policy from the beginning, the fully-
learnt policy takes about40 thousand episodes to
reach the same performance. In terms of simulated
task success, we see that while the supervised learn-
ing behaviour follows a good policy from the start,
it is eventually beaten by the learnt policies.

5.4 Human Evaluation Study

We asked 11 participants12 to rate altogether 132
sets of instructions, where each set contained a spa-
tial graphical scene containing a person, mapped
with one human, one learnt, and one supervised

126 female, 5 male with an age average of26.4.

learning instruction. Instructions consisted of a nav-
igation instruction followed by a referring expres-
sion. Subjects were asked to rate instructions on a
1-5 Likert scale (where 5 is the best) for their help-
fulness on guiding the displayed person from its ori-
gin to pressing the intended button. We selected
six different scenarios for the evaluation: (a) only
one button is present, (b) two buttons are present,
the referent and a distractor of the same colour as
the referent, (c) two buttons are present, the referent
and a distractor of a different colour than the refer-
ent, (d) one micro landmark is present and one dis-
tractor of the same colour as the referent, (e) one
micro landmark is present and one distractor of a
different colour than the referent. All scenarios oc-
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Figure 4: Example scenario of the human evaluation study.

curred twice in each evaluation sheet, their specific
instances were drawn from the GIVE-2 corpus at
random. Scenes and instructions were presented in
a randomised order. Figure 4 presents an example
evaluation scene. Finally, we asked subjects to cir-
cle the object they thought was the intended refer-
ent. Subjects rated the human instructions with an
average of3.82, the learnt instructions with an aver-
age of3.55, and the supervised learning instructions
with an average of2.39. The difference between hu-
man and learnt is not significant. The difference be-
tween learnt and supervised learning is significant at
p < 0.003, and the difference between human and
supervised learning is significant atp < 0.0002. In
96% of all cases, users were able to identify the in-
tended referent.

6 Conclusion and Discussion

We have presented a combination of HRL with a hi-
erarchical IS, which was informed by prior knowl-
edge from decision trees. Such a combined frame-
work has the advantage that it allows us to system-
atically pre-specify (obvious) generation strategies,
and thereby find solutions faster, reduce computa-
tional demands, scale to complex domains, and in-
corporate expert knowledge. By applying HRL to
the remaining (non-obvious) action set, we are able
to learn a flexible, generalisable NLG policy, which
will take the best action even under uncertainty. As
an application of our approach and its generalisabil-
ity across domains, we have presented the joint op-
timisation of two separate NLG tasks, navigation in-

structions and referring expressions, in situated dia-
logue under the aspects of task success and linguis-
tic consistency. Based on an evaluation in a simu-
lated environment estimated from data, we showed
that our semi-learnt behaviour outperformed a fully-
learnt baseline in terms of learning speed, and a su-
pervised learning baseline in terms of average re-
wards. Human judges rated our instructions signif-
icantly better than the supervised learning instruc-
tions, and close to human quality. The study re-
vealed a task success rate of96%. Future work
can transfer our approach to different applications to
confirm its benefits, and induce the agent’s reward
function from data to test in a more realistic setting.
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Abstract 

Although not very well investigated, a crucial as-
pect of gesture use in dialogues is to regulate the 
organisation of the interaction. People use gestures 
decisively, for example to indicate that they want 
someone to take the turn, to 'brush away' what 
someone else said, or to acknowledge others' con-
tributions. We present first insights from a corpus-
based investigation of how gestures are used to 
regulate dialogue, and we provide first results from 
an account to capture these phenomena in agent-
based communication simulations. By advancing a 
model for autonomous gesture generation to also 
cover gesture interpretation, this account enables a 
full gesture turn exchange cycle of generation, un-
derstanding and acceptance/generation in virtual 
conversational agents. 

1 Motivation 

Research on gestures must combine empirical, 
theoretical and simulation methods to investigate 
form, content and function of gestures in relation 
to speech. Our work is based on a corpus of multi-
modal data, the Bielefeld Speech and Gesture 
Alignment corpus of route-description dialogues 
(SAGA corpus, Lücking et al. 2010). The point of 
departure of our research has been work on iconic 
and deictic gestures over many years. In this paper 
we focus on a not very well investigated function 
of gestures which we have repeatedly observed in 

this corpus, namely, the regulation of dialogue.  
Most of current gesture research is oriented to-
wards the semiotics of a Peircean tradition as can  
for instance be seen from McNeill’s “Kendon’s 
continuum” (McNeill 1992, p. 37). As a conse-
quence of this Peircian orientation, gestures have 
been viewed as single signs interfacing with 
speech. Going beyond the integration of in-
put/output modalities in single speech-gesture 
compositions (Johnston and Bangalore, 2005), lit-
tle effort has been spent on the investigation of 
sequences of gestures and speech-gesture composi-
tion both within and across speakers (Hahn and 
Rieser 2010, Rieser 2010). Furthermore, research 
of gesture meaning was restricted to the contribu-
tion of gesture content to propositional content. An 
exception to this research line has been the work of 
Bavelas et al. (1992, 1995). It is characterised by 
two features, a functional perspective on gesture in 
opposition to purely classificatory and typological 
ones and an interest to systematically investigate 
the role of gesture in interaction. In particular, 
Bavelas et al. (1992) proposed a distinction be-
tween ‘topic gestures’ and ‘interactive gestures’: 
Topic gestures depict semantic information di-
rectly related to the topic of discourse, while inter-
active gestures refer to some aspect of the process 
of conversing with another person. Interactive ges-
tures include delivery gestures (e.g. marking in-
formation status as new, shared, digression), citing 
gestures (acknowledging others’ prior contribu-
tions), seeking gestures (seeking agreement, or 
help in finding a word), and turn coordination ges-
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tures (e.g. taking or giving the turn). Gill et al. 
(1999) noted similar functions of gesture use, add-
ing body movements to the repertoire of pragmatic 
acts used in dialogue act theory (e.g. turn-taking, 
grounding, acknowledgements).  
We aim to find out how gestures are related to and 
help regulate the structure of dialogue. We will call 
these gestures `discourse gestures´. Relevant re-
search questions in this respect are the following: 
How can gesture support next speaker selection if 
this follows regular turn distribution mechanisms 
such as current speaker selects next? From the dia-
logues in SAGA we know that averting next 
speaker’s self-selection is of similar importance as 
handing over the floor to the next speaker. So, how 
can averting self-selection of other be accom-
plished gesturally? A still different problem is how 
gesture is utilised to establish an epistemically 
transparent, reliable common ground, say a tight 
world of mutual belief. A precondition for that is 
how gesture can help to indicate a gesturer’s stance 
to the information he provides. Natural language 
has words to indicate degrees of confidence in in-
formation such as probably, seemingly, approxi-
mately, perhaps, believe, know, guess etc. Can ges-
tures acquire this function as well?  
All these issues can be synopsised as follows: How 
can gestures↓apart from their manifest contribu-
tion to propositional content↓be used to push the 
dialogue machinery forward? In our research, ges-
ture simulation and theory of speech-gesture inte-
gration are developed in tandem. Up to now, both  
have been tied to occurrences of single gestures 
and their embedding in dialogue acts. In this paper, 
we present first steps along both methodological 
strands to explore the use and function of gesture 
in dialogue. We start with an empirical perspective 
on discourse gestures in section 2. In section 3 we 
briefly describe our gesture simulation model 
which so far simulates gesture use employing the 
virtual agent MAX independent of discourse struc-
tures. Section 4 analyses a corpus example of a 
minimal discourse which is regulated mainly by 
gestures of the two interactants. This provides the 
basis for our proposed extension of the gesture 
generation approach to capture the discourse func-
tion of gestures as described in section 5. This ex-
tension will encompass a novel approach to em-
ploy the very generation model used for gesture 
production, and hence all the heuristic gesture 
knowledge it captures, also for gesture interpreta-

tion in dialogue. Section 6 discusses the difference 
between pure interactive gestures and discourse 
gestures and proposes further steps that need to be 
taken to elucidate how gestures are used as a vehi-
cle for regulating dialogue.  

2 Empirical Work on Discourse Gestures 

In looking for discourse gestures we started from 
the rated annotation of 6000 gestures in the SAGA 
corpus. We managed to annotate and rate about 
5000 of them according to traditional criteria using 
practices and fine-grained gesture morphology like 
hand-shape and wrist-movement. About 1000 ges-
tures could not be easily subsumed under the tradi-
tional gesture types (iconics, deictics, metaphorics, 
beats). Furthermore, they were observed to corre-
late with discourse properties such as current 
speaker’s producing his contribution or non-
regular interruption by other speaker.  
For purposes of the classification of the remaining 
1000 gestures we established the following func-
tional working definition: `Discourse gestures´ are 
gestures tied up with properties or functions of 
agents’ contributions in dialogue such as success-
fully producing current turn, establishing coher-
ence across different speakers’ turns by gestural 
reference or indicating who will be next speaker.  
What did we use for dialogue structure? Being fa-
miliar with dialogue models such as SDRT (Asher 
and Lascarides, 2003), PTT (Poesio and Traum, 
1997), and KoS (Ginzburg, 2011) we soon found 
that these were too restricted to serve descriptive 
purposes. So we oriented our “classification of dia-
logue gesture enterprise” on the well known turn 
taking organisation model of Sacks et al. (1974) 
and Levinson’s (1983) discussion of it. However, it 
soon turned out that even these approaches were 
too normative for the SAGA data: This is due to 
the fact that dialogue participants develop enor-
mous creativity in establishing new rules of con-
tent production and of addressing violations of 
prima facie rules.  
Rules of turn-taking, for example, are not hard and 
fast rules, they can be skirted if the need arises, 
albeit there is a convention that this has to be ac-
knowledged and negotiated. A very clear example 
of an allowed interruption of an on-going produc-
tion is a quickly inserted clarification request serv-
ing the communicative goals of current speaker 
and the aims of the dialogue in general. Another 
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problem with the Sacks et al. model consists in the 
following fact: Since its origination many dialogue 
regularities have been discovered which cannot be 
easily founded on a phenomenological or observa-
tional stratum which is essentially semantics-free. 
This can for example be seen from the develop-
ment of the notion of grounding and common 
ground as originally discussed by Stalnaker (1978), 
Clark (1996) and others. Nevertheless, grounding 
(roughly, coming to agree on the meaning of what 
has been said (see e.g. Traum, 1999; Roque and 
Traum, 2008;  Ginzburg 2011, ch. 4.2 for the op-
tions available) generates verbal structure and ver-
bal structure interfaces with gesture. Other exam-
ples in this class are acknowledgements or accepts 
discussed in more detail below. 
How did we decide on which distinctions of ges-
ture annotation have to be used for characterising 
discourse gestures? In other words, how did we 
conceive of the map between gestures of a certain 
sort and discourse structures? First of all we ob-
served that two types of discourse gestures emerge 
from the SAGA data. Some of them come with 
their own global shape and are close to emblems, 
(i.e. conveyors of stable meaning like the victory 
sign). This is true for example of the “brush aside 
or brush away” gesture shown in Figure 1 (left), 
indicating a gesturer’s assessment of the down-
rated relevance of information, actions or situa-
tions. Discourse gestures of the second class ex-
ploit the means of, for instance, referring gestures 
or iconic gestures. An example of an iconic gesture 
in this role will be discussed to some extent in sec-
tion 4. Its simulation will be described in sections 3 
and 5.  

Here we explain the phenomenon with respect to 
referring pointing gestures which are easier to fig-
ure out (see Figure 1 (right)). Their usage as under 
focus here is not tied to the information under dis-
cussion but to objects in the immediate discourse 
situation, preferably to the participants of the dia-
logue. These uses have a Gricean flavour in the 
following way: Only considerations of relevance 
and co-occurrence with a turn transition relevance 
place together indicate that prima facie not general 
reference is at stake but indication of next speaker 
role. It wouldn’t make sense to point to the other 
person singling her or him out by indexing, be-
cause her or his identity is clear and well estab-
lished through the on-going interaction. Thus we 
see that a gestural device associated with estab-
lished morphological features, pointing, acquires a 
new function, namely indicating the role of next-
speaker. 

Figure 1: Examples of discourse gestures: the brush-away 
gesture (left) and situated pointing to the upper part of the 
interlocutor’s torso (right) used for next speaker selection in 
a “Gricean” sense (see text for explanation). 

Now both classes of gestures, “brush away” used 
to indicate informational or other non-relevance 
and pointing, indicating the role of being next 
speaker exploit the motor equipment of the hands. 
For this reason, annotation of discourse gestures 
can safely be based on the classification schemas 
we have developed for practices like indexing, 
shaping or modelling and for the fine-grained mo-
tor behaviour of the hands as exhibited by palm 
orientation, back-of-hand trajectory etc. In work by 
Hahn & Rieser (2009-2011) the following broad 
classes of discourse gestures were established. We 
briefly comment upon these classes of gestures 
found in the SAGA corpus relevant for dialogue 
structure and interaction:  

• Managing of own turn: A speaker may in-
dicate how successful he is in editing out his 
current production.  

• Mechanisms of next-speaker selection as 
proposed in classical CA research, for in-
stance, pointing to the other’s torso is often 
used as a means to indicate next speaker.  

• In grounding acts and feed-back especially 
iconic gestures are used to convey proposi-
tional content. 

• Clarification requests to work on contribu-
tions: An addressee may indicate the need 
for a quick interruption using a pointing to 
demand a clarification. In contrast, a current 
speaker can ward off the addressee’s incipi-
ent interruption using a palm-up gesture di-
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rected against the intruder thus setting up a 
“fence”.  

• Evidentials for establishing a confidence 
leve: There are fairly characteristic gestures 
indicating the confidence a speaker has in 
the information he is able to convey. 

• Handling of non-canonical moves by dis-
course participants: Interaction sequences 
consisting of attempts by other speaker to in-
terrupt and to thwart this intention by current 
speaker or to give way to it show how dis-
course participants handle non-canonical 
moves.  

• Assessment of relevance by discourse par-
ticipants: Speakers provide an assessment 
of which information is central and which 
one they want to consider as subsidiary. 

• An indication of topical information with 
respect to time, place or objects is fre-
quently given by pointing or by “placing ob-
jects” into the gesture space.  

 
We know that this list is open and could, more-
over, depend on the corpus. In this paper the focus 
will be on grounding acts and feedback (see sec-
tions 3-5). The reason is that this way we can pro-
vide an extension of existing work on the simula-
tion of gesture production in a fairly direct manner. 
 

3 Simulating Gesture Use: The Genera-
tion Perspective 

Our starting point to simulate gestural behavior in 
dialogue is a gesture generation system which is 
able to simulate speaker-specific use of iconic ges-
tures given (1) a communicative intention, (2) dis-
course contextual information, and (3) an imagistic 
representation of the object to be described. Our 
approach is based on empirical evidence that 
iconic gesture production in humans is influenced 
by several factors. Apparently, iconic gestures 
communicate through iconicity, that is their physi-
cal form depicts object features such as shape or 
spatial properties. Recent findings indicate that a 
gesture’s form is also influenced by a number of 
contextual constraints such as information struc-
ture (see for instance Cassell and Prevost, 1996), or 
the use of more general gestural representation 
techniques such as shaping or drawing is decisive. 

In addition, inter-subjective differences in gestur-
ing are pertinent. There is, for example, wide vari-
ability in how much individuals gesture when they 
speak. Similarly, inter-subjective differences are 
found in preferences for particular representation 
techniques or low-level morphological features 
such as handshape or handedness (Bergmann & 

Figure 2: Schema of a gesture generation network in which 
gesture production choices are considered either 
probabilistically (chance nodes drawn as ovals) or rule-based 
(decision nodes drawn as rectangles). Each choice is 
depending on a number of contextual variables. The links are 
either learned from speaker-specific corpus data (dotted lines) 
or defined in a set of if-then rules (solid lines). 
 
 

Kopp, 2009).  
To meet the challenge of considering general and 
individual patterns in gesture use, we have pro-
posed GNetIc, a gesture net specialised for iconic 
gestures (Bergmann & Kopp, 2009a), in which we 
model the process of gesture formulation with 
Bayesian decision networks (BDNs) that supple-
ment standard Bayesian networks by decision 
nodes. This formalism provides a representation of 
a finite sequential decision problem, combining 
probabilistic and rule-based decision-making. Each 
decision to be made in the formation of an iconic 
gesture (e.g., whether or not to gesture at all or 
which representation technique to use) is repre-
sented in the network either as a decision node 
(rule-based) or as a chance node with a specific 
probability distribution. Factors which contribute 
to these choices (e.g., visuo-spatial referent fea-
tures) are taken as input to the model (see Figure 2) 
The structure of the network as well as local condi-
tional probability tables are learned from the 
SAGA corpus by means of automated machine 
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learning techniques and supplemented with rule-
based decision making. Individual as well as gen-
eral networks are learned from the SAGA corpus 
by means of automated machine learning tech-
niques and supplemented with rule-based decision 
making. So far, three different factors have been 
incorporated into this model: discourse context, the 
previously performed gesture, and features of the 
referent. The latter are extracted from a hierarchi-
cal representation called Imagistic Description 
Trees (IDT), which is designed to cover all deci-
sive visuo-spatial features of objects one finds in 
iconic gestures (Sowa & Wachsmuth, 2009). Each 
node in an IDT contains an imagistic description  
which holds a schema representing the shape of an 
object or object part. Features extracted from this 
representation in order to capture the main charac-
teristics of a gesture’s referent are whether an ob-
ject can be decomposed into detailed subparts 
(whole-part relations), whether it has any symmet-
rical axes, its main axis, its position in the VR 
stimulus, and its shape properties extracted on the 

 are not only present in the 

ly in terms of likeability, competence and 

communicative intent 
 describe the landmark townhall with respect to 

cular speaker) 
sulting in a posterior distribution of probabilities 

nique is decided to be „drawing“, to be 

basis of so called multimodal concepts (see Berg-
mann & Kopp, 2008). 
Analyzing the GNetIc modelling results enabled us 
to gain novel insights into the production process 
of iconic gestures: the resulting networks for indi-
vidual speakers differ in their structure and in their 
conditional probability distributions, revealing that  
individual differences
overt gestures, but also in the production process 
they originate from.  
The GNetIc model has been extensively evaluated. 
First, in a prediction-based evaluation, the auto-
matically generated gestures were compared 
against their empirically observed counterparts, 
which yielded very promising results (Bergmann & 
Kopp, 2010). Second, we evaluated the GNetIc 
models in a perception-based evaluation study with 
human addressees. Results showed that GNetIc-
generated gestures actually helped to increase the 
perceived quality of object descriptions given by 
MAX. Moreover, gesturing behaviour generated 
with individual speaker networks was rated more 
positive
human-likeness (Bergmann, Kopp & Eyssel, 
2010). 
GNetIc gesture formulation has been embedded in 
a larger production architecture for speech and ges-
ture production. This architecture comprises mod-
ules that carry out content planning, formulation, 

and realisation for speech and gesture separately, 
but in close and systematic coordination (Berg-
mann & Kopp, 2009). To illustrate gesture genera-
tion on the basis of GNetIc models, consider the 
following example starting upon the arrival of a 
message which specifies the 
to
its characteristic properties:  
 
   lmDescrProperty (townhall-1). 
 
Based on this communicative intention, the imag-
istic description of the involved object gets acti-
vated and the agent adopts a spatial perspective 
towards it from which the object is to be described 
(see Figure 3). The representation is analyzed for 
referent features required by the GNetIc model: 
position, main axis, symmetry, number of subparts, 
and shape properties. Regarding the latter, a unifi-
cation of the imagistic townhall-1 representation 
and a set of underspecified shape property repre-
sentations (e.g. for „longish“, „round“ etc.) reveals 
„U-shaped“ as the most salient property to be de-
picted. All evidence available  (referent features, 
discourse context, previous gesture and linguistic 
context) is propagated through the network 
(learned from the data of  one parti
re
for the values in each chance node.  
 
 
Figure 3: The townhall in the virtual world (left) and sche-
matic of the corresponding IDT content (right); activated parts 
are marked. 
 
This way, it is first decided to generate a gesture in 
the current discourse situation at all, the represen-
ation techt

realized with both hands and the pointing hand-
shape ASL-G. Next, the model’s decision nodes 
are employed to decide on the palm and back of 
hand (BoH) orientation as well as movement type 
and direction: as typical in drawing gestures, the 
palm is oriented downwards and the BoH away 
from the speaker’s body. These gesture features are 
combined with a linear movement  consisting of 
two segments per hand (to the right and backwards 
with the right hand; accordingly mirror-
symmetrical with the left hand) to depict the shape 
of the townhall.  
Accompanying speech is generated from selected 
propositional facts using an NLG engine. Syn-
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chrony between speech and gesture follows co-
expressivity and is set to hold between the gesture 

 

would approach the town-hall and 
 initial 

sequent 

transition 

ore than a repetition of the word 

 

Router: Das ist dann das Rathaus [placing].� 
This is then the townhall [placing]. 

 Das ist ein u-förmiges Gebäude [drawing].  
That is a U-shaped building [drawing]. 

 Du blickst praktisch da rein [shaping].�Y

stroke (depicting the U-shape property) and corre-
sponding linguistic element. These values are used 
to fill the slots of a gesture feature matrix which is 
transformed into an XML representation to be real-
ized with the virtual agent MAX (see Figure 4).  
 
 
Figure 4: Specification (left) and realization (right) of an 
autonomously generated drawing gesture which depicts the U-
haped townhall. s

4 Example of a Minimal Discourse 

To start with the analysis of how gestures are not
only employed to carry referential content but also 
to regulate dialogue and discourse, we first present 
a datum from the SAGA corpus showing how the 
Follower’s gesture aligns with the Router’s gesture 
to indicate acknowledgement or accept. The situa-
tion is as follows: the Router describes to the Fol-
lower that he 
how it looks to him. A transcription of the
dialogue passage by the Router and the sub
crucial speech-gesture annotation, including the 
Follower, in ELAN looks as displayed in Figure 5 
(placing, drawing, and shaping are names of anno-
tated gestural representation techniques). 
A short comment on the data might be in order: 
When introducing the townhall as a U-shaped 
building, the Router draws the boundary of it, 
namely a “U”. He then goes on to describe how the 
on-looker apprehends the building. This is accom-
panied by a forward-oriented direction gesture with 
both hands, mimicking into it. In principle, all the 
information necessary to identify the townhall 
from a front perspective is given by then. There is 
a short pause and we also have a turn 
relevance place here. However, there is no feed-
back by the Follower at this point. Therefore the 
Router selects a typical pattern for self-repairs or 
continuations in German, a that is construction in 
the guise of a propositional apposition. Overlap-
ping the production of kind, he produces a three-
dimensional partial U-shaped object maintaining 
the same perspective as in his first drawing of the 
U-shaped border.  
Observe that the Follower already gives feedback 
after front. The most decisive contribution is the 
Follower’s acknowledgement, however. She imi-
tates the Router’s gesture but from her perspective 

as a potential observer. Also, at the level of single 
form features, she performs the gesture differently. 
(different movement direction, different symmetry) 
The imitating gesture overlaps with her nod and 
her contribution OK. It is important to see that her 
gesture provides m
townhall could possibly give. It refers at the same 
time to the town-hall (standing for a discourse ref-
erent) and provides the information of a U-shape 
indicating property, in other words, it expresses the 
propositional information “This building being U-
shaped” with this building acting as a definite 
anaphora to the occurrence of a building in the first 
part of the Router’s contribution. Hence, assessed 
from a dialogue perspective the following happens: 
The grounding process triggered by the Follower’s 
acknowledgement amounts to mutual belief among 
Router and Follower that the town hall is U-shaped 
and the approaching on-looker on the route per-
ceives it from the open side of the U. 

o
look practically there into it  [shaping]. 

 Das heisst, es hat vorne so zwei Buchtungen
That is, it has to the front kind of two bulges. 

 und geht hinten zusammen dann.�and closes i
the rear then. 

Figure 5: Example showing the Router’s and the Fol-
lower’s gestures and their crucial exchange in terms of 
the Router’s assertion and the Follower’s acknowl-
edgement.  
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Figure 6: Overview of the production and understanding cycle in the simulation model.
 

5 Extending the Simulation: The Under-
standing-Acceptance/Generation Cycle 

How can we go beyond the simulation of isolated 
speaker-specific gestures towards the generation of 
gestures in dialogues? We build on our findings in 

 the corpus study, briefly taken up here again (see
list in section 2 and the respective comments): 
Gesture helps in structuring the dialogue support-

n
ment of the current speaker’s (Router’s or Fol-

 

re 5 (R1) and the sub-

e fact that the BDN 

-

ing next speaker selection or indicating non-regular 
co tributions of other speaker. It enables assess-

lower’s) communicative intentions by the ad-
dressee, for example of whether the Router wants 
to keep the turn but indicates current memory and 
recapitulation problems thus appealing to the ad-
dressee’s cooperation. In addition, appraisal of the 
reliability of the information given by the Router 
can be read off from some of the Router’s gestures. 
Finally, as shown in section 4, gestures comple-
menting or even replacing verbal information is 
used in acknowledgements. 
Building on these observations, our goal is to 
simulate such dialogic interaction with two virtual 
agents (Router and Follower), each of whom pro-
vided with a speaker-specific GNetIc model. In the 
minimal discourse example Router and Follower  
use similar gestures which, notably, differ with 
respect to some details (e.g. speaker’s perspective). 
In the simulation we essentially capture the 
Router’s contribution in Figu

sequent acknowledgement by the Follower (F1). In 
order to vary the Router’s gesturing behavior we 
use the representation technique of drawing instead 
of shaping in the simulation. 
What we need to extend the model with is an 
analysis of the Follower’s understanding of the 
Router’s gesture. Psychologically plausible but 
beyond commonly specialised technical ap-
proaches, we want to employ the same model of an 
agent‘s „gesture knowledge“ for both generating 
and understanding gestures. For an overview of the 
production and understanding cycle see Figure 6.  
Here we can make use of th
formalism allows for two different types of infer-
ence, causal inferences that follow the causal inter 
actions from cause to effect, and diagnostic infer-
ences that allow for introducing evidence for ef-
fects and infer the most likely causes of these ef-
fects. This bi-directional use of BDNs could be 
complementary to approaches of plan/intention 
recognition such as in Geib and Goldman (2003). 
To model a use of gestures for regulation as ob-
served with the Follower F1, the Router agent’s 
gestural activity is set as evidence for the output 
nodes of the Follower‘s BDN. A diagnostic infer-
ence then yields the most likely causes, that is, the 
most likely referent properties and values of dis-
course contextual variables. In other words, we 
employ the same speaker-specific GNetIc model 
for generation and for understanding. That is, in
formation about the physical appearance of the 
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Router’s gesture (as specified in Figure 4) is pro-
vided as evidence for the Follower’s GNetIc model 
revealing↓correctly↓that the gesture’s representa-
tion technique is “drawing” and the shape property 
is “U-shaped”.  
Notably, just as the gesture generation process has 
to make choices between similarly probable alter-
natives, not all diagnostic inferences which are 
drawn by employing the Follower agent’s GNetIc 
model are necessarily in line with the evidence 
from which the Router agent’s gesture was origi-
nally generated. For instance, the communicative 
goal as inferred by the Follower agent is 
“lmDescrPosition” (with a likelihood of .65) in-

simulate such iconic ges-
nts 

gue structure such as 
ext speaker selection or acknowledgement and 

outer’s 

e” 

posed in classical CA research 
back 

 participants 

stead of “lmDescrProperty”. Nevertheless, the in-
ferred knowledge reveals an underspecified repre-
sentation of the referent (see Figure 7) as well as 
the most likely specification of the discourse con-
text. That way, the Follower agent develops his 
own hypothesis of the Router agent’s communica-
tive goal and the content being depicted gesturally.  
This hypothesis is forwarded to the follower 
agent‘s dialogue manager, which responds to such 
declaratives by the Router with an acknowledge-
ment grounding act. Now the very same generation 
process as described in section 3 sets in. The Fol-
lower agent’s feedback is generated by employing 
his GNetIc model for causal inference. The result-
ing gesture is, notably, different from the Router 
agent’s gesture: it is a two-handed shaping gesture 
with handshape ASL-C. Movement type and 
movement features are the same as in the Router 
agent’s drawing gesture. Palm and BoH orientation 
are different due to representation technique spe-
cific patterns which are implemented in the deci-
sion nodes (see Figure 7). This case of using iconic 
gesture for regulating dialogue has been success-
fully implemented using GNetIc and the overall 
production architecture. 

6 Discussion and further research agenda 
In this paper we addressed the dialogue-regulating 
function of gestures. Based on empirical observa-
tions of interactional patterns from the SAGA cor-
pus, the starting points for the simulation of these 
gestures were non-interactional propositional ones 
such as iconics used to describe routes or land-
marks. We achieved to 
tures used in their function as acknowledgeme

shown in section 3 which clearly transcends their 
mere representational task. 
 
 
Figure 7: Imagistic representation of what the Follower un-
derstood from the Router’s gestural depiction of the townhall 
(left) and the simulation of the Follower’s autonomously gen-
erated shaping gesture used as an acknowledgement. 
 
We first note that we draw a distinction between 
gestures relevant for dialo
n
those which focus on influencing the social climate 
among the dialogue participants. We did not have 
many of the latter in SAGA but observed some 
which we classified as “calming down” and “don’t 
bother”. In certain communication cultures also 
touching the other’s body is accepted. 
As for a research agenda to elucidate further the 
functions of gestures in dialogue, we do not go too 
deeply into matters of dialogue theory here. We 
already have shown that gestures accompanying 
base-line information, being part of the R
report or the Follower’s uptake can be modelled in 
PTT (Poesio and Rieser 2009, Rieser and Poesio 
2009), if one assumes a unified representation for 
verbal and gestural meaning. Here we concentrate 
on how the simulation work can be pushed forward 
based on theoretical analyses of empirical data.  
Note that on the list of discourse gestures given in 
section 2 the following items are tied to Router’s 
behaviour and can be generated in an autonomous 
fashion: 

• managing of own turn 
• evidentials for establishing a confidence 

level 
• assessment of relevance by discourse par-

ticipants 
• indication of topicality with respect to time, 

place or objects.  
Observe, however, that these will also have an im-
pact on the mental state of the Follower as is e.g., 
obvious for evidentials or the “brush away gestur
(Figure 1). Relevant for the sequencing of multi-
modal contributions are clearly the following: 

• mechanisms of next-speaker selection as 
pro

• grounding acts and feed
• handling of non-canonical moves by dis-

course
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Abstract 

We report on an empirical study of a multiparty 
turn-taking model for physically situated spo-
ken dialog systems. We present subjective and 
objective performance measures that show how 
the model, supported with a basic set of sensory 
competencies and turn-taking policies, can en-
able interactions with multiple participants in a 
collaborative task setting. The analysis brings 
to the fore several phenomena and frames chal-
lenges for managing multiparty turn taking in 
physically situated interaction.  

1. Introduction 

Effective dialog relies on the coordination of con-
tributions by participants in a conversation via turn 
taking. The complexity of understanding and man-
aging turns grows significantly in moving from 
dyadic to multiparty settings, including situations 
where groups of people converse as they collabo-
rate on shared goals. We are exploring computa-
tional methods that can endow dialog systems with 
the ability to participate in a natural, fluid manner 
in conversations involving several people.  

In Bohus and Horvitz (2010a), we presented a 
computational model for managing multiparty turn 
taking. The model harnesses multisensory percep-
tion and reasoning and includes a set of compo-
nents and representations.  These include methods 
for tracking multiparty conversational dynamics, 
for making turn-taking decisions, and for rendering 
decisions about turns into an appropriate set of 

low-level, coordinated gaze, gesture and speech 
behaviors. We implemented the model and have 
been testing it in several domains. The investiga-
tions have been aimed at characterizing the sys-
tem’s performance in complex multiparty settings.  

In Bohus and Horvitz (2010b), we examine data 
collected during a user study to evaluate the ability 
of the system to shape the flow of multiparty con-
versational dynamics.  In this paper, we focus our 
attention on the performance of the inference and 
decision-making models.  We analyze the accuracy 
of current turn-taking inferences, the influence of 
inference errors on decisions, and the overall effec-
tiveness of the system’s decision making. We re-
port on subjective and objective measures of the 
system’s turn-taking performance. We find that the 
turn-taking methodology enables our system to 
successfully participate in multiparty interactions, 
even when relying on relatively coarse models for 
inference and decision making.  The analysis high-
lights several general phenomena including stand-
ing bottlenecks and difficulties, and opportunities 
for enhancing multiparty turn taking in dialog sys-
tems. Based on the results, we discuss challenges 
and directions for research on turn taking in physi-
cally situated dialog.   

2. Related Work 

We begin by placing this work within the larger 
context of research on multiparty interaction and 
turn taking. In a seminal paper on turn taking in 
natural conversations, Sacks, Schegloff and Jeffer-
son (1974) proposed a basic model for the organi-
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zation of turns in conversation. The model is cen-
tered on the notion of turn-constructional-units, 
separated by transition relevance places that pro-
vide opportunities for speaker changes. In later 
work, Schegloff (2000) elaborates on several as-
pects of this model, including interruptions and 
overlap resolution devices. Other researchers in 
conversational analysis and psycho-linguistics 
have highlighted the important role played by gaze, 
gesture, and other non-verbal communication 
channels in regulating turn taking. For instance, 
Duncan (1972) discusses the role of non-verbal 
signals, and proposes that turn taking is mediated 
via a set of verbal and non-verbal cues. Wiemann 
and Knapp (1975) survey prior investigations on 
turn-taking cues in several conversational settings, 
in an effort to elucidate differences. Goodwin 
(1980) discusses various aspects of the relationship 
between turn taking and attention. More recently, 
Hjalmarsson (2011) investigates the additive effect 
turn-taking cues have on listeners in both human 
and synthetic voices.  

 

Figure 1. Components of turn-taking model. 
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Within the dialog systems community, efforts 
have been made on designing and implementing 
computational models for managing turn taking 
(e.g., Traum, 1994; Thorrissön, 2002; Raux and 
Eskenazi, 2009; Selfridge and Heeman, 2010). 
Moving beyond the dyadic setting, Traum and 
Rickel (2002) describe a turn management compo-
nent for supporting dialog between a trainee and 
multiple virtual humans. Kronlid (2006) describes 
a Harel state-chart implementation of the original 
SSJ model. Researchers studying human-robot in-
teraction have developed prototype robots that can 
interact with multiple human participants (e.g. Ma-
tsusaka et al., 2001; Bennewitz et al., 2005). In our 
previous work Bohus and Horvitz (2009; 2010a; 
2010b), we describe a platform that leverages mul-
timodal perception and reasoning to support multi-
party dialog in open-world settings. 

3. Multiparty Turn-Taking Model 

We engaged in a set of experiments to probe the 
inference and decision making competencies of a 
computational model for multiparty turn taking 
(Bohus and Horvitz 2010a; 2010b). To set the 
stage for the analysis to follow, we briefly review 
the proposed approach. 

We model turn taking as an interactive, collabo-
rative process by which participants in a conversa-

tion monitor one another and take coordinated ac-
tions to ensure that (generally) only one person 
speaks at a given time. The participant ratified to 
speak via this process is said to have the floor. 
Each participant engaged in the interaction con-
tinuously produces (i.e. at every time tick) one of 
four floor management actions: a hold action indi-
cates that a participant is maintaining the floor; a 
release action indicates that the participant is 
yielding the floor to a set of other participants 
(which could be void, allowing for self-selection 
next turn allocation); a take action indicates that 
the participant is trying to acquire the floor; finally, 
a null action indicates that a participant is not mak-
ing any floor claims. The floor shifts from one par-
ticipant to another as the result of the joint, coop-
erative floor management actions taken by the par-
ticipants. Specifically, a release action must be met 
with a take action for a floor shift to occur; in all 
other cases the floor stays with the participant that 
currently holds it.  

Figure 1 illustrates the main components and 
key abstractions in the model. The sensing sub-
component tracks the conversational dynamics, 
and includes models for detecting spoken signals s, 
inferring the source S(s) and the set of addressees 
A(s) for each signal, as well as the floor state 
FS(p), actions FA(p) and intentions FI(p) of each 
participant p engaged in a conversation. This in-
formation is used in conjunction with higher-level 
dialog context to decide when the system should 
generate new contributions and which floor action 
should be produced at each point in time. Finally, 
floor actions are rendered by a behavioral compo-
nent into a set of coordinated gaze, gesture and 
speech behaviors. By harnessing these different 
components, the proposed model can enable an 
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embodied conversational agent to handle a broad 
spectrum of turn-taking phenomena.  

Figure 2.  Questions game: screen and kiosk. 

4. User Study 

We implemented an initial set of turn-taking infer-
ence and decision making models in the context of 
a multiparty dialog system, and we conducted a 
large-scale multiparty interaction user study with 
this system. The study, described in more detail 
below, was designed to fulfill two goals: (1) to as-
certain an initial performance baseline and identify 
current bottlenecks and challenges to be addressed 
moving forward, and (2)  to collect a large set of 
multiparty human-computer dialog data that can be 
used to study and improve multiparty turn taking in 
dialog systems.  

4.1. System 

The platform used in these experiments, described 
in detail in Bohus and Horvitz (2009), takes the 
form of a multimodal interactive kiosk that dis-
plays an avatar head which plays a questions game 
with multiple participants. The system leverages 
audiovisual information and employs components 
for visually tracking multiple people in the scene, 
sound source localization, speech recognition, 
conversational scene analysis, behavioral control 
and dialog management. Figure 2 shows a screen 
generated by the system, with the rendered avatar 
and a sample challenge question. Users can col-
laborate on selecting an answer, and, after a con-
firmation, the system provides an explanation if the 
answer is incorrect, before moving on to the next 
question. Sample interactions are found in Appen-
dix C and videos are available online (Situated In-
teraction, 2011). 

4.2. Turn-Taking Inference and Decisions 

In the current system, a voice activity detector is 
used to identify and segment spoken utterances. 
The source of each utterance is assumed to be the 
participant who is closest in the horizontal plane to 
the sound direction identified by the microphone 
array. The set of addressees is identified by fusing 
information probabilistically about the focus of 
attention of the source, as obtained through face 
detection and head pose tracking, while the utter-
ance is being detected. In addition, the system as-
sumes that non-understandings are addressed to 
other engaged participants, since initial tests indi-

cated that in this domain about 80% of utterances 
that led to non-understandings were in fact ad-
dressed to others. Similarly, the system assumes 
that utterances longer than three seconds are ad-
dressed to others (responses addressed to the sys-
tem tend to be short in this domain) 

Floor management actions are inferred as fol-
lows. If a participant has the floor, we assume they 
are performing a hold action if speaking and a re-
lease action otherwise. The release is assumed to 
be towards the addressees of the last spoken utter-
ance. Although the latter assumption on releases 
may not hold in the most general case, it is a rea-
sonable one for the questions game domain. If a 
participant does not have the floor, the system as-
sumes they perform a take action if speaking or a 
null action otherwise. The system also assumes 
that the floor intentions are fully reflected by the 
floor actions, i.e., a participant intends to have the 
floor if and only if she performs a hold or take ac-
tion. Floor states are updated based on the joint, 
coordinated floor actions of all participants, as de-
scribed earlier.  

Turn-taking decisions are based on a simple 
heuristic policy. The system takes the floor if (1) 
the floor is being released to it or (2) a participant 
releases the floor to someone else, but no one 
claims the floor for a preset duration. In most cas-
es, this duration is set to 3.5 seconds. However, if 
the floor is released to someone else after the sys-
tem is interrupted during a question dialog act, the 
system will try to quickly reacquire the floor 
should no one else be speaking, so as to finish or 
restate its question. The waiting duration is set in 
the latter case to 500 milliseconds. If after 500ms, 
when the system tries to take the floor another con-
flict occurs (followed by a floor release to someone 
else), the waiting duration is increased again to 3.5 
seconds. Finally, if a third consecutive conflict oc-

100



curs when the system tries to acquire the floor, the 
waiting duration is set to a longer, 20 seconds. 

The system releases the floor at the end of its 
own outputs. In addition, it has to decide whether it 
should release the floor when a user performs a 
take action (i.e. barges in) while the system is 
speaking. The heuristic policy currently imple-
mented by the system releases the floor only for 
barge-ins occurring during question dialog acts. 

Finally, the behavioral models employ policies 
informed by the existing literature on the role of 
gaze in regulating turn taking. In particular, the 
system’s gaze is directed towards the speaking par-
ticipant, or, if the system is speaking, towards the 
addressees of the system’s utterance. During si-
lences, the system’s gaze is directed towards the 
participants that the floor is being released to. 

The models and policies described above repre-
sent a starting point for inference and action, con-
structed to enable data collection and an initial 
evaluation in this domain. We are working to up-
date the turn-taking architecture with more sophis-
ticated evidential reasoning and utility-theoretic 
decision making.  Nevertheless, when harnessed as 
an ensemble within the turn-taking approach that 
we have described, the current procedures provide 
for an array of complex, multiparty turn-taking 
behaviors. For instance, the system can address 
each participant individually or all participants as a 
group via controlling the orientation of its head 
pose. When participants talk amongst themselves, 
the system can monitor their exchanges and wait 
until the floor is being released back to it. If an 
answer is heard during such a side conversation 
(e.g., one participant suggests an answer to an-
other), the system highlights it on the screen (see 
Figure 2). If a significant pause is detected during 
this side conversation, the avatar takes the floor 
and the initiative, e.g., “So, what do you think is 
the correct answer?” Once a participant provides 
an answer, the system seeks confirmation from 
another participant before moving on. In some 
cases, the avatar passes back the floor and seeks 
confirmation non-verbally, by simply turning to-
wards another participant and raising its eyebrows. 
The system can try to require the floor immediately 
after being interrupted, but can also back off, giv-
ing the participants a chance to finish a side con-
versation, if successive floor conflicts occur. Sam-
ple interactions can be viewed in Appendix C and 
online (Situated Interaction, 2011). 

4.3. Study Design 

The user study was conducted in a usability lab 
and involved a total of 60 participants recruited as 
pairs of people from the general population who 
previously knew one another (30 male and 30 fe-
male, with ages between 18 and 61). The study 
was structured in 15 one-hour sessions, with each 
session involving four participants, i.e., two pairs 
of two previously acquainted participants. In each 
session, we formed all possible subgroups of size 
two (6 subgroups) and of size three (4 subgroups) 
with the four participants. Each subgroup played 
one game with the system. This setup allowed us to 
collect a large set of multiparty interactions under 
diverse conditions (e.g., all-male, all-female, 
mixed-gender groups; groups where people were 
previously acquainted vs. not, etc.). At the end of 
each session, participants filled in a subjective as-
sessment survey. 

4.4.  Corpus, Annotations, and Cost Assessment 

In total, 150 multiparty interactions were collected: 
90 with two participants and the system, and 60 
with three participants and the system. A profes-
sional annotator transcribed the utterances detected 
by the system at runtime, and labeled them with 
source and addressee information. 
    The system was noted to commit several types 
of turn-taking errors. To expand the error analysis 
beyond occurrence statistics and to characterize the 
impact of various types of errors, we conducted a 
follow-up study.  In this second study, a set of ad-
ditional participants were recruited to review vid-
eos of interactions from the first study and asked to 
(1) identify the turn-taking errors committed by the 
system and (2) to assess the costliness of the error 
on a five-point scale.  

A total of 9 interactions (5 with two participants 
and system; 4 with three participants and system) 
were randomly sampled from the collected corpus, 
while ensuring that each turn-taking outcome of 
interest (discussed in Section 5 and summarized in 
Table 1) was sufficiently represented. Nine partici-
pants were recruited via an email request to em-
ployees at our organization.  Each participant re-
viewed three interactions, and each interaction was 
reviewed by three different participants. Prior to 
the experiment, each of the annotators received a 
brief review of the turn-taking process in human-
human interaction. Next, they used a multimodal 
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annotation tool that we created to review the inter-
action videos. As each video played, the annotator 
pushed a button at each point they believed that the 
system had committed a turn-taking error. In a se-
cond pass, each annotator was asked to review the 
errors that they had previously identified and to 
assess the relative cost of the error, on a scale from 
0 (“no error”) to 5 (“worst error”). In a final step, 
the authors manually aligned each identified turn-
taking error with a turn-taking decision made by 
the system and its corresponding outcome. 

5. Evaluation 

We now focus on the various types of turn-taking 
errors, the outcomes that these errors lead to, and 
the costs assessed for the outcomes.  We begin by 
focusing on diarization challenges described in 
Section 5.1.  In Sections 5.2 and 5.3, we review the 
accuracy of the system’s turn-taking inferences and 
decisions, and their corresponding outcomes.  Fi-
nally, in Section 5.4, we turn our attention to the 
subjective assessment results obtained via the post-
experiment user survey.  

Before diving into the details, we note that we 
eliminated 7 out of the total 150 interactions from 
the analysis due to significant problems with 
acoustic echo cancellation. In the remaining 143 
interactions, we also identified and eliminated 24 
utterances in the transitional engagement stages, 
e.g., when the users were not ready or properly 
setup in front of the system. The analysis below is 
based on the remaining 4379 utterances.  

5.1. Diarization 

The system uses a voice activity detector which 
leverages energy, acoustics and grammar to detect 
spoken utterances. Our experiments indicate that 
this type of black-box solution can make diariza-
tion errors, especially in multiparty settings where 
people may speak simultaneously, at a fast pace, 
and address each other with language outside the 
system’s grammar. Results show that only 72% of 
the detected segments contain speech from a single 
participant. Another 2% contain background noises 
incorrectly identified as speech. Most often these 
are instances where the system heard itself due to 
acoustic echo-cancellation problems; the ratio 
grows to about 6% among all utterances detected 
while the system is speaking. The remaining 26% 
contain overlapping or successive utterances from 

multiple speakers. Inspection of the data reveals 
that some utterances spoken softly by participants 
were not detected and that segmentation boundary 
errors are also sometimes present. While such er-
rors may be mitigated by inferences at higher lev-
els in the turn-taking model, they can significantly 
influence the system’s ability to track the conver-
sational dynamics and make appropriate turn-
taking decisions. We plan to pursue more robust 
audiovisual diarization methods that integrate 
sound localization as detected by a microphone 
array, along with higher-level interaction context.  

5.2. Take versus Null  

We now turn our attention to the system’s floor 
control decisions. The analysis below is based on 
the utterances and segmentation detected by the 
system at runtime. We note that a more precise 
analysis could be conducted with a ground truth 
segmentation of utterances. Utterances detected by 
the system can be classified into three categories, 
based on their relationship to system outputs, as 
shown in Figure 3: overlaps, which start and end 
during a system’s output, continuers, which begin 
during but finish after a system output has ended, 
and responses, which do not overlap anywhere.   

With the current policy, the system chooses 
whether it should take the floor following each 
detected continuer and response. The dataset con-
tains a total of 3265 such instances. The system’s 
decision at each of these points hinges on the re-
sults of its inferences about the participants’ floor 
actions, and thus of inferences about the addressees 
of each utterance. Table 1 displays a tabulation of 
the release actions performed by the participants 
versus the actions identified by the system. The 
release actions are determined from labels assigned 
manually by the professional annotator. Recall that 
we make an assumption that the release is towards 
the set of addressees of an utterance. For segments 
that were labeled as containing multiple utterances, 
the release is made to the addressee of the last ut-
terance. The last row in Table 1 corresponds to 
background noises and system speech incorrectly 

Figure 3. Schematic of different classes of overlap.
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Table 1. Decisions to take floor (vs. null), outcomes, and estimated costs (bar graph with confidence intervals).  
  Echo denotes cases where the turn initial overlap is created by utterances where the system hears itself because         

of errors with echo cancellation.  

     
  

     

    

    

identified as utterances.  
On the task of detecting addressees, and thus 

floor release actions, the results show an error rate 
of 18%, including 305 false-positives (erroneous 
detections) and 277 false-negatives (missed detec-
tions) of floor releases to the system. These errors 
influence the quality of turn taking in a variety of 
ways and underscore the need for more robust in-
ferences about speech source and target, and floor 
release actions. We believe that more sophisticated 
models learned from audiovisual information (e.g., 
prosody, head and body pose, etc.) and attributes 
of the interaction context (e.g., who spoke last, 
where is the system looking, etc.) can reduce errors 
significantly. 

Table 1 indicates that in 305 (9%) of the cases 
the system incorrectly inferred that the floor was 
being released to it. In 79% of these cases, the sys-
tem took the floor and produced a verbal contribu-
tion. Since the floor was not released to the system, 
such errors can lead to significant turn-taking prob-
lems, which often manifest as floor conflicts 
marked by turn-initial overlaps, where a partici-
pant and the system start speaking around the same 

time (see Figure 3). Operationally, we define turn-
initial overlaps as all detected overlaps with an 
actual onset of less than 300 milliseconds from the 
beginning of the system’s utterance (see discussion 
in Appendix A); the other overlaps are dubbed 
turn-internal. We note that the time at which an 
overlap is detected by the system lags behind the 
actual onset of the utterance by an average of about 
700 milliseconds, due to core latencies in our audio 
and speech processing pipeline. Accounting for 
these computational lags, and others arising at dif-
ferent places in processing pipelines, raise chal-
lenges for turn taking in spoken dialog systems. 

42% of the verbal takes performed incorrectly 
by the system led to turn-initial overlaps. This is 
not surprising, as the system starts speaking when 
the floor was not released to it. In some of these 
cases the same participant continues (e.g., diariza-
tion errors incorrectly segmented the utterance), or 
someone else starts speaking. The cost assessment 
experiment confirmed the impact of these errors – 
the average estimated cost was 1.76. If no turn-
initial overlap occurred after the system incorrectly 
took the floor, the average cost was 0.42. Clearly 
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floor conflicts come with a cost. The specific cost 
assessments we obtained are perhaps influenced to 
a degree by the role of game mediator played by 
the system. With this role, taking the floor in cases 
when the system was not addressed is perhaps not 
as costly as it might be in other domains.  

Note that 182 turn-initial overlaps also occur 
when the system takes the floor after correctly 
identifying that the floor was released to it (upper-
left quadrant in Table 1). 17 of them are created by 
the system hearing itself as it starts speaking, due 
to errors in acoustic echo cancellation; these in-
stances are marked Echo in Table 1. While the rel-
ative percentage of turn-initial overlaps is smaller 
after a floor release to the system (~10%), the ma-
jority of all turn-initial overlaps (shaded cells in 
Table 1) occur in this context, because of the larger 
incidence of the situation. Often, these utterances 
contain an immediate answer or a short confirma-
tion from another participant. The cost of these 
turn-initial overlaps is also much lower: 0.25 ver-
sus 1.76 (again, the cost structure is probably sen-
sitive to details of the domain). 

We believe the turn-initial overlaps that occur 
when the floor is released to the system can be ex-
plained in part by the interpretation of the system’s 
short delay in responding (per processing) as a sig-
nal that the system is not taking the floor, leading 
other participants to take initiative. As another fac-
tor, turn taking is a mixed-initiative process, and 
other participants might vie for the floor and issue 
their own contributions immediately after an an-
swer directed to the system. These observations 
bring to the fore two questions: (1) how can we 
minimize the number of turn-initial overlaps, and 
(2) how can the system gracefully handle such 
overlaps once they occur?  

One approach to minimizing turn-initial over-
laps is to reduce the system’s response delays via 
faster processing or via the use of predictive mod-
els to anticipate the end of turns (e.g. Ferrer et al., 
2003; Schlangen, 2006; Raux and Eskenazi, 2008; 
Skantze and Schlangen, 2009). Multiparty settings 
require methods for forecasting not only when a 
current speaker will finish, but also whether any 
participant will try to take (or release) the floor 
within a small window of time in the future, i.e., 
accurately modeling all floor intentions. Our turn-
taking framework includes components for repre-
senting and modeling floor intentions, but these are 
not used in the current system.  We believe there is 

promise in learning models to predict floor inten-
tions and the timing of ends of utterances from in-
teraction data. The availability of such predictions 
can fuel additional turn-taking strategies and also 
pave the way to more graceful handling of turn-
initial overlaps after they occur. For instance, if the 
system can anticipate that someone else might start 
speaking, it might still decide to take the floor but 
it might start with a filler, e.g., “So [pause] What 
do you think?” constructing a natural opportunity 
for resolving a potential conflict after “So” We 
plan to investigate the use of decision-theoretic 
methods to anticipate and resolve such conflicts by 
introducing and modulating an array of strategies, 
including the use of fillers, restarts, and acknowl-
edgment gestures.  

In 21% of the 305 incorrectly detected floor re-
leases to the system, our system immediately per-
formed a non-verbal floor release to another par-
ticipant by turning the avatar’s face towards them 
and raising its eyebrows (Take + Non-verbal Release in 
Table 1). These situations are not costly, as the 
system’s action does not interrupt the flow of the 
conversation. Indeed they were never penalized in 
the cost assessment experiment that we conducted. 
However, the same action, performed when the 
floor is actually released to the system (13% of 
2063 cases), has the potential to create problems if 
not properly recognized by the targeted participant 
as a floor release by the system; the average cost 
assessed in this case was 0.42. 

The right-hand column in Table 1 shows cases 
where the system detected that the floor was not 
released to it. In these cases, the system waits (per-
forms null) for a specified duration. The cost as-
sessment indicates that waiting in this situation is 
overall costly, and the cost depends on the ultimate 
outcome. If no one else takes the floor, the system 
will eventually do so (Delayed System Take cases in 
Table 1). In some of these cases, turn-initial over-
laps also occur. The 277 cases in which the system 
fails to detect that the floor was in fact released to 
it lead to no immediate response from the system. 
In these cases the system can be perceived as unre-
sponsive and the participants eventually repeat 
themselves. We believe that performance can be 
improved with the use of an ongoing decision-
theoretic analysis that continuously reassesses the 
situation while the system waits.  Such an analysis 
would consider the delay, floor holder’s previous 
actions, inferences about participants’ floor inten-
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tions, and cost-benefit tradeoffs of different floor 
actions. 

5.3. Release versus Hold 

We now turn our attention to the system’s deci-
sions to release the floor. Recall that, according to 
the current policy, the system performs a floor hold 
while it is speaking and a floor release at the end of 
its outputs. In addition, if an overlap (i.e., barge-in) 
was detected during question dialog acts, the sys-
tem performed a floor release immediately, inter-
rupting its own output and allowing for the user 
barge-in.  

Since such barge-ins were allowed only during 
the question dialog acts, as Table 2 shows, the cur-
rent policy leads to an abundance of cases in which 
the system performs hold when an overlap is de-
tected. Some of these cases are continuers: the 
overlap only happens at the very end of the sys-
tem’s output. These cases do not create significant 
turn-taking problems, as the floor still transitions to 
the participant relatively quickly (the system re-
leases at the end of its output). However, in a sig-
nificant number of cases the system appears to ig-
nore the participants (shaded cells in Table 2). 
About three quarters of these overlaps occur while 
the system is providing an explanation after an in-
correct answer. Observations of the data indicate 
that in these cases participants may discuss or give 
their opinion on the answer or some aspect of the 
system’s explanation, while ignoring the system as 
it blindly continues the explanation.  

We have separated in Table 2 turn-initial from 
turn-internal overlaps. The two types of overlaps 
reflect different phenomena. As we have discussed, 
turn-initial overlaps mark floor conflicts, and vari-
ous strategies could be used to negotiate such con-
flicts (e.g., Yang and Heeman, 2010). In contrast, 
turn-internal overlaps may reflect efforts by other 
participants to take the floor, or might simply be 

backchannels, laughter, exclamations or other lexi-
cal or non-lexical events that do not mark a claim 
for the floor. Making appropriate floor control de-
cisions in this case will require models for reliably 
distinguishing between the two, i.e., between the 
take or null floor actions of the participants. This is 
an especially challenging inference problem as 
decisions need to be made as early as possible after 
the onset of an utterance.  

We note the relatively large incidence of failures 
in echo cancellation in our microphone array. On 
the utterances marked Echo in Table 2, the system 
heard itself and thought a user was speaking. We 
believe these failures could be significantly re-
duced with better acoustic echo cancellation.  

5.4. Subjective Assessment  

Finally, we present results from a subjective as-
sessment of the system by participants, based on a 
post-experiment survey. The survey included sev-
eral 7-point Likert scale questions related to turn 
taking, which are displayed in Figure 4, together 
with the mean user responses and the correspond-
ing 95% confidence intervals. Generally, partici-
pants rated the system’s turn-taking abilities fa-
vorably, with scores around 4.5-5. No statistically 
significant differences were detected in assess-
ments across the participant’s gender or previous 
familiarity with speech recognition systems. We 
also note that a parallel human—human interaction 
study would help us characterize better the sys-
tem’s performance relative to human dialog.  

I knew when the avatar
was addressing me

I knew when the avatar
was addressing others

I knew whom the avatar
was talking to

I knew when it was 
my time to speak

The avatar knew when 
I was speaking to it

The avatar knew when 
I was speaking to others

The avatar knew when 
it was its time to speak
The avatar interrupted 

us at the wrong time
The avatar waited too 

long before taking its turn 
I felt left out or excluded 

during the games
The interaction 

was natural 
I enjoyed playing 

the game

Figure 4. Results of subjective assessments. 
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In addition to the survey questions, participants 
were invited to describe in their own words what 
they liked best and the first thing they would 
change about the system. 21 of the 60 participants 
mentioned aspects of multiparty interaction in the 
“what I liked best” category, such as the system’s 
ability to track the speaking participant and address 
people individually. Other frequent answers to this 
question called out the overall experience with the 
integrative intelligence of the system (15 answers), 
the fun/educational nature of the game (14), and 
aspects of speech recognition (11). On the “first 
thing you would change,” the majority of answers 
(32) included references to shortcomings in render-
ing the avatar, while 13 answers included refer-
ences to problematic aspects of the multiparty turn 
taking. Other answers included task domain sug-
gestions (6) and comments about improving the 
speech recognition (5). A sampling of answers is 
presented in Appendix B.   

6. Summary and Future Work 

We reported on a user study of a multiparty turn-
taking model. Objective measures of system per-
formance and subjective assessments by partici-
pants indicate that the approach can enable suc-
cessful multiparty turn taking in the questions 
game domain. When the correct turn-taking deci-
sions are made, the multiparty interaction is seam-
less and resembles human-human collaboration. 
The conversations exhibit fluid exchanges among 
people and the system, including mixed-initiative, 
multiparty floor control, fluid back offs and re-
starts, natural use of non-verbal cues, such as par-
ticipants’ utterances being triggered by a turn of 
the avatar’s head or a lift of the eyebrows. In con-
trast, turn-taking failures lead to a striking loss of 
fluidity and a qualitative jump out of an engaged 
process, where the system rapidly shifts from a 
collaborating participant into a distant and uncoor-
dinated appliance.  

The results we have discussed are based on an 
initial set of coarse perceptual and decision-making 
models and thus reflect an initial baseline; there is 
significant room for improvements. A careful dis-
section of the outcomes demonstrates the subtleties 
of multiparty turn taking and highlights several 
directions we plan to address in future work. First, 
our experiments have highlighted the importance 
of accurate diarization in multiparty dialog set-

tings. Minimizing errors requires rich perceptual 
and inferential competencies, leveraging audiovis-
ual evidence, general patterns of human discourse, 
and attributes of the task-specific goals and con-
text. We plan to explore the use of machine learn-
ing procedures for constructing predictive models 
that harness richer streams of evidence to identify 
and segment utterances, and to make inferences 
about their sources and targets, and the floor state, 
actions and intentions of all participants. Better 
turn-taking decisions can also be supported by in-
ferences about social norms, roles and dynamics, 
pace of interaction, and engagement.  

Although handcrafted turn-taking policies went 
a long way in this domain, enabling more general 
multiparty turn taking will require continuous in-
ference and decision making under uncertainty that 
considers subtleties of intention and timing, and 
that takes into consideration tradeoffs associated 
with different courses of actions. We foresee the 
value of extending the current decision models 
with richer temporal reasoning for performing such 
ongoing analyses. Challenges include a more in-
depth understanding of the cost of different types 
of turn-taking errors; the development of a wider 
array of graded strategies and behaviors for taking, 
releasing, or holding the floor, and for gracefully 
negotiating floor conflicts; and finally, the ability 
to reason about uncertainty in the world as well as 
in the system’s own processing delays in order to 
resolve tradeoffs between taking timely action and 
delaying for additional evidence that promises to 
enhance the accuracies of decisions. 

Much also remains to be done with the corre-
sponding generation of subtle verbal and non-
verbal cues for enhanced signaling and naturalness 
of conversation, including the use of fillers, re-
starts, backchannels, and envelope feedback. We 
are excited about tackling these and other chal-
lenges on the path to fielding systems that can en-
gage in fluid multiparty dialog.  
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Appendix A. Details on derivation of operational definition of turn-initial overlaps.  
 
As described in Section 5.2, we operationally define turn-initial overlaps as 
detected user utterances that have an actual onset of less than 0.3 seconds from 
the beginning of a system utterance. Figure 5 shows the histogram of the onset 
time for user speech with respect to system utterances (start of system utter-
ance is at 0 seconds), for overlapping utterances, where this onset is between -
2 and +5 seconds. If multiple user utterances overlap with a single system 
utterance, only the first user utterance, i.e. the first overlap, is considered in 
computing this histogram. As Figure 5 shows, the onset distribution has a bi-
modal character. We believe that the two modes may reflect two different 
phenomena in terms of the floor transition. The early-onset mode corresponds 
to situations in which a user starts to speak right around (before or immedi-
ately after) the time the system also started speaking; this indicates a situation 
where there is contention for the floor and the system cannot assume it has 
successfully acquired the floor. In contrast, user utterances starting at later 
times represent cases where the floor did first transition to the system and the 
user is aware of this transition.  In producing an utterance the user is attempt-
ing to barge-in and take the floor back from the system (unless the user utter-
ance is a backchannel). The threshold of 0.3 seconds on the onset for turn-
initial overlaps was selected based on the shape of this distribution.  
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0%
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4%

6%
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onset (seconds) 

Figure 5. Histogram of onsets for first  
overlaps. 

 
Appendix B. Sample responses from survey 
 

Category # Example comment 
Please describe what you liked best about interacting with the system 

Multiparty 
interaction 
prowess 

21 

- I enjoyed how it recognized who was speaking and actually looked at you 
- I liked how the avatar tracked the players; how it understood speech 
- It was great to play a game where you don’t have to use your hands, just your mind. The way the avatar would recognize 

position of who spoke was nice. The blinking action at the avatar made her more realistic but she needed more than her face.  
- That it would look right at you and ask a question 
- I liked how the avatar made eye contact with each person playing the game 

Overall  
experience 
with system 

15 
- It was very new and thus it was fun. I don’t play computer games often and I did enjoy this one. Which is rare for me.  
- It was different than any other trivia game I’ve played in the past 
- I think this is a great way for a human to interact with a computer 
- It’s cool interacting with the avatar 

Rewarding 
task 14 

- I liked the challenge of the questions 
- It’s a great fun way to improve knowledge 
- New experience that I found enjoyable. I enjoyed thinking about choices and having an interaction with the avatar 

Speech and 
language 11 

- Voice recognition was fairly accurate, no need to repeat 
- The ability of it to understand what I was saying. Plus it’s pretty cool.  
- I liked it because it wasn’t really hard for the system to understand what we were saying. Even though we have an accent. 

If there was one thing you could change about this system, what would it be? 

Avatar  
rendering 32 

- The avatar should be more friendly – she came off a bit austere – she didn’t smile even when we got 5 out of 6 questions 
right, it was only “pretty good”.  

- The way it moves its lips needs to be better 
- The avatar seemed a little to “stiff”. It needs to be more natural in movement and speech 
- The face was a “warmer face”. Smiling perhaps. 

Multiparty 
failures 13 

- Extend the time limit when questions haven’t been fully answered. It would sometimes say we were correct or false before we 
had confirmed our answer 

- Sometimes it skips and pauses and making it difficult to understand 
- Consistency in waiting and asking player to confirm answer instead of overhearing conversations and choosing an answer 

itself 
Task domain  6 - It would be cool if it could remember our names. Also, 6 questions was a little short. I think 8 or 10 questions would be better.  

- I think the questions should be more pop culture related 
Speech and 
language 5 - I enjoyed her. I would like her to understand a little easier. We had to repeat answers on occasion which wasn’t too bad. 

Overall I really liked it. Perhaps it could ask our names and call us by name when speaking to us 
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Appendix C. Excerpts from interactions with the system. We present and discuss two segments from an interaction 
with the questions game system. The segments illustrate challenges for diarization, tracking conversational dynamics (e.g. infer-
ring speech source, target, floor actions, etc.) and decisions making for multiparty turn taking. The video for this entire interac-
tion, as well as an additional interaction are available online at (Situated Interaction, 2011) 
 

1 S P1 Hi. Would you like to play a questions 
game? 

 

1 S P16 In the USA hospitals have a red 
cross, what sign do they use in the 
Arab World? 

This segment starts with the system asking a question 

2 P16 P16 Hospitals have a red cross what sign 
do they user in the Arab World… 

3 P17 S Solid blue circle 
4 S P16 Is that correct? 
5 P17 S No 
6 S P16,P17 So what’s the correct answer? 
7 P17 P16 Red crescent moon 
8 P17 S Red crescent moon 
9 S P16 [turns to P16, lifts eyebrows] 

10 P16 S Yes 
11 S P16,P17 That’s right. Okay, so far you’re two 

out of three […] 

P16 echoes back the question to himself in a low voice. The system detects this utterance, cor-
rectly inferred that the floor is not being released to it (the utterance leads to a non-
understanding), and the system turns towards the other participant, which produces “Solid blue 
circle” (3). The utterance and corresponding floor release to the system are correctly understood, 
and the system turns back to P16 for confirmation. Next, the system detects an utterance from P17, 
who has changed her mind (5). The system takes the floor and asks both participants (by directing 
gaze towards them) what the correct answer is (6), and releases the floor to both participants . 
P17 speaks first towards P16 (7) – this utterance is low energy and not detected by the system, and 
then towards the system (8). The system recognizes the floor is released to it after (8), takes the 
floor and directs it back towards P16 non-verbally, by turning towards him and raising eyebrows. 
P16 responds immediately, and the system takes the floor and continues to the next question. 

   
17 S P16,P17 Next question […] The system then moves on to the next question 

2 P17 S Hi
3 P16 S Hello
4 P17 S Yes 
5 P18 S Yes 
6 S P16 Here is the first question. The study of 

the size and shape of the skull as an 
indicator of a person’s character is 
known as: telepathy, graphology, or 
phrenology? 

7 P16 S I’ll go… Graphology 
8 S P17 What do you think? 
9 P17 P17 graph- 

10 P16 P17 That doesn’t sound right but 
11 P17 S Phrenology
12 S P16,P17 I’m sorry but that’s incorrect. Popular 

during the 19th century but not dis-
credited, phrenology is a theory that a 
person’s character and intelligence 
can be determined by the size and 
shape of their skull.  

13 P16 P17 phrenology
14 P16 P17 She did not wait for your answer
15 P17 P16 I guess not
16 P16 S You didn’t wait for my answer

Immediately after the system’s greeting, the two participants also say “Hi” and “Hello”. Their 
greetings are detected as a single utterance by the system which partially overlaps with the be-
ginning of the system’s follow-up question (overlaps are underlined in the examples to the left). 
According to the current policy, the system does not release the floor on this interruption and 
continues with its question. The “Yes” responses from (4) and (5) are overlapping with each other 
and are detected by the system as a single utterance which is correctly decoded. 
The system correctly infers the floor was addressed to it, and therefore takes the floor and pro-
duces the first question 
Given the pause between “I’ll go” and “Graphology” the response in (7) is in fact detected as two 
separate utterances by the system. The first part is non-understood, hence assumed addressed to 
other and the system does not take the floor. The system correctly understands and takes the 
floor after “Graphology”, and moves to ask for confirmation (8). Next, while the system asks the 
other participant for confirmation, due to imperfections in echo cancellation, the system hears a 
noise at the beginning of its utterance, but ignores the detected “barge-in”. 
P17 softly says to herself “graph-“. This utterance is not actually detected by the system. 
Next, the system misunderstands the utterance in (10) as “that sounds right” and incorrectly infers 
that the utterance was addressed to it. It therefore takes the floor and continues. This leads to a 
turn-initial overlap with the “Phrenology” utterance immediately produced by P17 (11) 
 
 
The follow-up utterances and discussion between participants (13-16) overlap with portions of the 
system’s explanation. They indicate the high cost of the misunderstanding and of the system’s 
incorrect inference and decision to take the floor (admonished by the user in (16) , as well as 
the shortcomings of the current policy to not release the floor for barge-ins detected during expla-
nations. This example highlights the need for more robust inferences, but also better policies for 
releasing back the floor and for machinery that would allow the system to gracefully backing from 
detected floor conflicts. 

 

 P arrow shows  
direction of 
attention 

 P P has floor 

 P P is speaking 

 P P is an 
addressee 

 In the first segment, while the system is 
speaking to both participants (12), P17 leans 
in as she produces utterance (16) 

 In the second segment, the system re-
leases the floor to both participants after 
producing (6) 

Illustrations of conversational scene 
analysis performed by the system in real-
time, at runtime. 
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Abstract

Conventional speech recognition ap-
proaches usually wait until the user
has finished talking before returning a
recognition hypothesis. This results in
spoken dialogue systems that are unable
to react while the user is still speaking.
Incremental Speech Recognition (ISR),
where partial phrase results are returned
during user speech, has been used to
create more reactive systems. However,
ISR output is unstable and so prone to
revision as more speech is decoded. This
paper tackles the problem of stability
in ISR. We first present a method that
increases the stability and accuracy of
ISR output, without adding delay. Given
that some revisions are unavoidable,
we next present a pair of methods for
predicting the stability and accuracy of
ISR results. Taken together, we believe
these approaches give ISR more utility for
real spoken dialogue systems.

1 Introduction

Incremental Speech Recognition (ISR) enables a
spoken dialogue system (SDS) to react quicker
than when using conventional speech recogni-
tion approaches. Where conventional methods
only return a result after some indication of user
completion (for example, a short period of si-
lence), ISR returns partial phrase results while
the user is still speaking. Having access to a real-
time stream of user speech enables more natural
behavior by a SDS, and is a foundation for cre-
ating systems which take a more active role in
conversations.

Research by Fink et al.(1998) and Skantze
& Schlangen (2009), among others, has demon-
strated the efficacy of ISR but has also drawn
attention to a significant obstacle to widespread
use: partial phrase results are generally unsta-
ble and so, as more speech is decoded, are prone
to revision. For example, the ISR component in
a bus information SDS may return the partial
“leaving from Hills”, where “Hills” is a neigh-
borhood name. It may then return the revi-
sion “leaving from Pittsburgh”, which the sys-
tem must handle gracefully. Given this propen-
sity to revise, a Stability Measure (SM) — like-
lihood of a partial result remaining unchanged
compared to the final result — is necessary for
optimal incremental system behavior. Further-
more, since a stable partial may still be inaccu-
rate, a Confidence Measure (CM) — likelihood
of partial correctness — is also necessary.

Effective ISR enables systems to participate in
more dynamic turn-taking. For instance, these
two measures would enable an SDS to identify
inaccurate recognition results while the user is
still speaking. The SDS could then interrupt
and prompt the user to start again. On the
other hand, ISR allows systems to handle pauses
gracefully. If the SDS recognizes that an utter-
ance is incomplete (though stable and accurate),
it could give the user more time to speak before
reacting.

We present two contributions specific to the
use of ISR. First, we characterize three ap-
proaches to ISR which make different trade-offs
between stability and the number of partials
generated. We then present a novel hybrid ap-
proach that combines their strengths to increase
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stability without adding latency. However, even
with this method, some partial results are still
later revised. The second contribution of the
paper is to present a pair of methods which pre-
dict the stability and accuracy of each partial
result. These two measures are designed for use
in concert by dialogue systems, which must de-
cide whether to act on each partial result in real
time.

2 Background and Related Work

We now describe modern speech recognition
methodology, the production of partial phrase
results, and the advantages and deficiencies of
ISR. In this we seek only to provide a topical
foundation, and not a comprehensive review.

Most modern speech recognition engines use
Hidden-Markov Models and the Viterbi algo-
rithm to decode words from audio. Decod-
ing employs three models: an acoustic model,
which assigns probabilities to speech audio given
a phone; a lexicon, which specifies phone se-
quences for a word; and a language model, which
specifies the probability of a word sequence. The
aim of the decoding process is to find the N most
probable word sequences given the audio spoken
and these three models.

Two useful but different forms of language
models are commonly used in spoken dialogue
systems. A Rule-based Language Model (RLM)
specifies a list of valid sentences which may be
recognized, usually via expansion rules. By con-
trast, a Statistical Language Model (SLM) spec-
ifies a vocabulary of words, allowing arbitrary
sentences to be formed. Both models specify
probabilities over their respective sets — RLMs
via whole-sentence probabilities, and SLMs via
probabilities of short word sequences called N-
grams. In an SLM, special word symbols are
used to represent the beginning and end of the
phrase, so the probability of beginning or ending
phrases with words can be modeled.

As speech frames are received, the recognizer
builds up a lattice which compactly describes the
probable sequences of words decoded from the
audio. In conventional turn-based speech recog-
nition, decoding continues until the user finishes

speaking. Once the user has finished, the engine
searches the lattice for the most probable word
sequence and returns this to the dialogue man-
ager. By contrast, in ISR the engine inspects
the lattice as it is being built, and returns partial
results to the dialogue manager as they become
available. A key issue for ISR is that partial
results may later be revised, because as more
speech is received and the lattice is extended, a
different path may become the most probable.
In other words, partial results are unstable in
the sense that they may later be revised. Note
that stability is not the same as accuracy: a par-
tial result may be accurate (correct so far) but
unstable, because it is later revised. Similarly, a
stable result may not be accurate.

In the literature, ISR has been proposed for
dialogue systems to enable them to engage in
more natural, human-like interactions. Stud-
ies have shown that incremental systems react
faster than non-incremental ones, and are well-
liked by users because of their naturalness (Aist
et al., 2007; Skantze and Schlangen, 2009). Aist
et al. (2007) found that incremental speech
recognition yielded 20% faster task completion.
Moreover, adding ISR improved users’ satisfac-
tion with the interaction; the authors attributed
this improvement to “naturalness”: “incremen-
tal systems are more like human-human con-
versation than their non-incremental counter-
parts.” Skantze & Schlangen (2009) observed a
similar trend, finding that an incremental sys-
tem was “clearly preferred” since it “was ex-
perienced as more pleasant and human-like”,
though it did not actually outperform the non-
incremental system in a number dictation task.

Some recent work has focused on incremen-
tal natural language understanding (NLU). De-
Vault et al. (2009) showed that when using a
relatively small number of semantic possibili-
ties the correct interpretation could be predicted
by early incremental results. Schlangen et al.
(2009) demonstrated that an incremental refer-
ence resolver could identify the correct reference
out of 12 more than 50% of the time. This
type of NLU can use context and other infor-
mation to be somewhat resilient to errors, and
word recognition inaccuracies may not yield a
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change in understanding. In this paper we focus
on improving accuracy and stability at the word
level; we belief that improvements at the word
level are likely to improve performance at the
understanding level, although we do not evalu-
ate this here.

A number of researchers have described meth-
ods for evaluating and improving the stability of
ISR results (Baumann et al., 2009; Fink et al.,
1998). Baumann, Atterer, & Schlangen spoke
directly to stability by comparing partial phrase
results against the “final hypothesis produced
by the ASR”. They show that increasing the
amount of “right context” — the amount of
speech after the end of the putative partial result
— increases the stability of the partials. Fink et
al. (1998) also used a right context delay to de-
crease the word error rate of ISR results.

A key limitation of these past efforts to im-
prove stability is that adding right context nec-
essarily incurs delay, which degrades responsive-
ness and erodes the overall benefits of ISR. Fur-
thermore, past work has not addressed the prob-
lem of identifying which partials are likely to be
revised. In this paper, we tackle both of these
problems. We first present a method for im-
proving stability by considering features of the
lattice itself, without incurring the delay asso-
ciated with adding right context. Additionally,
since some partials will still be revised, we then
propose a method of scoring the stability of par-
tial speech recognition results.

3 Three approaches to ISR

We now describe three approaches to ISR: Ba-
sic, Terminal, and Immortal. Basic ISR simply
returns the most likely word sequence observed
after some number of speech frames has been de-
coded (in our case every 3 frames or 30ms). This
is the least restrictive approach, and we believe
is the method used by recent ISR research.

Terminal ISR, a more restrictive approach,
finds a partial result if the most likely path
through the (partially-decoded) lattice ends at
a terminal node in the language model. The in-
tuition is that if a partial result finishes a com-
plete phrase expected by the language model,

it is more likely to be stable. The meaning of
terminal is slightly different for rule-based lan-
guage models (RLMs) and statistical language
models (SLMs). For a rule-based grammar,
the terminal node is simply one that ends a
valid phrase (‘Pittsburgh’ in ‘leaving from Pitts-
burgh’). For an SLM, a terminal node indicates
that the most likely successor state is the spe-
cial end-of-sentence symbol. In other words, in
an SLM Terminal partial result, the language
model assigns the highest probability to ending
the phrase.

A third method, Immortal ISR, is the most
restrictive method (Spohrer et al., 1980). If all
paths of the lattice come together into a node
— called an immortal node — then the lattice
structure before that node will be unchanged by
any subsequent decoding. This structure guar-
antees that the best word sequence prior to an
immortal node is stable. Immortal ISR operates
identically for both RLMs and SLMs.1

To compare these approaches we evaluate
their performance. Utterances were extracted
from real calls to the Carnegie Mellon “Lets
Go!” bus information system for Pittsburgh,
USA (Raux et al., 2005; Parent and Eskenazi,
2009). We chose this domain because this cor-
pus is publicly available, and this domain has
recently been used as a test bed for dialogue
systems (Black et al. , 2010). The AT&T WAT-
SON speech recognition engine was used, modi-
fied to output partials as described above (Goffin
et al., 2005). We tested these three approaches
to ISR on three different recognition tasks. The
first two tasks used rule-based language models
(RLM), and the third used a statistical language
model (SLM).

The two rule-based language models were de-
veloped for AT&T “Let’s Go” dialogue sys-
tem, prior to its deployment (Williams et al.
, 2010). The first RLM (RLM1) consisted

1The choice of search beam size affects both accuracy
and the number of immortal nodes produced: a smaller
beams yields a sparser lattice with more immortal nodes
and lower accuracy; a larger beam yields a richer lattice
with fewer immortal nodes and higher accuracy. In this
work we used our recognizer’s default beam size, which
allows recognition to run in less than real time and yields
near-asymptotic accuracy for all experiments.
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of street and neighborhood names, built from
the bus timetable database. The second RLM
(RLM2) consisted of just neighborhood names.
Utterances to test RLM1 and RLM2 were se-
lected from the corpus provided by Carnegie
Mellon to match the expected distribution of
speech at the dialogue states where RLM1 and
RLM2 would be used. RLM1 was evaluated on
a set of 7722 utterances, and RLM2 on 5411 ut-
terances. To simulate realistic use, both RLM
test sets were built so that 80% of utterances
are in-grammar, and 20% are out-of-grammar.
The SLM was a 3-gram trained on a set of 140K
utterances, and is tested on a set of 42620 ut-
terances.

In past work, Raux et al. (2005) report word
error rates (WERs) of 60-68% on data from the
same dialogue system, though on a different set
of utterances. By comparison, our SLM yields
a WER of 35%, which gives us some confidence
that our overall recognition accuracy is compet-
itive, and that our results are relevant.

Table 1 provides a few statistics of the LMs
and test sets, including whole-utterance accu-
racy, computed using an exact string match.
Results are analyzed in two groups: All, where
all of the utterances are analyzed, and Multi-
Word (MW), where only utterances whose tran-
scribed speech (what was actually said) has
more than one word. Intuitively, these utter-
ances are where ISR would be most effective.
That said, ISR is beneficial for both short and
long utterances — for example, ISR systems
can react faster to users regardless of utterance
length.

ISR was run using each of the three ap-
proaches (Basic, Terminal, Immortal) in each of
the three configurations (RLM1, RLM2, SLM).
The mean number of partials per utterance is
shown in Table 2. For all ISR methods, the more
flexible SLM produces more partials than the
RLMs. Also as expected, multi-word utterances
produce substantially more partials per utter-
ance than when looking at the entire utterance
set. The Basic approach produces nearly dou-
ble the number of partials than Terminal ISR
does, and Immortal ISR production highlights
its primary weakness: in many utterances, no

Table 1: Statistics for Recognition Tasks. In all ta-
bles, All refers to all utterances in a test set, and
MW refers to the subset of multi-word utterances in
a test set.

RLM1 RLM2 SLM

Num. Utts All 7722 5411 42620
Num. Utts MW 3213 1748 20396

Words/Utt All 1.7 1.5 2.3
Words/Utt MW 2.8 2.6 3.8

Utt. Acc. All. 50 % 60 % 62 %
Utt. Acc. MW 53 % 56 % 44 %

immortal nodes are found. Given this however,
immortal node occurrence is directly related to
the number of words, as indicted by the greater
number of immortal partials in multi-word ut-
terances.

Stability is assessed by comparing the partial
to the final recognition result. For simplicity, we
restrict our analysis to 1-Best hypotheses. If the
partial 1-Best hypothesis is a prefix (or full ex-
act match) of the final 1-Best hypothesis then it
is considered stable. For instance, if the partial
1-Best hypothesis is “leaving from Forbes” then
it would be stable if the final 1-Best is “leaving
from Forbes” or “leaving from Forbes and Mur-
ray” but not if it is “from Forbes and Murray” or
“leaving”. Accuracy is assessed similarly except
that the transcribed reference is used instead of
the final recognition result.

We report stability and accuracy in Table 3.
Immortal partials are excluded from stability
since they are guaranteed to be stable. The first
four rows report stability, and the second six
report accuracy. The results show that Termi-
nal Partials are relatively unstable, with 23%-

Table 2: Average Number of Partials per utterance

ISR Group RLM1 RLM2 SLM

Basic
All 12.0 9.9 11.6
MW 14.6 12.3 29.7

Terminal
All 5.4 3.3 6.2
MW 6.4 4.1 8.8

Immortal
All 0.22 0.32 0.55
MW 0.42 0.67 0.63
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Table 3: Stability and Accuracy Percentages

ISR Group RLM1 RLM2 SLM

Stability

Basic
All 10 % 11 % 7 %
MW 14 % 15 % 9 %

Terminal
All 23 % 31 % 37 %
MW 20 % 28 % 36 %

Accuracy

Basic
All 9 % 1 % 5 %
MW 11 % 13 % 6 %

Terminal
All 13 % 21 % 24 %
MW 12 % 17 % 21 %

Immortal
All 91 % 93 % 55 %
MW 90 % 90 % 56 %

37% of partials being stable, and that their sta-
bility drops off when looking at multi-word ut-
terances. SLM stability seems to be somewhat
higher than that of the RLM. Basic partials
are even more unstable (about 10% of partials
are stable), with extremely low stability for the
SLM. Unlike Terminal ISR, their stability grows
when only multi-word utterances are analyzed,
though the maximum is still quite low.

The results also show that partials are always
less accurate than they are stable, indicating
that not all stable partials are accurate. Immor-
tal partials are rare, but when they are found,
they are much more accurate than Terminal or
Basic partials. The RLM accuracy is very high,
and we suspect that immortal nodes are corre-
lated with utterances which are easier to recog-
nize. Terminal ISR is far more accurate than
Basic ISR for all of the utterances, but its im-
provement declines for multi-word RLMs.

We have shown three types of ISR: Basic, Ter-
minal and Immortal ISR. While Basic and Ter-
minal ISR are both highly productive, Terminal
ISR is far more stable and accurate than Basic.
Furthermore, there are far more Basic partials
than Terminal partials, implying that the dia-
logue manager would have to handle more un-
stable and inaccurate partials more often. Given
this, Terminal ISR is a far better “productive
ISR” than the Basic method. Taking produc-
tion and stability together, there is a double dis-

Table 4: Lattice-Aware ISR (LAISR) Example

1-best Partial Type

yew Terminal
sarah Terminal
baum Terminal
dallas Terminal
downtown Terminal
downtown Immortal
downtown pittsburgh Terminal
downtown pittsburgh Immortal

sociation between Terminal and Immortal ISR.
Terminal partials are over produced and rela-
tively unstable. Furthermore, they are even less
stable when the transcribed reference is greater
than one word. On the other hand, Immortal
partials are stable and quite accurate, but too
rare for use alone. By integrating the Immortal
Partials with the Terminal ones, we may be able
to increase the stability and accuracy overall.

4 Lattice-Aware ISR (LAISR)

We introduce Lattice-Aware ISR (LAISR —
pronounced “laser”), that integrates Terminal
and Immortal ISR by allowing both types of par-
tials to be found. The selection procedure works
by first checking for an Immortal partial. If one
is not found then it looks for a Terminal. Re-
dundant partials are returned when the partial
type changes. An example recognition is shown
in Table 4. Notice how the first four partials
are completely unstable. This is very common,
and suppressing this noise is one of the primary
benefits of using more right context. Basic ISR
has even more of this type of noise.

LAISR was evaluated on the three recogni-
tion tasks described above (see Table 5). The
first two rows show the average number of par-
tials per utterance for each task and utterance
group. Unsurprisingly, these numbers are quite
similar to Terminal ISR. The stability percent-
age of LAISR is shown in the second two rows.
For all the utterances, there appears to be a very
slight improvement when compared to Termi-
nal ISR in Table 3. The improvement increases
for MW utterances, with LAISR improving over
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Table 5: Lattice-Aware ISR Stats

Partials per Utterance

RLM1 RLM2 SLM

All 5.6 3.5 6.7
MW 6.7 4.5 9.6

Stability Percentage

All 24 % 33 % 40 %
MW 24 % 35 % 41 %

Accuracy Percentage

All 15 % 23 % 26 %
MW 16 % 22 % 24 %

Terminal ISR by 4–7 percentage points. This
is primarily because there is a higher occur-
rence of Immortal partials as the utterance gets
longer. Accuracy is reported in the final two
rows. Like the previous ISR methods described,
the accuracy percentage is lower than the sta-
bility percentage. When compared to Terminal
ISR, LAISR accuracy is slightly higher, which
confirms the benefit of incorporating immortal
partials with their relatively high accuracy. To
be useful in practice, it is important to exam-
ine when in the utterance ISR results are be-
ing produced. For example, if most of the par-
tials are returned towards the end of utterances,
than ISR is of little value over standard turn-
based recognition. Figure 1 shows the percent
of partials returned from the start of speech to
the final partial for MW utterances using the
SLM. This figure shows that partials are re-
turned rather evenly over the duration of ut-
terances. For example, in the first 10% of dura-
tion of each utterance, about 10% of all partial
results are returned. Figure 1 also reports the
stability and accuracy of the partials returned.
These numbers grow as decoding progresses, but
shows that mid-utterance results do yield rea-
sonable accuracy: partials returned in the mid-
dle of utterances (50%-60% duration) have an
accuracy of near 30%, compared to final partials
47% percent.

For use in a real-time dialogue system, it is
also important to assess latency. Here we define
latency as the difference in (real-world) time be-
tween (1) when the recognizer receives the last

Figure 1: Percent of LAISR partials returned from
the start of detected speech to the final partial using
the SLM. The percentage of partials returned that
are stable/accurate are also shown.

frame of audio for a segment of speech, and (2)
when the partial that covers that segment of
speech is returned from the recognizer. Mea-
suring latencies of LAISR on each task, we find
that RLM1 has a median of 0.26 seconds and a
mean of 0.41s; RLM2 has a median of 0.60s and
a mean of 1.48s; and SLM has a median of 1.04s
and a mean of 2.10s. Since reducing latency
was not the focus on this work, no speed opti-
mizations have been made, and we believe that
straightforward optimization can reduce these
latencies. For example, on the SLM, simply
turning off N-Best processing reduces the me-
dian latency to 0.55s and the mean to 0.79s.
Human reaction time to speech is roughly 0.20
seconds (Fry, 1975), so even without optimiza-
tion the RLM latencies are not far off human
performance.

In sum, LAISR produces a steady stream
of partials with relatively low latency over the
course of recognition. LAISR has higher stabil-
ity and accuracy than Terminal ISR, but its par-
tials are still quite unstable and inaccurate. This
means that in practice, dialogue systems will
need to make important decisions about which
partials to use, and which to discard. This need
motivated us to devise techniques for predicting
when a partial is stable, and when it is accurate,
which we address next.
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Table 6: Equal Error Rates: Significant improvements in bold. Basic at p < 0.016, Terminal at p < 0.002,
and LAISR at p < 0.00001

All Multi-Word

Stability Measure (SM) Equal Error Rate

RLM 1 RLM 2 SLM RLM 1 RLM 2 SLM

Basic
WATSON Score 13.3 13.3 12.8 15.6 16.4 15.2

Regression 10.7 11.3 12.3 13.2 15.2 15.1

Terminal
WATSON Score 24.3 29.1 34.4 26.6 26.0 34.1

Regression 19.7 26.5 26.5 23.0 24.3 24.7

LAISR
WATSON Score 24.7 29.3 35.0 24.0 27.0 35.3

Regression 19.2 25.6 25.0 18.4 23.3 22.7

Confidence Measure (CM) Equal Error Rate

Basic
WATSON Score 11.3 11.7 9.9 14.1 14.0 11.6

Regression 9.8 9.8 9.7 12.3 12.9 11.0

Terminal
WATSON Score 15.1 21.1 30.6 15.7 17.4 29.3

Regression 11.7 16.8 20.8 12.1 14.5 18.4

LAISR
WATSON Score 15.8 21.8 32.3 18.4 19.5 31.8

Regression 11.6 16.6 21.0 11.6 14.2 18.7

5 Stability and Confidence Measures

As seen in the previous section, partial speech
recognition results are often revised and inaccu-
rate. In order for a dialogue system to make
use of partial results, measures of both stability
and confidence are crucial. A Stability Measure
(SM) predicts whether the current partial is a
prefix or complete match of the final recogni-
tion result (regardless of whether the final result
is accurate). A Confidence Measure (CM) pre-
dicts whether the current partial is a prefix or
complete match of what the user actually said.
Both are useful in real systems: for example, if
a partial is likely stable but unlikely correct, the
system might interrupt the user and ask them
to start again.

We use logistic regression to learn separate
classifiers for SM and CM. Logistic regression is
appealing because it is well-calibrated, and has
shown good performance for whole-utterance
confidence measures (Williams and Balakrish-
nan, 2009). For this, we use the BXR pack-
age with default settings (Genkin et al., 2011).
For Terminal and Basic ISR we use 11 features:
the raw WATSON confidence score, the individ-
ual features which affect the confidence score,
the normalized cost, the normalized speech like-

lihood, the likelihoods of competing models,
the best path score of word confusion network
(WCN), the length of WCN, the worst probabil-
ity in the WCN, and the length of N-best list.
For LAISR, four additional features are used:
three binary indicators of whether the partial is
Terminal, Immortal or a Terminal following an
Immortal, and one which gives the percentage
of words in the hypothesis that are immortal.

We built stability and confidence measures for
Basic ISR, Terminal ISR, and LAISR. Each of
the three corpora (RLM1, RLM2, SLM) was di-
vided in half to form a train set and test set.
Regression models were trained on all utter-
ances in the train set. The resulting models were
then evaluated on both All and MW utterances.
As a baseline for both measures, we compare
to AT&T WATSON’s existing confidence score.
This score is used in numerous deployed com-
mercial applications, so we believe it is a fair
baseline. Although the existing confidence score
is designed to predict accuracy (not stability),
there is no other existing mechanism for pre-
dicting stability.

We first report “equal error rate” for the mea-
sures (Table 6). Equal error rate (EER) is the
sum of false accepts and false rejects at the rejec-
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Figure 2: True accept percentages for stability measure (a) and confidence measure (b), using a fixed false
accept rate of 5%. LAISR yields highest true accept rates, with p < 0.0001 in all cases.

(a) Stability measure (b) Confidence measure

tion threshold for which false accepts and false
rejects are equal. Equal error rate is a widely
used metric to evaluate the quality of scoring
models used for accept/reject decisions. A per-
fect scoring model would yield an EER of 0. For
statistical significance we use χ2 contingency ta-
bles with 1 degree of freedom. It is inappropri-
ate to compare EER across ISR methods, since
the total percentage of stable or accurate par-
tials significantly effects the EER. For example,
Basic ISR has relatively low EER, but this is
because it also has a relatively low number of
stable or accurate partials.

The top six rows of Table 6 show EER for the
Stability Measure (SM). The left three columns
show results on the entire test set (all utterances,
of any length). On the whole, the SM outper-
forms the WATSON confidence scores, and the
greatest improvement is a 10.0 point reduction
in EER for LAISR on the SLM task. The right
three columns show results on only multi-word
(MW) utterances. Performance is similar to the
entire test set, with a maximum EER reduction
of 12.6 percent. The SLM MW performance is
interesting, suggesting that it is easier to pre-
dict stability after at least one word has been
decoded, possibly due to higher probability of
immortal nodes occurring. This suggests there
would be benefit in combining our method with
past work that adds right-context, perhaps us-

ing more context early in the utterance. This
idea is left for future work.

The bottom six rows show results for the Con-
fidence Measure (CM). We see that that even
when comparing our CM against the WATSON
confidence scores, there is significant improve-
ment, with a maximum of 13.1 for LAISR in the
MW SLM task.

The consistent improvement shows that logis-
tic regression is an effective technique for learn-
ing confidence and stability measures. It is most
powerful when combined with LAISR, and only
slightly less so with Terminal. Furthermore,
though the gains are slight, it is also useful with
Basic ISR, which speaks to the generality of the
approach.

While equal error rate is useful for evaluating
discriminative ability, when building an actual
system a designer would be interested to know
how often the correct partial is accepted. To
evaluate this, we assumed a fixed false-accept
rate of 5%, and report the resulting percentage
of partials which are correctly accepted (true-
accepts). Results are shown in Figure 1. LAISR
accepts substantially more correct partials than
other methods, indicating that LAISR would be
more useful in practice. This result also shows
a synergy between LAISR and our regression-
based stability and confidence measures: not
only does LAISR improve the fraction of stable
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and correct partials, but the regression is able
to identify them better than for Terminal ISR.
We believe this shows the usefulness of the ad-
ditional lattice features used by the regression
model built on LAISR results.

6 Discussion and Conclusion

The adoption of ISR is hindered by the num-
ber of revisions that most partials undergo. A
number of researchers have proposed the use of
right context to increase the stability of par-
tials. While this does increase stability, it mit-
igates the primary gain of ISR: getting a rela-
tively real-time stream of the user’s utterance.
We offer two methods to improve ISR function-
ality: the integration of low-occurring Immortal
partials with higher occurring Terminal partials
(LAISR), and the use of logistic regression to
learn stability and confidence measures.

We find that the integrative approach,
LAISR, outperforms Terminal ISR on three
recognition tasks for a bus timetable spoken dia-
logue system. When looking at utterances with
more than one word this difference becomes even
greater, and this performance increase is due to
the addition of immortal partials, which have
a higher occurrence in longer utterances. This
suggests that as dialogue systems are used to
process multi-phrasal utterances and have more
dynamic turn-taking interactions, immortal par-
tials will play an even larger roll in ISR and par-
tial stability will further improve.

The Stability and Confidence measures both
have lower Equal Error Rates than raw recog-
nition scores when classifying partials. The im-
provement is greatest for LAISR, which benefits
from additional features describing lattice struc-
ture. It also suggests that other incremental fea-
tures such as the length of right context could be
useful for predicting stability. The higher num-
ber of True Accept partials by LAISR indicates
that this method is more useful to a dialogue
manager than Basic or Terminal ISR. Even so,
for all ISR methods there are still more use-
ful stable partials than there are accurate ones.
This suggests that both of these measures are
important to the downstream dialogue manager.

For example, if the partial is predicted to be sta-
ble but not correct, than the agent could possi-
bly interrupt the user and ask them to begin
again.

There are a number of avenues for future
work. First, this paper has examined the word
level; however dialogue systems generally oper-
ate at the intention level. Not all changes at
the word level yield a change in the resulting
intention, so it would be interesting to apply
the confidence measure and stability measures
developed here to the (partial) intention level.
These measures could also be applied to later
stages of the pipeline – for example, tracking
stability and confidence in the dialogue state re-
sulting from the current partial intention. Fea-
tures from the intention level and dialogue state
could be useful for these measures – for instance,
indicating whether the current partial intention
is incompatible with the current dialogue state.

Another avenue for future work would be to
apply these techniques to non-dialogue real-time
ASR tasks, such as transcription of broadcast
news. Confidence and stability measures could
be used to determine whether/when/how to dis-
play recognized text to a viewer, or to inform
down-stream processes such as named entity ex-
traction or machine translation.

Of course, an important objective is to eval-
uate our Stability and Confidence Measures
with LAISR in an actual spoken dialogue sys-
tem. ISR completely restructures the conven-
tional turn-based dialogue manager, giving the
agent the opportunity to speak at any mo-
ment. The use of reinforcement learning to make
these turn-taking decisions has been shown in a
small simulated domain by Selfridge and Hee-
man (2010), and we believe this paper builds
a foundation for pursuing these ideas in a real
system.
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Abstract

We present the novel task of predicting tem-
poral features of continuations of user input,
while that input is still ongoing. We show that
the remaining duration of an ongoing word, as
well as the duration of the next can be predicted
reasonably well, and we put this information to
use in a system that synchronously completes
a user’s speech. While we focus on collabo-
rative completions, the techniques presented
here may also be useful for the alignment of
back-channels and immediate turn-taking in an
incremental SDS, or to synchronously monitor
the user’s speech fluency for other reasons.

1 Introduction

Turn completion, that is, finishing a user’s ongoing ut-
terance, can be considered an ideal test-case of incre-
mental spoken language processing, as it requires that
all levels of language understanding and production
are carried out in real time, without any noticeable
lags and with proper timing and even with the ability
to predict what will come. Spoken dialogue systems,
especially incremental ones, have come a long way
towards reducing lags at turn changes (e. g. (Raux and
Eskenazi, 2009; Skantze and Schlangen, 2009)), or
even predicting upcoming turn changes (Schlangen,
2006; Baumann, 2008; Ward et al., 2010). Com-
pared to regular turn changes, where short pauses or
overlaps occur frequently (Weilhammer and Rabold,
2003), turn completions in natural dialogues are typ-
ically precisely aligned and prosodically highly in-
tegrated with the turn that is being completed (Lo-
cal, 2007). With ever more incremental (and hence
quicker) spoken dialogue systems, the phenomenon

of completion comes into reach for SDSs, and hence
questions of micro-timing become important.

While completing someone else’s turn – especially
for a computer – may be considered impolite or even
annoying, being able to do so can be a useful capa-
bility. Some tasks where it might be helpful are
• negotiation training to induce stress in a human

trainee as presented by DeVault et al. (2009), or
• pronunciation aids for language learners, in

which hard to pronounce words could be spoken
simultaneously by the system.

A system should certainly not try to complete all
or even many user turns, but having the capability
to do so means that the system has a very efficient
interactional device at its disposal.

Furthermore, monitoring the user’s timing, as is
required for the temporal prediction of turn continua-
tions, can also be used for other conversational tasks
such as producing back-channels that are precisely
aligned to the user’s back-channel inviting cues, to
enable micro-alignment of turn-onsets, or to quickly
react to deviations in the user’s fluency.

In this paper, we concentrate on the temporal as-
pects of turn completion, that is, the prediction of
the precise temporal alignment of a turn continuation
and the technical realization of this timing. We as-
sume the task of predicting the completion itself to
be handled by some other system component. Such
components are indeed under development (see Sec-
tion 2). However, previous work has left out the
question of how the precise timing of turn comple-
tions can be accomplished, which is what we try to
answer here.

The remainder of this paper is structured as fol-
lows: In Section 2 we review literature on turn com-
pletion and related work in spoken dialogue systems,
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before we explain what exactly our task is in Sec-
tion 3. In Section 4 we present our system’s overall
architecture and the duration modelling technique
that we use, before describing the corpus that we use
in Section 5. In Section 6 we first analyse whether
enough time to output a completion is available suffi-
ciently often, before turning to the question for the
actual sub-tasks of when and how to complete. We
wrap up with concluding remarks and ideas for future
work.

2 Related Work

The general phenomenon of turn completion can
be broken down into cases where the completion
is spoken simultaneously with the original speaker
(turn sharing, (Lerner, 2002)) and where the floor
changes in mid-utterance (collaborative turn se-
quences (Lerner, 2004) or split utterances (Purver
et al., 2009)). In this paper, a differentiation be-
tween the two cases is not important, as we only
deal with the question of when to start speaking
(for the previously non-speaking system) and not the
question of whether the current turn owner will stop
speaking. Moreover, whether the other speaker will
stop is beyond the system’s control. Lerner (2004)
distinguishes turn co-optation, in which a listener
joins in to come first and win the floor, and turn co-
completion, in which the completion is produced in
chorus. Both of these phenomena relate to the cur-
rent speaker’s speech: either to match it, or to beat
it. While we focus on matching in this work, the
methods described similarly apply to co-optation.

As Lerner (2002) notes, attributing this view to
Sacks et al. (1974), simultaneous speech in conver-
sation is often treated exclusively as a turn taking
problem in need of repair. This is exactly the point
of view taken by current spoken dialogue systems,
which avoid overlap and interpret all simultaneous
speech as barge-in, regardless of content. However,
Lerner (2002) also notes that simultaneous speech
systematically occurs without being perceived as a
problem, e. g. in greetings, or when saying good bye,
which are relevant sub-tasks in deployed SDSs.

Two corpus studies are available which investi-
gate split utterances and their frequency: Skuplik
(1999) looked at sentence cooperations in a corpus
of task-oriented German (Poesio and Rieser, 2010)

and found 3.4 % of such utterances. Purver et al.
(2009) find 2.8 % of utterance boundaries in the BNC
(as annotated by Fernández and Ginzburg (2002))
to meet their definition of utterances split between
speakers. Thus, while the absolute frequency may
seem low, the phenomenon does seem to occur con-
sistently across different languages and corpora.

Local (2007) describes phonetic characteristics at
utterance splits (he calls the phenomenon turn co-
construction) which distinguish them from regular
turn handovers, namely temporal alignment and close
prosodic integration with the previous speaker’s utter-
ance. In this paper, we focus on the temporal aspects
(both alignment and speech rate) when realizing turn
completions, leaving pitch integration to future work.

Cummins (2009) analyses speech read aloud by
two subjects at the same time (which he calls syn-
chronous speech): Synchrony is slightly better in a
live setting than with a subject synchronizing to a
recording of speech which was itself spoken in syn-
chrony and this is easier than to a recording of uncon-
strained speech. Cummins (2009) also experiments
with reduced stimuli: eliminating f0-contour had no
significant impact on synchrony, while a carrier with-
out segmental information (but including f0-contour)
fared significantly better than speaking to an uninfor-
mative hiss. (The first sentence of each recording was
always left unmodified, allowing subjects to estimate
speech rate even in the HISS condition.) Thus, pitch
information does not seem necessary for the task but
may help in the absence of segmental information.

On a more technical level and as mentioned above,
much work has been put into speeding up end-of-
turn detection and reducing processing lags at turn
changes (Raux and Eskenazi, 2009) and more re-
cently into end-of-turn prediction: Ward et al. (2010)
present a model of turn-taking which estimates the
remaining duration of a currently ongoing turn. We
extend the task to predicting the remaining duration
of any currently ongoing word in the turn. Of course,
for this to be possible, words must be recognized
while they are still being uttered. We have previ-
ously shown (Baumann et al., 2009) that this can be
achieved with incremental ASR for the vast major-
ity of words and with an average of 102 ms between
when a word is first recognized and the word’s end.

As mentioned above, our work relies on other in-
cremental components to form a meaningful, turn
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completing application and such components are be-
ing developed: Incremental understanding is well un-
derway (Sagae et al., 2009; Heintze et al., 2010), as is
decision making on whether full understanding of an
utterance has been reached (DeVault et al., 2009), and
Purver et al. (2011) present an incremental semantics
component aimed explicitly at split utterances. In
fact, DeVault et al. (2009) provide exactly the coun-
terpart to our work, describing a method that, given
the words of an ongoing utterance, decides when the
point of maximum understanding has been reached
and with what words this utterance is likely to end.
However, in their system demonstration, Sagae et al.
(2010) use short silence time-outs to trigger system
responses. Our work eliminates the need for such
time-outs.

Hirasawa et al. (1999) present a study where im-
mediate, overlapping back-channel feedback from
the system was found to be inferior to acknowledg-
ing information only after the user’s turn. However,
they disregarded the back-channels’ micro-temporal
alignment as explored in this study (presumably pro-
ducing back-channels as early as possible), so their
negative results cannot be taken as demonstrating a
general shortcoming of the interactional strategy.

3 The Task

The general task that our timing component tackles
is illustrated in Figure 1. The component is triggered
into action when an understanding module signals
that (and with what words) a turn should be com-
pleted. At this decision point, our component must
estimate (a) when the current word ends and (b) how
the user will speak the predicted continuation. Ide-
ally, the system will start speaking the continuation
precisely when the next word starts and match the
user’s speech as best as possible. Thus, our compo-
nent must estimate the time between decision point
and ideal onset (which we call holding time) and the
user’s speech rate during the following words.

In order for the system to be able to produce a
continuation (“five six seven” in Figure 1) in time,
of course the decision point must come sufficiently
early (i. e. during “four”) to allow for a completion
to be output in due time. This important precondition
must be met by-and-large by the employed ASR.
However, it is not a strict requirement: If ASR results

Figure 1: The task: When notified that the ongoing utter-
ance should be completed with “five six seven” after the
word “four”, the first three words are used to (a) estimate
the remaining duration of “four” and to (b) estimate the
speech rate for the completion.

are lagging behind, the timing component’s estimated
holding time should turn negative. Depending on the
estimated lag, a completion can be suppressed or,
if it is small, fairly good completions can still be
realized by shortening the first (few) phonemes of
the completion to be synthesized.

We will now present our overall system before
describing two strategies we developed for solving
the task just described, and further on present the
experiments we conducted with the system and their
results in Sections 5 and 6.

4 System Description

Our system is based on the InproTK toolkit for in-
cremental spoken dialogue systems (Schlangen et
al., 2010) which uses Sphinx-4 (Walker et al., 2004)
and MaryTTS (Schröder and Trouvain, 2003) as un-
derlying ASR and TTS engines, respectively. The
core of our system is a component that incrementally
receives rich speech recognition input (words, their
durations and a pitch track) from an incremental ASR
and computes the timing of completions.

When receiving a new word from ASR, our com-
ponent queries an understanding component whether
a completion can be predicted, and if so, whether
such a completion should be performed. In order to
not duplicate the work of DeVault et al. (2009), we
use a mock implementation of an understanding mod-
ule, which actually knows what words are going to be
spoken (from a transcript file) and aims to complete
after every word spoken.

We have implemented two strategies for the timing
module, which we will describe in turn, after first
discussing a simple baseline approach.
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Baseline: Speak Immediately A first, very simple
approach for our timing component is to never wait
between the decision point and outputting a comple-
tion right away. We believe that this was the strategy
taken by Hirasawa et al. (1999) and we will show in
our evaluation in Section 6.2 that it is not very good.

Strategy 1: Estimating ASR Lookahead In our
ASR-based strategy (illustrated in Figure 2, top) the
system estimates what we call its lookahead rate,
i. e. the average time between when a word is first
recognized by ASR and the word’s end in the signal.
This lookahead is known for the words that have been
recognized so far and the average lookahead can then
be used as an estimate of the remaining duration
of the word that is currently being detected (i. e. its
holding time). Once the currently spoken word is
expected to end, the system should start to speak.

The strategy just described, as well as the baseline
strategy, only solve half of the task, namely, when the
continuation should be started, but not the question
of how to speak, which we will turn to now. Both
sub-tasks can be solved simultaneously by estimating
the speech rate of the current speaker, based on what
she already said so far, and considering this speech
rate when synthesizing a completion. Speech rate
estimation using some kind of duration model thus
forms the second strategy’s main component. For the
purpose of this work, we focus on duration models
in the context of TTS, where they are used to assign
durations to the phones to be uttered. Rule-based
approaches (Klatt, 1979) as well as methods using
machine learning have been used (primarily CART
(Breiman et al., 1984)); for HMM-based speech syn-
thesis, durations can be generated from Gaussian
probability density functions (PDFs) (Yoshimura et
al., 1998). We are not aware of any work that uses
duration models to predict the remaining time of an
ongoing word or utterance.

In our task, we need the duration model to make
estimations based on limited input (instead of pro-
viding plausibility ratings as in most ASR-related
applications). As it turns out, a TTS system in itself
is an excellent duration model because it potentially
ponders all kinds of syntactic, lexical, post-lexical,
phonological and prosodical context when assigning
durations to words and their phones. Also, our task
already involves a TTS system to synthesize the turn

Figure 2: Our strategies to estimate holding time (when to
speak), and speech rate (how to speak; only Strategy 2).

completion – in our case MaryTTS (Schröder and
Trouvain, 2003). The durations can be accessed in
symbolic form in MaryTTS, and the system allows
to manipulate this information prior to acoustic syn-
thesis. Depending on which voice is used, MaryTTS
uses machine-learned duration models (CART or
PDFs) or an optimized version of Klatt’s (1979) rules
which have been shown to perform only marginally
worse than the CART-based approach (Brinckmann
and Trouvain, 2003).

Strategy 2: Analysis-by-Synthesis As just de-
scribed, we hence employ the TTS’ duration model
in an analysis-by-synthesis approach in this second
strategy, as illustrated in Figure 2 (bottom): When
triggered to complete an ongoing utterance, we query
the TTS for the durations it would assign to a produc-
tion of the predicted full utterance, i. e. the prefix that
was heard plus the predicted continuation of the turn.
In that way, the TTS can take the full utterance into
account when assigning prosodic patterns which may
influence durations. We then compute the factor that
is needed to scale the TTS’s duration of the words
already finished by the user (in the example: “one
two three”) to the duration of the actual utterance
and apply this scaling factor to the remaining words
in the synthesized completion. We can then read off
the expected duration of the currently spoken word
from the scaled TTS output and, by subtracting the
time that this word is already going on, find out the
holding time. Similarly, the completion of the turn
which is now scaled to match the user’s speech rate
can be fed back to the synthesis system in order to
generate the acoustic waveform which is to be output
to the speakers once the system should start to speak.
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5 Corpus and Experiment Setup

In order to evaluate the accuracy of the individual
components involved in the specific subtasks, we
conducted a controlled offline experiment. We have
not yet evaluated how actual users of our system
would judge its performance at outputting collabora-
tive completions.

As evaluation corpus we use recordings of the
German version of the story The North Wind and
the Sun (IPA, 1999) from the Kiel Corpus of Read
Speech (IPDS, 1994). The story (including title)
consists of 111 words and is read by 16 speakers,
giving a total of 1776 words in 255 inter-pausal-units
(IPUs), altogether resulting in about 12 minutes of
speech. (In the following, we will equate “turns” with
IPUs, as our corpus of read speech does not contain
true turns.) Words and phones in our corpus have
a mean/median/std dev duration of 319/290/171 ms
and 78/69/40 ms, respectively.

We assume that every word can be a possible com-
pletion point in a real system, hence we evaluate the
performance of our timing component for all words
in the corpus. (This generalization may have an in-
fluence on our results: real collaborative completions
are sometimes invited by the speaker, probably by
giving cues that might simplify co-completion; if that
is true, the version tackled here is actually harder than
the real task.)

Good turn completions (and good timings) can
probably only be expected in the light of high ASR
performance. We trained a domain-specific language
model (based on the test corpus) and used an acous-
tic model trained for conversational speech which
was not specifically tuned for the task. The resulting
WER is 4.2 %. While our results could hence be con-
sidered too optimistic, Baumann et al. (2009) showed
that incremental metrics remained stable in the light
of varying ASR performance. We expect that lower
ASR performance would not radically change pre-
diction quality itself; rather, it would have an impact
on how often continuations could be predicted, since
that is based on correct understanding of the prefix
of the utterance, limiting the amount of data points
for our statistics.

Even though we simulated the understanding and
prediction module, we built in some constraints that
are meant to be representative of real implementa-

tions of such a module: it can only find the right
completion if the previous two words are recognized
correctly and the overall WER is lower than 10 %.
(Coming back to Figure 1, if the system had falsely
recognized “on two three”, no completion would
take place: Even though the last two words “two
three” were recognized correctly, the WER between
“on two three” and “one two three” is too high.) Un-
der this constraint, the timing component generated
data for 1100 IPU-internal and 223 IPU-final words
in our corpus.

The main focus of this paper is turn completion and
completions can only take place if there is something
left to complete (i. e. after turn-internal words). It
is still useful to be able to predict the duration of
turn-final words, though, as this is a prerequisite for
the related task of timing speaker changes. For this
reason, we include both turn-internal and turn-final
words in the analyses in Section 6.2.

In the evaluation, we use the ASR’s word align-
ments from recognition as gold standard (instead of
e. g. hand-labelled timings), which are essentially
equal to output from forced alignment. However,
when evaluating how well our timing component pre-
dicts the following word’s duration, we need that
word to also be correctly recognized by ASR. This
holds for 1045 words in our corpus, for which we
report results in Section 6.3.

6 Results

We evaluate the timing of our system with regards to
whether completions are possible in general, when a
completion should be produced, and what the speech
rate of the completion should be in the subsections
below.

6.1 Availability of Time to Make a Decision

While it is strictly speaking not part of the timing
component, a precondition to being able to speak
just-in-time is to ponder this decision sufficiently
early as outlined above.

Figure 3 shows a statistic of when our ASR first
hypothesizes a correct word relative to the word’s
end (which can be determined post-hoc from the
final recognition result) on the corpus. Most words
are hypothesized before their actual endings, with a
mean of 134 ms (median: 110 ms) ahead. This leaves
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Figure 3: Statistics of when decisions can be first taken
relative to the word’s end (determined post-hoc).

enough lookahead to synthesize a completion and
for some delays that must be taken into account for
input and output buffering in the sound card, which
together take around 50 ms in our system.

Interestingly, lookahead differs widely for the
speakers in our corpus with means between 97 and
237 ms. As can be seen in Figure 3, some words are
only hypothesized after the fact, or at least too late
to account for the inevitable lags, which renders im-
possible successful turn-completions following these
words. However, the timing component should know
when it is too late – the holding time should be nega-
tive – and could either not output the completion at
this point or e. g. back off to setting in one or more
phones or syllables later (actually, back off until the
holding time turns positive).

6.2 When to Start Speaking
We evaluate the strategies from Section 4 by com-
paring the predicted holding times with the ideal
holding time, i. e. the time necessary to match the
ASR’s lookahead.

Figure 3 can also be taken as depicting the error
distribution of our baseline strategy to find out when
to start a completion: on average, the completion
will be early by 134 ms if it is uttered immediately
and the distribution is somewhat skewed. An unbi-
ased baseline strategy is obtained by subtracting the
global mean from the holding times. This however re-
quires the mean to be known in advance and is hence
inflexible: the global mean may very well be differ-
ent for other data sets as it already differs between

model error distribution metrics (in ms)
mean median std dev MAE

baseline: all -134 -110 107 110
baseline −µ 0 23 107 63

ASR-based : all -2 19 105 60
IPU-internal 26 33 82 51

IPU-final -148 -143 87 142
TTS-based : all -3 4 85 45

IPU-internal 12 11 77 41
IPU-final -78 -76 83 79

Table 1: Descriptive statistics of the error distributions
over estimated onset times for different duration models.

speakers in our corpus. The two other strategies’ er-
ror distributions are less skewed, so we just report
the distributions’ mean, median, and standard devi-
ation,1 as well as the median absolute error (MAE)
for the ASR-based, the TTS-based and the baseline
strategies in Table 1.

As can be seen in Table 1, both strategies are
similarly effective in predicting the average remain-
ing time of a currently uttered word, reducing the
mean error close to zero, a significant improvement
over starting a completion or next turn immediately.
(ANOVA with post-hoc Tukey’s honest significance
differences test.) While our two approaches perform
similarly when comparing the performance for all
words, there actually are differences when looking
separately at IPU-internal and IPU-final words. In
both cases the TTS-based approach has a significantly
lower bias (paired Student’s t-tests, p < 0.01).

The bias of both strategies differs depending on
whether the current word is IPU-internal or -final.
We believe this to be due to final lengthening: phones
are about 40 % longer in IPU-final words. This is not
captured by the ASR-based strategy and the length-
ening may be stronger than what is predicted by the
pronunciation model of the TTS we use.

A low standard deviation of the error distribution
is probably even more important than a low mean
error, as it is variability, or jitter, that makes a system
unpredictable to the user. While there is no signifi-
cant improvement of the ASR-based approach over
the baseline, the TTS-based approach significantly
outperforms the other approaches with a 20 % re-

1We prefer to report mean and std dev for bias and jitter
separately; notice that RMSE=

√
µ2 + σ2.
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task error distribution metric (in ms)
mean median std dev MAE

TTS-based : duration -5 4 75 45
+ ASR-based : onset 26 33 82 51

= end of word 25 30 100 81
+ TTS-based : onset 12 11 77 41

= end of word 7 10 94 74

Table 2: Descriptive statistics of the error distributions for
the first spoken word of a completion.

duction of jitter down to about the average phone’s
length (Browne-Forsythe’s modified Levene’s test,
p < 0.001).

Regarding human performance in synchronous
speech, Cummins (2002) reports an MAE of 30 ms for
the synchronous condition. However, MAE increased
to 56 ms when synchronizing to an (unsynchronously
read) recording, a value which is in the range of our
results (and with our system relying on similar input).

6.3 How to Speak

As explained in the task description, knowing when
to speak is only one side of the medal, as a turn
completion itself must be integrated with the previ-
ous speech in terms of duration, prosodic shape and
loudness.

Only our TTS-based strategy is capable of out-
putting predictions for a future word; our ASR-based
approach does not provide this information. How-
ever, both duration and onset estimation (the next
onset is identical to the end of the current word as
estimated in Section 6.2) together determine the error
at the word’s end. Hence, we report the error at the
next word’s end for the TTS strategy’s duration esti-
mate combined with both strategies’ onset estimates
in Table 2.

Duration prediction for the next word with the
TTS-based strategy works similarly well as for on-
going words (as in Section 6.2), with an MAE of
45 ms (which is again in the range of human perfor-
mance). However, for the next word’s end to occur
when the speaker’s word ends, correct onset estima-
tion is just as important. When we combine onset
estimation with duration prediction, errors add up
and hence the error for the next word’s end is some-
what higher than for either of the tasks alone, with a
standard deviation of 94 ms and an MAE of 74 ms for

the TTS-based model, which again outperforms the
ASR-based model.

So far, we have not evaluated the matching of
prosodic characteristics such as loudness and intona-
tion (nor implemented their prediction). We believe
that simple matching (as we implemented for onset
and speech rate) is not as good a starting point for
these as they are more complex. Instead, we believe
these phenomena to mostly depend on communica-
tive function, e. g. a co-optation having a wide pitch-
range and relatively high loudness regardless of the
current speaker’s speech. Additionally, pitch-range
would have to be incrementally speaker-normalized
which results in some implementation difficulties.2

7 Demo Application: Shadowing

To get a feeling for the complete system and to
demonstrate that our timing component works on
live input, we implemented a shadowing application
which completes – or rather shadows – a user utter-
ance word-by-word. Given the prediction for the next
word’s onset time and duration it prepares the output
of that next word while the user is still speaking the
preceding word. As the application expects to know
what the user is going to speak, the user is currently
limited to telling the story of North Wind and the
Sun.

Two examples of shadowings are shown in Ap-
pendix A.3 As can be seen in the screenshots, the
decision points for all words are sufficiently early
before the next word, allowing for the next word’s
output generation to take place. Overall, shadowing
quality is good, with the exception of the second “die”
in the second example. However, there is an ASR
error directly following (“aus” instead of “luft”) and
the ASR’s alignment quality for “sonne die” is al-
ready sub-optimal. Also, notice that the two words
following the ASR error are not shadowed as per our
error recovery strategy outlined in Section 5.

2Edlund and Heldner (2007) report that for a reliable pitch-
range estimation 10 to 20 seconds of voiced speech and hence –
in our view – twice the amount of audio is necessary. This would
have reduced our corpus size by too much.

3Audio files of the examples are available at http://www.
ling.uni-potsdam.de/˜timo/pub/shadowing/.
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8 Discussion and Future Work

We described the task of micro-timing, or micro-
aligning a system response (in our case a turn com-
pletion and shadowing a speaker) to the user’s speech
based on incremental ASR output and with both ASR
and symbolic TTS output as duration models to pre-
dict when and how a completion should be uttered.

We have shown first of all, that a completion is pos-
sible after most words, as an incremental ASR in a
small-enough domain can have a sufficient lookahead.
Additionally, we have shown that the TTS-based du-
ration model is better than both the baseline and the
ASR-based model. Both the next word’s onset and
duration can be predicted relatively well (σ = 77 ms
and σ = 75 ms, respectively), and within the mar-
gin of human performance in synchronously reading
speech. It is interesting to note here that synchronous
speech is simplified in prosodic characteristics (Cum-
mins, 2002), which presumably facilitates the task.
Errors in speech rate estimation add up, so that the
deviation at the next word’s end is somewhat higher
(σ = 94 ms). Deviation will likely increase for longer
completions, underlining the need for an incremen-
tal speech synthesis system which should allow to
instantly adapt output to changes in speech rate, con-
tent, and possibly sentiment of the other speaker.

Clearly, our duration modelling is rather simplistic
and could likely be improved by combining ASR and
TTS knowledge, more advanced (than a purely lin-
ear) mapping when calculating relative speech rate,
integration of phonetic and prosodic features from
the ASR, and possibly more. As currently imple-
mented, improvements to the underlying TTS sys-
tem (e. g. more “conversational” synthesis) should
automatically improve our model. The TTS-based
approach integrates additional, non-ASR knowledge,
and hence it should be possible to single out those
decision points after which a completion would be es-
pecially error-prone, trading coverage against quality
of results. Initial experiments support this idea and
we would like to extend it to a full error estimation
capability.

We have focused the analysis of incrementally
comparing expected to actual speech rate to the task
of micro-aligning a turn-completion and shadowing a
speaker. However, we believe that this capability can
be used in a broad range of tasks, e. g. in combination

with word-based end-of-turn detection (Atterer et al.,
2008) to allow for swift turn taking.4 In fact, precise
micro-alignment of turn handovers could be used for
controlled testing of linguistic/prosodic theory such
as the oscillator model of the timing of turn-taking
(Wilson and Wilson, 2005).

Finally, duration modelling can be used to quickly
detect deviations in speech rate (which may indicate
hesitations or planning problems of the user) as they
happen (rather than post-hoc), allowing to take the
speaker’s fluency into account in understanding and
turn-taking coordination as outlined by Clark (2002).
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Appendix A Examples of Shadowing

Figure 4: Example of shadowing for a file in our corpus (k73nord2). The first line of labels shows the final ASR output,
the second line shows the decision points for each word and the third and fourth lines show the system’s output (planned
output may overlap, hence two lines; in the system, an overlapped portion of a word is replaced by the following word’s
audio).

Figure 5: Example of shadowing with live input (verena2nord2). Notice that “Luft” is predicted and synthesized
although it is (later) misunderstood by ASR as “aus”, resulting in a missing shadowing of “mit” and “ihren”. In order
to not disturb the speaker, the system’s audio output was muted.
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Abstract

This paper provides a first assessment of a sta-

tistical dialog system in public use. In our di-

alog system there are four main recognition

tasks, or slots – bus route names, bus-stop lo-

cations, dates, and times. Whereas a conven-

tional system tracks a single value for each slot

– i.e., the speech recognizer’s top hypothesis

– our statistical system tracks a distribution

of many possible values over each slot. Past

work in lab studies has showed that this distri-

bution improves robustness to speech recog-

nition errors; but to our surprise, we found

the distribution yielded an increase in accu-

racy for only two of the four slots, and actu-

ally decreased accuracy in the other two. In

this paper, we identify root causes for these

differences in performance, including intrin-

sic properties of N-best lists, parameter set-

tings, and the quality of statistical models. We

synthesize our findings into a set of guidelines

which aim to assist researchers and practition-

ers employing statistical techniques in future

dialog systems.

1 Introduction

Over the past decade, researchers have worked to ap-

ply statistical techniques to spoken dialog systems,

and in controlled laboratory studies, statistical di-

alog systems have been shown to improve robust-

ness to errors compared to conventional approaches

(Henderson and Lemon, 2008; Young et al., 2010;

Thomson and Young, 2010). However, statistical

techniques have not yet been evaluated in a publicly

deployed system, and real users behave very differ-

ently to usability subjects (Raux et al., 2005; Ai et

al., 2008). So there is an important open question

whether statistical dialog systems improve perfor-

mance with real users.

This paper provides a first evaluation of a publi-

cally deployed statistical dialog system, AT&T Let’s

Go (Williams et al., 2010). AT&T Let’s Go pro-

vides bus times for Pittsburgh, and received approx-

imately 750 calls from real bus riders during the

2010 Spoken Dialog Challenge (Black et al., 2010).

AT&T Let’s Go is based on a publicly available

toolkit (Williams, 2010a) and achieved the highest

rates of successful task completion on real callers in

the challenge, so it provides a relevant exercise from

which to draw inferences.

AT&T Let’s Go collected four types of informa-

tion, or slots: bus route names, bus-stop names,

dates, and times. For each slot, we measured turn-

level accuracy of the deployed statistical system and

compared it to accuracy without application of the

statistical techniques (i.e., the top speech recogni-

tion result).

To our surprise, we found that statistical tech-

niques appeared to improve accuracy for only two of

the four slots, and decreased accuracy for the other

two. To investigate this, we considered four mech-

anisms by which statistical methods can differ from

the top speech recognition result. Analyzing the ef-

fects of each mechanism on each slot enables un-

derlying causes to be identified: for example, one

mechanism performed exceptionally well when its

statistical models was well matched to usage data,

but rather poorly when its model diverged from real

usage. We believe this analysis – the focus of this

paper – is relevant to researchers as well as practi-
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tioners applying statistical techniques to production

systems.

In this paper, Section 2 reviews the operation of

statistical spoken dialog systems. Section 3 then

describes the AT&T Let’s Go dialog system. Sec-

tion 4 reports on overall accuracy, then analyzes the

underlying reasons for accuracy gains and losses.

Section 5 tackles how well error in the belief state

can be identified compared to speech recognition er-

rors. Section 6 concludes by summarizing lessons

learned.

2 Statistical dialog systems

Statistical dialog systems maintain a distribution

over a set of hidden dialog states. A dialog state

includes information not directly observable to the

dialog system, such as the user’s overall goal in the

dialog or the user’s true action (e.g., the user’s true

dialog act). For each dialog state s, a posterior prob-

ability of correctness called a belief is maintained

b(s). The set of hidden dialog states and their be-

liefs is collectively called the belief state, and up-

dating the belief state is called belief tracking. Here

we will present belief tracking at a level sufficient

for our purposes; for a more general treatment, see

(Williams and Young, 2007).

At the start of the dialog, the belief state is initial-

ized to a prior distribution b0(s). The system then

takes an action a, and the user takes an action in

response. The automatic speech recognizer (ASR)

then produces a ranked list of N hypotheses for the

user’s action, u = (u1, . . . , uN ), called an N-best

list. For each N-best list the ASR also produces a

distribution Pasr(u) which assigns a local, context-

independent probability of correctness to each item,

often called a confidence score. The belief state is

then updated:

b′(s) = k ·
∑

u

Pasr(u)Pact(u|s, a)b(s) (1)

where Pact(u|s, a) is the probability of the user tak-

ing action u given the dialog is in hidden state s and

the system takes action a. k is a normalizing con-

stant.

In practice specialized techniques must be used to

compute Eq 1 in real-time. The system in this paper

uses incremental partition recombination (Williams,

2010b); alternatives include the Hidden Information

State (Young et al., 2010), Bayesian Update of Dia-

log States (Thomson and Young, 2010), and particle

filters (Williams, 2007). The details are not impor-

tant for this paper – the key idea is that Eq 1 synthe-

sizes a prior distribution over dialog states together

with all of the ASR N-best lists and local confidence

scores to form a cumulative, whole-dialog poste-

rior probability distribution over all possible dialog

states, b(s).

In the system studied in this paper, slots are

queried separately, and an independent belief state is

maintained for each. Consequently, within each slot

user actions u and hidden states s are drawn from

the same set of slot values. Thus the top ASR result

u1 represents the ASR’s best hypothesis for the slot

value in the current utterance, whereas the top dia-

log state argmaxs b(s) = s∗ represents the belief

state’s best hypothesis for the slot value given all of

the ASR results so far, a prior over the slot values,

and models of user action likelihoods. The promise

of statistical dialog systems is that s∗ will (we hope!)

be correct more often than u1. In the next section,

we measure this in real dialogs.

3 AT&T Let’s Go

AT&T Let’s Go is a statistical dialog system that

provides bus timetable information for Pittsburgh,

USA. This system was created to demonstrate a

production-grade system built following practices

common in industry, but which incorporates two sta-

tistical techniques: belief tracking with the AT&T

Statistical Dialog Toolkit (Williams, 2010a), and

regression-based ASR confidence scores (Williams

and Balakrishnan, 2009).

As with most commercial dialog systems, AT&T

Let’s Go follows a highly directed flow, collecting

one slot at a time. There are four types of slots:

ROUTE, LOCATION, DATE, and TIME. The sys-

tem can only recognize values for the slot being

queried, plus a handful of global commands (“re-

peat”, “go back”, “start over”, “goodbye”, etc.) –

mixed initiative and over-completion were not sup-

ported. As mentioned above, an independent belief

state is maintained for each slot: this was an inten-

tional design decision made in order to use statistical

techniques within current commercial practices.
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The system opens by asking the user to say a bus

ROUTE, or to say “I’m not sure.” The system next

asks for the origin and destination LOCATIONs. The

system then asks if the caller wants times for the

“next few buses”; if not, the system asks for the

DATE then TIME in two separate questions. Finally

bus times are read out.

After requesting the value of a slot, the system re-

ceives an N-best list, assigns each item a confidence

score Pasr(u), and updates the belief in (only) that

slot using Eq 1. The top dialog hypothesis s∗ and

its belief b(s∗) are used to determine which action

to take next, following a hand-crafted policy. This is

in contrast to a conventional dialog system, in which

the top ASR result and its confidence govern dialog

flow. Figure 6 shows the design of AT&T Let’s Go.

In the period July 16 – August 16 2010, AT&T

Let’s Go received 742 calls, of which 670 had one

or more user utterances. These calls contained a

total of 8269 user utterances, of which 4085 were

in response to requests for one of the four slots.

(The remainder were responses to yes/no questions,

timetable navigation commands like “next bus”,

etc.)

Our goal in this paper is to determine whether

tracking a distribution over multiple dialog states

improved turn-level accuracy compared to the top

ASR result. To measure this, we compare the accu-

racy of the top belief state and the top ASR result. A

transcriber listened to each utterance and marked the

top ASR hypothesis as correct if it was an exact lex-

ical or semantic match, or incorrect otherwise. The

same was then done for the top dialog hypothesis in

each turn.

Accuracy of the top ASR hypothesis and the top

belief state are shown in Table 1, which indicates

that belief monitoring improved accuracy for ROUTE

and DATE, but degraded accuracy for LOCATION and

TIME. We had hoped that belief tracking would im-

prove accuracy for all slots; seeing that it hadn’t

prompted us to investigate the underlying causes.

4 Belief tracking analysis

When an ASR result is provided to Eq 1 and a new

belief state is computed, the top dialog state hypoth-

esis s∗ may differ from top ASR result u1. For-

mally, these differences are simply the result of eval-

Slot ROUTE LOCATION DATE TIME

Utts 1520 2235 173 157

ASR 769 1326 124 80

correct 50.6% 59.3% 71.7% 51.0 %

Belief 799 1246 139 63

correct 52.6% 55.7% 80.3% 40.1%

Belief +30 -80 +15 -17

− ASR +2.0% -3.6% +8.7% -10.8%

Table 1: Accuracy of the top ASR result and top be-

lief state. LOCATION includes both origin and des-

tination utterances. Most callers requested the next

bus so few were asked for DATE and TIME.

uating this equation. However, intuitively there are

four mechanisms which cause differences, and each

difference can be explained by the action of one or

more mechanisms. These mechanisms are summa-

rized here; the appendix provides graphical illustra-

tions.1

• ASR re-ranking: When computing a con-

fidence score Pasr(u), it is possible that the

entry with the highest confidence u∗ =
argmaxu Pasr(u) will not be the first ASR re-

sult, u1 6= u∗. In other words, if the confidence

score re-ranks the N-best list, this may cause s∗

to differ from u1 (Figure 7).

• Prior re-ranking: Statistical techniques use a

prior probability for each possible dialog state

– in our system, each slot value – b0(s). If an

item recognized lower-down on the N-best list

has a high prior, it can obtain the most belief,

causing s∗ to differ from u1 (Figure 8).

• Confidence aggregation: If the top belief

state s∗ has high belief, then subsequent low-

confidence recognitions which do not contain

s∗ will not dislodge s∗ from the top position,

causing s∗ to differ from u1 (Figure 9).

• N-best synthesis: If an item appears in two N-

best lists, but is not in the top ASR N-best posi-

tion in the latter recognition, it may still obtain

the highest belief, causing s∗ to differ from u1
(Figure 10).

1This taxonomy was developed for belief tracking over a

single slot. For systems which track joint beliefs over multiple

slots, additional mechanisms could be identified.
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Figure 1: Differences in accuracy between ASR and belief monitoring. “Baseline” indicates accuracy among

utterances where belief monitoring had no effect – where ASR and belief monitoring are both correct, or

both incorrect. Blue bars show cases where the top belief state s∗ is correct and the top ASR result u1 is

not; red bars show cases where u1 is correct and s∗ is not. The plot is arranged to show a running total

where blue bars increase the total and red bars decrease the total. Percentages under blue and red bars show

the change in accuracy due to each mechanism. The black bar on the right shows the resulting accuracy in

deployment.

We selected utterances where the correctness of the

top ASR result and top dialog hypothesis differed –

where one was correct and the other was not – and

labeled these by hand to indicate which of the four

mechanisms was responsible for the difference. In

a few cases multiple mechanisms were responsible;

these were labeled with the first contributing mech-

anism in the order listed above.

Figures 1 shows results. Of the four mechanisms,

prior re-ranking occurred most often, and confidence

aggregation occurred least often. Interestingly, some

mechanisms provided a performance gain for certain

slots and a degradation for others. This led us to look

at each mechanism in detail.

4.1 Evaluation of ASR Re-ranking

The recognizer used by AT&T Let’s Go produced an

N-best list ordered by decoder cost. After decoding,

a confidence score was assigned to each item on the

N-best list using a regression model that operated on

features of the recognition (Williams and Balakrish-

nan, 2009). The purpose of this regression was to

assign a probability of correctness to each item on

the N-best list; while it was not designed to re-rank

the N-best list, the design of this model did allow it

to assign a higher score to the n = 2 hypothesis than

the n = 1 hypothesis. When this happens, we say

the N-best list was re-ranked. Table 2 shows how

often ASR re-ranking occurred, and how often the
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Figure 2: Cumulative distribution of the position

of the correct item on N-Best lists for the ROUTE

when the correct item is in position 2 . . . N . Depth

is shown as a fraction of the N-Best list length.

ASR re-ranking helped and hurt ASR accuracy. We

found that re-ranking degraded ASR accuracy for all

slots, except DATE where it had a trivial positive im-

pact. This suggested a problem with our confidence

score; examining ROUTE, LOCATION, and TIME we

found that the distributions used by the confidence

score that apportions mass to items 2 . . . N were far

more concentrated on the N=2 entry than observed

in deployment (Figure 2). Investigation revealed a

bug in the model estimation code for these slots.

Where ASR re-ranking decreased ASR accuracy,

we’d expect to see it also decrease belief state ac-

curacy. Indeed, for the TIME slot, ASR re-ranking

causes a substantial decrease in belief state accu-

racy, highlighting the importance of an accurate con-

fidence score to statistical techniques. However, for

the ROUTE slot, we see an increase in belief state ac-

curacy attributed to ASR re-ranking. This can be ex-

plained by interaction between ASR re-ranking and

prior re-ranking, discussed next.

4.2 Evaluation of prior re-ranking

Whereas N-best re-ranking affects b′(s) via Pasr,

prior re-ranking affects b′(s) via the prior proba-

bility in a slot b0(s) – i.e., the initial belief, at the

start of the dialog, for each value the slot may take.

If the slot’s prior is uniform (non-informative), we

expect to see no effect on accuracy due to the prior

– indeed, Figure 1 shows that priors had no effect

on belief accuracy for DATE and TIME, which used

uniform priors.

ROUTE and LOCATION employed a non-uniform

prior, and here we’d expect to see a gain in perfor-

mance if the prior matches actual use. Both priors

were computed using a simple heuristic in which the

prior was proportional to the number of distinct bus-

stops on the route or covered by the location expres-

sion, smoothed with a smoothing factor. For exam-

ple, the phrase “downtown” covered 17 stops and its

prior was 0.018; the phrase “airport” covered 1 stop

and its prior was 0.00079. Even though historical us-

age data was available to Spoken Dialog Challenge

2010 participants (Parent and Eskenazi, 2010), we

instead chose to base priors on bus-stop counts as a

test of whether effective priors could be constructed

without access to usage data.

Overall the prior for ROUTE fit actual usage data

well (Figure 3), and we see a corresponding net gain

in belief accuracy of 3.7% = 4.0% − 0.3% in Fig-

ure 1. However the prior for LOCATION was a poor

match with actual usage (Figure 4), and this caused

a net degradation in belief accuracy of −0.9% =
0.5% − 1.4%. The key problem is that the heuris-

tic wrongly assumed all stops are equally popular:

for example, although the airport contained a sin-

gle stop (and thus received a very low prior), it was

very popular. This suggests that it would be better

to estimate priors based on usage data rather than

the bus-stop count heuristic. More broadly, it also

underscores the importance of accurate priors to sta-

tistical dialog techniques.

In the previous section, for ROUTE, it was ob-

served that ASR re-ranking degraded ASR accuracy,

yet caused an improvement in belief accuracy. The

effects of the prior explain this: the prior was often

stronger, such that an error introduced by ASR re-

ranking was cancelled by prior re-ranking. Exam-

ining cases where ASR re-ranking occurred but the

belief state was still correct confirmed this. Where

ASR re-ranking and prior re-ranking agreed, the

ASR re-ranking received credit. Looking at LOCA-

TION, the prior was essentially noise, so ASR re-

ranking errors could not be systematically canceled

by prior re-ranking in the same way – indeed, LO-

CATION belief accuracy was degraded by both ASR

re-ranking and prior re-ranking. More broadly, this

provides a nice illustration of how statistical tech-
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Slot ROUTE LOCATION DATE TIME

All utterances 1520 2235 173 157

Utterances with 505 305 3 40

ASR re-ranking 33.2% 13.6% 1.7% 25.5%

ASR re-ranked; N=2 correct 36 11 1 3

(ASR re-ranking helped) +2.4% +0.5 % +0.6 % +1.9 %

ASR re-ranked; N=1 correct 63 33 0 9

(ASR re-ranking hurt) -4.1% -1.5 % 0 % -5.7 %

Net gain from -27 -22 +1 -6

ASR re-ranking -1.8 % -1.0% +0.6% -3.8%

Table 2: ASR re-ranking.
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Figure 3: Modeled prior for ROUTE vs. observed

usage. The modeled prior was a relatively good pre-

dictor of actual usage.

niques can combine conflicting evidence – in this

case, from the prior and ASR.

4.3 Evaluation of confidence score aggregation

The conditions for confidence score aggregation oc-

cur somewhat rarely: for no slot did it have the great-

est effect on belief accuracy. It had the largest effect

on DATE; investigation revealed that belief scores for

DATE were relatively lower than for other slots (Ta-

ble 3). Since all slots used the same thresholds to

make accept/reject decisions, DATE had proportion-

ally more retries in which the top belief hypothesis

was correct, yielding more opportunities for confi-

dence aggregation to have an effect.

But why were belief values for DATE lower than

for other slots? Investigation revealed that a bug
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Figure 4: Modeled prior for LOCATION vs. ob-

served usage. The modeled prior was essentially

noise compared to actual usage.

Slot ROUTE LOCATION DATE TIME

Correct 0.90 0.89 0.60 0.73

Incorrect 0.52 0.59 0.34 0.53

Table 3: Average belief in the top dialog state hy-

pothesis when that hypothesis was correct or incor-

rect.

was causing priors for DATE to be nearly an or-

der of magnitude too small, so that each recognized

date was artificially improbable. As a result, DATE

effectively had a more stringent threshold for ac-

cept/reject decisions. Although caused by a bug, this

case study provides a more general illustration: ob-

taining sufficient belief to meet higher thresholds re-

quires more ASR evidence in the form of more re-
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Slot ROUTE LOCATION DATE TIME

Average N-best list length 5.0 2.8 2.1 4.3

N-best accuracy 27.9% 10.6% 46.0% 34.7%

Average position of correct item (n > 1) 3.3 3.2 2.6 2.9

Table 4: Descriptive statistics for N-best lists. Average N-best list length indicates the average length of all

N-best lists, regardless of accuracy. N-best accuracy indicates how often the correct item appeared in any

position n > 1 among cases where the top ASR result n = 1 was not correct. Average position of correct

item refers to the average n among cases where the correct item appeared with n > 1.

tries.

4.4 Evaluation of N-best synthesis

For DATE, N-best synthesis had a large positive ef-

fect, TIME and LOCATION a small positive effect

(or no effect), and ROUTE a small negative effect.

N-best synthesis occurs when commonality exists

across N-best lists, so we next examined the N-best

lists for each slot.

Table 4 shows three key properties of the N-best

lists. ROUTE and DATE had the most extreme values:

ROUTE had the longest N-best lists, comparatively

poor N-best accuracy, and the correct item appeared

furthest down the N-best list. By contrast, DATE had

the shortest N-best lists, the best N-best accuracy,

and the correct item appeared closest to the top. LO-

CATION and TIME were between the two. This rela-

tive ordering aligns with the observed effect that N-

best synthesis had on belief accuracy, where DATE

enjoyed a large improvement and ROUTE suffered a

small degradation.

This correlation suggests that basic properties of

the N-best list govern the effectiveness of N-best

synthesis: when N-best lists are shorter, more of-

ten contain the correct answer, and when the correct

answer is closer to the top position, N-best synthesis

can lead to large gains. When N-best lists are longer,

less often contain the correct answer, and when the

correct answer is farther from the top position, N-

best synthesis can lead to small gains or even degra-

dations.

5 Identifying belief state errors

The analysis in the preceding section assessed the

accuracy of the belief state. In practice, a system

must decide whether to accept or reject a hypoth-

esis, so it is also important to evaluate the ability

of the belief state to discriminate between correct

and incorrect hypotheses. We studied this by plot-

ting receiver operating characteristic (ROC) curves

for each slot, in Figure 5.

Where the belief state has higher accuracy

(ROUTE, DATE), the belief state shows somewhat

better ROC results, especially at higher false-accept

rates. However, gains in ROC performance appear

to be due entirely to gains in accuracy: In LOCA-

TION, belief tracking made nearly no difference to

accuracy, and the belief state shows virtually no dif-

ference to ASR in ROC performance. TIME suf-

fered degradations in both accuracy and ROC perfor-

mance. The trend appears to be that if belief tracking

does not improve over ASR 1-best, then it seems that

belief tracking does not enable better accept/reject

decision to made. Perhaps addressing the model de-

ficiencies mentioned above will improve discrimina-

tion – this is left to future work.

6 Conclusions

This paper has provided a first assessment of sta-

tistical techniques in a spoken dialog system under

real use. We have found that belief tracking is not

guaranteed to improve accuracy – its effects vary de-

pending on the operating conditions:

• Overall the effects of prior re-ranking and N-

best synthesis are largest; confidence aggrega-

tion has the smallest effect.

• When N-best lists are useful, N-best synthesis

can have a large positive effect (DATE); when

N-best lists are more noisy, N-best synthesis

has a small or even negative effect (ROUTE).

• In the presence of more rejection, confidence

aggregation can have a positive effect (DATE),
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Date

Route

Time

Figure 5: ROC curves. Red curves show the top-scored ASR hypothesis u∗ with accept/reject decisions

made using the confidence score Pasr(u); blue curves show the top belief state s∗ with accept/reject decisions

made using its belief b(s∗).

but otherwise plays a small role.

• When there exists an informative prior and it is

estimated correctly, prior re-ranking produces

an accuracy gain (ROUTE); when estimated

poorly, it degrades accuracy (LOCATION).

• The belief state, at least when using our current

models, improves accept/reject decisions only

when belief tracking produces a gain in accu-

racy over ASR. Absent an accuracy increase,

the belief state is no more informative than a

good confidence score for making accept/reject

decisions.

We believe these findings validate that statistical

techniques – properly employed – have the capabil-

ity to improve ASR robustness under real use. This

paper has focused on descriptive results; in future

work, we plan to test whether correcting the model

deficiencies and re-running belief tracking does in-

deed improve performance. For now, we hope that

this work serves as a guide to practitioners building

statistical dialog systems, providing some instruc-

tion on the importance of accurate model building,

and examples of the effects of different design deci-

sions.

Acknowledgments

Thanks to Barbara Hollister and the AT&T labeling

lab for their excellent work on this project.

137



ÍÎ ÏÎÐ ÑÒÓÔ ÔÕÖ×Ø ÙÎÚ ÔÛ×

ÜÝÞß Ù×Ñ àÐØ×Øá

âÔ ããäåæ çè ÔÎéÒÏê

ÔÛ×Ú× ÕØ Ò ëã ì

ÙÚÎÖ íÕÙÔÛ âî× ÒÓé

èÒÚï×Ô ðÔ ÍÎÑÓÔÎÑÓê

ÒÚÚÕîÕÓñð×òÎÓé ðÔ âÓé

óÚÒÓÔ âî× ÕÓ ÍÐôÐ×ØÓ×

ÒÔ ãõäöå âè÷

ðÒÏ øÐØÔ ÔÛ× éÒÏ ÏÎÐ

ÑÒÓÔ÷

ðÒÏ øÐØÔ ÔÛ× ÔÕÖ× ÏÎÐ

ÑÒÓÔ÷

ùúßûüÜýþÿ *Û×Ú× ÒÚ× ÖÎÚ×

àÐØ×Ø ÔÛÒÓ ÔÛ× ëãì ÔÛÒÔ

ÚÐÓ ÙÚÎÖÍÎÑÓÔÎÑÓ ÔÎ

ÍÐØôÐ×ØÓ×÷ ���� Ô×�� ÏÎÐ
ÒàÎÐÔ Ò�� ÎÙ ÔÛ×Ö÷

��Ö ØÎÚÚÏê � òÒÓ�Ô ÙÕÓé

ÒÓÏ àÐØ×Ø ÒÔ Ò�� ÔÛÒÔ
ÚÐÓ ÙÚÎÖ .×ÓÓÏÑÎÎé

ÔÎ èò.××Ø	ÎÚÔ÷ �
òÛ×òï×é ÚÎÐÔ× ëãì

ÒÓé � Ò�ØÎ òÛ×òï×é Ò��
ÔÛ× ÎÔÛ×Ú àÐØ ÚÎÐÔ×Ø

� ïÓÎÑ ÒàÎÐÔ ÔÎÎ÷

0Û×Ú× ÒÚ× ÏÎÐ

�×ÒîÕÓñ ÙÚÎÖá

���Ý����


*×��Ö× øÐØÔ ÔÛ× �ÒØÔ
çÕÔÔØàÐÚñÛ

ÜÝû��ü��üü�ÏÎÐ�Ú×
�×ÒîÕÓñ ÙÚÎÖ÷

� Û×ÒÚé âîÒ�ÎÓê àÐÔ
� éÎÓ�Ô ÛÒî× ÒÓÏ

ØÔÎ	Ø ÕÓ ÔÛÒÔ

Ó×ÕñÛàÎÚÛÎÎé÷

0Û×Ú× ÒÚ× ÏÎÐ

ñÎÕÓñ ÔÎá

���Ý����


*×��Ö× øÐØÔ ÔÛ× �ÒØÔ
çÕÔÔØàÐÚñÛ

ÜÝû��ü��üü�ÏÎÐ�Ú×
ñÎÕÓñ ÔÎ÷

� Û×ÒÚé +×��×îÐ×ê
àÐÔ � éÎÓ�Ô ÛÒî× ÒÓÏ

ÚÎÐÔ×Ø ÔÛÒÔ ÚÐÓ ÙÚÎÖ

éÎÑÓÔÎÑÓ ÔÎ

+×��×îÐ×÷

ðÒÏ Ò àÐØ ÚÎÐÔ×ê ÎÚ ØÒÏ ��Ö
ÓÎÔ ØÐÚ×÷

� ÔÛÎÐñÛÔ ÏÎÐ ØÒÕé ãöâ

àÐÔ � éÎÓ�Ô ÛÒî×
ØòÛ×éÐ�×Ø ÙÎÚ ÔÛÒÔ ÚÎÐÔ×÷

3×	×ÒÔê Ó×�Ôê 	Ú×îÕÎÐØ

���Ý����


ðÔÒÚÔ

���� ����� òÎÚÚ×Ø	ÎÓé ÔÎ

éÕÙÙ×Ú×ÓÔ �ÒÓñÐÒñ×ÖÎé×�Ø

�����
à×�Õ×Ù ØÔÒÔ×

������
à×�Õ×Ù ØÔÒÔ×

 �����!����
à×�Õ×Ù ØÔÒÔ×

 !��
à×�Õ×Ù ØÔÒÔ×

"�#�
à×�Õ×Ù ØÔÒÔ×

��� $�%�� òÎÚÚ×Ø	ÎÓé ÔÎ

éÕÙÙ×Ú×ÓÔ à×�Õ×Ù ØÔÒÔ×Ø

Figure 6: Flowchart of AT&T Let’s Go. The system asks for the bus route, then the origin bus stop, then

the destination bus stop. If the user does not want the next few buses, the system also asks for the date and

time. Prompts shown are paraphrases; actual system prompts include example responses and are tailored to

dialog context. Different language models are used for each slot, and separate belief states are maintained

over each of these 5 slots. In the analysis in this paper, results for the origin and destination slots have been

combined to form the LOCATION slot.
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Appendix: Mechanism illustrations

This appendix provides graphical illustrations of

each of the four mechanisms that can cause the top

ASR hypothesis to be different from the top belief

state hypothesis. These examples were taken from

logs of calls with real users, although some surface

forms have been simplified for space.

At the top of each panel is the system action taken.

The user’s true response is shown in italics in the

left-most column. The second column shows the

top 7 entries from the ASR N-best list, displayed

in the order produced by the speech recognition en-

gine. The third column shows the confidence score –

the local probability of correctness assigned to each

ASR N-best entry. The last column shows the re-

sulting belief state, sorted by the magnitude of the

belief. Correct entries are shown in bold red.

ASR re-ranking and prior re-ranking occur within

one turn, and confidence aggregation and N-best

synthesis occur across two turns. These examples

all show cases where the belief state is correct and

the ASR is incorrect; however, the opposite also oc-

curs of course.

ASR 
Result

Conf
Score

Belief 
State

seven PM

seven AM

ten AM

--

--

--

--

seven AM

seven PM

ten AM

--

--

--

--

1

2

3

4

5

6

7

User 
action

"seven AM"

System : "What time are you leaving?"

Figure 7: Illustration of ASR re-ranking: The correct ASR hypothesis (“seven AM”) is in the n = 2
position, but it is assigned a higher confidence score than the misrecognized n = 1 entry “seven PM”.

TIME uses a flat prior, so the higher confidence score results in “seven AM” attaining the highest belief.

ASR 
Result

Conf
Score

Belief 
State

84C

54C

--

--

--

--

--

54C

84C

--

--

--

--

--

1

2

3

4

5

6

7

User 
action

"54C"

System : "Say a bus route, or say I'm not sure."

Figure 8: Illustration of Prior re-ranking: The correct ASR hypothesis (“54C”) is in the n = 2 position,

and it is assigned less confidence than the mis-recognized n = 1 entry, “84C”. However, the prior on 54C

is much higher than on 84C, so 54C obtains the highest belief.
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ASR 
Result

Conf
Score

Belief 
State

tomorrow

--

--

--

--

--

--

tomorrow

--

--

--

--

--

--

1

2

3

4

5

6

7

User 
action

"tomorrow"

ASR 
Result

Conf
Score

Belief 
State

july 8th

july 3rd

tuesday

sunday

july 5th

july 6th

--

tomorrow

&july 8th

july 3rd

tuesday

sunday

july 5th

july 6th

1

2

3

4

5

6

7

User 
action

"tomorrow"

System : "Say the day you want, like today." System : "Sorry, say the day you want, like Tuesday."

Figure 9: Illustration of Confidence aggregation: In the first turn, “tomorrow” is recognized with medium

confidence. In the second turn, “tomorrow” does not appear on the N-best list; however the recognition

result has very low confidence, so this misrecognition is unable to dislodge “tomorrow” from the top belief

position. At the end of the second update, the belief state’s top hypothesis of “tomorrow” is correct even

though it didn’t appear on the second N-best list.

ASR 
Result

Conf
Score

Belief 
State

ridge ave

dallas ave

vernon ave

linden ave

highland ave

kelly ave

--

ridge ave

kelly ave

dallas ave

linden ave

highland ave

vernon ave

--

1

2

3

4

5

6

7

User 
action

"highland 
ave"

heron ave

herman ave

highland ave

--

--

--

--

highland ave

'ridge ave

kelly ave

heron ave

dallas ave

herman ave

linden ave

ASR 
Result

Conf
Score

Belief 
State

1

2

3

4

5

6

7

User 
action

"highland 
ave"

System : "Where are you leaving from?" System : "Sorry, where are you leaving from?"

Figure 10: Illustration of N-best synthesis: In the first turn, the correct item “highland ave” is on the

ASR N-best list but not in the top position. It appears in the belief state but not in the top position. In

the second turn, the correct item “highland ave” is again on the ASR N-best list but again not in the top

position. However, because it appeared in the previous belief state, it obtains the highest belief after the

second update. Even though “highland ave” was mis-recognized twice in a row, the commonality across the

two N-best lists causes it to have the highest belief after the second update.
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“The day after the day after tomorrow?” A machine learning approach to
adaptive temporal expression generation:
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Abstract

Generating Temporal Expressions (TE) that
are easy to understand, unambiguous, and rea-
sonably short is a challenge for humans and
Spoken Dialogue Systems. Rather than devel-
oping hand-written decision rules, we adopt a
data-driven approach by collecting user feed-
back on a variety of possible TEs in terms
of task success, ambiguity, and user prefer-
ence. The data collected in this work is freely
available to the research community. These
data were then used to train a simulated user
and a reinforcement learning policy that learns
an adaptive Temporal Expression generation
strategy for a variety of contexts. We evalu-
ate our learned policy both in simulation and
with real users and show that this data-driven
adaptive policy is a significant improvement
over a rule-based adaptive policy, leading to
a 24% increase in perceived task completion,
while showing a small increase in actual task
completion, and a 16% decrease in call dura-
tion. This means that dialogues are more ef-
ficient and that users are also more confident
about the appointment that they have agreed
with the system.

1 Introduction

Temporal Expressions are linguistic expressions that
are used to refer to a date and are often a source of
confusion in human-human, human-computer and
text interactions such as emails and instant messag-
ing. For example, “Let’s meet next Sunday”– “do
you mean Sunday this week or a week on Sunday?”.
(Mccoy and Strube, 1999) state that changes in tem-
poral structure in text are often indicated by either

cue words and phrases (e.g. “next Thursday”, “this
week”, “tomorrow”), a change in grammatical time
of the verb (e.g. present tense versus future tense),
or changes in aspect (e.g. atomic versus extended
events versus states as defined by (Moens and Steed-
man, 1988)). In this study, we will concentrate on
the first of these phenomena, generating TEs with
the optimal content and lexical choice.

Much work in the field of Natural Language Pro-
cessing concerns understanding and resolving these
temporal expressions in text (Gerber et al., 2002;
Pustejovsky et al., 2003; Ahn et al., 2007; Mazur
and Dale, 2007; Han et al., 2006), however, little
work has looked at how best to plan and realise tem-
poral expressions in order to minimize ambiguity
and confusion in a Spoken Dialogue System (SDS).
(Reiter et al., 2005) presented a data driven ap-
proach to generating TEs to refer to time in weather
forecast information where appropriate expressions
were identified using contextual features using su-
pervised learning. We adopt an adaptive, data-driven
reinforcement learning approach instead. Similar
data-driven approaches have been applied to infor-
mation presentation (Rieser et al., 2010; Walker et
al., 2007) where each Natural Language Generation
(NLG) action is a sequential decision point, based on
the current dialogue context and expected long-term
reward of that action. A data-driven approach has
also been applied to the problem of referring expres-
sion generation in dialogue for expert and novice-
users of a SDS (Janarthanam and Lemon, 2010).
However, to date, there has been no previous work
on adaptive data-driven approaches for temporal re-
ferring expression generation, where uncertainty in
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the stochastic environment is explicitly modelled.
The data-driven approach to temporal expression

generation presented here is in the context of ap-
pointment scheduling dialogues. The fact that there
are multiple ways that a time slot can be referred to
leads to an interesting NLG problem of how best to
realise a TE for a particular individual in a particular
context for certain domains. For example, the fol-
lowing expressions all vary in terms of length, ambi-
guity, redundant information and users’ preference:
“next Friday afternoon” or “Friday next week at the
same time”, or “in the afternoon, a week on Friday”.

Temporal Expressions contain two types of refer-
ences: absolute references such as “Tuesday” and
“12th January”, and relative references such as “to-
morrow” and “this Tuesday”. Generating TEs there-
fore, involves both in selecting appropriate pieces of
information (date, day, time, month, and week) to
present and deciding how to present them (absolute
or relative reference).

Our objective here is to convey a target appoint-
ment slot to users using an expression that is optimal
in terms of the trade-off between understandability,
length and user preference.

2 Methodology

We address the issue of generating TEs by adopting
a data-driven approach that has four stages. Firstly,
we define Temporal Expression Units (TEU) as de-
scribed in Section 2.1. Secondly, we design and im-
plement a web-based data collection, gathering met-
rics on the TEUs in various contexts for a variety
of date types (Section 3). Thirdly, we train a user
simulation and use it to learn a policy using rein-
forcement learning techniques that generates the op-
timal combination of TEUs for each context (Sec-
tion 4). Finally, we deploy and evaluate this pol-
icy in a Spoken Dialogue System for appointment
scheduling and show that our learned policy per-
forms better than a hand-written, adaptive one (re-
sults presented in Section 5).

2.1 Temporal Expression Units

For this study, TEs are broken down into 5 cate-
gories or units (TEUs) presented in a fixed order:
DAY, DATE, MONTH, WEEK and TIME. Each of
these units can be expressed relative to the current

TEU Choices
DAY abs, rel, rc, nn
DATE abs, nn
MONTH abs, nn
WEEK abs, rel, nn
TIME abs, rc

Table 1: TEU choices where abs is absolute, rel is rela-
tive, rc is relative to context and nn is none

day and to the current context (i.e. previously men-
tioned dates). Specifically, there are 3 unit attributes:
absolute (e.g. DAY=abs “Tuesday”); relative to cur-
rent day (e.g. DAY=rel “tomorrow”); and relative to
context (e.g. DAY=rc “the following day”).

Certain restrictions on possible TEU combina-
tions were imposed, for example, DATE=rc and
DAY=rel were combined to be just DAY=rel, and
some combinations were omitted on the basis that
it is highly unlikely that they would be uttered
in natural speech, for example WEEK=rel and
MONTH=abs would result in “this week in Septem-
ber”. Finally, every TE has to contain a time (am or
pm for this application). The possible combinations
are summarised in Table 1.

3 Data Collection

The data collection experiment was in two parts
(Task 1 and Task 2) and was designed using the We-
bexp experimental software1. Webexp is a client-
server set up where a server application hosts the ex-
periment and stores the experimental files, logs and
results. The client side runs an applet on the user’s
web-browser.

In Task 1, participants listened to an audio file
containing a TE generated from absolute and rela-
tive TEUs (see Figure 1). No relative-context (rc)
TEUs were used in Task 1 since the dialogue ex-
cerpt presented was in isolation and therefore had
no context. Each participant was asked to listen to
10 different audio files in a sequence corresponding
to a variety of dates randomly chosen from 8 pos-
sible dates. The participant then had to identify the
correct appointment slot that the system is referring
to. There is scope for the participant to add multi-
ple answers in order to capture potential ambiguity

1http://www.webexp.info
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Figure 1: Screen shot of Task 1 in the on-line data collection experiment

of a TE, and we report on this below. The 8 dates
that were used to generate the TEs fell into a two
week period in a single month which is in-line with
the evaluation set-up of the appointment scheduling
SDS discussed in Section 5.3.

For each date, the TE was randomly picked from a
set of 30 possible combinations of TEUs. Each TEU
was generated by a rule-based realiser and synthe-
sized using the Baratinoo synthesizer (France Tele-
com, 2011). This realiser generates text from a can-
didate list for each TEU based on the given date.
For example, if the slot currently being discussed
is Tuesday 7th, the realiser would generate “tomor-
row” for DAY=rel; if the date in discussion was
Wednesday 8th then DAY=rel would be realised as
“the day after tomorrow”. There was potential for
overlap of stimuli, as any given TE for any given
date may be assessed by more than one participant.

Task 2 of the experiment was in two stages. In the
first stage (Task 2A), the participants are given to-
day’s date and the following dialogue excerpt; Op-
erator: “We need to send out an engineer to your
home. The first available appointment is . . .” (see
Figure 2). They are then asked to listen to 5 audio
files of the system saying different TEs for the same

date and asked to rate preference on a scale of 1-6
(where 1 is bad and 6 is great.) For the second stage
(Task 2B), the dialogue is as follows; Operator: “so
you can’t do Wednesday 8th September in the morn-
ing.” and then the participants are asked to listen
to 5 more audio files that are generated TEs includ-
ing relative context such as “how about Thursday at
the same time?”. This two-stage process is then re-
peated 4 times for each participant.

Table 2 summarizes the metrics collected in the
different parts of the experiment. The metric Dis-
tance is calculated in terms of the number of slots
from the current date to the target date (TD). In-
stances were grouped into four distance groups: G1:
TD is 1-2 slots away; G2: TD is 3-6 slots away; G3:
TD is 7-11 slots away and G4: TD more than 11
slots away. P replay is calcuated by the total num-
ber of replays divided by the total number of plays
for that temporal expression, i.e. the probability that
the temporal expression played is requested to be re-
played. P ambiguous is calculated by the number of
times a given temporal expression is given more than
1 interpretation divided by the total number of times
that the same given referring expression is answered.

In total there were 73 participants for Task 1 and
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Figure 2: Screen shot of Task 2 in the on-line data collection experiment

730 TE samples collected. Although Task 2 directly
followed on from Task 1, there was a significant
drop out rate as only 48 participants completed the
second task resulting in 1,920 TE samples. Partici-
pants who completed both tasks were rewarded by a
chance to win an Amazon voucher.

3.1 Data Analysis

Figure 3 shows various metrics with respect to TE
absoluteness and relativeness is the number of ab-
solute and relative TEUs respectively. These two
graphs represent the state space that the genera-
tion policy described in Section 4 is exploring, trad-
ing off between various features such as Length,
taskSuccess and userPref.

As we can see, there is a tendency for average
taskSuccess to increase as absoluteness increases
whereas, for relativeness the distribution is more
even. The TE with the greatest taskSuccess has an

absoluteness of 4 and zero relativeness: DATE=abs,
MONTH=abs, WEEK=abs, TIME=abs (e.g. “11th
September, the week starting the 10th, between 8am
and 10am”) and the TE with the least taskSuccess
has an absoluteness of only 2, again with no rela-
tiveness: DATE=abs, TIME=abs, (e.g. “8th between
8am and 10am”).

Average userPref stays level and then decreases
if absoluteness is 5. We infer from this that al-
though long utterances that are completely explicit
are more clear in terms of taskSuccess, they are not
necessarily preferred by users. This is likely due
to TE length increasing. On average, the inclusion
of one relative expression is preferred over none at
all or two. The most preferred TE has an abso-
luteness of 3 with a relativeness of 2: DAY=rel,
DATE=abs, MONTH=abs, WEEK=rel, TIME=abs
(e.g. “Tomorrow the 7th of September, this week,
between 8am and 10am”).
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Figure 3: Graph showing the trade-offs between various metrics with respect to absoluteness and relativeness (number
of absolute/relative TEUs) in terms of probabilities or normalised values.

Metric Description Task
P ambiguous Probability that the expres-

sion is ambiguous to the
user

1

taskSuccess Correct slot identified 1
P replay Probability of replay (mea-

sure of understandability)
1 & 2

Length Expression length in terms
of number of TEUs that
are non null divided by the
total number of possible
TEUs (5)

1 & 2

wordLength Expression length in words
normalised over max num
of words (15)

1 & 2

userPref Preference rating of audio
from 1-6

2

Distance Distance from target date
(TD) to current date in
terms of number of slots

1 & 2

Table 2: Metrics collected in various parts of the experi-
ment

The probability of ambiguity and replay does not
seem to be affected by absoluteness. The most am-
biguous TE has an absoluteness of 3 and zero rela-
tiveness: DAY=abs MONTH=abs TIME=abs, (e.g.
“Tuesday September between 8am and 10am”) in-
dicating that a date is needed for precision. The
TEs that the participants were most likely to replay
tended to be short e.g. “Tomorrow at the same time”.
This may be due to the clarity of the speech synthe-
siser.

4 Learning a TE generation policy

Reinforcement learning is a machine learning ap-
proach based on trial and error learning, in which
a learning agent learns to map sequences of “opti-
mal” actions to environment or task states (Sutton
and Barto, 1998). In this framework the problem
of generating temporal expressions is presented as
a Markov Decision Process. The goal of the learn-
ing agent is to learn to choose those actions that ob-
tain maximum expected reward in the long run. In
this section, we present the reinforcement learning
setup for learning temporal expression generation
policies.

4.1 Actions and States
In this learning setup, we focus only on generating
the formal specification and treat the set of TEU
choices as the sequential actions of the learning
agent. Table 1 presents the choices that are available
for each TEU.

The actions are taken based on two factors: the
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distance (in terms of time slots: morning or after-
noon appointments) between (1) the current date
and the target slot and (2) the current date and the
slot in context. Based on the distance, the target
slot was classified to belong to one of the four dis-
tance groups (G1-G4). The slot in context repre-
sents whether there was any other slot already men-
tioned in the conversation so far, so that the system
has an option to use “relative context” expressions
to present day and time information. Information
concerning the target slot’s group and the slot in con-
text make up the state space of the Markov Decision
Process (MDP).

4.2 User Simulation

We built a user simulation to simulate the dialogue
behaviour of a user in appointment scheduling con-
versations based on the data from real users de-
scribed in Section 3. It responds to the TE used
by the system to refer to an appointment slot. It
responds by either accepting, rejecting, or clarify-
ing the offered slot based on the user’s own calen-
dar of available slots. For instance, the simulated
user rejects an offered slot if the user is not avail-
able at that time. If they accept or reject an offered
slot, the user is assumed to understand the TE unam-
biguously. However, if the user is unable to resolve
the appointment slot from the TE, it responds with a
clarification request. The simulation responded with
a dialogue action (Au,t) to TEs based on the sys-
tem’s dialogue act (As,t), system’s TE (TEs,t). The
following probabilistic model was used to generate
user dialogue actions:

P (Au,t|As,t, TEs,t, G,C, Cal)

In addition to TEs,t and As,t, other factors such as
distance between the target slot and the current slot
(G), the previous slot in context (C), and the user’s
calendar (Cal) were also taken into account. G is ei-
ther G1, G2, G3 or G4 as explained in Section 3. The
User’s dialogue action (Au,t) is one of the three: Ac-
cept slot, Reject slot or Request Clarification. The
probability of clarification request was calculated as
the average of the ambiguity and replay probabilities
seen in real user data.

4.3 Reward function
The learning agent was rewarded for each TE that it
generated. The reward given to the agent was based
on trade-offs between three variables: User prefer-
ence (UP), Length of the temporal expression (L),
and Clarification request probability (CR). UP for
each TE is obtained from Task 2 of the data collec-
tion. In the following reward function, UP is nor-
malised to be between 0 and 1. L is based on number
of TEUs used. The maximum number of TEUs that
can be used is 5 (i.e. DAY, DATE, WEEK, MONTH,
TIME). L is calculated as follows:

Length of TE (L) = No. of used TEUs
Max. no. of TEUs

The clarification request (CR) is set to be 1 if the
user responds to the TE with a Request Clarification
and 0 otherwise. Reward is therefore calculated on
a turn-by-turn basis using the following formula:
Reward = UP ∗ 10.0 − L ∗ 10.0 − CR ∗ 10.0

In short, we chose a reward function that penalises
TEs that are long and ambiguous, and which rewards
TEs that users prefer. It also indirectly rewards task
success by penalising ambiguous TEs resulting in
clarification requests. This trade-off structure is evi-
dent from the data collection where TEs that are too
long are dispreferred by the users (see Figure 3). The
maximum possible reward is 6 (i.e. UP=1, CR=0,
L=2/5) and the minimum is -20 (i.e. UP=0, CR=1,
L=1). Note that other reward functions could be ex-
plored in future work, for example maximising only
for user preference or length.

4.4 Training
We trained a TE generation policy using the above
user simulation model for 10,000 runs using the
SARSA reinforcement learning algorithm (Sutton
and Barto, 1998). During the training phase, the
learning agent generated and presented TEs to the
user simulation. When a dialogue begins, there is no
appointment slot in context (i.e. C = 0). However,
if the user rejects the first slot, the dialogue system
sets C to 1 and presents the next slot. This is again
reset at the beginning of the next dialogue. The
agent was rewarded at the end of every turn based
on the user’s response, length of the TE, and user
preference scores as shown above. It gradually ex-
plored all possible combinations of TEUs and identi-
fied those TEUs in different contexts that maximize
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Figure 4: Learning curve

the long-term reward. Figure 4 shows the learning
curve of the agent.

Table 3 presents the TE generation policy learned
by the agent. As one can observe, it used a mini-
mum number of TEUs to avoid length penalties in
the reward. In all cases, MONTH and WEEK in-
formation have not been presented at all. For target
slots that were closest (in group G1) and the farthest
(in group G4), it used relative forms of day (e.g. “to-
morrow”, “next Tuesday”, etc.). This is probably
because users dispreferred day information for in-
between slots (e.g. “the day after the day after to-
morrow”). Also, MONTH information may have
been considered to be irrelevant due to the fact that
the two week window over which the data has been
collected do not span over two different months.

5 Evaluation

In this section, we present the baseline policies that
were evaluated along with the learned policy. We
then present the results of evaluation.

Slots Specification learned
1-2 DAY=rel;DATE=abs;MONTH=nn;
> 11 WEEK=nn;TIME=abs
3-11 DAY=nn;DATE=abs;MONTH=nn;

WEEK=nn;TIME=abs

Table 3: Learned policy

5.1 Baseline policies

The following are the baseline TEG policies:

1. Absolute policy: always use absolute for-
mats for all TEUs (i.e. DAY=abs; DATE=abs;
MONTH=abs; WEEK=abs; TIME=abs)

2. Minimal policy: always use a minimal format
with only date, month and time information in
their absolute forms (i.e. DAY=nn; DATE=abs;
MONTH=abs; WEEK=nn; TIME=abs)

3. Random policy: select possible formats ran-
domly for each TEU.
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TEG Policy Average reward
Learned -0.071* (±3.75)
Absolute -4.084 (±4.36)
Minimal -1.340 (±4.2)
Random -8.21 (±7.72)

Table 4: Evaluation with simulated users (* p < 0.05,
two-tailed independent samples t-test)

5.2 Results

We evaluated the learned policy and the three other
hand-coded baseline TE generation policies with our
user simulation model. Each policy generated 1,000
TEs in different states. Table 4 present the results
of evaluation with simulated users. On average, the
learned policy scores higher than all the baseline
policies and the differences between the average re-
ward of the learned policy and the other baselines
are statistically significant. This shows that target
slots can be presented using different TEs depending
on how far they are from the current date and such
adaptation can produce less ambiguous, shorter and
user preferred expressions.

5.3 Evaluation with real users

The policy was also integrated into an NLG com-
ponent of a deployed Appointment Scheduling spo-
ken dialogue system. Please note that this is differ-
ent from the web environment in which the training
data was collected. Our data-driven policy was acti-
vated when the system informs the user of an avail-
able time slot. This system was compared to the
exact same system but with a rule-based adaptive
baseline system. In the rule-based policy MONTH,
DATE and TIME were always absolute, DAY was
relative if the target date was less than three days
away (i.e. “today, tomorrow, day after tomorrow”),
and WEEK was always relative (i.e. “this week, next
week”). All 5 information units were included in the
realisation (e.g. “Thursday the 15th July in the after-
noon, next week”) although the order was slightly
different (DAY-DATE-MONTH-TIME-WEEK).

In this domain, the user tries to make an appoint-
ment for an engineer to visit their home. Each user
is given a set of 2-week calendars which shows their
availability and the goal is to arrange an appoint-
ment when both they and the engineer are available.

There were 12 possible scenarios that were evenly
rotated across participants and systems. Each sce-
nario is categorised in terms of scheduling difficulty
(Hard/Medium/Easy). Scheduling difficulty is cal-
culated for User Difficulty (UD) and System Diffi-
culty (SD) separately to assess the system’s mixed
initiative ability. Scheduling difficulty is calculated
as the ordinal of the first session that is free for both
the User and the System. Hard scenarios are with an
ordinal of 3 or 4; Medium with an ordinal of 2, and
Easy with an ordinal of 1. There are 4 scenarios in
each of these difficulty categories for both the user
and system. To give an example, in Scenario 10,
the user can schedule an appointment on Wednes-
day afternoon but he/she also has one free session
on the previous Tuesday afternoon when the engi-
neer is busy therefore UD = 2. For the system, in
this scenario, the first free session it has is on the
Wednesday afternoon therefore SD=1. In this case,
the scenario is easier for the system than the user be-
cause the system could just offer the first session that
it has free.

605 dialogues were collected and analysed. The
system was evaluated by employees at France Tele-
com and students of partner universities who have
never used the appointment scheduling system be-
fore. After each scenario, participants were then
asked to fill out a questionnaire on perceived task
success and 5 user satisfaction questions on a 6-
point Likert Scale (Walker et al., 2000). Results
from the real user study are summarised in Table 5.
The data-driven policy showed significant improve-
ment in Perceived Task Success (+23.7%) although
no significant difference was observed between the
two systems in terms of Actual Task Success (Chi-
square test, df=1). Perceived Task Success is users’
perception of whether they completed the task suc-
cessfully or not. Overall user satisfaction (the aver-
age score of all the questions) was also significantly
higher (+5%)2. Dialogues with the learned policy
were significantly shorter with lower Call Duration
in terms of time (-15.7%)2 and fewer average words
per system turn (-23.93%)2. Figure 5 shows the
length results in time for systems of varying UD and
SD. We can see that the data-driven adaptive policy
consistently results in a shorter dialogue across all
levels of difficulty. In summary, these results show
that using a policy trained on the data collected here
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Parameters Learned Baseline
TEG TEG

Actual Task Success 80.05% 78.57%
Perceived Task Success 74.86%* 60.50%
User satisfaction 4.51* 4.30
No. system turns 22.8 23.2
Words per system turn 13.16* 17.3
Call duration 88.60 sec * 105.11 sec

Table 5: Results with real users (* statistically significant
difference at p<0.05)

results in shorter dialogues and greater confidence
in the user that they have had a successful dialogue.
Although the learned policy was trained to generate
optimal TEs within a two week window and there-
fore is not general policy for all TE generation prob-
lems, we believe that the data-driven approach that
we have followed can generalise to other TE gener-
ation tasks.

Figure 5: Graph comparing length of dialogues for user
(UD) and system difficulty (SD)

6 Conclusion

We have presented a principled statistical learning
method for generating Temporal Expressions (TEs)
that refer to appointment slots in natural language
utterances. We presented a method for gathering
data on TEs with an on-line experiment and showed
how we can use these data to generate TEs us-
ing a Markov Decision Process which can be opti-
mised using reinforcement learning techniques. We
showed that a TEG policy learned using our frame-

2independent two-tailed t-test p < 0.05

work performs signifcantly better than hand-coded
adaptive policies with real users as well as with sim-
ulated users.

The data collected in this work has been freely
released to the research community in 20113.
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Abstract

Detecting levels of interest from speakers
is a new problem in Spoken Dialog Under-
standing with significant impact on real world
business applications. Previous work has fo-
cused on the analysis of traditional acous-
tic signals and shallow lexical features. In
this paper, we present a novel hierarchical fu-
sion learning model that takes feedback from
previous multistream predictions of promi-
nent seed samples into account and uses a
mean cosine similarity measure to learn rules
that improve reclassification. Our method is
domain-independent and can be adapted to
other speech and language processing areas
where domain adaptation is expensive to per-
form. Incorporating Discriminative Term Fre-
quency and Inverse Document Frequency (D-
TFIDF), lexical affect scoring, and low and
high level prosodic and acoustic features, our
experiments outperform the published results
of all systems participating in the 2010 Inter-
speech Paralinguistic Affect Subchallenge.

1 Introduction

In recent years, there has been growing interest in
identifying speakers’ emotional state from speech
(Devillers and Vidrascu, 2006; Ai et al., 2006; Lis-
combe et al., 2005). For Spoken Dialog Systems
(SDS), the motivation has been to provide users with
improved over-the-phone services by recognizing
emotions such as anger and frustration and direct-
ing users to a human attendant. Other forms of par-
alinguistic information which researchers have at-
tempted to detect automatically include other classic

emotions, charismatic speech (Biadsy et al., 2008),
and deceptive speech (Hirschberg et al., 2005).
More recently, the 2010 Interspeech Paralinguisic
Affect Subchallenge sparked interest in detecting a
speaker’s level of interest (LOI), including both the
speaker’s interest in the topic and his/her willingness
to participating in the dialog (Schuller et al., 2010).
Sensing users’ LOI in SDS should be useful in sales
domains, political polling, or service subscription.

In this paper, we present a similarity-based hi-
erarchical regression approach to predicting speak-
ers’ LOI. The system has been developed based on
the hierarchical fusion learning of lexical and acous-
tic cues from speech. We investigate the contri-
bution of a novel source of information, Discrimi-
native TFIDF; lexical affect scoring; and prosodic
event features. Inspired by the successful use of
Pseudo Relevance Feedback (Tao and Zhai, 2006)
techniques in Information Retrieval and the cosine
similarity measure (Salton, 1989) in Data Mining,
we design a novel learning model which takes the
multistream prediction feedback that is initially re-
turned from seed samples 1 and uses a mean cosine
similarity measure to calculate the distance between
the new instance and prominent seed data points in
the Euclidean Space. We then add this similarity
measure as a new feature to perform a reclassifi-
cation. Our main contributions in this paper are:
(1) the novel Discriminative TFIDF approach for
lexical modeling and keywords spotting; (2) using
lexical affect scoring and language modeling tech-
niques to augment lexical modeling; (3) combin-

1Seed samples are from a random small subset in the test
set.
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ing (1) and (2) with additional low-level prosodic
features together with voice quality and high-level
prosodic event features; and (4) introducing a mul-
tistream prediction feedback and mean cosine simi-
larity based fusion learning approach.

We outline related work in Section 2. The corpus,
system features, and machine learning approaches
are described in Section 3. We describe our experi-
mental results in Section 4 and conclude in Section
5.

2 Related Work

Schuller et al. (2006) were among the first to study
LOI from conversational speech. They framed this
task as either a three-way or binary classification,
extracting standard acoustic features and building a
bag-of-words vector space model for lexical anal-
ysis. By linearly combining lexical features with
acoustic features, they achieved high F-measures
when using Support Vector Machine (SVM). Since
a bag-of-words model is a naive model, there may
be more valuable lexical information that it cannot
capture. Moreover, as lexical and acoustic features
are extracted from different domains, a single layer
linear combination may not yield the optimal results.

In 2010, Interspeech launched a Paralinguistic
Challenge (Schuller et al., 2010) that included the
task of detecting LOI from speech as a subchallenge.
Competitors were given conversational speech cor-
pora with annotated LOI, baseline acoustic features,
and two baseline results. The evaluation metric used
for the challenge was primarily the cross correlation
2 (CC) measure (Grimm et al., 2008), with mean
linear error 3 (MLE) also taken into consideration.
The baseline was built only on acoustic features, and
the CC and MLE for Training vs. Development sets
were 0.604 and 0.118. For the test data, CC and
MLE scores of 0.421 and 0.146 were observed.

Gajsek et al. (2010) participated in this challenge
and proposed the use of Gaussian Mixture Models
as Universal Background Model (GMM-UBM) with
relevance MAP estimation for the acoustic data.
This is based on the success of GMM-UBM mod-

2Pearson product-moment correlation coefficient is a mea-
sure of the linear dependence that is widely used in regression
settings.

3MLE is a regression performance measure for the mean ab-
solute error between an estimator and the true value.

eling in the speaker identification tasks (Reynolds et
al., 2000). They achieved CC and MLE of 0.630 and
0.123 in the training vs. development condition, but
CC and MLE of only 0.390 and 0.143 in the testing
condition. This performance may have been due to
the fact that different subsets of the corpus include
different speakers: acoustic features alone may not
be robust enough to capture the speaker variation.

Jeon et al. (2010) approach won the 2010 Sub-
challenge for this task. In addition to the baseline
acoustic features provided, they used term frequency
and a subjectivity dictionary to mine the lexical in-
formation. In addition to a linear combination of
all lexical and acoustic features, they designed a hi-
erarchical regression framework with multiple level
of combinations. Its first two combiners tackle the
prediction problems from different acoustic classi-
fiers and then uses a final stage SVM classifier to
combine the overall acoustic predictions with lexi-
cal predictions to form the final output. They report
a result of 0.622 for CC and 0.115 for MLE. On the
test set, they report CC and MLE of 0.428 and 0.146
respectively.

3 Our System

Unlike previous approaches, we emphasize lexical
modeling, to counter problems of speaker variation
in acoustic features (Jeon et al., 2010). We propose
an improved version of standard TFIDF (Spärck
Jones, 1972) — Discriminative TFIDF — which
computes the IDF score of the target word by dis-
criminating its different mean LOI score tags during
training to produce more informative keyword spot-
ting in testing.

In addition to Discriminative TFIDF, we uti-
lize the Dictionary of Affect in Language (DAL)
(Whissell, 1989) to detect lexical affect and com-
pute an utterance-level affect score. To maximize
the coverage of lexical cues, we also train trigram
language models on the training data to capture con-
textual information and use the test output log like-
lihoods and perplexities as features. Besides these
lexical features and the 1582 baseline acoustic fea-
tures from the Interspeech Paralinguistic Challenge,
we extract 32 additional prosodic and voice quality
features using Praat (Boersma, 2001). In order to
model sentence-level prosodic events, we use Au-
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ToBI (Rosenberg, 2010) to extract pitch accent and
phrase-based features. These features are described
in detail in Section 3.2.

The simplest approach to classification is to in-
clude all features in a single classifier. However,
different features streams include different number
of features, extracted and represented in different
domains. The Sum Rule approach (Kittler et al.,
1998) is an early solution to this classifier combi-
nation problem. Instead, we train 1st-tier classi-
fiers for each of the feature streams and then train
a 2nd-tier classifier to weight the posterior predic-
tions of the 1st-tier classifiers. We further improve
this method by integrating a novel model which con-
siders the 1st-tier multistream prediction feedback
from the seed samples and uses a mean cosine simi-
larity method to measure the distance between a new
instance and prominent seed samples. We use this
similarity measure to improve classification.

3.1 Corpus

The corpus we use in our experiments is the 2010
Paralinguistic Challenge Affect Subchallenge cor-
pus Technische Universtät Munchën Audiovisual In-
terest Corpus (TUM AVIC), provided by Schuller
(2010). The corpus consists of 10 hours of audio-
visual recordings of interviews in which an inter-
viewer provides commercial presentations of vari-
ous products to a subject. The subject and inter-
viewer discuss the product, and the subject com-
ments on his/her interest in it. Subjects were in-
structed to relax and not to worry about politeness
in the conversation. 21 subjects participated (11
male, 10 female), including three Asians and the rest
of European background. All interviews were con-
ducted in English; while none of the subjects were
native speakers, all were fluent. 11 subjects were
younger than 30; 7 were between 30-40; and 3 were
over 40. The subject portions of the recordings were
segmented into speaker turns (continuous speech by
one speaker with backchannels by the interviewer
ignored). These were further segmented into sub-
speaker turns at grammatical phrase boundaries such
that each segment is shorter than 2sec.

These smaller segments were annotated by four
male undergraduate psychology students for subject
LOI, using a 5-point scale as follows: (-2) Disin-
terest (subject is totally tired of discussing this topic

and totally passive); (-1) Indifference (subject is pas-
sive and does not want to give feedback); (0) Neu-
trality (subject follows and participates in the dialog,
but it is not recognized if she/he is interested in the
topic); (1) Interest (subject wants to talk about the
topic, follows the interviewer and asks questions);
(2) Curiosity (subject is strongly interest in the topic
and wants to learn more.) A normalized mean LOI
is then derived from mean LOI/2, to map the scores
into [-1, +1]. (Note that no negative scores occur
for this corpus.) In our experiments, we consider
the normalized mean LOI score as the label for each
sub-speaker turn segment; we refer to this as “mean
LOI” below. The corpus was divided for the Sub-
challenge into training, development, and test cor-
pora; we use these divisions in our experimens.

3.2 Feature Sets
Table 1 provides an overview of the feature sets in
our system.
Discriminative TFIDF

In the standard vector space model, each word
is associated with its Term Frequency (TF) in the
utterance. The Inverse Document Frequency (IDF)
provides information on how rare the word is over
all utterances. The standard TFIDF vector of a term
t in an utterance u is represented as V(t,u):

V (t, u) = TF ∗ IDF =
C(t, u)

C(v, u)
∗ log

|U |∑
u(t)

TF is calculated by dividing the number of occur-
rences of term t in the utterance u by the total num-
ber of tokens v in the utterance u. IDF is the log of
the total number of utterances U in the training set,
divided by the number of utterances in the training
set in which the term t appears. u(t) can be viewed
as a simple function: if t appears in utterance u, then
it returns 1, otherwise 0.

In Discriminative TFIDF we add additional infor-
mation to the TFIDF metrics. When calculating IDF,
we weight each word by the distribution of its labels
in the training set. This helps us to weight words by
the LOI of the utterances they are uttered in. An in-
tuitive example is this: Although the words “chaos”
and “Audi” both appear once in the corpus, the oc-
currence of “Audi” is in an utterance with a Mean
LOI score of 0.9, while “chaos” appears in an utter-
ance with a label of 0.1. A standard TFIDF approach
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Feature Sets Features

Discriminative TFIDF Sum of word-level Discriminative TFIDF scores

Lexical Affect Scoring Sum of word-level lexical affect scores

Language Modeling Trigram language model log-likelihood and perplexity

Acoustic Features 1582 acoustic features. Detail see Schuller et. al, (2010)

Pulses # Pulses, # Periods, Mean Periods, SDev Period
Voicing Fraction, # Voice Breaks, Degree, Voiced2total Frames
Jitter Local, Local (absolute), RAP, PPQ5
Shimmer Local, Local (dB), APQ3, APQ5, APQ11
Harmonicity Mean Autocorrelation, Mean NHR, Mean NHR (dB)
Duration Seconds
Fundamental Frequency Min, Max, Mean, Median, SDev, MAS
Energy Min, Max, Mean, SDev

Prosodic Events Pitch accents, intermediate phrase, and intonational boundaries.

Table 1: Feature Sets. RAP: Relative Average Perturbation. PPQ5: five-point Period Perturbation Quotient. APQn:
n-point Amplitude Perturbation Quotient. NHR: Noise-to-Harmonics Ratio. MAS: Mean Absolute Slope.

will give these two terms the same score. To differ-
entiate the importance of these two words, we define
our Discriminative TFIDF measure as follow:

V (t, u) =
C(t, u)

C(v, u)
∗log

|U |∑
u(t) ∗ (1− |MeanLOI|)

Here, the Mean LOI score ranging from (0,1) is
the label of each utterance. Instead of summing
the u(t) scores directly, we now assign a weight to
each utterance. The weight is (1− |MeanLOI|) in
our task. The overall IDF score of words important
to identifying the LOI of an utterance will thus be
boosted, as the denominator of the IDF metric de-
creases compared to the standard TFIDF. Discrimi-
native TFIDF can be viewed as a generalized version
of Delta TFIDF (Martineau and Finin, 2009) that can
be used in various regression settings.

Wang and McKeown (2010) show that adding
Part-of-Speech (POS) information to text can be
helpful in similar classification tasks. So we have
also used the Stanford POS tagger (Toutanova and
Manning, 2000) to tag these transcripts before cal-
culating the Discriminative TFIDF score.

Lexical Affect Scoring
Whissell’s Dictionary of Affect in Language

(DAL) (Whissell, 1989) attempts to quantify emo-
tional language by asking raters to judge 8742 words
collected from various sources including college es-
says, interviews, and teenagers descriptions of their

own emotional state. Its pleasantness (EE) score in-
dicates the negative or positive valence of a word,
rated on a scale from 1 to 3. For example, “aban-
don” scores 1.0, implying a fairly low level of pleas-
antness. A previous study (Agarwal et al., 2009)
notes that one of the advantages of this dictionary
is that it has different scores for various forms of a
root word. For example, the words “affect” and “af-
fection” have very different meanings; if they were
given the same score, the lexical affect quantifica-
tion might not be discriminative. To calculate an
utterance’s lexical affect score, we first remove the
stopwords and then sum up 4 the EE score of each
word in the utterance.

Statistical Language Modeling

In order to capture the contextual information and
maximize the use of lexical information, we also
train a statistical language model to augment the
Discriminative TFIDF and lexical affect scores. We
train trigram language models on the training set
using the SRI Language Modeling Tookit (Stolcke,
2002). In the testing stage, the log likelihood and
perplexity scores are used as language modeling fea-
tures. Due to the data sparsity issue, we are not able
to train language models on subsets of training data
that correspond to different LOI scores.

4We have experimented with Min, Max and Mean scores,
but the results were poor.
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Acoustic, Prosodic and Voice Quality Features
As noted above, the TUM AVIC corpus includes

acoustic features (Schuller et al., 2010) for all of the
data sets. These include: PCM loudness, MFCC[0-
14], log Mel Frequency Band[0-7], Line Spectral
Pairs Frequency [0-7], F0 by Sub-Harmonic Sum.,
F0 Envelope, Voicing Probability, Jitter Local, Jit-
ter Difference of Difference of Periods, and Shim-
mer local. We have extracted an additional 32 stan-
dard prosodic and voice quality features to aug-
ment these, including Glottal Pulses, Voicing, Jitter,
Shimmer, Harmonicity, Duration, Fundamental Fre-
quency, and Energy (See Table 1).

Prosodic Event Features
To examine the contribution of higher-level

prosodic events, we have also experimented with
AuToBI (Rosenberg, 2010) to automatically de-
tect pitch accents, word boundaries, intermedi-
ate phrase boundaries, and intonational bound-
aries in utterances. AuToBI requires annotated
word boundary information; since we do not have
hand-annotated boundaries, we use the Penn Pho-
netics Lab Forced Aligner (Yuan and Liberman,
2008) to align each utterance with its transcription.
We use AuToBI’s models, which were trained on
the spontaneous speech Boston Directions Corpus
(BDC) (Hirschberg and Nakatani, 1996), to identify
prosodic events in our corpus.

3.3 Fusion Learning Approaches

Assuming that our various lexical, acoustic and
prosodic feature streams are informative to some ex-
tent when tested separately, we want to combine in-
formation from the streams in different domains to
improve prediction. We experimented with several
approaches, including Bag-of-Features, Sum Rule
combination, Hierarchical Fusion, and a new ap-
proach. We present here results of each on our LOI
prediction task. In the Bag-of-Features approach,
a simple classification method includes all features
in a single classifier. A potential problem with this
method is that, when combining 1582 acoustic fea-
tures with 10 lexical features, the classifier will treat
them equally, so potentially more useful lexical fea-
tures will not be evaluated properly. A second prob-
lem is that our features are extracted from differ-
ent domains using different methods, and normal-

ization across domains is not possible in a bag-of-
features classification/regression approach. Another
possible approach is the Sum Rule Combiner, which
uses product or sum rules to combine the predictions
from 1st-tier classifiers. Kittler et al. (1998) show
that the Sum Rule approach outperforms the product
rule, max rule and mean rule approaches when com-
bining classifiers. Their sensitivity analysis shows
that this approach is most resilient to estimation er-
rors.

A third method of combining features is the Hier-
archical Fusion approach of fusing multistream in-
formation, which involves multiple classifiers and
performs classification/regression in multiple stages.
This can be implemented by first training 1st-tier
classifiers for each single stream of features, collect-
ing the predictions from these classifiers, and train-
ing a 2nd-tier supervector classifier to weight the im-
portance of predictions from the different streams
and make a final prediction. The rationale behind
this approach is to solve the cross-domain issue by
letting the 2nd-tier classifier weight the streams, as
the predictions from 1st-tier classifiers will be in a
unified/normalized form (e.g. 0 to 1 in this task).

The Multistream Prediction Feedback and Mean
Cosine Similarity based Hierarchical Fusion

Our Multistream Prediction Feedback and Mean
Cosine Similarity based Hierarchical Fusion ap-
proach combines a similarity based two-stage ap-
proach with a multistream feedback approach. Fig-
ure 1 shows the architecture of this system. It is
based on the intuition that, if we can identify the
prominent samples (e.g. the samples that all 1st-tier
classifiers assign high average prediction scores),
then we can measure the average distance between
a new sample and all these prominent samples in the
Euclidean Space. Furthermore, we can use this av-
erage distance (average similarity) as a new feature
to improve the 2nd-tier classifier’s final prediction.

To implement this process, we first train five
1st-tier Additive Logistic Regression (Friedman et
al., 2000) classifiers and a Random Subspace meta
learning (Ho, 1998) 1st-tier classifier (for the acous-
tic stream), using six different feature streams in our
training data. In the testing stage, we use a random
subset of the test set as seed samples. Next, we run
the seed samples for each of these 1st-tier classifiers
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Seed 

Samples

Discriminative 
TFIDF

2nd-Tier 
Classifier:

RBF Kernel SVM

1st-Tier 

Addictive Regression and 

Random Subspace  

Classifiers:

New 

Samples

Lexical Affect 
Scoring

Language 
Modeling

Prosodic and 
Voice Quality

Acoustic

Prosodic Events

1st-Tier Predictions (seed)
S1: 0.8, 0.9, 0.6, 0.5, 0.7, 0.8
S2: 0.3, 0.5, 0.4, 0.3, 0.2, 0.4
S3: 0.4, 0.1, 0.3, 0.3, 0.1, 0.5

……………

Maxn (Mean(Si))

Top-N

Prominent Samples

Avg. Cosine Similarly

1st-Tier Predictions (new)
S4: 0.7, 0.8, 0.6, 0.5, 0.8, 0.8, 99%
S5: 0.6, 0.5, 0.4, 0.3, 0.7, 0.4, 72%

……………

Final Prediction

Figure 1: The Overview of Multistream Prediction Feedback and Mean Cosine Similarity based Hierarchical
Fusion Learning

to obtain prediction scores ranging from 0 to 1. Now,
we take the mean of these predicted scores for each
sample, and use the following method to select the
top n samples from the seed samples S as “promi-
nent samples”:

Prominent(S, n) = Maxn(Mean(S))

Recall that the cosine similarity (Salton, 1989) of
two utterances Ui, Uj in the vector-space model is:

cos(Ui, Uj) =
Ui · Uj

||Ui||2 ∗ ||Uj ||2
where “·” indicates ‘dot product’. Now, given our
hypothesized prominent samples, for each of these
samples and new samples, we choose the original
Discriminative TFIDF, Lexical Affect Scoring, Lan-
guage Modeling, Prosodic and Voice Quality, and
Prosodic Event features as k vectors to represent all
the samples in Euclidean Space. The reason we drop
the acoustic features from the vector space model is
because of the dimensionality issue — 1582 acous-
tic features. We substitute our 32 standard prosodic

features instead. Now we use the mean cosine simi-
larity score to represent how far a new sample Un is
from the prominent samples US in the space:

Sim(Un, US) = Mean

 ∑k
i=1 Vn ∗ Vs√∑k

i=1 V 2
n ∗

√∑k
i=1 V 2

s


In the next step, we add this mean cosine sim-

ilarity measure as a new feature and include it in
the 2nd-tier classifier for reclassification. Now, in
the reclassification stage, all 1st-tier feature stream
predictions will be re-weighted by the new 2nd-tier
classifier that incorporated with Multistream Feed-
back information.

The reason why the Multistream Prediction Feed-
back is useful in this task is that, like many spoken
language understanding tasks, in LOI detection, if
we have a different set of speakers with different
genders, ages, and speaker styles, the overall feature
distribution for lexical, prosodic, and acoustic cues
in the test set can be very different from the training
set. Traditional speaker adaptation techniques typi-
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cally focus only on the acoustic stream and may be
very expensive to perform. So, by extracting more
knowledge about the lexical, prosodic, and acoustic
features distributions in test set using our novel ap-
proach, we will have a better understanding about
the skewed distributions in the test set. In addition,
our approach is inexpensive and does not require ex-
tra unlabeled data.

4 Experiments and Results

We conduct our experiments in three parts. First, we
examine how well the Discriminative TFIDF feature
performs, compared with standard TFIDF feature.
Secondly, we look at how different feature sets influ-
ence our results. For the first two parts, we evaluate
our features using the Subchallenge training vs. de-
velopment sets only. Finally, we compare our sim-
ilarity based multistream fusion feedback approach
to other feature-combining approaches. We exam-
ine our final system first comparing training vs. de-
velopment performance, and then combined training
and development sets vs. the test set. WEKA (Wit-
ten and Frank, 2005) and LIBSVM (Chang and Lin,
2001) are used for regression.

4.1 TFIDF v.s. Discriminative TFIDF

Method CC MLE

TFIDF 0.296 0.142
D-TFIDF 0.368 0.140
S-D-TFIDF 0.381 0.136

Table 2: Single TFIDF Feature Stream Single Re-
gression Results (Train vs. Develop, Additive Logis-
tic Regression). D-TFIDF: Discriminative TFIDF. S-D-
TFIDF: the POS tagged version of D-TFIDF. CC: Cross
Correlation. MLE: Mean Linear Error.

When working with the training and develop-
ment sets, we are able to access the label and tran-
scriptions of each set to calculate the Discrimina-
tive TFIDF scores. For the testing scenario dis-
cussed in in Section 4.3, we do not have these anno-
tations. So, we redefine the task as a keyword spot-
ting task, where we can use the identified keywords
in the training and development sets as keyword fea-
tures in testing. We also sum up the word-level

TFIDF scores and use the sentence-level TFIDF as
a single feature for the classification experiment.
The regression algorithm we use is Additive Logis-
tic Regression with 50 iterations. Table 2 shows
how different approaches perform in the experiment.
We see that the Syntactic Discriminative TFIDF ap-
proach is much more informative than the standard
TFIDF approach. Note that, after calculating the
global IDF score, the standard TFIDF approach se-
lects 732 terms as top-1 level keywords. In contrast,
our Discriminative TFIDF has stronger discrimina-
tive power and picks a total number of 59 truly rare
terms as top-1 level keywords.

4.2 Regression with Different Feature Streams

Table 3 shows performance using different feature
streams in our system. We see that the acoustic

Feature Streams CC MLE

S-D-TFIDF 0.394 0.132
Language Modeling 0.404 0.141
Prosodic Events 0.458 0.133
Lexical Affect Scoring 0.459 0.132
Standard Prosody + VQ 0.591 0.122
Acoustic 0.607 0.118

Multistream Feedback (n=3) 0.234 0.150
Multistream Feedback (n=10) 0.262 0.149
Multistream Feedback (n=20) 0.290 0.146

Table 3: Comparing Contributions of Different Fea-
ture Streams in the 2nd-tier Classifier (Training vs. De-
velopmen, Random Subspace for the 1st-tier classifier of
Acoustic Stream, and Additive Logistic Regression for
other 1st-tier classifiers. Radial Basis Function (RBF)
Kernel SVM as 2nd-tier Classifier.) S-D-TFIDF: the POS
tagged version of D-TFIDF. VQ: Voice Quality. n: Top-n
Feedback. CC: Cross Correlation. MLE: Mean Linear
Error.

and prosodic features are the dominating features in
this task. The Prosodic Events feature stream also
emerges as a new informative high-level prosodic
feature in this task.

When testing the multistream feedback informa-
tion as a single feature stream, we see in the bottom
half of Table 3 that CC and MLE are improved when
we increase the number of prominent samples. Dis-
criminative TFIDF and Language Modeling are also
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important, as seen from these results, but the Lexi-
cal Affect Scoring feature performs best among the
lexical features in this task. We suspect that the rea-
son may be a data sparsity issue, as we do not have a
large amount of data for training robust global Dis-
criminative IDF scores, language models, and the
feedback stream. In contrast, the DAL is trained on
much larger amounts of data.

4.3 Comparing with State-of-the-Art Systems

Table 4 compares our approach to alternative learn-
ing approaches. The first half of this table reports
results on training vs. development sets, and the sec-
ond half compares combined training and develope-
men vs. test set result.

Method CC MLE

Shuller et al.,(2010) 0.604 0.118
Jeon et al., (2010) 0.622 0.115
Gajsek et al. (2010) 0.630 0.123
Bag-of-features Fusion 0.602 0.118
Sum Rule Combination 0.617 0.117
SVM Hierarchical Fusion 0.628 0.115
Feedback + Hierarchical Fusion 0.640 0.113

Gajsek et al. (2010) 0.390 0.143
Shuller et al.,(2010) 0.421 0.146
Jeon et al., (2010) 0.428 0.146
Bag-of-features Fusion 0.420 0.145
Sum Rule Combination 0.422 0.138
SVM Hierarchical Fusion 0.450 0.131
Feedback + Hierarchical Fusion 0.480 0.131

Table 4: Comparing Different Systems. Above: Train-
ing vs. Development. Bottom: Combined Training+ De-
velopment vs. Test. CC: Cross Correlation. MLE: Mean
Linear Error.

Note that, in order to transcribe the test data, we
have trained a 20 Gaussian per state 39 MFCC Hid-
den Markov Model speech recognizer with HTK, us-
ing the training and development sets together with
TIMIT (Fisher et al., 1986), the Boston Directions
Corpus (BDC) (Hirschberg and Nakatani, 1996),
and the Columbia Game Corpus (Hirschberg et al.,
2005). The word error rate (WER) is 29% on the
development set.

Note that a Bag-of-Features approach combin-
ing all features results in poorer performance than
the use of acoustic features alone. The Sum Rule
approach improves over this method by achieving
CC score of 0.422. Although the improvement of
CC seems small, it is extremely statistically signifi-
cant (Paired t-test with two-tailed P-value less than
0.0001), comparing to the Bag-of-features model.
However, when using the SVM as the 2nd-tier su-
pervector classifier to weight different prediction
streams, we achieve 0.628 CC and 0.115 MLE in
training vs. development data, and 0.450 CC and
0.131 MLE on the test set; this result is significantly
different from the Bag-of-features baseline (paired
t-test, p < 0.0001), but it is not significantly differ-
ent from the Sum Rule Combination approach.

Augmenting the SVM hierarchical fusion learn-
ing approach with multistream feedback, we observe
a significant improvement over all other systems and
methods. We obtain a final CC of 0.480 and MLE of
0.131 in the test mode, which is sigificantly differ-
ent from the Bag-of-features approach (paired t-test
p < 0.0001), but does not differ significantly from
the SVM hierarchical fusion approach.

5 Conclusion

Detecting levels of interest from speakers is an im-
portant problem for Spoken Dialog Understanding.
While earlier work, done in the 2010 Interspeech
Paralinguistic Affect Subchallenge, employing tra-
ditional acoustic features and shallow lexical fea-
tures, achieved good results, our new features —
Discriminative TFIDF, lexical affect scoring, lan-
guage modeling, prosodic event — when used with
standard prosodic features and our new Multistream
Prediction Feedback and Mean Cosine Similarity
heuristic-based Hierarchical Learning method im-
proves over all published results on the LOI cor-
pus. Our method is domain-independent and can
be adapted to other speech and language process-
ing areas where domain adaptation is expensive to
perform. In the future, we would like to experiment
with different distributional similarity measures and
bootstrapping strategies.
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Abstract

User satisfaction is a common evaluation met-
ric in task-oriented dialogue systems, whereas
tutorial dialogue systems are often evaluated
in terms of student learning gain. However,
user satisfaction is also important for such
systems, since it may predict technology ac-
ceptance. We present a detailed satisfaction
questionnaire used in evaluating the BEETLE
II system (REVU-NL), and explore the un-
derlying components of user satisfaction us-
ing factor analysis. We demonstrate interest-
ing patterns of interaction between interpreta-
tion quality, satisfaction and the dialogue pol-
icy, highlighting the importance of more fine-
grained evaluation of user satisfaction.

1 Introduction

User satisfaction is one of the primary evaluation
measures for task-oriented spoken dialogue systems
(SDS): the goal of an SDS is to accomplish the task,
and to keep the user satisfied, so that they will want
to continue using the system. Typically, the PAR-
ADISE methodology (Walker et al., 2000) is used to
establish a performance function which relates user
satisfaction measured through questionnaires to in-
teraction parameters that can be derived from sys-
tem logs. This function can then be used to better
understand which properties of the interaction have
the most impact on the users, and to compare differ-
ent system versions.

In contrast, tutorial dialogue systems are typically
evaluated in terms of student learning gain, by com-
paring student scores on standardized tests before

and after interacting with the system. This is clearly
an important evaluation metric, since it directly as-
sesses the benefit students obtain from using the sys-
tem. However, it is also important to evaluate user
satisfaction, since it can influence students’ willing-
ness to use computer tutors in a long run. Thus,
recent studies have looked at factors that could in-
fluence user satisfaction in tutorial dialogue, such as
different tutoring policies (Forbes-Riley and Litman,
2011), quality of speech output (Forbes-Riley et al.,
2006), and students’ prior attitudes towards technol-
ogy (Jackson et al., 2009).

Assessing user satisfaction, however, is not a
straightforward task. As we discuss in more detail in
Section 2, user satisfaction is known to be a complex
multi-dimensional construct, composed of largely
independent factors such as perceived ease of use
and perceived usefulness. Therefore, questionnaires
used for assessing satisfaction need to be validated
through user studies, and different satisfaction di-
mensions should be assessed independently. There-
fore, SDS researchers are now starting to use tech-
niques from psychometrics for this purpose (Hone
and Graham, 2000; Möller et al., 2007). However,
user satisfaction studies tutorial dialogue currently
rely on simple questionnaires adapted from either
task-oriented SDS or non-dialogue intelligent tutor-
ing systems (Michael et al., 2003; Forbes-Riley et
al., 2006; Forbes-Riley and Litman, 2011; Jackson
et al., 2009), and these questionnaires have not been
validated for tutorial dialogue systems.

In this paper, we make the first step towards de-
veloping a better user satisfaction questionnaire for
tutorial dialogue systems. We present a user satis-
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faction evaluation of the BEETLE II tutorial dialogue
system. Starting with a detailed user satisfaction
questionnaire, we employ exploratory factor analy-
sis to discover a set of dimensions for the students’
satisfaction with a dialogue-based tutor. We then
use the factors we derived to compare user satisfac-
tion between two versions of our computer tutor that
use different policies for generating the tutor’s feed-
back. We investigate the relationships between the
subjective satisfaction dimensions and the objective
learning gain metric for the two systems. Finally, we
carry out a more detailed investigation of our prior
results on the relationship between user satisfaction
and interpretation quality in tutorial dialogue. Our
analysis also provides insights for further improving
the questionnaire we developed and gives an exam-
ple of how user satisfaction metrics developed for
task-oriented dialogue can be adapted to different
dialogue applications. It also opens new questions
about how different properties of the interaction af-
fect user satisfaction in tutorial dialogue, which can
be investigated in future work.

The rest of the paper is organized as follows. We
discuss the approaches for assessing user satisfac-
tion with SDS in Section 2. In Section 3 we describe
the BEETLE II tutorial dialogue system used in this
evaluation. We describe our questionnaire design in
Section 4, and describe its use in BEETLE II evalu-
ation in Section 5. We conclude by discussing the
implication of our analysis for tutorial dialogue sys-
tem evaluation in Section 6.

2 Background

A typical approach to assessing user satisfaction in
dialogue systems is collecting user survey data by
asking users to rate their agreement with statements
such as “the system was easy to use”. In the simplest
case of early PARADISE studies, the questionnaires
contained 5 items assessing different dimensions of
satisfaction, which were then summed to produce a
total satisfaction score.

However, using simple questionnaires has draw-
backs now recognized by the SDS community. First,
if individual questions are expected to assess differ-
ent dimensions of user satisfaction, they need to be
validated first, or else they may be ambiguous and
mean different things to different users. Second,

summing or averaging over questions measuring dif-
ferent satisfaction components may not be the best
approach, since it may conflate unrelated judgments
(Hone and Graham, 2000).

To address this problem, SDS researchers have
started using more complex questionnaires, where
each underlying dimension of user satisfaction is as-
sessed through multiple questions. Factor analysis is
then used to determine which questions are related
to one another (and therefore are likely to be assess-
ing the same underlying satisfaction dimension), and
to discard possibly ambiguous questions. Then, the
PARADISE methodology can be used to relate dif-
ferent interaction parameters to individual compo-
nents of user satisfaction.

Several such studies have been conducted recently
(Hone and Graham, 2000; Larsen, 2003; Möller et
al., 2007; Wolters et al., 2009), covering command-
and-control and information-seeking dialogue. The
questionnaires in those studies contained 25 to 50
items, and factor analyses typically resulted in 6- or
7-factor solutions, with dimensions such as accept-
ability, affect, system response accuracy and cogni-
tive demand. The underlying factors found by those
analyses tend to match up well, but not to over-
lap perfectly. In comparison, all user satisfaction
questionnaires for tutorial dialogue systems that we
are aware of contain 10-15 items which are either
summed up for PARADISE studies, or compared
individually to track system improvement (Michael
et al., 2003; Forbes-Riley et al., 2006; Forbes-Riley
and Litman, 2011; Jackson et al., 2009).

In this paper, we apply the more sophisticated
SDS evaluation methodology to the BEETLE II tu-
torial dialogue system. We devise a more sophis-
ticated user satisfaction questionnaire using SDS
questionnaires for guidance and then apply factor
analysis to investigate the underlying dimensions.
We compare our results to analyses from two pre-
vious studies: SASSI (Hone and Graham, 2000),
which is a validated questionnaire intended for use
with a variety of task-oriented dialogue systems,
and a more recent “modified SASSI” questionnaire
which is a version of SASSI adapted for use with the
INSPIRE home control system (Möller et al., 2007).
Henceforth we will refer to this as INSPIRE.
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3 BEETLE II Tutorial Dialogue System

The goal of BEETLE II (Dzikovska et al., 2010c)
is to teach students conceptual knowledge in the do-
main of basic electricity and electronics. The system
is built on the premise that encouraging students to
explain their answers and to talk about the domain
will lead to improved learning, a finding consistent
with analyses of human-human tutoring in several
domains (Purandare and Litman, 2008; Litman et
al., 2009). BEETLE II has been engineered to test
this hypothesis by eliciting contentful talk through
explanation questions.

The BEETLE II learning material consists of two
self-contained lessons suitable for college-level stu-
dents with no prior knowledge of basic electricity
and electronics. The lessons take 4 to 5 hours to
complete, and consist of reading materials and inter-
active exercises. During the exercises, the students
interact with a circuit simulator, building electrical
circuits containing bulbs, batteries and switches, and
using a multimeter to measure voltage. Then the
tutor asks students to explain circuit behavior, for
example, “Why was bulb A on when switch Y was
open and switch Z was closed?” In addition, at dif-
ferent points in the lesson the tutor asks “summary”
questions, asking students to define concepts such
as voltage, and verbalize general patterns such as
“What are the conditions that are required for a bulb
to light?”. At present, students use a typed chat in-
terface to communicate with the system.1

We built and evaluated two versions of the sys-
tem (Dzikovska et al., 2010a). The baseline non-
adaptive tutor (BASE) requires students to produce
answers, but does not provide any remediation and
immediately states the correct answer. The fully
adaptive version (FULL) engages in dialogue with
the student, and tailors its feedback to the student’s
answer by confirming its correct parts and giving
hints in order to help students fix missing or incor-
rect parts. The FULL system generates feedback au-
tomatically based on a detailed analysis of the stu-
dent’s input, and is capable of giving hints at differ-
ent levels of specificity depending on the student’s
previous performance.

1A speech interface is being developed, but typed communi-
cation is common in online and distance learning, and therefore
is an acceptable choice for tutorial dialogue as well.

These two system versions were designed to eval-
uate the impact of adaptive feedback (within the lim-
itations of current language interpretation technol-
ogy) on student learning and satisfaction. Our initial
data analysis focused on the differences in student
language depending on the condition (Dzikovska et
al., 2010a), and on the impact of different types of
interpretation errors on learning gain and user sat-
isfaction (Dzikovska et al., 2010b). However, these
initial results were based on an aggregate satisfac-
tion score obtained by averaging over scores for all
questions in our user satisfaction questionnaire. In
this analysis, we take a more detailed look at the dif-
ferent factors that contribute to students satisfaction
with the system, and their relationship with learning
gain and interpretation quality.

4 Data Collection

4.1 Questionnaire Design

To support user satisfaction evaluation we developed
a satisfaction questionnaire, REVU-IT (Report on
the Enjoyment, Value, and Usability of an Intelli-
gent Tutor). It consists of 63 items which cover all
aspects of interaction with the tutoring system: the
clarity and usefulness of the reading material; the
graphical user interface to the circuit simulator; in-
teraction with the dialogue tutor; and the overall im-
pression of the BEETLE II system as a whole. The
reading material, graphical user interface and inter-
action with the tutor sections are complementary,
because they cover separate parts of the BEETLE II
interface. We expect that all of these three compo-
nents contribute to the overall impression score. For
purposes of this paper, we will focus on the part of
the questionnaire that relates to the natural language
interaction with the tutor (REVU-NL), and its re-
lationship to the overall impression score (REVU-
OVERALL).

The REVU-IT questionnaire was developed by
experienced cognitive psychologists (two of the au-
thors of this paper). The REVU-NL section con-
sists of 35 items shown in Appendix A. Its design
was guided by questionnaires used in previous re-
search, including INSPIRE and a questionnaire used
to evaluate the ITSPOKE tutorial dialogue system
(Forbes-Riley et al., 2006). REVU-NL contains a
number of items from these, but omits items that are

164



not relevant to the BEETLE II domain (e.g, “Domes-
tic devices can be operated efficiently with the sys-
tem” or “The tutor responded effectively after I was
uncertain”), and adds extra questions related to tu-
toring (e.g., “Our dialogues quickly led to me hav-
ing a deeper understanding of the material”), based
on the authors’ previous experience in human factors
research. We also slightly rephrased all questions to
refer to “the tutor” rather than “the system”.

The REVU-OVERALL section of REVU-IT
consists of 5 items assessing the student’s satis-
faction with their learning as a whole. The ques-
tions are: “Overall, I am satisfied with my experi-
ence learning about electricity from this system.”;
“Working in this learning environment was just like
working one-on-one with a human tutor”; “I would
have preferred to learn about electricity in a different
way.”; “I would use this system again in the future to
continue to learn about electricity.”; “I would like to
be able to use a system like this to learn about other
topics in the future.”. We use the averaged score over
these 5 items to represent the student’s overall satis-
faction with the learning environment, referring to it
as “overall satisfaction”.

Adding new questions to the REVU-NL ques-
tionnaire on top of already existing questions is the
initial step in addressing the issues discussed in Sec-
tion 2: validating the individual questions and dis-
covering the underlying dimensions of user satis-
faction. Having a large number of questions ask-
ing about the same aspects of the interaction will
allow us to group related questions together into di-
mensions (“factors”), and also to discover ambigu-
ous questions that will need to be improved in future
studies. The detailed discussion of the technique and
issues involved is presented in Hone and Graham
(2000).

4.2 Participants

We used REVU-IT as part of a controlled experi-
ment comparing the BASE and FULL versions of the
system. We recruited 87 participants from a uni-
versity in the Southern US, paid for participation.
Participants had little knowledge of the domain.
Each participant signed consent forms and com-
pleted a pre-test, then worked through both lessons
(with breaks), and then completed a post-test and a
REVU-IT questionnaire. Each session lasted 3.5

hours on average.
Out of 87 participants that completed the study, 13

had an inordinate amount of trouble with interface:
they typed utterances that could not be interpreted
by the tutor (defined as having more than 3 standard
deviations in interpretation errors compared to the
rest), did not follow tutor’s instructions or experi-
enced system crashes. In addition, two participants
were learning gain outliers (again, more than 3 stan-
dard deviations from average). These participants
were removed from the analysis. The questionnaires
from the remaining 72 participants are used in our
data analysis.

5 Analysis

5.1 Underlying satisfaction dimensions

Each item in the REVU-NL questionnaire used a
5-point Likert scale, from “completely disagree” (1)
to “fully agree” (5). Most of the items were phrased
so that the agreement with the statement meant a
positive evaluation of the system. For a few items,
however, the polarity was reversed (e.g., “The tutor
was not helpful”). Those items were reverse-coded,
with 1 meaning “fully agree” and 5 “completely dis-
agree”, to ensure that a lower score on all questions
corresponds to a negative assessment.

Following Hone and Graham (2000), we used
exploratory factor analysis to group questionnaire
items into clusters representing different dimen-
sions. One of the standard approaches in determin-
ing how many factors (“question clusters”) to use
is the scree test which checks the number of eigen-
values in the question covariance matrix which are
greater than 1. These typically correspond to prin-
cipal components which reflect the underlying ques-
tionnaire structure. The scree test showed 7 eigen-
values greater than 1, resulting in the 7-factor solu-
tion presented in Table 1.

The loadings in the table are the correlation coef-
ficients between the individual question scores and
the variables representing the factors. Most of the
correlations are quite high, indicating that the ques-
tions are strongly correlated both among themselves
and the underlying factor. However, the last two fac-
tors contain only non-loading questions according to
the criteria in (Hone and Graham, 2000), i.e., ques-
tions for which the correlations are too weak to be
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# Question Load-
ing

1 t29: Knew what to say at each point 0.82
1 t22: Easy to interact with the tutor. 0.79
1 t9: Not sure what was expected. 0.73
1 t18: Knew what to say to the tutor. 0.70
1 t14: The tutor was too inflexible. 0.69
1 t19: Able to recover easily from errors 0.69
1 t24: Easy to learn to speak to tutor. 0.69
1 t16: Tutor didn’t do what I wanted. 0.65
1 t3: Tutor understood me well. 0.65
1 t15: Working as easy as with a human. 0.64
1 t13: Had to concentrate when talking. 0.62
2 t31 Tutor was an efficient way to learn. 0.79
2 t32: Easy to learn from the tutor. 0.78
2 t34: Tutor was worthwhile 0.72
3 t28: Tutor was irritating. 0.76
3 t10: Tutor was fun. 0.74
3 t7: Enjoyed talking with tutor. 0.72
3 t30: Dialogues were boring. 0.66
4 t2: Tutor took too long to respond 0.84
4 t33: Tutor responded quickly 0.84
5 t26: Didn’t always understand tutor 0.89
6 (t3: The tutor understood me well) 0.4
7 (t25: Comfortable talking with tutor) 0.59

Table 1: Factors derived from the REVU-NL question-
naire, with question loadings for the factor to which each
question was assigned. Question text shortened due to
space limitations, full text presented in the appendix.
Non-loading questions in parentheses.

reliable. In addition, factors 4 and 5 had fewer than
3 questions. Since the number of subjects in our data
set is small, such factors may not be reliable. There-
fore, we focus our remaining analysis on the top 3
factors from the questionnaire, each of which con-
tains 3 or more questions.

Twelve questions in REVU-NL were “cross-
loading” according to criteria in Hone and Graham
(2000), that is, their two top loadings differed by
less than 0.2. This indicates questions that are likely
to be ambiguous, since they are strongly correlated
with two (theoretically independent) variables. Such
questions should be refined and re-designed in future
surveys. These were questions t1, t4, t6, t11, t12,
t17, t20, t21, t23, t25, t27, t35 from the appendix.
We removed them from our solution, and discuss the

implications for survey design in Section 6.
The first component in our analysis lines up well

with the Transparency and Cognitive load factors
from INSPIRE, and Response accuracy, Cognitive
demand and Habitability from SASSI, though it was
not split into individual factors as in those analyses.
We will refer to this factor as Transparency. The
second component contains questions specific to tu-
toring. However, it is similar to the Acceptability
dimension from INSPIRE (the original SASSI ques-
tionnaire did not include similar questions), which
asked users to rate statements such as “domestic de-
vices can be operated efficiently with the system”.
Thus, we will refer to it as Acceptability. Finally,
our third dimension lines up best with the Affect and
Annoyance items from SASSI.2 We will refer to it as
Affect.

Although the correspondences between our fac-
tors and those derived from SASSI and INSPIRE
are not perfect, the fact that similar underlying fac-
tors are derived from different user groups and sys-
tems indicates that they are likely to be measuring
the same underlying constructs.

5.2 Comparing satisfaction in different systems
Recall that in this study we combined the data from
two systems: FULL, where the system provided stu-
dents with adaptive feedback and hints, and BASE,
where the system simply acknowledged the stu-
dent’s answers and then provided a correct answer
without engaging in dialogue. Table 2 separates out
the average factor scores for these two conditions,
where a factor score is computed by averaging over
scores of all questions assigned to that factor.

When comparing learning gain and overall satis-
faction between the two systems (which is the over-
all impression of the system behavior as a whole,
including circuit simulation and lesson design), the
difference is not statistically significant (learning
gain t(69) = −0.95, p = 0.35, overall satisfac-
tion t(69) = −1.52, p = 0.13). In contrast, on
individual dimensions related to tutoring the scores
for BASE is significantly higher than the score for
FULL (Transparency, t(69) = −7.19, p < 0.0001;
Acceptability: t(69) = −3.24, p < 0.01; Affect:

2The acceptability dimension from INSPIRE is split be-
tween our factors 2 and 3, but most of the questions correspond
to our factor 2 questions.
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FULL BASE

Transparency 2.15 (0.56) 3.36 (0.81)
Acceptability 3.11 (1.02) 3.80 (0.77)
Affect 2.43 (0.80) 2.86 (0.996)

Overall 3.39 (0.88) 3.70 (0.83)

Learning gain 0.61 (0.15) 0.65 (0.22)

Table 2: Average scores for different satisfaction dimen-
sions in FULL and BASE (standard deviation in parenthe-
ses)

t(69) = −1.97, p = 0.05). Comparing the means,
the biggest difference in student ratings shows on the
Transparency scale, while the affective reaction for
the two systems is more similar (though still rated
higher for BASE).

It is somewhat unexpected to see that the students
were equally satisfied overall with both systems but
rated the tutor in BASE more highly than in FULL,
since the tutor behavior was the only thing different
between conditions. We are at present investigating
the reasons for this result. One possibility is that
when students did not get much feedback from the
tutor (as in BASE), other factors became more im-
portant to overall satisfaction, such as course design
and quality of user simulation.

5.3 Relationships between subjective and
objective outcome measures

We investigated the correlations between learning
gain and different user satisfaction factors for the
two system versions. Results are presented in Table
3. As can be seen from the table, learning gain and
user satisfaction are only significantly correlated in
FULL, and only for the acceptability and overall sat-
isfaction factors. None of the factors in the BASE

system correlate with learning gain. This indicates
that the student’s affective reaction to the system is
not necessarily linked directly to its objective bene-
fits. We discuss these results further in Section 6

5.4 Impact of interpretation quality on user
satisfaction

It is generally known in SDS research that measures
of interpretation quality such as word error rate and
concept accuracy are strongly correlated with user

FULL BASE

Transparency 0.32 (0.07) 0.06 (0.69)
Acceptability 0.38 (0.03) 0.23 (0.16)
Affect 0.29 (0.08) -0.10 (0.53)
Overall 0.38 (0.02) 0.18 (0.28)

Table 3: Correlations between satisfaction factors and
learning gain for two dialogue policies. Significance level
in parentheses. Bold indicates significance at p < 0.05
level.

satisfaction (e.g., (Walker et al., 2000; Möller et al.,
2007)). Our system uses typed input and produces
complex logical representations (rather than sim-
ple slot-value pairs), thus, these measures cannot be
computed directly. However, in an earlier study we
showed that another measure of interpretation qual-
ity, namely, percentage of utterances that could not
be interpreted by the system (“uninterpretable utter-
ances”) is negatively correlated with learning gain
and user satisfaction (Dzikovska et al., 2010b).3

That study revealed an unexpected pattern. Al-
though the system recorded the number of utter-
ances it could not interpret in both FULL and BASE,
students in BASE were never informed of any in-
terpretation problems. Nevertheless, the proportion
of such uninterpretable utterances was still signifi-
cantly negatively correlated with user satisfaction in
BASE. After analyzing correlations between differ-
ent types of errors and user satisfaction, we hypoth-
esized that this can be explained by the lack of align-
ment between the system and the student, in partic-
ular when students used terminology different from
that used by the system (Dzikovska et al., 2010b).

We can now analyze this relationship in more de-
tail, looking at correlations between interpretation
problems and different components of user satisfac-
tion. The results are presented in Table 4.

As can be seen from the table, the proportion
of uninterpretable answers is significantly correlated
with Acceptability in FULL, but not in BASE. This
is not surprising, indicating that students who were
told that they were not understood perceived the
system as less useful for them. More surprisingly,
Transparency, which is related to perceived ease of

3In that study, we computed user satisfaction with the tutor
by averaging over the entire 35 questions in our questionnaire
as an initial approximation.
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FULL BASE

Transparency -0.28 (0.1) -0.25 (0.10)
Acceptability -0.58 (< 0.001) -0.29 (0.07)
Affect -0.35 (0.04) -0.34 (0.04)
Overall -0.38 (0.03) -0.27 (0.11)
Learning gain -0.38 (0.03) -0.09(0.60)

Table 4: Correlations between satisfaction factors and un-
interpretable utterances for two different policies. Signif-
icance level in parentheses.

use for the system, was not correlated with uninter-
pretable utterances. Finally, the proportion of unin-
terpretable utterances is significantly correlated with
Affect for both systems. Moreover, the unexpected
negative correlation we observed in the earlier study
between satisfaction with the tutor and interpretation
problems in BASE can be primarily attributed to the
negative correlation with the Affect score.

6 Discussion

In this study, we attempted to apply insights from
studies of user satisfaction in spoken dialogue sys-
tems to a different type of dialogue application: tu-
torial dialogue. We were looking to develop a better
user satisfaction questionnaire for evaluating tutorial
dialogue systems, and to implement an evaluation
methodology which takes into account different un-
derlying dimensions of user satisfaction.

The three dimensions we obtained based on ex-
ploratory factor analysis of REVU-NL align well
with the dimensions reported in the SDS litera-
ture, which provides some evidence of their valid-
ity. However, the results are preliminary because
of the small number of participants involved, and
need to be replicated with additional participants and
different tutoring systems. Regardless, our analysis
highlighted important issues in designing satisfac-
tion surveys for different dialogue genres.

When choosing which questions to include in a
satisfaction questionnaire for a new system type,
SASSI is a very attractive starting point, because
it was validated across multiple SDS in two gen-
res (command and control and information seeking).
This also means that SASSI items are phrased very
generally and therefore easier to adapt. In contrast,
INSPIRE contains a number of questions specific to
the command and control domain, asking whether

the user thinks the system is useful in achieving their
goals (i.e., operating the domestic devices). SASSI
includes only one similar item, “The system was
useful”. It was classed as Affect, most likely be-
cause there were no other similar items. However,
we think that such questions represent an important
separate dimension, namely the “perceived useful-
ness” factor known to predict technology acceptance
(Adams et al., 1989). Therefore we included sev-
eral items in REVU-NL with similar intent, asking
whether users thought the system was beneficial to
their goal (i.e., learning the material). These items
were clustered into a separate dimension by factor
analysis, indicating that they should be included in
other satisfaction surveys.

Moreover, some of the questions that appeared
genre-independent to us proved to be cross-loading
in our analysis, which is an indicator of ambiguity.
Apparently, some of the items from task-oriented di-
alogue questionnaires did not transfer well. For ex-
ample, statements like “The system didn’t always do
what I expected” are unambiguous for task-oriented
dialogue, where the user is supposed to be in control
of the interaction, and therefore has clear expecta-
tions of what the system should do. In contrast, in
tutorial dialogue the tutor has control over the learn-
ing material. Thus, it may be more ambiguous as
to what, if anything, students are expecting from the
interaction.

Overall, our experience shows that it may not
be possible, or indeed useful, to create completely
generic surveys. However, we believe that question-
naires can be phrased generally enough to apply to a
range of systems with similar goals, and REVU-NL
in particular is useful starting point for comparing
dialogue-based tutoring systems. We believe that the
18 questions that we retained as unambiguous in our
analysis provide adequate assessment of user satis-
faction, and are grouped into factors consistent with
results of previous research. However, the question-
naire could be further improved by revisiting the
cross-loading items we rejected as ambiguous, and
seeing if their wording could be improved. We are
also intending to use REVU-IT in evaluating a spo-
ken version of BEETLE II, thus providing additional
validation data on a different version of the interface.

With respect to evaluation methodology, our re-
sults highlight the need to look at different satis-
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faction dimensions separately. We used our fac-
tors to further investigate a pattern that we discov-
ered in previous research, namely, that students who
speak in a way that is difficult for the system to in-
terpret tend to be less satisfied with the tutor, even
when they are not told of the interpretation prob-
lems. Looking at correlations with individual di-
mensions shows that this relationship is primarily
explained by the Affect dimension. Our working hy-
pothesis is that the lack of alignment between in-
correct student answers and the answers supplied by
the system caused students to perceive the system as
a less likeable or cooperative conversational partner.

We also observed that Acceptability, but no other
dimensions, were correlated with learning gain in
FULL. One possible explanation is that students who
are learning more believe that the system is help-
ing them reach their goals (our definition of Accept-
ability). The FULL condition provides students with
more explicit feedback as to their learning; whereas
in BASE students may have a less accurate estimate
of how well they are doing, and hence no satisfaction
dimensions are correlated with learning gain.

It is worth noting that an earlier study investigat-
ing the relationship between user satisfaction and
learning in two different tutorial dialogue systems
(Forbes-Riley and Litman, 2009) found little corre-
lation between the answers to individual questions
on their satisfaction questionnaire and learning gain.
Only one correlation, with the question “The tutor
helped me to concentrate”, reached significance in
only one of the 4 conditions they investigated. This
adds further evidence that the relationship between
learning gain and satisfaction is not straightforward.
However, our results are difficult to compare since
the questionnaires used are different, and Forbes-
Riley and Litman (2009) are studying correlations
with individual questions rather than grouping re-
lated questions together. Developing better validated
questionnaires will make such results easier to com-
pare and interpret, and we believe that REVU-NL
makes a significant step in that direction.

7 Conclusion and Future Work

In this paper, we proposed an improved question-
naire (REVU-NL) for evaluating user satisfaction
in tutorial dialogue systems, which is an important

evaluation metric alongside learning gain. We used
the methodology from SDS evaluations to investi-
gate different dimensions of user satisfaction, and
their relationship to learning gain and different in-
teraction properties. Next, we are planning to use
the PARADISE methodology to establish predictive
models that relate satisfaction dimensions to mea-
surable interaction properties, so that we can de-
termine development priorities, and make it eas-
ier to compare different system versions. We are
also planning to collect additional questionnaire data
with a speech-enabled version of the system, and
verify our analyses on this extended data set.
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A REVU-NL Questions

t1 I felt in control of my conversations with the tutor.
t2 It took the tutor too long to respond to my statements.
t3 I felt that the tutor understood me well.
t4 The tutor didn’t always do what I expected.
t5 The information that the tutor provided to me was incomplete.
t6 It was easy for me to become confused during our dialogue.
t7 I enjoyed talking with the tutor.
t8 The tutor interfered with my understanding of the topics in electricity and circuits.
t9 I was not always sure what the tutor expected of me.
t10 Conversing with the tutor was fun.
t11 It was easy to understand the things that the tutor said.
t12 The dialogue between me and the tutor was very repetitive.
t13 I had to really concentrate when I was talking with the tutor.
t14 The tutor was too inflexible.
t15 Working through the lessons with the computer tutor was as easy as working through the lessons

with a human tutor.
t16 The tutor didn’t always do what I wanted.
t17 I felt confident when talking with the tutor.
t18 I always knew what to say to the tutor.
t19 I was able to recover easily from errors during our dialogues.
t20 Talking with the tutor was frustrating.
t21 The information provided by the tutor was clear.
t22 It was easy to interact with the tutor.
t23 The tutor’s dialogue was clumsy and unnatural.
t24 It was easy to learn how to speak to the tutor in a way that the tutor understood.
t25 I felt comfortable talking with the tutor.
t26 I didn’t always understand what the tutor meant.
t27 The tutor was not helpful.
t28 I found conversing with the tutor to be irritating.
t29 I knew what I could say or do at each point in the conversation with the tutor.
t30 I found our dialogues to be boring.
t31 Having the tutor help me with the material was an efficient way to learn.
t32 It was easy to learn from the tutor.
t33 The tutor responded quickly.
t34 Having the tutor was worthwhile
t35 Our dialogues quickly led to me having a deeper understanding of the material.

B REVU-OVERALL questions

o1 Overall, I am satisfied with my experience learning about electricity from this system.
o2 Working in this learning environment was just like working one-on-one with a human tutor.
o3 I would have preferred to learn about electricity in a different way.
o4 I would use this system again in the future to continue to learn about electricity.
o5 I would like to be able to use a system like this to learn about other topics in the future.
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C REVU-IT questions related to GUI and reading material (mentioned but not analyzed
in the paper)

sl1 It was easy to navigate through the slides.
sl2 It took a long time for each new slide to be displayed.
sl3 The material on the slides was easy to understand.
sl4 The material on the slides was poorly written.
sl5 I would have benefited from more instrucion on how to move through the slides.
sl6 The material on the slides was interesting.
sl7 The slide navigation buttons didn’t always work the way I expected them to.
sl8 The slides were annoying.
sl9 The material on the slides was written at a level far beneath my abilities.
sl10 I would prefer reading a text book over reading these slides.
e1 I found it difficult to learn how to build circuits and take measurements in the workspace.
e2 Completing exercises in the workspace was fun.
e3 Before beginning the lesson, I received the right amount of instruction on how to build circuits in

the workspace and take measurements.
e4 The exercises were well designed to illustrate the important lesson concepts.
e5 Sometimes I didn’t understand what I was supposed to do for an exercise.
e6 The method for connecting components with wires was counter-intuitive.
e7 Having to build all those circuits was annoying.
e8 I always knew exactly what to build and/or measure in the workspace, and how to do it.
e9 Circuits loaded quickly.
e10 Even if I didn’t predict the outcome correctly ahead of time, once I completed an exercise, I

always understood the point.
e11 It was easy to use the meter.
e12 There were more exercises than necessary to cover the lesson topics.
e13 I would have learned more if I had been able to build circuits with actual light bulbs and batteries.
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Abstract

In this work we describe the modeling and
prediction of Interaction Quality (IQ) in Spo-
ken Dialogue Systems (SDS) using Support
Vector Machines. The model can be employed
to estimate the quality of the ongoing inter-
action at arbitrary points in a spoken human-
computer interaction. We show that the use
of 52 completely automatic features character-
izing the system-user exchange significantly
outperforms state-of-the-art approaches. The
model is evaluated on publically available data
from the CMU Let’s Go Bus Information sys-
tem. It reaches a performance of 61.6% un-
weighted average recall when discriminating
between 5 classes (good to very poor). It can
be further shown that incorporating knowl-
edge about the user’s emotional state does
hardly improve the performance.

1 Introduction

For years, the research community has been trying
to model quality of Spoken Dialogue Systems (SDS)
with statistical approaches. Most vividly discussed
has been the PARADISE approach which tries to
map objective performance metrics of an SDS to
subjective user ratings (Walker et al., 2000). The
paradigm assumes that task success and dialogue
costs contribute to user satisfaction which is the tar-
get variable in the model. By that, an automatic eval-
uation of an SDS should be enabled. While the in-
tention of PARADISE is to evaluate and compare
SDS or different system versions among each other,
it is not suited to evaluate a spoken dialogue at ar-
bitrary points during an interaction. Such a model

can be helpful for a number of reasons: Firstly,
it allows for a prediction of critical dialogue sit-
uations. These predictions could be employed to
adapt the dialogue strategy or - in telephone appli-
cations with human assistance - escalate to human
operators. Secondly, it could help to uncover poten-
tially weak dialogue design and point out problem-
atic turns that need a re-design. Thirdly, user sat-
isfaction models help understand the satisfaction of
the users. In this study we present such a statisti-
cal model that is trained with a large set of domain-
independent features taken from system logs and use
additional manually created features, such as emo-
tional state and dialogue acts, to create an upper
baseline.

This paper is organized as follows: In Section 2
we present related work and discuss afterwards in
Section 3 further issues that need to be addressed in
this field. There, we also disambiguate the term user
satisfaction from Interaction Quality. After that, we
describe the annotation scheme as well as the rating
process for modeling IQ and present, how we derive
a generic label from the different raters’ opinions in
Section 4. The input feature groups along with their
features are presented in Section 5. We anticipate
that the problem is best modeled with Support Vec-
tor Machines (SVM), which is addressed in Section
6. Ensuing, the performance of the model is evalu-
ated. In the first place, we analyze the impact of dif-
ferent feature groups on the SVM classifier in Sec-
tion 7 and secondly, we optimize the model and de-
termine the most relevant features for predicting the
IQ score in Section 8. A linear modeling approach
of IQ by use of multivariate linear regression will be
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presented and discussed in Section 9 to obtain com-
parability with PARADISE. This study closes with
a conclusion and a discussion in Section 10.

2 Related Work

Models predicting user satisfaction at any point in
an SDS have only been deficiently explored to date.
(Engelbrecht et al., 2009) modeled user satisfac-
tion as process evolving over time with Hidden
Markov Models (HMM). In the experiment, users
were asked to interact with a Wizard-of-Oz restau-
rant information system. Each participant followed
dialogues which have previously been defined fol-
lowing predefined scripts, i.e. specific scenarios.
This resulted in equally long dialogue transcripts
for each scenario. The users were constrained to
rate their satisfaction on a 5-point scale with “bad”,
“poor”, “fair”, “good” and “excellent” after each di-
alogue step. The interaction was halted while the
user voted.

In a similar spirit, (Higashinaka et al., 2010a)
developed a model for predicting turn-wise rat-
ings, which was evaluated on human-machine and
human-human dialogues. The data employed was
not spoken dialogue but text dialogues from a chat
system and a transcribed conversation between hu-
mans. The labels in the model originated from
two expert raters that listened to the recorded in-
teractions and provided turn-wise scores from 1-7
on smoothness (“Smoothness of the conversation”),
closeness (“Closeness perceived by the user towards
the system”) and willingness (“Willingness to con-
tinue the conversation”). Rater-independent perfor-
mance scores of the model reached about 0.2-0.24
unweighted average recall, which is about 0.1 points
above the baseline of app. 0.14.

(Hara et al., 2010) created n-gram models from
dialogue acts (DA) to predict user satisfaction based
on dialogues from real users interacting with a music
retrieval system. The model is based on overall rat-
ings from the users measuring their satisfaction on a
five point scale after the interaction. The best result
could be achieved with a 3-gram model that reached
34% accuracy in distinguishing between six classes
at any point in the dialogue. It seems that the predic-
tion of turn-level user satisfaction scores given only
one overall dialogue-level score seems hardly possi-

ble and is close to random: The prediction of the five
user satisfaction classes reach an average F-score as
low as 0.252, which is only 0.052 score points above
the baseline of 0.20. A similar result as (Hara et al.,
2010) was obtained by (Higashinaka et al., 2010b).
Using HMMs they derived turn-level ratings from
dialogue-wide ratings. The model’s performance
when trained on dialogue-level ratings was closer to
random than when trained on turn-level ratings. The
open issues that arise from the cited work are ad-
dressed in the following.

3 Issues

Our aim is to create a general model that may be
used to predict the quality of the interaction - or
ideally the actual satisfaction of the user - at arbi-
trary system-user exchanges in an SDS. It has be-
come obvious from the cited work that current mod-
els are not suited for deployment due to low predic-
tion accuracy. Crucial for a successful recognition
of user satisfaction is the choice and appropriateness
of the input variables. (Higashinaka et al., 2010a),
(Higashinaka et al., 2010b) and (Hara et al., 2010)
employ a - mostly hand annotated - “dialogue act”
feature to predict the target variable. Dialogue acts
are frequently highly system-dependent and do not
model the full bandwidth of the interaction. (Engel-
brecht et al., 2009) additionally employed contex-
tual appropriateness, confirmation strategy and task
success, of which many require hand annotation. Yet
it is mandatory for an automatic prediction of user
satisfaction to design and derive completely auto-
matic features that do not require manual interven-
tion. It is further easy to comprehend that the mod-
eling of user satisfaction in ongoing dialogues starts
with a dilemma: tracking user satisfaction from real
users in real environments performing real tasks is
virtually impracticable. Consequently data for de-
riving models can either be obtained under labora-
tory conditions with real users performing fake tasks
in an artificial environment, cf. (Engelbrecht et al.,
2009), or by manual annotation of real-life data from
experts that pretend to be the users.

It is thus vital for modeling “user satisfaction” to
understand the term itself. In the literature there ex-
ists no rigorous definition, however, it seems obvi-
ous that it is the user himself who determines the
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satisfaction - and not expert annotators. Accord-
ing to (Doll and Torkzadeh, 1991) “user satisfac-
tion” is the opinion of users about a specific com-
puter application, which they use. Other terms for
“user satisfaction” are common, such as “user infor-
mation satisfaction”, which is defined as “the extent
to which users believe the information system avail-
able to them meets their information requirements”
(Ives et al., 1983). User satisfaction and usability are
closely interwoven. (ISO, 1998) subsumes under the
definition “usability” a compound of efficiency, ef-
fectiveness and satisfaction. Yet satisfaction is often
seen as a by-product of great usability in HCI lit-
erature (Lindgaard and Dudek, 2003). They could
also show that user satisfaction ratings are subject to
large fluctuations among different users and it can be
further assumed that those fluctuations do also occur
within a single dialogue of a user. As a result, gen-
eral prediction models that mirror a universal, un-
biased understanding of satisfaction can presumably
hardly be derived from user’s impressions. Large
influence of subjectivity - and also randomness in
assigning the scores - would prevent such a general
model. Consequently, it seems unavoidable to em-
ploy expert annotations. In the proper meaning of
the word, the scores then do not exactly mirror the
subjective impression of users but the more objec-
tive impression of expert raters.

Thus we decide against the use of the term user
satisfaction in the course of this work in contrast to
(Higashinaka et al., 2010a) and instead opt for the
expression Interaction Quality. It can be assumed
that basic attitudes towards dialogue systems in gen-
eral, opinions about the TTS voice, environmental
factors etc. that would typically influence user satis-
faction scores, and which are not of interest for our
prediction, are not dominant in expert satisfaction
scores in a series of annotated dialogues. Experts
are expected to fade out such system-dependent and
environment-dependent influences and instead focus
on the dialogue behavior (i.e. the Interaction Qual-
ity) only.

As a result, two key issues are addressed in this
work: First of all, the input feature set has to be de-
signed as a generic, domain-independent set that can
be derived from any spoken dialogue system log and
that takes into account a maximum of available in-
formation about the interaction. Secondly, the tar-

get variable, i.e. the IQ score, needs to be deter-
mined in a guided rating process in order to be re-
producible in future work and has to be empirically
derived from several expert annotators that provide
scores for each single system-user turn of an inter-
action.

4 Corpus Annotation

For our study we employ data from the Let’s Go
Bus information system (Raux et al., 2006). Three
raters, advanced students of computer science and
engineering, annotated respectively 200 dialogues
comprising 4885 system-user exchanges from the
2006 corpus. The raters were asked to annotate the
quality of the interaction at each system-user ex-
change with the scores 5 (very good), 4 (good), 3
(fair), 2 (poor) and 1 (very poor). Every dialogue
is initially rated with a score of 5 since every inter-
action at the beginning can be considered as good
until the opposite eventuates. Our model assumes
that users are initially interacting with an SDS with-
out bias, i.e. the basic attitude towards a dialogue
system is positive. Other assumptions would not be
statistically predictable. An example dialogue is de-
picted in Table 5 along with the ratings (cf. Figure 2
in the Appendix). (Higashinaka et al., 2010b) and
(Higashinaka et al., 2010a) report low correlation
among the ratings (Spearman’s ρ 0.04-0.32), which
motivated us to develop a set of basic guidelines that
should be used by the raters (cf. Table 6 in the Ap-
pendix). The guidelines have been designed in such
a way that the raters still have sufficient level of free-
dom when choosing the labels but preventing them
from too strong variations among the neighboring
system-user exchanges.

The distribution of the labels provided by the sin-
gle raters is depicted in Figure 3. As expected, the
distribution is skew towards label “5” since every di-
alogue initially is assumed to have a good IQ.

The inter-rater agreement shows that Interaction
Quality is still a subjective metric, although guide-
lines seem to synchronize the labels to a certain ex-
tent. The overall mean agreement can be reported
with Cohen’s κ = 0.31 and the correlation among
the raters can be reported with Spearman’s ρ = 0.72
which depicts a by 0.4 points higher correlation as
reported by (Higashinaka et al., 2010a). Since we
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aim to model a general opinion on Interaction Qual-
ity, i.e. the model should mirror the IQ score other
raters - and in the last instance users - agree with,
we determine the final label empirically. A major-
ity voting for the distinction of the final label can-
not be used since in 21% of the exchanges all three
raters opted for different scores. Thus we consider
the mean of all rater opinions as possible candidates
for the final class label:

ratingmean = b

(
1

R

R∑
r=1

IQr

)
+ 0.5c

where IQ is the Interaction Quality score pro-
vided by rater r. byc denotes the biggest integer
value smaller than y. Every value IQr contributes
equally to the result that is finally rounded half up to
an integer value. Furthermore we consider the me-
dian, which we define as

ratingmedian = select(sort(IQR),
R+ 1

2
)

for an odd number of raters R, where sort is a func-
tion that orders the ratings of all raters ascending and
select(X = [x1, ..., xn], i) chooses the item with in-
dex i from X .

The compliance of the single user ratings with the
final label (calculated on mean and median) is de-
picted in Table 1. As can be seen, the agreement of
the three raters with the median label is significantly
higher than with the mean label. Consequently the
median label represents the most objective measure-
ment of Interaction Quality and commends itself for
creating the model.

5 Input Features

The system-user interaction is modeled on exchange
level. Each system-user exchange consists of a set
of fully automatic features that can be derived from
system logs. We used parameters similar to the ones
described in (Schmitt et al., 2008; Schmitt et al.,
2010b). In the first place, we modeled each system-
user exchange with a number of Speech Recognition
(ASR), Spoken Language Understanding (SLU) and
Dialog Manager (DM)-related features:

Mean Label Median Label

Cohen’s κ

Rater1 0.557 0.688
Rater2 0.554 0.679
Rater3 0.402 0.478
Mean 0.504 0.608*

Spearman’s ρ

Rater1 0.901 0.900
Rater2 0.911 0.907
Rater3 0.841 0.814
Mean 0.884 0.874

Accuracy

Rater1 0.651 0.755
Rater2 0.647 0.749
Rater3 0.539 0.598
Mean 0.612 0.701*

Table 1: Agreement of single rater opinions to the merged
label when determined by mean and median, measured in
κ, ρ and accuracy. (*)=significantly higher (α < 0.05)

ASR ASRRECOGNITIONSTATUS: one of ’suc-
cess’, ’reject’, ’timeout’; ASRCONFIDENCE:
confidence of the ASR; BARGED-IN?: did the
user barge-in?, MODALITY: one of ’speech’,
’DTMF’; EXMO: the modality expected from
the system (’speech’, ’DTMF’, ’both’); UN-
EXMO?: did the user employ another modal-
ity than expected?; GRAMMARNAMES: names
of the active grammars; TRIGGEREDGRAM-
MAR: name of grammar that matched; UTTER-
ANCE: raw ASR transcription; WPUT: num-
ber of words per user turn; UTD: utterance turn
duration;

SLU SEMANTICPARSE: semantic interpretation
of caller utterance; HELPREQUEST?: is the
current turn a help request?; OPERATORRE-
QUEST?: is the current turn an operator re-
quest?;

Dialog Manager ACTIVITY: identifier of
the current system action; ACTIVITY-
TYPE: one of ’question’, ’announcement’,
’wait for user feedback’; PROMPT: system
prompt; WPST: number of words per system
turn; REPROMPT?: is the current system turn
a reprompt?; CONFIRMATION?: whether the
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current system prompt is a confirmation to
elicit common ground between user and system
due to low ASR confidence; TURNNUMBER:
current turn; DD: dialog duration up to this
point in seconds.

To account for the overall history of important
system events we added running tallies, percentages
and mean values for certain features symbolized
with the suffixes ’#’, ’%’ and ’MEAN’. They
are: MEANASRCONFIDENCE, the average of
ASR confidence scores from all user utterances
so far in the dialog, and #ASRSUCCESS, the
number of succesfully parsed user utterances so far.
Further we calculate #ASRREJECTIONS, #TIME-
OUTPROMPTS, #BARGEINS, #UNEXMO and the
respective normalized equivalents with the prefix
’%’ instead of ’#’. We consider the immediate
context within the previous 3 turns of the current
turn as particularly relevant for the Interaction Qual-
ity. Hence, derived from the basic parameters we
created further parameters that emphasize specific
user behavior prior to the classification point. They
are symbolized with the prefix {#} for a number and
{Mean} for the mean value. A number of successive
barge-ins or recognition problems might indicate a
low IQ. Thus we add {MEAN}ASRCONFIDENCE,
the mean confidence of the ASR within the win-
dow, {#}ASRSUCCESS, {#}ASRREJECTIONS

and {#}TIME-OUTPROMPTS, i.e. the number
of successfully and unsuccessfully parsed ut-
terances within the window and the number
of time-outs. The other counters are calcu-
lated likewise: {#}BARGEINS; {#}UNEXMO,
{#}HELPREQUESTS, {#}OPERATORREQUESTS,
{#}REPROMPT, {#}CONFIRMATIONS,
{#}SYSTEMQUESTIONS.

To provide comparability to previous work (Hi-
gashinaka et al., 2010a), we further introduce a
dialogue act feature group that we create semi-
automatically:

DAct SYSTEMDIALOGUEACT: one of 28 dis-
tinct dialogue acts, such as greeting,offer help,
ask bus, confirm departure, deliver result, etc.
USERDIALOGUEACT: one of 22 distinct DAs,
such as confirm departure, place information,
polite, reject time, request help, etc.

To create an upper baseline of our model we fur-
ther introduce the negative emotional state of the
user that is manually annotated by a human rater
who chooses one of the labels garbage, non-angry,
slightly angry, very angry for each single user turn:

Emo EMOTIONALSTATE: emotional state of the
caller in the current exchange. One of garbage,
non-angry, slightly angry, very angry.

The same annotation scheme as in our previous
work on anger detection has been applied, see e.g.
(Schmitt et al., 2009). From all 4,832 user turns,
68.5% were non-angry, 14.3% slightly angry, 5.0%
very angry and 12.2% contained garbage, i.e. non-
speech events. In total, the number of interaction
parameters servings as input variables for the model
amounts to 52.

6 Non-Linear Modeling with Support
Vector Machines

The IQ scores are classified with Support Vector
Machines (Bennett and Campbell, 2000). In short,
an SVM uses a set of training examples

(x1, y1) . . . (xn, yn)|xi ∈ X , yi ∈ {−1, 1}

to create a hyperplane that separates two classes
{−1, 1} in such a manner that the smallest margin
between all training samples is maximized. The hy-
perplane is described by a normal vector w and a
so-called bias b. To classify an unknown sample the
following decision rule is applied:

Y = sgn[wTx+ b > 0] =

{
+1, wTx+ b > 0
−1, wTx+ b ≤ 0

Depending on the position of the training sample in
relation to the hyperplane, the class 1 or −1 is as-
signed to the unknown sample. Multi-class prob-
lems are solved by reducing the problem to several
binary classification problems where usually a one-
versus-all decision is applied.

The model is constructed with an SVM with lin-
ear kernel that uses the fast Sequential Minimal Op-
timization (SMO) algorithm (Platt, 1999). Input
variables are features from the described groups, i.e.
x ∈ {DAct,ASR, SLU,DM,Emo}. The target
variable is the IQ score.
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7 Feature Group Evaluation

The skew distribution of the five classes requires the
employment of an evaluation metric that weights the
prediction of all classes equally. Hence, a perfor-
mance metric, such as accuracy, would not be a re-
liable measurement. We select the unweighted aver-
age recall (UAR) to assess the model performance.
Although it does not consider the severity of the er-
ror, i.e. predicting “1” for an IQ of “5” is considered
as fatal as predicting “4”, it has been proven to be su-
perior to other evaluation metrics, see (Higashinaka
et al., 2010a), where the UAR is called Match Rate
per Rating (MR/R). It is defined as follows:

MR/R(R,H) =
1

K

K∑
r=1

∑
i∈{i|Ri=r}

match(Ri, Hi)∑
i∈{i|Ri=r}

1
,

where K is the number of classes, here “5”, and
’match’ is either ’1’ or ’0’ depending on whether
the classifier’s hypothesis Hi for the class r matches
the reference label Ri. In the course of this work
we will stick to the expression MR/R by reason of
clearness. We further list Cohen’s κ and Spearman’s
ρ to make our work comparable to other studies but
will use MR/R as central evaluation criterion and for
feature selection.

We have split all available data into two disjoint
subsets consisting of 60% of the dialogues for train-
ing and testing via 10-fold cross-validation and the
remaining 40% of the dialogues for optimization.
The dialogues have been selected randomly.

In order to assess the performance contribution of
the single feature groups, we trained the SVM re-
spectively with all features from the DAct, ASR, SLU
and DM groups. Further, we subsumed the groups
ASR, SLU and DM as AUTO features since they can
automatically be derived from logs without manual
intervention. In addition, the AUTOEMO group con-
tains all AUTO features plus the emotion label. Fi-
nally, the ALL group contains the AUTOEMO fea-
tures plus the DAct features. For all groups, the sup-
port vector classifier has been trained and evaluated
in 10-fold cross validation with the 3110 exchanges
from the 118 training/testing dialogues. The first
turn of each dialogue has been excluded from the

evaluation since each dialogue starts with a score of
“5”. Results are depicted in the first half of Table 2.

Input Feature Selection MR/R κ ρ

Majority Baseline 0.200 0.0 NA
DAct no 0.269 0.136 0.363
ASR no 0.605 0.551 0.753
SLU no 0.250 0.083 0.293
DM no 0.429 0.334 0.653
AUTO no 0.584 0.526 0.776
AUTOEMO no 0.606 0.549 0.785
ALL no 0.619 0.559 0.800
DAct – - - -
ASR 13/25 0.598 0.545 0.730
SLU 4/5 0.250 0.083 0.293
DM 10/17 0.436 0.338 0.649
AUTO 20/47 0.616 0.563 0.786
AUTOEMO 31/48 0.604 0.545 0.785
ALL 23/52 0.625 0.575 0.795

Table 2: Model performance after 10-fold cross valida-
tion on training/test set. The first half comprises results
when all features of a group are employed. The second
half contains results after feature selection on the opti-
mization set ((x/y)=where x is the number of features
used from all y available features.)

As can be seen, the model reaches a similar
performance as (Higashinaka et al., 2010a) with
MR/R=0.26, when trained with dialogue act features
alone. The slightly higher performance of our model
can potentially be explained by the lower number
of classes (5 vs. 7), a different definition of the
dialogue act set, the employment of Support Vec-
tor Machines instead of Hidden Markov Models or
the difference in the target variable (IQ vs. close-
ness/smoothness/willingness). It can be noted that
the utilization of other features considerably outper-
forms dialogue act features. Particularly the group
of the ASR features alone reaches a performance
of 60.5%. The employment of all AUTO features
delivers 58.4% which is 2.1% below the ASR fea-
tures. Consequently, other variables seem to be
less meaningful for predicting the Interaction Qual-
ity and seem to harm the performance of the SVM.
The knowledge of the emotional state of the user
contributes with merely another 0.1% in compari-
son to the ASR features. It can be assumed that the
emotion feature increases the recognition rate of the
lower IQ scores “1” and “2”. However, this could
not be confirmed: even when considering class-wise
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performance values a significant contribution of the
emotion feature cannot be observed. We also have
to bear in mind that we employed hand-annotated
emotions. Emotion recognition itself is error-prone
and a distinction of the emotional state of the caller
with the employed annotation scheme can be ex-
pected with approximately 70%-80% UAR, see e.g.
(Schmitt et al., 2010a). The influence of emotion
recognition on the IQ distinction can be considered
as limited and is insofar not surprising as the occur-
rence of strong anger in the data is not dominant
(5.0%). The contribution of the single features to
the classification result (across the groups they are
assigned to) is analyzed in the following.

8 Optimizing the Model by Feature
Selection

Since too many (potentially irrelevant) features
might harm the classifier’s performance we perform
feature selection with the optimization set. First,
the features are ordered according to an Informa-
tion Gain Ratio (IGR) ranking. The 10 most rele-
vant features according to IGR for predicting IQ are
depicted in Table 3.

Feature IGR

1 #ASRREJECTIONS 1
2 #TIMEOUT ASRREJ 0.967288
3 #ASRSUCCESS 0.834238
4 #REPROMPTS 0.804752
5 %REPROMPTS 0.800462
6 #TIMEOUTPROMPTS 0.757596
7 #SYSTEMQUESTIONS 0.757596
8 ROLEINDEX 0.699246
9 DD 0.566836
10 #BARGE-INS 0.566836

Table 3: Top 10 features on optimization set according to
IGR.

As can be seen the Interaction Quality is obvi-
ously heavily influenced by the performance of the
ASR. In other words, it can be assumed that the
raters themselves are influenced by the ASR’s per-
formance when assigning the IQ scores. All features
belong to the group AUTO, i.e. they can be deter-
mined automatically during runtime. Furthermore,
nearly all features are related to the overall interac-
tion, i.e. features related to the current exchange,

such as UTTERANCE, ASRSUCCESS? etc. do not
even occur. It can also be noted that the emotional
state and the dialogue acts are not listed as most rel-
evant features. To determine the global maximum of
the classifier, i.e. the best performing feature set, we
incrementally select the k topmost features from the
list and perform 10-fold cross validation on the opti-
mization set. A plot of the iterative feature selection
is depicted in Figure 1.

8.2 Prediction Results 53

Rapidminer GUI

Missing

figure

Figure 8.2: The Graphical User Interface of RapidMiner 4.6

Table 8.1: Baseline perfomances.

Configurations Performance

Corpus Input Target MR/R κ ρ

LetsGo DAct IQ-Med - - -
AUTO IQ-Med - - -
ALL IQ-Med - - -

LetsGoUser DAct IQ - - -
AUTO IQ - - -
ALL-U IQ - - -
DAct US - - -
AUTO US - - -
ALL-U US - - -

5 10 15 20 25 30 35 40 45

0.45

0.5

0.55
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#Parameters

M
R
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IGR Parameter Selection

Figure 8.3: Parameter selection performance on the LetsGo Corpus for the optimization
set using set AUTO for prediction of IQ-Med.Figure 1: Performance of the SVM when iteratively in-

creasing the size of the feature vector with the k topmost
features according to IGR.

Several observations can be made: the best per-
forming feature set consists of 20 features with an
absolute performance of 65 % MR/R on the op-
timization set. However, a similar performance
can already be gained with the 7 top-most fea-
tures. All other features obviously neither signif-
icantly decrease nor increase the performance and
can be considered irrelevant for predicting the IQ
score. The impact of feature selection on the model
when evaluated on the single feature groups from
the test/training set using only the most relevant fea-
tures from the optimization set can be seen in the
lower part of Table 2. Again, 10-fold cross vali-
dation has been applied. The AUTO group benefits
from the selection and delivers the highest perfor-
mance with 20 features with an MR/R of 61.6%,
which is an increase of 3.2%. The upper baseline
with hand annotated features (ALL group) amounts
to 62.5%. The fact that the AUTOEMO set underper-
forms with 60.4% - in comparison to the AUTO set
- can be explained due to the potentially too small
size of the optimization set.

The confusion matrix for the AUTO feature set is
depicted in Table 4, along with the class-wise pre-
cision and recall values. The model yields the best
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performance in predicting the scores at the edge, i.e.
“5” and “1”. In between, the confusion is slightly
higher and the model performance lower.

Table 4: Confusion matrix including class-wise preci-
sion and recall values after 10-fold cross validation (train-
ing/test set) using the AUTO set. A (weighted average)
accuracy of 67.5% can be derived.

true 5 true 4 true 3 true 2 true 1 prec.

pred. 5 721 154 42 9 5 0.774
pred. 4 89 464 104 44 19 0.644
pred. 3 17 63 231 49 38 0.580
pred. 2 2 15 39 89 33 0.500
pred. 1 4 23 29 27 169 0.670

rec. 0.865 0.645 0.519 0.408 0.640

9 Linear Regression Modeling

Models from the initially mentioned PARADISE ap-
proach presume a linear relationship between input
variables - quantifying the dialogue - and the target
variable US, the user satisfaction. Assuming lin-
earity, such linear models allow inferences such as
“The longer the dialogue duration, the lower the sat-
isfaction”. While linear modeling is descriptive and
easy to read it delivers poor performance when ap-
plied on non-linear problems. Such non-linear prob-
lems reach a better predictability using Support Vec-
tor Machines (SVM). Although we anticipate that a
relationship between IQ and the interaction param-
eters is not given, we list a multivariate linear re-
gression model for comparison reasons with PAR-
ADISE.

The linear regression model of Interaction Quality
is calculated as follows:

IQ =

n∑
i=1

wi · N (pi)

where wi is the weight for the interaction parame-
ters pi, and N the z-score normalization function.
N normalizes the input variables to a mean of zero
and a standard deviation of one. This eliminates the
variying scales of the input variables.

From the CMU Let’s Go dataset we obtained the
following IQ function using the ALL feature set:

IQ = 0.7797 · N (TURNNUMBER)

+ 0.7797 · N (#SYSTEMTURNS)

− 0.7386 · N (#ASRSuccess)
− 0.7175 · N (#USERTURNS)

− 0.3019 · N (%RePrompts)
− 0.2371 · N (EMOTIONALSTATE)

− 0.2224 · N (#ASRRejections)
− 0.1961 · N (#TIMEOUTS ASRREJ)

+ 0.1912 · N (ASRRECOGNITIONSTATUS)

+ 0.1648 · N (ASRCONFIDENCE)

− 0.1592 · N (#ASRSUCCESS)

− 0.1466 · N (ACTIVITY)

+ 0.1388 · N (ACTIVITYTYPE)

+ 0.1231 · N (MEANASRCONFIDENCE)

− 0.0981 · N (#SYSTEMQUESTIONS)

+ 0.0948 · N (%ASRREJECTIONS)

− 0.0918 · N (#TIMEOUTS ASRREJ)

+ 0.0835 · N (#Reprompts)
+ 0.0812 · N (%BARGE-INS)

− 0.0567 · N (%TIME-OUTPROMPTS)

− 0.0555 · N (#TIMEOUTS˙ASRREJ)

− 0.0467 · N (#Time-OutPrompts)
+ 0.0461 · N (WPST)

+ 0.0432 · N (HANDTRANSCRIPTION)

− 0.0425 · N (LOOPNAME)

+ 0.0375 · N (#SystemQuestions)
+ 0.0374 · N (SEMANTICPARSE)

− 0.0345 · N (BARGED-IN?)

+ 0.0338 · N (RoleIndex)

− 0.0335 · N (#REPROMPTS)

− 0.0316 · N (#ASRREJECTIONS)

+ 0.0302 · N (REPROMPT?)

+ 0.0249 · N (WPUT)

+ 0.0225 · N (ROLENAME)

Parameters occurring in the top 10 feature list ac-
cording to IGR (see Table 3) are printed in bold-
face. It is interesting to note that parameters related
to the progress of the dialogue (TURNNUMBER,
#SYSTEMTURNS, #USERTURNS) seem to play the
most important role, which can easily be explained:
the later in the dialogue, the higher the probabil-
ity that the score is low, due to the nature of IQ.
Remember that all dialogues have been annotated
with high IQ scores (“5”) in the beginning (see also
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Table 5). However, many inconsistencies remain
unexplained, e.g. the negative sign in “−0.7175 ·
N (#USERTURNS)” contradicting the positive sign
in “+0.7797 · N (#SYSTEMTURNS)”. The nega-
tive sign in “−0.7386 · N (#ASRSUCCESS)” would
further imply that the more successful the ASR, the
lower the IQ score. This corroborates our suspicion
that IQ is not a linear problem.

To assess the performance of linear regression for
predicting IQ we employed 10-fold cross validation,
again with all 200 annotated dialogues. We obtained
a root mean squared error of 0.594 and R2 = 0.646.

Mapping the continuous values to discrete score
classes from 1-5, we obtain MR/R = 45.5%
(62.5% using SVM), κ = 0.352 (0.575) and ρ =
0.46 (0.795). All values finally suggest that IQ is
better modeled with non-linear classifiers such as
SVMs or Multilayer Perceptrons (MLP).

10 Conclusion and Discussion

In this work we have developed a statistical model
that predicts Interaction Quality, an objective mea-
sure of user satisfaction, at arbitrary points in an
SDS. The model targets on predicting critical situ-
ations on exchange level in ongoing dialogues. The
classifier, an SVM, reaches a performance of 61.6%
MR/R (κ = 0.563, ρ = 0.786) by use of an opti-
mized feature set that can be automatically derived
during the interaction. It could be further shown
that linear modeling with multivariate linear regres-
sion is not appropriate for predicting IQ and reaches
merely 45.5.% MR/R. Among all five feature groups
comprising altogether 52 features, the ASR and DM
groups contribute the most, while the EMOTIONAL-
STATE underperforms. We could further show that
features requiring manual annotation, such as dia-
logue acts, do not significantly improve the model’s
performance. The model has been evaluated with
200 dialogues from the CMU Let’s Go corpus com-
prising 4885 system-user exchanges where three an-
notators labeled the Interaction Quality on a score
from 1-5. We could show that the median of all three
opinions depicts the most generic view on the IQ and
is thus chosen as final score for the model.

Some issues have to be addressed in future work:
In the current study we assume that Interaction
Quality is an objective metric for determining the

satisfaction of users during the interaction. How
far this assumption is justified has to be empirically
proven in a laboratory study with real users. A cor-
responding study is in preparation and the results
will be published in a follow-up work. Although
the model’s performance can be considered as sat-
isfying, the direct deployment in dialogue systems
cannot be recommended at this stage. For enabling
a dialogue system to react on poor interaction qual-
ity, a correct prediction of the low IQ scores 1,2 and
3 is urgent, i.e. the classifier has to be optimized
to deliver a very high precision on such low scores
rather than towards a high general MR/R value. We
assume that the performance can be further driven
up by extending the feature space to the last n ex-
changes, which would take into account a larger
dialogue history for the decision (cf. (Schmitt et
al., 2010b)). The presented model can principally
be trained on data from any dialogue system; how-
ever, we did not yet deliver the proof that the present
model trained on Let’s Go data is general enough
for cross-domain and cross-system application with-
out significant performance loss. Due to the general
character of the ten most relevant features (cf. Table
3), portability can at least be assumed - without the
need for domain-dependent and system-dependent
re-training.
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Appendix

1 Welcome to the CMU Let’s Go bus information system.
2 To get help at any time, just say Help or press zero.
3 What can I do for you?

<DTMF-Zero>
4 I am an automated spoken dialogue system that can give you

schedule information for bus routes in Pittsburgh’s East End.
You can ask me about the following buses: 28X, 54C, 56U,
59U, 61A, 61B, 61C, 61D, 61F, 64A, 69A, and 501.

5 What bus schedule information are you looking for?
6 For example, you can say, when is the next 28X from DOWN-

TOWN to THE AIRPORT? or I’d like to go from MCK-
EESPORT to HOMESTEAD tomorrow at 10 a.m..
28X

7 The 56C . Is this correct?
No, 28X

8 What can I do for you?
I want to know whether /uh/ tomorrow the bus is available or
not.

9 Leaving at 11 p.m. . Did I get that right?
No, I just want to know is there any bus service for 28X tomor-
row.

10 Please use shorter answers because I have trouble understand-
ing long sentences.

11 Leaving at 11 p.m. . Is this correct?
On twenty third november.

12 Leaving at 11 p.m. . Is this correct?
No, I want to know the schedule on twenty third november

13 Leaving at 2 a.m. . Did I get that right?
<noise>

14 If you want to leave at 2 a.m. say yes or press one, otherwise
say no or press three.
no <noise>

15 Going to NORTH AND CEDAR. Did I get that right?
28x going to airport at seven a.m.

16 Please use shorter answers because I have trouble understand-
ing long sentences.

17 Going to NORTH AND CEDAR. Is this correct?
No.

18 Leaving from DYNAMO. Is this correct?
No.

19 Leaving from DYNAMO. Is this correct?
Leaving to airport.

20 Leaving from AIRPORT . Did I get that right?
yes

21 Right
22 Where are you going?

To airport.
23 Going to AIRPORT. Did I get that right?

yeah, yep
24 Okay
25 When would you like to travel?

yes
26 When would you like to travel?

Twenty third November.
27 When would you like to travel?

Tomorrow.
28 At what time do you wanna travel?

Seven a.m.
29 Leaving at 7 a.m. . Is this correct?

yep
30 Alright
31 Just a minute. I’ll look that up.
32 AIRPORT and AIRPORT are both the same stop. Please pro-

vide a different start or end point.
33 To ask about a different trip, you can say, start a new query. If

you are finished, you can say goodbye.
Yes.

34 You can say start a new query, or goodbye.
No.

35 To ask about a different trip, you can say, start a new query. If
you are finished, you can say goodbye.
<noise>

36 You can say start a new query, or goodbye.
<noise>
You can say start a new query, or goodbye.
<hangup>

Table 5: Example dialogue (ID: 2061122025) from the CMU Let’s Go System (2006 corpus) with low Interaction
Quality. The user utterances are printed in italic.
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Figure 3: Rating distribution for Interaction Quality within the Let’s Go Corpus for each rater.

Table 6: Rater guidelines for annotating Interaction Quality.

Rule Description
1. The rater should try to mirror the users point of view on the interaction as objectively as possible.
2. An exchange consists of the system prompt and the user response. Due to system design, the latter is not always present.
3. The IQ score is defined on a 5-point scale with “1=bad”, “2=poor”, “3=fair”, “4=good” and “5=excellent”.
4. The Interaction Quality is to be rated for each exchange in the dialogue. The history of the dialogue should be kept in

mind when assigning the score. For example, a dialogue that has proceeded fairly poor for a long time, should require
some time to recover.

5. A dialogue always starts with an Interaction Quality score of “5”.
6. The first user input should also be rated with 5, since until this moment, no rateable interaction has taken place.
7. A request for help does not invariably cause a lower Interaction Quality, but can result in it.
8. In general, the score from one exchange to the following exchange is increased or decreased by one point at the most.
9. Exceptions, where the score can be decreased by two points are e.g. hot anger or sudden frustration. The rater’s

perception is decisive here.
10. Also, if the dialogue obviously collapses due to system or user behavior, the score can be set to “1” immediately. An

example herefore is a reasonable frustrated sudden hang-up.
11. Anger does not need to influence the score, but can. The rater should try to figure out whether anger was caused by the

dialogue behavior or not.
12. In the case a user realizes that he should adapt his dialogue strategy to obtain the desired result or information and

succeeded that way, the Interaction Quality score can be raised up to two points per turn. In other words, the user
realizes that he caused the poor Interaction Quality by himself.

13. If the system does not reply with a bus schedule to a specific user query and prompts that the request is out of scope,
this can nevertheless be considered as “task completed”. Therefore this does not need to affect the Interaction Quality.

14. If a dialogue consists of several independent queries, each query’s quality is to be rated independently. The former
dialogue history should not be considered when a new query begins. However, the score provided for the first exchange
should be equal to the last label of the previous query.

15. If a dialogue proceeds fairly poor for a long time, the rater should consider to increase the score more slowly if the
dialogue starts to recover. Also, in general, he should observe the remaining dialogue more critical.

16. If a constantly low-quality dialogue finishes with a reasonable result, the Interaction Quality can be increased.
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Abstract 

SMS dictation by voice is becoming a viable al-

ternative providing a convenient method for 

texting in a variety of environments. Contextual 

knowledge should be used to improve perfor-

mance. We propose to add topic knowledge as 

part of the contextual awareness of both texting 

partners during SMS conversations. Topics can 

be used for speech applications, if the relation 

between the conversed topics and the choice of 

words in SMS dialogs is measurable. In this 

study, we collected an SMS corpus, developed 

a topic annotation scheme, and built a topic hie-

rarchy in a tree structure. We validated our top-

ic assignments and tree structure by the 

Agglomerative Information Bottleneck method, 

which also proved the measurability of the in-

terrelation between topics and wording. To 

quantify this relation we propose a naïve classi-

fication method based on the calculation of top-

ic distinctive word lists and compare the 

classifiers‟ topic recognition capabilities for 

SMS dialogs with unigram language models. 

The results demonstrate that the relation be-

tween topic and wording is significant and can 

be integrated into SMS dictation.  

1 Introduction 

One of the largest growth areas in communication 

is the Short Message Service (SMS) or text mes-

saging, as it is more popularly known. SMS grew 

out of what was initially a by-product of the mo-

bile phone industry (Agar, 2003; Goggin, 2006). In 

fact, by 2009 text messaging has become the most 

frequently used communication means among 

teens in the US, supported by the mobile phone 

industry offering unlimited texting plans (Lenhart 

et. al., 2010).  

For many reasons, voice enabled texting has be-

come a desirable alternative in a variety of mobile 

scenarios. The number of speech applications for 

mobile phones including texting by voice is con-

stantly growing. However, the challenges for SMS 

dictation by voice are multifold, from particular 

noise conditions, to the use of vocabulary and do-

main specific language, the dialogical nature of 

text messaging (Thurlow and Poff, 2009), and to 

error correction of imperfect recognition results.  

Achieving a high and robust performance is cru-

cial for the success of the application. For this pur-

pose additional contextual factors can be integrated 

into the recognition process. One possible factor, 

the conversed topic, has influence on the speaker‟s 

choice of words. Hence, it is an important contex-

tual factor for the prediction of the speaker‟s word-

ing, since it originates in the speaker‟s mental 

concepts during a dialog situation, which is the 

nature of texting. 

To date, research on text messaging has primari-

ly examined socio-linguistic phenomena (e.g., 

Thurlow, 2003). With respect to language and 

communication, text messaging is still an under-

examined research area. Thurlow and Poff (2009) 

provide a comprehensive overview of existing lite-

rature about SMS in linguistics. Moreover, there 

exists noteworthy work on SMS text normalization 

(Aw et. al., 2006; Fairon and Paumier, 2006; Cook 

and Stevenson, 2009; Kobus et. al., 2008; Pennell 

and Liu, 2010), for instance for the purpose of Ma-

chine Translation, Text-to-Speech engines or spell 

checking, work on SMS based question answering 
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services (Kothari, 2009), and work on predefined 

SMS replies in automobiles (Wu et. al., 2010). 

However, conversed topics in the context of SMS 

discourse have not been examined in the literature, 

neither in linguistics nor for any Natural Language 

Processing applications.  

Hence, in this paper we have developed a new 

approach to make topics useful as context know-

ledge for SMS dictation by voice. We describe top-

ic annotation of a novel SMS corpus and study the 

influence which SMS dialog topics may have on 

the choice of words. Based on the results, we are 

able to estimate and initially quantify its impact. 

This research can serve as the basis for developing 

algorithms that use topic knowledge for SMS dic-

tation in speech applications.  

2 Topic Annotation for SMS 

2.1 SMS Corpus in US English 

SMS data was collected from 250 participants who 

conversed with another 900. Participants were dis-

tributed almost evenly across gender, two age 

groups, and four US regions. Participants under 30 

years comprised 48% of the dataset, and partici-

pants over 30 years comprised 52% of the dataset. 

Within each of these two age groups, there were 

equal number of men and women. The demograph-

ic spread contained datasets from participants from 

the various regions in the USA: east coast 19%, 

west coast 24%, central 29%, and south 28%. 

The corpus dataset contains a total number of 

more than 51,000 messages, chosen randomly from 

a significantly larger set of data, for which partici-

pants provided authentic SMS conversations from 

their mobile phones to online SMS backup servic-

es. Besides demographic constraints, all text mes-

sages are part of SMS conversations, each 

composed at least by one message and a textual 

response, to preserve a contextual authentic situa-

tion. A conversation is considered to be ended if a 

time frame of 4 hours elapses without a response. 

The average length of SMS conversations in the 

corpus is between 8-9 messages, distributed over a 

notably higher number of shorter conversions than 

longer dialogs. Altogether the corpus contains 

more than 5800 conversations.  

Personal information of the SMS conversations 

was removed. Nonetheless the corpus itself is cur-

rently not published, because identifying informa-

tion can be indirectly present in SMS dialogs.  

The SMS corpus is semi-automatically norma-

lized following a general guideline to transform 

each texted message into one which could be dic-

tated by the user. For all following research the 

normalized rather than the raw SMS textual utter-

ances are used.  

 Table 1 shows representative examples for text 

normalization.  

  

Raw Normalized 

Yea b workin for 

hospice 

yeah be working for 

hospice 

I am at vetran 

@at@8 am 

I am at Veteran at 

eight ei-em 

Lets go 2 eat Let‟s go to eat 

You wanna go to da 

b walk or sumthin? 

You wanna go to the 

bee walk or some-

thing? 

 
Table 1: Text messages in raw and normalized format. 

2.2 Topic Annotation Method 

A key point for usefulness of an annotated corpus 

is the abstraction which maps SMS conversations 

present in the corpus to an abstract model serving 

the research goals (Wallis and Nelson, 2001; Mc 

Enery et. al., 2006). In our research, the corpus 

shall be used to explore to what extent the know-

ledge of one or more discussed topics, for which 

both SMS dialog partners try to make progress, can 

contribute to the performance of a speech recogni-

tion engine, where we expect the engine to be 

based on Statistical Language Models (SLM). 

Consequently, the annotation needs to enable us to 

trace a path from discussed topics to the choice of 

words and phrases in SMS conversations. This ab-

straction leads to our definition of the term topic 

and to guidelines for the annotation which are 

identified to be essential, when incorporating top-

ics into speech recognition.   

Other than an agreement on “what is being 

talked about”, the definition of topic in linguistics 

is a matter of viewpoint and dispute (Levinson, 

1983; Li and Thompson, 1976; Chafe, 1976; 

Molnár, 1993; Stutterheim, 1997). Moreover, a 

literature review has not revealed existing topic 

annotations which can be used for our purpose (Mc 

Enery et. al., 2006; Meyer, 2002). Since the inten-
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tion is to build a task driven, problem oriented an-

notation scheme we further specify a discourse 

topic as observable content or story line which dis-

course partners follow up in an SMS conversation. 

Hence, we understand a topic foremost as an 

attribute of an SMS dialog rather than of a single 

SMS, or of a phrase within the dialog. We assign at 

least one topic to each dialog. Since dialogs can in 

fact contain several distinct topics, we assign all 

explicitly mentioned topics to a conversation and 

mark separately all SMS which belong doubtlessly 

to each topic in the context of the conversation,  

Topics describe the content only, not any other 

level of discourse. The example in figure 1 shows a 

conversation with the topic „meeting arrangement‟. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Example of SMS dialog about “meeting      

arrangement”. 

2.3 Topic Annotation Procedure 

Discourse topics are highly domain dependent in 

their nature and may differ from the SMS domain 

to other domains, even to computer mediated 

communication services, like e-mail, Twitter, or 

Instant Messaging. Because of that, the list of SMS 

relevant topics evolves from the data itself. Addi-

tionally the list of possible topics always remains 

an open tag list, although one can expect recurring 

topics after a while with sparse extension of an 

existing topic list. Hence, the approach for annotat-

ing the SMS corpus must be manual. For this pur-

pose a team of four annotators marked the 

conversations with the help of an annotation tool 

developed specifically for the topic annotation. To 

ensure annotator agreement a linguist verified and 

confirmed the growing topic list and all topic as-

signments in several iterations. Further annotation 

of a larger corpus may be semi-automated based on 

the achieved topic list.  

Assigning topics to a dialog remains intuitive to 

a certain extent, because any mutual understanding 

of the dialog‟s content and pragmatic meaning is 

supported by social cues, situation awareness and 

world knowledge of dialog partners (Levinson, 

1983; Lambert and Carberry, 1992). These know-

ledge dimensions need to be reconstituted during 

the annotation process, when assigning a new top-

ic. One criterion is to ask if the topic is distinct 

from other topics with regard to describing pieces 

of our world knowledge dimensions, e.g. scripts 

and events that people repeatedly experience, or 

subjects, they are recurrently dealing with. 

Furthermore, a task driven approach demands to 

determine the level of specialization and detail for 

topics. Even if broad topics, such as “food” or “ap-

pointment”, may prove themselves to be distinct 

and meaningful enough for speech recognition, the 

annotation is done to one degree more detailed. 

Each topic is composed by a term and one restric-

tive attribute which divides a major topic into more 

distinctive topics. Thus “appointment” appears in 

the corpus divided into “cancel appointment”, “at-

tending an appointment”, “meeting arrangements”, 

and other. The advantage of the annotation proce-

dure is twofold; it leads to a list of topics, which 

can be depicted in a tree structure with several le-

vels of specialization, and, even though the annota-

tion is targeted to a special problem, there is 

sufficient information to make the corpus useful 

for a broader range of research. 

3 Corpus Analysis for Topic Usage 

3.1 Properties of Topics 

SMS conversations may follow up on one or more 

topics. Multiple topic conversations may make 

progress on topics even in parallel, either switching 

topics or addressing both within the same SMS. In 

general, we avoid topics which are suspected to 

describe the intention or strategy for the conversa-

tion rather than the content. There are a few excep-

tions, where the topic is implicitly or explicitly 

present in the dialog not only on content level but 

also as driving force for texting, e.g. “maintain 

friendship/relationship” or “small talk” (see exam-

ple (2) in figure 2). The border cannot be clearly 

drawn in these cases.  

Two topic assignments require explanation. 

“Small talk” is used for a group of short SMS di-

Hey how is every-

thing going? 

 
Good. Wanna go 

to the lax house? 
 

Maybe, when are u 

planning on going? 

In a little bit 
I'm still at the li-

brary… maybe i'll 

meet u ther Ok sounds good. 
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alogs, for which one cannot identify a topic. One is 

able to understand the dialog as a short form of 

friendship maintenance though, where both parties 

achieve mutual positive feedback about their cur-

rent situation, e.g. via salutation. Therefore “small 

talk” is expected to be of interest regarding word 

usage contrary to “undefined topic”. The latter is 

assigned to all conversations, where we do not 

share enough knowledge about the background and 

situation of the texters to understand and identify 

the topic of the dialog (example (3) in figure 2).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: SMS dialogs with (1) multiple topics, (2) 

small talk, and (3) undefined topic.  

 

All in all, the corpus contains 42.1% of dialogs 

with one annotated topic and 46.6% with multiple 

topics. The remaining 11.3% of dialogs are tagged 

as “undefined”.   

3.2 Building a Topic Tree 

The identification of similar or related topics in our 

corpus allow for grouping them together in specific 

topic clusters, such as “human relations”, “tech-

nology”, and “transportation”, and represent them 

in a tree structure hierarchy. The assignment to a 

topic cluster for each topic is determined by the 

relation between topics, which humans define 

based on their world knowledge and based on the 

semantic meaning of the topic. 

The topic tree hierarchy consists of four levels. 

The nodes in the first two levels build the tree 

structure and represent the topic clusters. Therefore 

they have not been used during the annotation 

process. Only from level three and above the topic 

names are assigned to the corpus and may be 

leaves of the tree. A forth level is used, when third 

level topics are frequently used in SMS dialogs and 

can further be divided into meaningful sub topics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Topic tree branch related to “shopping”. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Topic tree branch for “positive emotion”. 

3.3 Topic Distribution in SMS Corpus 

87.1% of all text messages are categorized in nine 

preferably conversed topic clusters (see figure 5), 

the remaining messages belong either to SMS di-

alogs, where the topic is labeled as undefined, or to 

miscellaneous, rarely conversed topics, e.g. 

“weather” or “religious belief”.  

More than 55% of all text messages are moti-

vated by interpersonal and emotional matters. 

About 45% of all text messages deal with “human 

relations”, mainly including sub topics regarding 

relation maintenance (36% of “human relations”, 

e.g. “make promise”, “make apology”, “health 

condition”, “small talk”, a. o.), regarding relations 

with friends (14%), concerning relationship issues 

activities & events 

 

 

travel    recreation    special occasions … 

 

 

sport activities    going shopping    going out … 

 

 

buy clothes   buy gift   buy item   going to store 

emotion 

 

 

negative            positive 

 

 

express joy   express love   feeling better … 

Missed phone call, planned schedule 
 

Texter 1: Hi, sorry I missed your call. I'm 

actually at an appointment right now.  

Texter 1: I will call you about 12:45pm. 

Please answer, so we can finally connect, if 

not I will call after 17:00. 

Texter 2: O.K no problem, call me when 

you're free :) 

Texter 1: The appointment is over, I tried 

calling you but you didn't answer, will talk 

when I'm on my way home 

Texter 2: Thankyou. 

Small talk  
 

Texter 1: What‟s up? 

Texter 2: I‟m good, u? 

Texter 1: I‟m fine, talk to you later 

Texter 2: Sure :) 

Topic undefined 
  

Texter 1: df 

Texter 2: what? 

Texter 1: don‟t forget 

Texter 2: Lol :-) I won't 

1 

2 

3 
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with a partner (11%). The latter 10% converse 

about negative or positive emotions, nearly 50% of 

these dialogs expressing love. SMS dialogs from 

“human relations” contain 9.3 messages per dialog 

in the average, which is significantly more than the 

average of 4-6 messages in all other topic clusters.     

The second most discussed topic is “activities & 

events” (14% of all messages), such as “going out” 

(32% of “activities & events” labeled messages), 

or “going shopping” (15%). Interestingly, the topic 

of “appointment & scheduling” is only the third 

most popular, consisting of less than 13% of all 

text messages.  

Figure 5 shows the topic distribution in the cor-

pus with respect to the topic tree‟s first hierarchy. 
   

 
 

Figure 5: Topic distribution on first tree level. 

 

Thurlow (2003) has presented a study about the 

communicative intent of US English text messag-

es, describing their functional orientation rather 

than the content. Thurlow‟s findings concur in that 

the amount of SMS with relational and intimate 

orientation vs. transactional orientation is similar 

to the amount of SMS with interpersonal and emo-

tional content vs. all other topic clusters.   

Finally, we examine if distribution differences 

depend on the demographic data of the users re-

garding gender, age groups (18-23, 24-28, 29-35, 

36-42) and regions. Users older than 42 years are 

not taken into account because of the limited num-

ber of text messages in the corpus.  

Generally, males and females talk about the 

same topics in SMS conversations through all age 

groups and regions. However, there are still some 

differences between those groups worth mention-

ing and shown in figure 6.  

While interpersonal and emotional text messag-

es together are present in fairly equal quantity for 

both gender groups, females tend to express their 

“emotion” via text messages much more frequently 

than males (12.5% compared to 8.5%); likely on 

the expense of non-emotional “human relations” 

messages (46.8% for males compared to 41.9%). 

Furthermore, males and females have contradicting 

trends in “emotion” talk over ages. Females tend to 

express emotions more with age progression, while 

males have the opposite tendency. In both genders, 

the corpus suggests a tradeoff between the topics 

“human relations” and “emotion”, i.e. age may 

change the portion of one topic on the expense of 

the other one. 

4 Relation between Topic and Wording 

4.1 Automated Validation of Topic Tree 

A human annotation process is highly effective 

due to people‟s ability to exploit their mental 

knowledge base and mind concepts, and thus a 

broad range of information sources. However, even 

Figure 6: Topic distribution by gender (males left, females right) and age groups 
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in a most rigorous procedure errors may occur, 

especially regarding annotation and tree consisten-

cy. Therefore we need to verify the quality of the 

annotation. Additionally, we want to ensure that 

relevant algorithms can trace the interrelation be-

tween topics and the choice of words in SMS.  

In order to verify both requirements, we perform 

an automatic validation by applying a nuance 

(Hecht et al., 2009) of the Agglomerative Informa-

tion Bottleneck (AIB) method (Tishby et al., 1999; 

Slonim and Tishby, 2000). This derivative of the 

AIB is a hierarchical clustering algorithm, and as 

such, it produces a hierarchical topic tree.  

The clustering starts with each lower level topic 

as a singleton. In an iterative process, the two clos-

est topics are merged to form a larger topic, where 

the two closest topics are defined as the ones that 

minimize the AIB functional (Eq. 1). The process 

ends when all topics are merged into a single topic. 
 

      XYIXXIxxpL ˆ;ˆ;ˆ                            (1) 

X , Y and X̂  are the set of topics, set of words 

and clustered set of topics respectively.  BAI ;

 

is 

the mutual information between A  and B .  
 

 
 

Figure 7: Tree branch of the hierarchical clustering of 

topics into groups. 

Intuitively, the function tries to achieve two 

goals simultaneously. It minimizes  XXI ˆ; which 

can be interpreted as finding the most compact top-

ic representation and at the same time it maximizes 

 XYI ˆ;

 

which can be interpreted as finding the 

most indicative subset of topics. These two goals 

contradict one another. Therefore a tradeoff para-

meter   is added. 

Presenting the entire AIB tree is not feasible in 

this paper. In order to provide some intuition, a sub 

tree is shown in figure 7. Briefly, each AIB tree 

branch shows a distribution of topics that is mostly 

in line with the hand crafted topic tree. Even sen-

timents are clustered (negative sentiment for all 

lower level topics in figure 7), a superior achieve-

ment to the manual topic tree, where this is done 

only for “emotion”. Moreover, it becomes evident 

that the interrelation between topics and wording 

in SMS can likely be captured automatically. 

4.2 Method for Relation Discovery 

Being confident regarding automatic computation, 

we can strive for more and aim to discover the in-

terrelation between topics and wording in detail. 

Any vocabulary used in SMS dialogs can intuitive-

ly be viewed as containing information which 

points to one or a limited group of conversed top-

ics, or as being general vocabulary with respect to 

topic distinctiveness. Such a view point entails 

questions. How can we extract a list of distinctive 

words per topic; words which are dominant in a 

certain topic but subordinate in others respective-

ly? To what extent are topic distinctive words still 

ambiguous and are assigned to more than one top-

ic? And ultimately, can we use topic distinctive 

vocabulary to recognize a list of conversed topics 

for each SMS dialog based on its choice of words? 

Our method evolves from the questions as fol-

lows: First, we categorize the SMS vocabulary into 

topic distinctive vs. general vocabulary by intro-

ducing an algorithm which uses topic information 

as qualitative measurement to extract a list of dis-

tinctive words operating as classifiers for topics. In 

a second step we evaluate for each topic to what 

extent topic distinctive word list classifiers can 

recognize topics in SMS dialogs. Finally we com-

pare the classifiers‟ topic recognition capabilities 

with unigram language models. We use only the 

nine first level topic clusters to guarantee that the 

amount of available dialogs per topic is sufficient. 
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4.3 Topic Distinctive Vocabulary 

To categorize the vocabulary we calculate for each 

word wi with at least 4 occurrences in the corpus 

and topic tj the ratio between word frequency in the 

topic and general word frequency in the corpus 

(known as Term Frequency/Collection Frequency 

Measure) normalized by the topic size (Eq. 2):  

 

 




l m

jmli

ji

jicorpus

itj

ji

twcounttwcount

twcount

tsizewfreq

wfreq
twCfTf

),(*),(

),(

)(

1
*

)(

)(
),(

             (2) 

 

After scores are calculated for all words, we sort 

the words for each topic from their highest to low-

est score. Then we assign a topic dependent thre-

shold for each topic determined by a Receiver 

Operating Characteristic (ROC) analysis as de-

scribed in 4.4. All words above the threshold be-

long to the distinctive word set (DWS) per topic. In 

additionally conducted experiments with the cor-

pus this method has proven to outperform other 

alternatives, such as TF*IDF or Term Discrimina-

tion Models (Salton et. al., 1975). 
 

 
Table 2: Examples of topic distinctive words. 

 

Table 2 illustrates examples of high-scored re-

trieved distinctive words from several topics. It 

becomes evident that words with high scores are 

related to a topic in our intuition or mental con-

cepts. However, frequently used general words, 

such as pronouns, prepositions, and common 

nouns, do not receive high scores, because of their 

vast number of occurrences in other topics, e.g. 

“never”, “flat”, “boy”, “you”, or “from”. Topics 

that are more descriptive or transactional in their 

orientation, such as “transportation” or “finance”, 

generate better content distinctive word sets than 

the ones with relational intent, such as “emotion”. 

4.4 Topic Recognition by Word Sets 

In order to determine optimal thresholds (see 4.3) 

and to analyze the coverage and distinctiveness of 

the word sets, we divide the corpus into a training 

batch (90% of all messages) and a test batch 

(10%). The training batch is used for the calcula-

tion of word scores as described in 4.3. By itera-

tively increasing the score threshold which defines 

a word set, we calculate per iteration the amount of 

dialogs from the test batch containing at least one 

word of the set, for dialogs annotated with the affi-

liated topic as well as for dialogs tagged different-

ly. Consequently, ROC curves are created for all 

topics. This process is performed in a cross valida-

tion manner (10-fold).  

Figure 8 shows the ROC curves for the topics 

“human relations”, “activities & events”, “finance 

& property”, and “food & drinks”, averaged over 

the 10-fold iterations.  

 

 
 

Figure 8: ROC curves for selected topics including best 

and worst performing topics with x axes for false posi-

tive rate (FPR) and y axes for true positive rate (TPR). 

 

These results show that once appropriate thre-

sholds are chosen, relatively small DWS, mostly 

ranging between 60-120 words per set, have the 

capability of achieving a true positive rate (TPR, 

transporta-

tion 

finance & 

property 

emotion 

lane loan loss 

boarding payments xox 

tires printing beyond 

flight sander childish 

wheel cheque love 

license paypal bitching 

roads discount mentally 

battery invoice soo 

plane price stressed 

exit dollars nerves 
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also known as recall) of 80.3% for topic dialogs 

with an average false positive rate (FPR, also 

known as fall-out) of 26.8%, even with a relatively 

naïve classification method. Table 3 provides de-

tailed results of TPR and FPR. Topic DWS for 

more descriptive or transactional topics (e.g. 

“transportation”, “food & drinks”) manage to dis-

tinguish better than relational targeted topics, such 

as “emotion” and “human relations”, since words 

like “love”, “babe”, or “thank” are highly related to 

the “emotion” topic, but also appear in many other 

topics. Hence, these words are increasing the FPR. 

Eventually, the word sets chosen by optimal 

thresholds allow us to quantify topic recognition of 

dialogs. We automatically assign topics to each 

dialog in the corpus according to the described al-

gorithm. Then we compare these topics to the ma-

nually annotated topics and measure recall and 

precision per dialog, denoted (Eq. 3): 

 

topicsmatched

topicsmatchedcorrect
prec

topicsannotated

topicsmatchedcorrect
recall

_#

__#

_#

__#





            (3) 

   

The average recall and precision rates over all 

dialogs are 73.5% and 44.3%, respectively. Taking 

into account the complexity of the recognition task 

due to the possibility of multiple topic assignment 

for each dialog, the results strengthen the hypothe-

sis of the positively measureable interrelation be-

tween topics and wording. 

4.5 Comparison to Full Vocabulary Models 

Finally, we wish to better understand the impact of 

DWS, in comparison to the general language de-

rived from the topic text, which is motivated by the 

fact that speech applications rely on SLMs. To this 

end, we construct a unigram language model bi-

nary classifier for each topic as baseline and per-

form a 10-fold cross validation classification task, 

to identify whether a given dialog is related to the 

topic or not, using the following formula (Eq. 4), 

where Di is the i
th
 dialog and Mt is the language 

model of topic t: 
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Table 3 summarizes the results of TPR and FPR 

of the two approaches. As expected, the DWS ap-

proach suffers from a higher FPR, due to a lack of 

weights and relative comparisons to other classes. 

Since the differences in FPR between the two me-

thods are not immense, we conclude that our cho-

sen word sets are indeed distinctive, and with 

proper tuning have the potential of achieving better 

results. On the other hand, the DWS approach 

manages to outperform language models in terms 

of TPR. Hence, most of the information needed for 

the identification of dialog topics is provided by 

distinctive words to a significant higher extent as 

by the rest of the vocabulary. 

 
Table 3: True and false positive rates for all topics using   

DWS classification and language models. 

5 Conclusion  

The primary motivation of this study has been to 

estimate and facilitate the potential integration of 

contextual knowledge, in particular topics, into 

SMS dictation by voice. We have identified the 

interrelation between conversed topics and the 

choice of words in SMS dialogs as a key property, 

which needs to be quantified. After creating an 

annotated corpus and developing a classification 

method based on topic distinctive word lists, we 

have presented initial, promising results, which 

encourage further research.  

Our study exposes also some challenges, which 

may not be easy to address. It would be useful to 

have a larger annotated corpus. Fully automated 

annotation of topics seems hardly achievable in 

view of our results. We may therefore rely on 

semi-supervised or unsupervised learning algo-

rithms. Moreover, the study explores the relation 

of topics to single words. It needs to be enhanced 

Topic DWS Language 

models 

TPR FPR TPR FPR 

Activities & events 81.9 34.7 64.1 22.8 

Appoint. & schedule 69.5 31.0 82.6 21.4 

Transportation 78.7 17.3 68.8 9.8 

Finance & property 77.9 17.0 76.5 9.6 

Food & drinks 88.4 11.7 74.1 10.6 

School & work 80.9 22.4 54.3 14.0 

Technology 92.4 28.7 75.5 12.6 

Emotion 80.7 34.4 71.3 12.7 

Human relation 72.2 34.7 69.8 20.8 

 80.3 26.8 70.7 14.9 
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to phrases, because SMS dictation by voice relies 

on higher order n-gram SLMs.  

In summary, when taking the next step and 

moving towards speech applications, we expect 

performance improvement after making topic 

knowledge useful for SMS dictation.   
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Abstract

Many discourse connectives can signal several
types of relations between sentences. Their
automatic disambiguation, i.e. the labeling of
the correct sense of each occurrence, is impor-
tant for discourse parsing, but could also be
helpful to machine translation. We describe
new approaches for improving the accuracy
of manual annotation of three discourse con-
nectives (two English, one French) by using
parallel corpora. An appropriate set of labels
for each connective can be found using infor-
mation from their translations. Our results for
automatic disambiguation are state-of-the-art,
at up to 85% accuracy using surface features.
Using feature analysis, contextual features are
shown to be useful across languages and con-
nectives.

1 Introduction

Discourse connectives are generally considered as
indicators of discourse structure, relating two sen-
tences of a written or spoken text, and making ex-
plicit the rhetorical or coherence relation between
them. Leaving aside the cases when connectives are
only implicit, the presence of a connective does not
unambiguously signal a specific discourse relation.
In fact, many connectives can indicate several types
of relations between sentences, i.e. they have several
possible “senses” in context.

This paper studies the manual and automated dis-
ambiguation of three ambiguous connectives in two
languages: alors que in French, since and while in
English. We will show how the multilingual per-

spective helps to improve the accuracy of annota-
tion, and how it helps to find appropriate labels for
automated processing and MT. Results from auto-
matic annotation experiments, which are close to the
state of the art, as well as feature analysis, help to as-
sess the usefulness of the proposed labels.

The paper is organized as follows. Section 2 ex-
plains the motivation of our experiments, and of-
fers a wider perspective on our research goals, illus-
trating them with examples of translation problems
which arise from ambiguous discourse connectives.
Current resources and methods for discourse anno-
tation are discussed in Section 3. Section 4 analyzes
our experiments in manual annotation and in partic-
ular the influence of the set of labels on the reliability
of annotation. The automatic disambiguation exper-
iments, the features used, the results and the analysis
of features are described in Section 5. Section 6 con-
cludes the paper and outlines future work.

2 Explicit Connectives and their
Translation

2.1 Three Multi-functional Connectives

Discourse connectives form a functional category of
lexical items that are used to mark coherence rela-
tions such as Cause or Contrast between units of
discourse. Along with other function words, many
connectives appear among the most frequent words,
as shown for instance by counts (Cartoni et al.,
2011) over the Europarl corpus (Koehn, 2005). The
Penn Discourse Treebank (Prasad et al., 2008) (see
Section 3.1 below) includes around 100 connective
types, but the exact number varies across studies,
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depending on the discourse theory used to classify
them. Among these types, Pitler et al.(2008) have
shown that most of them are unambiguous and easy
to identify, but others, especially temporal ones, of-
ten signal multiple senses depending on their con-
text.

Following the terminology of Petukhova and
Bunt (2009, Section 2), we are interested here in
“sequential” multi-functionality, i.e. the fact that the
same connective can signal different relations in dif-
ferent contexts. We do not deal with “simultane-
ous” multi-functionality, i.e. the possibility for a
single occurrence to signal several relations, which
has been less frequently studied for connectives (see
Petukhova and Bunt (2009) for the discourse usage
of and).

We identified the two English connectives while
and since, along with the French connective alors
que, as being particularly problematic because they
are highly multi-functional, i.e. they can signal mul-
tiple senses. For alors que, a French database of
connectives (LexConn (Roze et al., 2010), see Sec-
tion 3 below) contains examples of sentences where
alors que expresses either a Background or a Con-
trast relation. For the English connective since,
Miltsakaki et al. (2005) identified three possible
meanings: Temporal, Causal, and simultaneously
Temporal/Causal. For while, even more senses are
observed: Comparison, Contrast, Concession, and
Opposition. In fact, in the Penn Discourse Tree-
bank, the connective while is annotated with more
than twenty different senses.

2.2 Wider Research Objectives
Our long-term goal is to identify automatically the
senses of connectives for an application to machine
translation (MT). Going beyond the labels provided
by discourse theories, the goal is thus to find the
most appropriate labels in a new multilingual, em-
pirical approach that makes use of parallel corpora to
annotate and then learn the various senses of connec-
tives. The disambiguation of such connectives in a
source text is crucial for its translation, because each
sense may be translated by a different connective
and/or syntactical construct in the target language.

More specifically, we hypothesize that correctly
labeled connectives are easier to learn and to trans-
late by statistical MT systems than unlabeled ones.

To support this hypothesis, we set up an experiment
(Meyer, 2011) in which we constrained the transla-
tion of the three senses of the discourse connective
while that were previously annotated as Temporal,
Contrast and Concession. The system was forced to
use predefined French translations known to be cor-
rect, by directly modifying the phrase table of the
trained MT system. This modification noticeably
helped to improve translation quality and rose the
BLEU score by 0.8 for a preliminary test set of 20
sentences.

2.3 Illustration of Mistranslations

Among the connectives that we plan to process in or-
der to improve MT, the three connectives we focus
on in this paper are frequent, ambiguous and there-
fore difficult to translate correctly by MT systems,
as illustrated in the following examples.

A first reason why machine translation of connec-
tives can be difficult is that there may be no direct
lexical correspondence for the explicit source lan-
guage connective in the target language, as shown
in the reference translation of the first example in
Table 1, taken from the Europarl corpus (Koehn,
2005).

EN It is also important that we should not leave these indica-
tors floating in the air while congratulating ourselves on
the fact that we have produced them.

FR Il est également important de ne pas laisser ces indicateurs
flotter, en nous félicitant de les avoir instaurés.

EN Finally, and in conclusion, Mr President, with the expiry of
the ECSC Treaty, the regulations will have to be reviewed
since [causal] I think that the aid system will have to con-
tinue beyond 2002 . . .

FR *Enfin, et en conclusion, Monsieur le président, à
l’expiration du traité ceca, la réglementation devra être
revu depuis que [temporal] je pense que le système d’aides
devront continuer au-delà de 2002 . . .

FR Oui, bien entendu, sauf que le développement ne se négocie
pas, alors que [contrast] le commerce, lui, se négocie.

EN *Yes, of course, but development cannot be negotiated, so
[causal] that trade can.

EN Between 1998 and 1999, loyalists assaulted and shot 123
people, while [contrast] republicans assaulted and shot 93
people.

FR *Entre 1998 et 1999, les loyalistes ont attaqué et abattu
123 personnes, φ 93 pour les républicains.

Table 1: Translation examples from Europarl. Discourse
connectives, their translations, and their senses are indi-
cated in bold. The first example is a reference transla-
tion from EN into FR, while the others are wrong transla-
tions generated by MT (EN/FR and respectively FR/EN),
hence marked with an asterisk.
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When an ambiguous connective is explicitly
translated by another connective, the incorrect ren-
dering of its sense can lead to erroneous translations,
as in the second and third examples in Table 1, which
are translated by the Moses SMT decoder (Koehn et
al., 2007) trained on the Europarl corpus. The ref-
erence translation for the second example uses the
French connective car with a correct causal sense,
instead of the wrong depuis que generated by SMT,
which expresses a temporal relation. In the third ex-
ample, the French connective alors que, in its con-
trastive usage, is wrongly translated into the English
connective so, which has a causal meaning (the ref-
erence translation uses whereas to express contrast).
It may even occur that the system fails to translate a
connective at all, as in the fourth example where the
discourse information provided by while, namely a
Contrast relation, is lost in the French translation,
which is hardly coherent any longer.

3 Related Work

3.1 Annotated Resources

One of the very few available discourse annotated
corpora is the Penn Discourse Treebank (PDTB) in
English (Prasad et al., 2008). For this resource, one
hundred types of explicit discourse connectives were
manually annotated, as well as implicit relations not
signaled by a connective. The sense hierarchy used
for annotation consists of three levels, from four top-
level senses (Temporal, Contingency, Comparison,
and Expansion), to 16 subsenses on the second level,
and 23 further ones on the third level. The annota-
tors were allowed to assign more than one sense to
each occurrence, so 129 simple or complex labels
are observed, over more than 18,000 explicit con-
nectives. For French, the ANNODIS project (Péry-
Woodley et al., 2009) will provide annotation of dis-
course on an original corpus. Resources for Czech
are also becoming available (Zikánová et al., 2010).

For German, a lexicon of discourse markers
named DiMLex exists since the 1990s (Stede and
Umbach, 1998). An equivalent, more recent
database for French is the LexConn lexicon of con-
nectives (Roze et al., 2010) containing a list of 328
explicit connectives. For each of them, LexConn
indicates and exemplifies the possible senses, cho-
sen from a list of 30 labels inspired from Rhetorical

Structure Theory (Mann and Thompson, 1988).

3.2 Automatic Disambiguation of Connectives

The release of the PDTB had quite an impact on
automatic disambiguation experiments. The state-
of-the-art for recognizing all types of explicit con-
nectives in English is therefore already high, at
97% accuracy for disambiguating discourse vs. non-
discourse uses (Lin et al., 2010) and 94% for disam-
biguating the four main senses from the PDTB hier-
archy (Pitler and Nenkova, 2009). Lin et al. (2010)
recently built the first end-to-end PDTB discourse
parser, which is able to parse unrestricted text with
an F1 score of 38.18% for senses on the second level
of the PDTB hierarchy. Other important contribu-
tions to automatic discourse connective classifica-
tion and feature analysis has been provided by Well-
ner et al. (2006) and Elwell and Baldrige (2008).

Fewer studies focus on the detailed analysis of
specific discourse connectives. In Section 5.3, we
will compare our results to Miltsakaki et al. (2005)
who report classification results for the connectives
since, while and when. In their study, as in the
present one, the goal is to disambiguate senses from
the second level of the PDTB hierarchy, a level
which, as we will show, is appropriate for the trans-
lation of these connectives as well.

4 Connective Annotation in Parallel
Corpora

The resources mentioned above are either monolin-
gual only (PDTB, LexConn) and/or not yet publicly
available (ANNODIS, DiMLex). Moreover, our
overall goal is related to multilingualism and trans-
lation, as explained in Section 2.2 above. There-
fore, we performed manual annotation of connec-
tives in a multilingual, aligned resource: the Eu-
roparl corpus (Koehn, 2005). We extracted from Eu-
roparl two subcorpora for each translation direction,
EN/FR and FR/EN, to take into account the varying
distribution of connectives in translated vs. original
language, as explained in Cartoni et al. (2011).

As the full PDTB hierarchy seemed too fine-
grained given current capabilities for automatic la-
beling and the needs for translating connectives,
we defined a simplified set of labels for the senses
of connectives, by considering their usefulness and
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granularity with respect to translation, focusing on
those that may lead to different connectives or syn-
tactical constructs in the target language.

4.1 Method

There are two major ways to annotate explicit dis-
course connectives. The first approach is to label
each occurrence of a connective with a label for
its sense, similar to the PDTB or LexConn hierar-
chies of senses. However, as shown among others
by Zikanova et al. (2010), this is a difficult and time-
consuming task even when the annotators are trained
over a long period of time. This is confirmed by the
rather low kappa scores resulting from the manual
sense annotations as can be seen for each connective
in detail below.

The second approach to annotation, which is the
one put forward in this paper, is based on translation
spotting. In a first step, human annotators work on
bilingual sentence pairs, and annotate the translation
of each connective in the target language. The trans-
lations are either a target language connective (sig-
naling in principle the same sense(s) as the source
one), or a reformulation, or a construct with no con-
nective at all. In a second step of the annotation,
all translations of a connective are manually clus-
tered by the experimenters to derive sense labels, by
grouping together similar translations.

As demonstrated in the following subsections, for
the three connectives under study, the second ap-
proach to connective annotation not only facilitates
the annotation task, but also helps to derive the ap-
propriate level of granularity for the sense labels.

4.2 Annotation of alors que

This first manual annotation involved two experi-
enced annotators who annotated alors que in 423
original French sentences. The two main senses
identified for alors que are Background (labeled B)
Contrast (labeled C), as in the LexConn database.
Annotators were also allowed to use the J label if
they did not know which label to assign, and a
D label for discarded sentences – due to a non-
connective use of the two words which could not be
filtered out automatically (e.g. Alors, que fera-t-on?
). The annotators found 20 sentences labeled with
D, which were removed from the data. 15 sentences
were labeled with J by one annotator (but none by

both), and it was decided to assign to them the label
(either B or C) provided by the other annotator.

The inter-annotator agreement on the B vs. C la-
bels was quite low, showing the difficulty of the task:
kappa reached 0.43, quite below the 0.7 mark often
considered as indicating reliability. The following
example from Europarl illustrates the difficulty of
choosing between B and C. In particular, the refer-
ence translation into English also uses an ambiguous
connective, namely while.

FR La monnaie unique va entrer en vigueur au milieu
de la tourmente financière, alors que de nombreux
compléments, logiques, mais que les États ne sem-
blaient pas avoir prévus, n’ont pas encore été ap-
portés.

EN The single currency is going to come into force in the
midst of financial turmoil, while a great many ad-
ditional factors which were only to be expected, but
which the states do not seem to have anticipated, have
not been taken into consideration.

Two methods were applied to deal with diverg-
ing manual annotations. To prepare the datasets for
the automated disambiguation experiments, one so-
lution (named A1, see Table 2) is to use the double-
sense label B/C for sentences labeled differently by
annotators (B vs. C). This label reflects the diffi-
culty of manual annotation and preserves the am-
biguity which might be genuinely present in each
occurrence. The relevance of the B/C label is also
supported by results from automatic labeling in Sec-
tion 5.3 below.

For comparison purposes, a second dataset named
A2 was derived from translation spotting on the
same French sentences aligned to English ones, as
explained in Section 4.1. Alors que appeared to be
mainly translated by the following English equiv-
alents and constructs: although, whereas, while,
whilst, when, at a time when. Through this opera-
tion, inter-annotator disagreement can sometimes be
solved: when the translation is a clearly contrastive
English connective (whereas or although), then the
C label was assigned instead of B/C. Conversely,
when the English translation was still ambiguous
(while, whilst, or when), the experimenters made a
decision in favor of either B or C by re-examining
source and target sentences.

4.3 Annotation of since
For since, 30 sentences were annotated by four ex-
perimenters in a preliminary round, with a kappa
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ID Connective Sent. Labels (nb. of occ.)
A1 alors que 403 B (92), C (191), B/C (120)
A2 alors que 403 B (126), C (277)
B1 since 727 T (375), C (341), T/C (11)
B2 since 727 T (375), C (352)
C1 while 299 T/C (92), CONC (134), C (43)

T/CAUSAL (19), T/DUR (7)
T/PUNCT (4)

C2 while 299 T (30), C (135), CONC (134)

Table 2: The six datasets resulting from the manual anno-
tation of the three connectives, with total number of sen-
tences, possible labels and their number of occurrences.
The explanations of the labels are given in Sections 4.2
through 4.4.

score of 0.77, indicating good agreement. Then,
each half of the entire dataset (727 sentences) was
annotated by another person with three possible
sense labels: T for Temporal, C for Causal and
T/C for a simultaneously Temporal/Causal meaning.
Two datasets were again derived from this manual
annotation. To study the effects of a supplementary
label, we kept the label T/C for dataset B1, but con-
densed it under label C in dataset B2, as shown in
Table 2.

4.4 Annotation of while

The English connective while is highly ambiguous.
In the PDTB, occurrences of while are annotated
with no less than 21 possible senses, ranging from
Conjunction to Contrast, Concession, or Synchrony.

We performed a pilot annotation of 30 sentences
containing while with five different experimenters,
resulting in a quite low inter-annotator agreement,
κ = 0.56. We therefore decided to perform a
translation spotting task only, with two experienced
annotators fluent in English and French. The ob-
served translations into French confirm the ambigu-
ity of while, as they include several connectives and
constructs, quite evenly distributed in terms of fre-
quency: alors que, gerundive reformulations, other
reformulations, si, tandis que, même si, bien que,
etc.

The translations were manually clustered to de-
rive senses for while, in an empirical manner.
For example, alors que signals Temporal/Contrast,
which is also true for tandis que. Similarly, même si
and bien que are clustered under the label Conces-

sion, and so forth. The translation spotting shows
that at least Contrast, Concession, and several tem-
poral senses are necessary to account for a correct
translation. These distinctions are comparable to the
semantic granularity of the second PDTB hierarchy
level.

To generate training sets for automated classifica-
tion out of a total of 500 sentences, we discarded 201
sentences labeled by annotators with G (gerundive
constructions), P (reformulations) or Z (no transla-
tion at all) – these cases could be reconsidered in fur-
ther work, as they represent valid translation prob-
lems. For the remaining 299 sentences, we created
the following six labels by clustering the spotted
translations: T/C (Temporal/Contrast), T/PUNCT
(Temporal/Punctual), T/DUR (Temporal/Duration),
T/CAUSAL (Temporal/Causal), CONC (Conces-
sion) and C (Contrast). These were used to tag the
remaining 299 sentences, forming dataset C1. A
second dataset (C2) with fewer senses was obtained
from C1 by merging T/C to C (Contrast only) and
all T/x to T (Temporal only).

5 Disambiguation Experiments

The features for connective classification, the re-
sults obtained and a detailed feature analysis are dis-
cussed in this section. We show that an automated
disambiguation system can be used to determine the
most appropriate set of labels, and thus to corrob-
orate the selection we made using translation spot-
ting.

5.1 Features

For feature extraction, all the datasets described in
Section 4 were processed as follows. The English
texts were parsed and POS-tagged by Charniak and
Johnson’s (2005) reranking parser. The French texts
were POS-tagged with the MElt tagger (Denis and
Sagot, 2009) and parsed with MaltParser (Nivre,
2003). As the English parser provides constituency
trees, and the parser for French generates depen-
dency trees, the features are slightly different in the
two languages. The other features below were ex-
tracted using elementary pre-processing of the sen-
tences.

For English sentences, we used the following fea-
tures: the sentence-initial character of the connec-
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tive (yes/no); the POS tag of the first verb in the
sentence; the type of first auxiliary verb in the sen-
tence (if any); the word preceding the connective;
the word following the connective; the POS tag of
the first verb following the connective; the type of
the first auxiliary verb after the connective (if any).

For French sentences, the features were the fol-
lowing: the sentence-initial character of the connec-
tive (yes/no); the dependency tag of the connective;
the first verb in the sentence; its dependency tag; the
word preceding the connective; its POS tag; its de-
pendency tag; the word following the connective; its
POS tag; its dependency tag; the first verb after the
connective; its dependency tag.

The cased connective word forms from the cor-
pus were not lower-cased, thus keeping the implicit
indication of the sentence-initial character of the oc-
currence, i.e. whether it starts a sentence or not. The
output of the POS taggers was used for neighboring
words, but not for the connectives, which almost al-
ways received the same tag. Charniak’s parser for
English provides POS tags which differentiate the
verb tenses, such as VBD (past), VBG (gerund), and
so on. These were considered for the verb directly
preceding and the one directly following the connec-
tive. Tense was believed to be potentially relevant
because since and while can have temporal mean-
ings.

The occurrence of auxiliary verbs (be, have, do,
or need) may give additional indications about tem-
poral relations in the sentence. We therefore used
the types of auxiliary verbs as features, including
the elementary conjugations, represented for to be
as: be present, be past, be part, be inf, be gerund
– and similarly for the other auxiliary verbs, as in
(Miltsakaki et al., 2005).

As shown by Lin et al. (2010), duVerle and
Prendinger (2009) or Wellner et al. (2006), the con-
text of a connective is very important. We there-
fore extracted the words preceding and following
each connective, the verbs and the first and the last
word of the sentences. These may include numbers,
sometimes indicating a numerical comparison, time
expressions, or antonyms, which could indicate con-
trastive relations, such as rise vs. fall (e.g. It is inter-
esting to see the fundamental stock pickers scream
”foul” on program trading when the markets de-
cline, while hailing the great values still abounding

as the markets rise.).
For French, we likewise extracted the words im-

mediately preceding and following each connective,
supplemented by their POS tags. In contrast to con-
stituents, dependency structures contain information
about the grammatical function of each word (heads)
and link the dependents belonging to the same head.
However, as the dependency parser provides no dif-
ferentiated verb tags, we extracted the verb word
forms themselves and added their dependency tags.
The same applies to the connective itself, and pre-
ceding and following words and their dependency
tags.

The dependency tag of the non-connectives varies
between subj (subject), det (determiner), mod (mod-
ifier) and obj (object). The first verb in the sentence
often belongs to the root dependency while the verb
following the connective most often belongs to the
obj dependency. For alors que, the most frequent
dependency tags were mod mod and mod obj, indi-
cating the connective’s main function as a modifier
of its argument.

5.2 Experimental Setting
Our classification experiments made use of the
WEKA machine learning toolkit (Hall et al., 2009)
to run and compare several classification algorithms:
Random Forest (sets of decision trees), Naive Bayes,
and Support Vector Machine. The results are re-
ported with 10-fold cross validation on the entire
data for each connective, using all features.

Table 3 lists for each method – including the ma-
jority classifier as a baseline – the percentage of cor-
rectly classified instances (or accuracy, noted Acc.),
and the kappa values. Significance above the base-
line is computed using paired t-tests at 95% confi-
dence. When a score is significantly above the base-
line, it is shown in italics in Table 3. The best scores
for each dataset, across classifiers, are indicated in
boldface. When these scores were not significantly
above the baseline, at least they were never signifi-
cantly below either.

5.3 Results and Discussion
Overall, the SVM classifier performed best, which
may be due to the large number of textual features
(3 for EN data and 5 for FR data), as SVMs are
known to handle them well (Joachims, 1998; du-
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ID Connective # Labels Baseline R. Forest N. Bayes SVM
Acc. Acc. κ Acc. κ Acc. κ

A1 alors que 403 B, C, B/C 46.9 53.1 0.2 55.7 0.3 54.2 0.3
A2 alors que B, C 68.7 69.2 0.1 68.3 0.2 64.7 0.1
B1 since 727 T, C, T/C 51.6 79.8 0.6 82.3 0.7 85.4 0.7
B2 since T, C 51.6 80.7 0.6 84.0 0.7 85.7 0.7
C1 while 299 T/C, T/PUNCT, T/DUR,

T/CAUSAL, CONC, C

44.8 43.2 0.1 49.9 0.2 52.2 0.2

C2 while T, C, CONC 43.5 60.5 0.3 59.9 0.3 60.9 0.3

Table 3: Disambiguation scores for three connectives (number of occurrences in the training sets), with two sets of
labels each, for various classification algorithms. Accuracy (Acc.) is in percentage (%), and kappa is zero for the
baseline method (majority class). The best scores for each data set are in boldface, and scores significantly above the
baseline (95% t-test) are in italics.

Verle and Prendinger, 2009). The maximum accu-
racy for alors que is 55.7%, for since it is 85.7%, and
for while it is 60.9%. While close to other reported
values, there is still potential for improvement in the
future.

The analysis of results for each data sets leads
to observations that are specific to each connective.
The high improvement of over the baseline for A1,
as opposed to no improvement for A2, confirms the
usefulness of the double-sense B/C label for alors
que, showing that in this case the three-way classi-
fication is probably better adapted to the linguistic
properties of alors que than a two-way classifica-
tion. Indeed, alors que, just as its frequently spot-
ted translation while, is linguistically ambiguous in
some contexts (see for instance the example in Sec-
tion 4.2), in which the temporal and the contrastive
meaning are likely to co-exist. In the case of A2,
where the labels were forced to B or C only, auto-
matic classifiers do not significantly outperform the
baseline. While more elaborate features might help,
these low scores can be related to the difficulties of
human annotators (Section 4.2), and make a strong
case against using a two-label schema for alors que.

The features used so far lead to high scores for
since in datasets B1 and B2. The results are com-
parable to those from Miltsakaki et al. (2005), who
used similar features and labels, though with a Max-
imum Entropy classifier. Moreover, they provide re-
sults for individual connectives, and not, as most of
the related work for the PDTB, on the whole set
of ca. 100 discourse connective types. However,

Miltsakaki et al. (2005) used their own datasets for
each connective, which are different from the PDTB,
because the PDTB was not available at that time.
Our SVM classifier outperforms considerably the
Maximum Entropy classifier on the three-way clas-
sification task (with T, C, T/C), with an accuracy
of 85.4% vs. 75.5%, obtained however on differ-
ent datasets. For the two-way classification (T, C),
again on different datasets, our accuracy of 85.7% is
slightly lower than the 89.5% given in Miltsakaki et
al. (2005).1

For while, when comparing C1 to C2, it appears
that reducing the number of labels from six to three
increases accuracy by 8-10%. This is probably
due to the small number of training instances for
the labels T/PUNCT and T/DUR in C1 for exam-
ple. However, even for the larger set of labels, the
scores are significantly above baseline (52.2% vs.
44.8%), which indicates that such a classifier might
still be useful as input to an MT system, possibly
improved thanks to a larger training set. The perfor-
mance obtained by Miltsakaki et al. (2005) on while
is markedly better than ours, with an accuracy of
71.8% compared to ours of 60.9% with three labels.

5.4 Feature Analysis

The relevance of features can be measured using
WEKA by computing the information gain (IG)
brought by each feature to the classification task,

1In another experiment (Meyer, 2011), we also applied our
classifiers to the PDTB data, with less features however. The
results were in the same range as those from Miltsakaki et
al. (2005), i.e. 75.3% accuracy for since and 59.6% for while.
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R Feature IG
A1 A2

1 preceding word 1.12 0.64
2 following verb 0.81 0.51
3 first verb 0.74 0.42
4 following word 0.68 0.23
5 preceding word’s POS tag 0.15 0.05
5 first verb’s dep. tag 0.14 0.06
5 following word’s POS tag 0.19 0.03
8 preceding word’s dep. tag 0.10 0.03
8 connective’s dep. tag 0.09 0.04
10 following word’s dep. tag 0.13 0.013
10 following verb’s dep. tag 0.04 0.03
12 sentence initial 0.05 0.001

Table 4: Information gain (IG) of features for French con-
nective alors que, ordered by decreasing average ranking
(R) in experiments A1 and A2. Features 1–4 are consid-
erably more relevant than the following ones.

R Feature IG
B1 B2

1 preceding word 0.83 0.75
2 following word 0.56 0.52
3 following verb’s POS tag 0.24 0.21
4 type of following aux. verb 0.13 0.12
5 type of first aux. verb 0.11 0.11
6 first verb’s POS tag 0.02 0.01
7 sentence initial 0.00 0.00

Table 5: Information gain (IG) of features for EN con-
nective since, ordered by decreasing average ranking (R)
in experiments B1 and B2.

i.e. the reduction in entropy with respect to desired
classes (Hall et al., 2009) – the higher the IG, the
more relevant the feature. Features can be ranked
by decreasing IG, as shown in Tables 4, 5 and 6, in
which ranks were averaged over the first and the sec-
ond data set in each series.

The tables show that across all three connectives
and the two languages, the contextual features are
always in the first positions, thus confirming the im-
portance of the context of a connective. Following
these are verbal features, which are, for these con-
nectives, of importance because the temporal mean-
ings are additionally established by verbal tenses.
POS and dependency features seem the least help-

R Feature IG
C1 C2

1 preceding word 1.02 0.65
2 following word 0.83 0.55
3 type of first aux. verb 0.12 0.07
4 following verb’s POS tag 0.16 0.04
5 first verb’s POS tag 0.07 0.09
5 type of following aux. verb 0.12 0.05
7 sentence initial 0.08 0.07

Table 6: Information gain (IG) of features for EN con-
nective while, ordered by decreasing average ranking (R)
in experiments C1 and C2. The first two features are con-
siderably more relevant than the remaining ones.

ful for disambiguation.

6 Conclusion and Future Work

We have described a translation-oriented approach
to the manual and automatic annotation of discourse
connectives, with the goal of identifying their senses
automatically, prior to machine translation. The
manual annotation of the senses of connectives has
been enhanced through parallel corpora and transla-
tion spotting. This has lead to tag sets that improved
both inter-annotator agreement and automatic label-
ing, which reached state-of-the-art scores. The ana-
lysis of relevant features has shown the utility of
contextual information.

To improve over these initial results, we will use
more semantic information, such as relations found
in WordNet between words in the neighborhood of
connectives – e.g. word similarity measures and se-
mantic relations such as antonymy. To generate
more training instances of the labels found, man-
ual annotation will continue in order to see whether
the senses found through translation spotting can im-
prove automatic disambiguation of many more con-
nectives. The annotation of a large parallel corpus
will then help to train disambiguation tools along
with statistical MT systems that use their output.
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Abstract

We propose a method for modelling how dialogue

moves influence and are influenced by the agents’

preferences. We extract constraints on preferences

and dependencies among them, even when they are

expressed indirectly, by exploiting discourse struc-

ture. Our method relies on a study of 20 dia-

logues chosen at random from the Verbmobil cor-

pus. We then test the algorithms predictions against

the judgements of naive annotators on 3 random un-

seen dialogues. The average annotator-algorithm

agreement and the average inter-annotator agree-

ment show that our method is reliable.

1 Introduction

Dialogues are structured by various moves that the

participants make—e.g., answering questions, asking

follow-up questions, elaborating prior claims, and so

on. Such moves come with commitments to certain at-

titudes such as intentions and preferences. While map-

ping utterances to their underlying intentions is well

studied through the application of plan recognition tech-

niques (e.g., Grosz and Sidner (1990), Allen and Litman

(1987)), game-theoretic models of rationality generally

suggest that intentions result from a deliberation to find

the optimal tradeoff between one’s preferences and one’s

beliefs about possible outcomes (Rasmusen, 2007). So

mapping dialogue moves to preferences is an important

task: for instance, they are vital in decisions on how to

re-plan and repair should the agents’ current plan fail, for

they inform the agents about the relative importance of

their various goals. Classical game theory, however, de-

mands a complete and cardinal representation of prefer-

ences for the optimal intention to be defined. This is not

realistic for modelling dialogue because agents often lack

complete information about preferences prior to talking:

they learn about the domain, each other’s preferences and

even their own preferences through dialogue exchange.

For instance, utterance (1) implies that the speaker wants

to go to the mall given that he wants to eat, but we do not

know his preferences over “go to the mall” if he does not

want to eat.

(1) I want to go to the mall to eat something.

Existing formal models of dialogue content either do not

formalise a link between utterances and preferences (e.g.,

Ginzburg (to appear)), or they encode such links in a

typed feature structure, where desire is represented as a

feature that takes conjunctions of values as arguments

(e.g., Poesio and Traum (1998)), making the language

too restricted to express dependencies among preferences

of the kind we just described. Existing implemented

dialogue systems likewise typically represent goals as

simple combinations of values on certain information

‘slots’ (e.g., He and Young (2005), Lemon and Pietquin

(2007)); thus (1) yields a conjunction of preferences, to

go to the mall and to eat something. But such a system

could lead to suboptimal dialogue moves—e.g., to help

the speaker go to the mall even if he has already received

food.

What’s required, then, is a method for extracting par-

tial information about preferences and the dependencies

among them that are expressed in dialogue, perhaps indi-

rectly, and a method for exploiting that partial informa-

tion to identify the next optimal action. This paper pro-

poses a method for achieving these tasks by exploiting

discourse structure.

We exploited the corpus of Baldridge and Lascarides

(2005a), who annotated 100 randomly chosen sponta-

neous face-to-face dialogues from the Verbmobil cor-

pus (Wahlster, 2000) with their discourse structure ac-

cording to Segmented Discourse Representation Theory

(SDRT, Asher and Lascarides (2003))—these structures

represent the types of (relational) speech acts that the

agents perform. Here’s a typical fragment:

(2) a. A: Shall we meet sometime in the next

week?

b. A: What days are good for you?

c. B: Well, I have some free time on almost

every day except Fridays.
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d. B: In fact, I’m busy on Thursday too.

e. A: So perhaps Monday?

Across the corpus, more than 30% of the discourse units

are either questions or assertions that help to elaborate a

plan to achieve the preferences revealed by a prior part

of the dialogue—these are marked respectively with the

discourse relations Q-Elab and Plan-Elab in SDRT, and

utterances (2b) and (2e) and the segments (2c) and (2d)

invoke these relations (see Section 2). Moreover, 10% of

the moves revise or correct prior preferences (like (2d)).

We will model the interaction between dialogue con-

tent and preferences in two steps. The first maps ut-

terances and their rhetorical connections into a partial

description of the agents’ preferences. The mapping is

compositional and monotonic over the dialogue’s logi-

cal form (i.e., the description of preferences for an ex-

tended segment is defined in terms of and always sub-

sumes those for its subsegments): it exploits recursion

over discourse structure. The descriptions partially de-

scribe ceteris paribus preference nets or CP-nets with

Boolean variables (Boutilier et al., 2004). We chose CP-

nets over alternative logics of preferences, because they

provide a compact, computationally efficient, qualitative

and relational representation of preferences and their de-

pendencies, making them compatible with the kind of

partial information about preferences that utterances re-

veal. Our mapping from the logical form of dialogue

to partial descriptions of Boolean CP-nets proceeds in a

purely linguistic or domain independent way (e.g., it ig-

nores information such as Monday and Tuesday cannot

co-refer) and will therefore apply to dialogue generally

and not just Verbmobil.

In a second stage, we “compress” and refine our descrip-

tion making use of constraints proper to CP-nets (e.g.,

that preference is transitive) and constraints provided by

the domain—in this case constraints about times and

places, as well as constraints from deep semantics. This

second step reduces the complexity of inferring which

CP-net(s) satisfy the partial description and allows us to

identify the minimal CP-net that satisfies the domain-

dependent description of preferences. We can thus ex-

ploit dependencies between dialogue moves and mental

states in a compact, efficient and intuitive way.

We start by motivating and describing the semantic repre-

sentation of dialogue from which our CP-net descriptions

and then our CP-nets will be constructed.

2 The Logical Form of Dialogue

Our starting point for representing dialogue con-

tent is SDRT. Like Hobbs et al. (1993) and

Mann and Thompson (1987), it structures discourse

into units that are linked together with rhetorical re-

lations such as Explanation, Question Answer Pair

(QAP), Q-Elab, Plan-Elab, and so on. Logical forms

in SDRT consist of Segmented Discourse Representation

Structures (SDRSs). As defined in Asher and Lascarides

(2003), an SDRS is a set of labels representing discourse

units, and a mapping from each label to an SDRS-formula

representing its content—these formulas are based on

those for representing clauses or elementary discourse

units (EDUs) plus rhetorical relation symbols between

labels. Lascarides and Asher (2009) argue that to make

accurate predictions about acceptance and denial, both

of which can be implicated rather than linguistically

explicit, the logical form of dialogue should track each

agent’s commitments to content, including rhetorical

connections. They represent a dialogue turn (where turn

boundaries occur whenever the speaker changes) as a

set of SDRSs—one for each agent representing all his

current commitments, from the beginning of the dialogue

to the end of that turn. The representation of the dialogue

overall—a Dialogue SDRS or DSDRS—is that of each of

its turns. Each agent constructs the SDRSs for all other

agents as well as his own. For instance, (2) is assigned

the DSDRS in Table 1, with the content of the EDUs

omitted for reasons of space (see Lascarides and Asher

(2009) for details). We adopt a convention of indexing

the root label of the nth turn, spoken by agent d, as

nd; and π : φ means that φ describes π’s content (we’ll

sometimes also write φπ to identify this description).

We now return to our example (2). Intuitively, (2a) com-

mits A to a preference for meeting next week but it does

so indirectly: the preference is not asserted, or equiva-

lently entailed at the level of content from the semantics

of Q-Elab(a,b). Accordingly, responding with "I do too"

(meaning "I want to meet next week too") is correctly pre-

dicted to be highly anomalous. A’s SDRS for turn 1 in Ta-

ble 1 commits him to the questions (2a) and (2b) because

Q-Elab is veridical: i.e. Q-Elab(a,b) entails the dynamic

conjunction φa ∧φb. Since intuitively (2a) commits A to

the implicature that he prefers next week, our algorithm

for eliciting preferences from dialogue must ascribe this

preference to A on the basis of his move Q-Elab(a,b).
Furthermore, Q-Elab(a,b) entails that any answer to (2b)

must elaborate a plan to achieve the preference revealed

by (2a); this makes φb paraphrasable as “What days next

week are good for you?”, which does not add new prefer-

ences.

B’s contribution in the second turn attaches to (2b) with

QAP and also Plan-Elab—he answers with a non-empty

extension for what days. Lascarides and Asher (2009) ar-

gue that this means that B is also committed to the illo-

cutionary contribution of (2b), as shown in Table 1 by

the addition of Q-Elab(a,b) to B’s SDRS. This addition

commits B also to the preference of meeting next week,

with his answer making the preference more precise: (2c)

reveals that B prefers any day except Friday; by linking

(2d) with Plan-Correction he retracts the preference for

Thursday. This compels A to revise his inferences about
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Turn A’s SDRS B’s SDRS

1 π1A : Q-Elab(a,b) /0

2 π1A : Q-Elab(a,b) π2B : Q-Elab(a,b)∧QAP(b,π)∧Plan-Elab(b,π)
π : Plan-Correction(c,d)

3 π3A : Q-Elab(a,b)∧QAP(b,π)∧Plan-Elab(b,π)∧ π2B : Q-Elab(a,b)∧QAP(b,π)∧Plan-Elab(b,π)
Plan-Elab(π,e) π : Plan-Correction(c,d)

Table 1: The DSDRS for Dialogue (2).

B’s preference for meeting on Thursday. A’s Plan-Elab

move (2e) in the third turn reveals another preference for

Monday. This may not match his preferred day when the

dialogue started: perhaps that was Friday. He may con-

tinue to prefer that day. But engaging in dialogue can

compel agents to revise their commitments to preferences

as they learn about the domain and each other.

The above discussion of (2) exhibits how different types

of rhetorical relations between utterances rather than

Searle-like speech acts like question, construed as a prop-

erty of an utterance, are useful for encoding how pref-

erences evolve in a dialogue and how they relate to

one another. While the Grounding Acts dialogue model

(Poesio and Traum, 1998) and the Question Under Dis-

cussion (QUD) model (Ginzburg, to appear) both have

many attractive features, they do not encode as fine-

grained a taxonomy of types of speech acts and their se-

mantic effects as SDRT: in SDRT each rhetorical relation

is a different kind of (relational) speech act, so that, for

instance, the speech act of questioning is divided into the

distinct types Q-Elab, Plan-Correction, and others. For

the QUD model to encode such relations would require

implicit questions of all sorts of different types to be in-

cluded in the taxonomy, in which case the result may be

equivalent to the SDRT taxonomy of dialogue moves. We

have not explored this eventual equivalence here.

3 CP-nets and CP-net descriptions

A preference is standardly understood as an ordering by

an agent over outcomes; at the very least it entails a com-

parison between one entity and another (outcomes being

one sort of entity among others). As indicated in the in-

troduction, we are interested in an ordinal definition of

preferences, which consists in imposing an ordering over

all (relevant) possible outcomes. Among these outcomes,

some are acceptable for the agent, in the sense that the

agent is ready to act in such a way as to realize them;

and some outcomes are not acceptable. Amongst the ac-

ceptable outcomes, the agent will typically prefer some

to others. Our method does not try to determine the most

preferred outcome of an agent but follows rather the evo-

lution of their commitments to certain preferences as the

dialogue proceeds. To give an example, if an agent pro-

poses to meet on a certain day X and at a certain time Y,

we infer that among the agent’s acceptable outcomes is a

meeting on X at Y, even if this is not his most preferred

outcome (see earlier discussion of (2e)).

A CP-net (Boutilier et al., 2004) offers a compact rep-

resentation of preferences. It is a graphical model that

exploits conditional preferential independence so as to

structure the decision maker’s preferences under a ceteris

paribus assumption.

Although CP-nets generally consider variables with a fi-

nite range of values, to define the mapping from dialogue

turns to descriptions of CP-nets in a domain indepen-

dent and compositional way, we use Boolean proposi-

tional variables: each variable describes an action that an

agent can choose to perform, or not. We will then refine

the CP-net description by using domain-specific informa-

tion, transforming CP-nets with binary valued variables

to CP-nets with multiple valued variables. This reduces

the complexity of the evaluation of the CP-net by a large

factor.

More formally, let V be a finite set of propositional vari-

ables and LV the description language built from V via

Boolean connectives and the constants ⊤ (true) and ⊥
(false). Formulas of LV are denoted by φ,ψ, etc. 2V is the

set of interpretations for V , and as usual for M ∈ 2V and

x∈V , M gives the value true to x if x∈M and false other-

wise. Where X ⊆V , let 2X be the set of X-interpretations.

X-interpretations are denoted by listing all variables of

X , with a ¯ symbol when the variable is set to false: e.g.,

where X = {a,b,d}, the X-interpretation M = {a,d} is

expressed as abd.

A preference relation � is a reflexive and transitive bi-

nary relation on 2V with strict preference ≻ defined in

the usual way (i.e., M � M′ but M′ 6� M). Note that

preference orderings are not necessarily complete, since

some candidates may not be comparable by a given agent.

An agent is said to be indifferent between two options

M,M′ ∈ 2V , written M ∼M′, if M �M′ and M′ �M.

As we stated earlier, CP-nets exploit conditional pref-

erential independence to compute a preferential ranking

over outcomes:

Definition 1 Let V be a set of propositional variables

and {X ,Y,Z} a partition of V . X is conditionally pref-

erentially independent of Y given Z if and only if ∀z ∈
2Z , ∀x1,x2 ∈ 2X and ∀y1,y2 ∈ 2Y we have: x1y1z �
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x2y1z iff x1y2z� x2y2z.

For each variable X , the agent specifies a set of parent

variables Pa(X) that can affect his preferences over the

values of X . Formally, X is conditionally preferentially

independent of V \ ({X}∪Pa(X)). This is then used to

create the CP-net.

Definition 2 Let V be a set of propositional variables.

N = 〈G ,T 〉 is a CP-net on V , where G is a directed

graph over V , and T is a set of Conditional Preference

Tables (CPTs) with indifference. That is, T = {CPT(X j):
X j ∈ V}, where CPT(X j) specifies for each instantiation

p ∈ 2Pa(X j) either x j ≻p x j, x j ≻p x j or x j ∼p x j.

The following simple example illustrates these defini-

tions. Suppose our agent prefers to go from Paris to

Hong Kong by day rather than overnight. If he takes an

overnight trip, he prefers a non stop flight, but if he goes

by day, he prefers a flight with a stop. Figure 1 shows the

associated CP-net. The variable T stands for the prefer-

ence over the period of travel. Its values are Td for a day

trip and Tn for a night one. The variable St stands for the

preference over stops. Its values are S for a trip with stops

and S without.

T

St

CPT(T) = Td ≻ Tn

CPT(St) =
Td : S ≻ S

Tn : S≻ S

Figure 1: Travel CP-net

With CP-nets defined, we proceed to a description lan-

guage for them. The description language formula w ≻
y(CPT ) describes a CP-net where a CPT contains an en-

try of the form w ≻p y for some possibly empty list of

parent variables p. A CP-net description is a set of such

formulas. The CP-net N |= x1, . . .xn : w≻ y(CPT ) iff the

CP-net N ’s CPT T contains an entry w≻~u y—also writ-

ten~u : w≻ y—where x1, . . .xn figure in~u. Satisfaction of a

description formula by a CP-net yields a notion of logical

consequence between a CP-net descriptionD N and a de-

scription formula in the obvious way. Dialogue turns also

sometimes inform us that certain variables enter into pref-

erence statements. We’ll express the fact that the vari-

ables x1, . . . ,xn are associated with discourse constituent

π by the formula x1, . . . ,xn(P(π)), where P(π) refers to

the partial description of the preferences expressed by the

discourse unit π (see Section 4).

The description language allows us to impose constraints

on the CP-nets that agents commit to without specifying

the CP-net completely, as is required for utterances like

(1). In section 6, we describe how to construct a min-

imal CP-net from a satisfiable CP-net description. One

can then use the forward sweep procedure for outcome

optimisation (Boutilier et al., 2004). This is a proce-

dure of linear complexity, which consists in instantiating

variables following an order compatible with the graph,

choosing for each variable (one of) its preferred values

given the value of the parents.

4 From EDUs to Preferences

EDUs are described in SDRT using essentially Boolean

formulas over labels (Asher and Lascarides, 2003); thus

φ(π)∧ψ(π) means that φ and ψ describe aspects of π’s

content. Not(π1,π)∧ φ(π1) means that the logical form

of the EDU π is of the form ¬π1 and that π1 is described

by φ; so π has the content ¬φ. Our task is to map such

descriptions of content into descriptions of preferences.

Our preference descriptions will use Boolean connectives

and operators over preference entries (e.g., of the form

x ≻ y): namely, &,▽, 7→, and a modal operator ✸. The

rules below explain the semantics of preference opera-

tors (they are in effect defined in terms of the semantics

of buletic attitudes and Boolean connectives) and how

to recursively calculate preference descriptions from the

EDU’s logical structure.

Simple EDUs can provide atomic preference statements

(e.g., I want X or We need X). This means that with this

EDU the speaker commits to a preference for X . X will

typically involve a Boolean variable and a preference en-

try for its CPT. P(π) is the label of the preference descrip-

tion associated with discourse unit π. Hence for a sim-

ple EDU π, we have X(P(π)) as its description. Simple

EDUs also sometimes express preferences in an indirect

way (see (2a)).

More generally, P recursively exploits the logical struc-

ture of an EDU’s logical form to produce an EDU pref-

erence representation (EDUPR). For instance, since the

logical form of the EDU I want fish and wine features

conjunction, likewise so does its preference description:

φ&ψ(P(π)) means that among the preferences included

in π, the agent prefers to have both φ and ψ and prefers ei-

ther one if he can’t have both.1 We also have disjunctions

(let’s meet Thursday or Friday), and negations (I don’t

want to meet on Friday), whose preferences we’ll express

respectively as Thurs▽Fri(P(π)) and ¬Fri(P(π)).
Some EDUs express commitments to dependencies

among preferences. For example, in the sentence What

about Monday, in the afternoon?, there are two prefer-

ences: one for the day Monday, and, given the Monday

preference, one for the time afternoon (of Monday), at

least on one syntactic disambiguation. We represent this

dependency as Mon 7→ Aft(P(π)). Note that 7→ is not

expressible with just Boolean operators. Finally, EDUs

can express commitment to preferences via free choice

1The full set of rules also includes a stronger conjunction φ∆ψ(P(π))
(the agent prefers both φ and ψ, but is indifferent if he can’t have both).
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modalities; I am free on Thursday, or ✸Thurs(P(π)), tells

us that Thursday is a possible day to meet. ✸φ says that φ

is an acceptable outcome (as described earlier, this means

the agent is ready to act so as to realize an outcome that

entails φ). Thus, ✸φ(π) entails φ(π), and ✸-embedded

preferences obey reduction axioms permitting ✸ to be

eliminated when combined with other preference oper-

ators. But a ✸ preference statement does affect a prefer-

ence description when is is conjoined in Boolean fashion

with another ✸ preference statement in an EDU or com-

bined via a discourse relation like Continuation. This is

because ✸ is a free choice modality and obeys the equiv-

alence (3) below, which in turn yields a disjunctive pref-

erence φ▽ψ(P(π)) from what appeared to be a conjunc-

tion.2

(3) (✸φ(P(π))∧✸ψ(P(π)))↔✸(φ▽ψ)(P(π))

The variables introduced by a discourse segment π are

integrated into the CP-net description D N via the oper-

ation Commit(π,D N ). The following seven rules cover

the different possible logical structures for the EDU pref-

erence representation. In the following, X ,Y,Z,W denote

propositional variables and φ, ψ propositional formulas

from EDUPR. Var(φ) are the variables in φ, and ≻X

the preference relation describing CPT (X). Sat(φ) (or

non-Sat(φ)) is a conjunction of literals from Var(φ) that

satisfy (or do not satisfy) φ. Sat(φ)−X is the formula that

results from removing the conjunct with X from Sat(φ).

1. Where X(P(π)) (X is a variable of P(π), e.g., I want

X), Commit(π,D N ) adds the description D N |=
X ≻ X(CPT (X)).3

2. Where φ&ψ(P(π)), Commit(π,D N ) adds descrip-

tions as follows:

• For each X ∈Var(φ), add Var(ψ) to Pa(X) and

modify CPT (X) as follows:

If Sati(ψ), Sat j(φ) ⊢ X (resp. X), then Sati(ψ),
Sat j(φ)−X : X ≻ X (resp. X ≻ X), for all sat-

isfiers i and j.
• Similarly for each Y ∈Var(ψ).

If φ and ψ are literals X and Y we get: D N |= Y ≻
Y (CPT (Y )) and D N |= X ≻ X(CPT (X)). Graph-

ically, this yields the following preference relation

(where one way arrows denote preference, two way

2We provide here the reduction axioms over preference descriptions

1. ✸(φ&ψ)(P(π))↔ (φ&ψ)(P(π))

2. ✸(φ 7→ ψ)(P(π))↔ (φ 7→ ψ)(P(π))

3. ✸(φ▽ψ)↔ (φ▽ ψ)(P(π))

4. ✸✸φ(P(π))↔✸φ(P(π))

3Given our description language semantics, this means that any

CP-net which satisfies the description D N contains a preference ta-

ble CPT (X) with an entry X ≻ X with at least one instantiation of the

variables in Pa(X).

arrows denote indifference or equal preference, and

no arrow means the options are incomparable):
XY

XY XY
XY

3. Where φ▽ ψ(P(π)) (the agent prefers to have at

least one of φ and ψ satisfied). If φ and ψ are X

and Y , we get:

• Var(X) ∈ Pa(Var(Y )) and D N |= X : Y ∼
Y (CPT (Y )), D N |= X : Y ≻ Y (CPT (Y )).
• Var(Y ) ∈ Pa(Var(X)) and D N |= Y : X ∼

X(CPT (X)), D N |= Y : X ≻ X(CPT (X)).

This corresponds to the following preference rela-

tion:

XY

XY XY XY

As before, the use of indifference allows us to find

the best outcomes (XY , XY and XY ) easily.

4. Where φ 7→ ψ(P(π)) (the agent prefers that φ is sat-

isfied and if so that ψ is also satisfied. If φ is not

satisfied, it is not possible to define preferences on

ψ). If φ and ψ are X and Y , we get:

• D N |= X ≻ X(CPT (X))

• Var(X) ∈ Pa(Var(Y)) and

D N |= X : Y ≻ Y (CPT (Y )).

Note that this description is also produced by

Elab(πi,π j) below where X(P(πi)) and Y (P(π j))
(see rule 8). Thus the implication symbol 7→ is a

"shortcut" in that it represents elaborations whose

arguments are in the same EDU.

5. Where ✸φ(P(π)) (the agent prefers a free choice of

φ). Given the behaviour of ✸, this reduces to treating

φ(P(π)).

6. Where ¬φ(P(π)). We can apply rules 1-5 by con-

verting ¬φ into conjunctive normal form.

7. Where φ(P(π))∧ψ(P(π)), with φ and ψ nonmodal,

we simply apply the rule for φ and that for ψ.

5 From Discourse Structure to Preferences

We must now define how the agents’ preferences, repre-

sented as a partial description of a CP-net, are built com-

positionally from the discourse structure over EDUs. The

constraints are different for different discourse relations,

reflecting the fact that the semantics of connections be-

tween segments influences how their preferences relate

to one another.

We will add rules for defining Commit over la-

bels π whose content φπ express rhetorical relations

R(πi,π j)—indeed, we overload the notation and write

Commit(R(πi,π j),D N ). Since Commit applies com-

positionally, starting with the EDUs and working up
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the discourse structure towards the unique root la-

bel of the SDRS, we can assume in our definition of

Commit(R(πi,π j),D N ) that the EDUPRs are already de-

fined. We give rules for all the relations in the Verbmobil

corpus, though we will be very brief with those that are

less prevalent. A complete example using our rules is in

appendix A.

IExplanation, Elab, Plan-Elab, Q-elab

IExplanation(πi, π j): i.e., π j’s preferences explain πi’s

(e.g., see (1), where P(πi) would be going to the mall

and P(π j) is eating something). With Elab(πi, π j) a

preference in πi is elaborated on or developed in π j,

as in: I want wine. I want white wine. That is, a

preference for white wine depends on a preference for

wine. Plan-Elab(πi,π j) means that π j describes a plan

for achieving the preferences expressed by πi, and with

Q-Elab we have a similar dependence between prefer-

ences, but the second constituent is a question (so often

in practice this means preference commitments from πi

transfer from one agent to another).

Plan-Elab(π j,πi), Elab(π j,πi) and IExplanation(πi,π j)
all follow the same two-step rule, and so from the point

of view of preference updates they are equivalent:

8. i Firstly, preference description D N is up-

dated according to P(π j) by applying

Commit(π j,D N ), if π j expresses a new

preference. If not go to step (ii).

ii. Secondly, description D N is modified so that

each variable in P(πi) depends on each vari-

able in P(π j): i.e., ∀X ∈ Var(P(πi)), ∀Y ∈
Var(P(π j)), Y ∈ Pa(X). Then, D N is enriched

according to P(πi), if πi expresses a preference.

If it does not, then end.

We now give some details concerning step (ii) above. To

this end, let φ denote a formula with SDRS description

predicates, φ′ its corresponding boolean (preference) for-

mula and φ′ its negation. Then for φ=Y , we define φ′=Y

and φ′ = Y ; for φ = Y 7→ Z we define φ′ = Y ∧ Z and

φ′ = Y ∨ Z; and for φ = Y ▽ Z and φ = Y&Z, we have

φ′ = Y ∨Z and φ′ = Y ∧Z.

a. X(P(πi)) and φ(P(π j)). The agent explains his pref-

erences on X by φ. So, if no preferences on X are

already defined, φ is a reason to prefer X . That is,

D N |= φ′: X ≻ X(CPT (X)). However, it is not pos-

sible to define preferences on X if φ is false. If, on

the other hand, preferences on X are already defined,

the agent prefers X if φ is satisfied, and does not

modify his preferences otherwise—i.e.,≻X ,φ′= X ≻

X , ≻
X ,φ′

=≻X .4

4If we have ≻X such that Z: X ≻ X , Z: X ≻ X , ≻X ,φ′ represents

preferences defined by Z∧φ′ and Z∧φ′, whereas ≻
X ,φ′

represents pref-

erences defined by Z∧φ′ and Z∧φ′.

For φ = Y , if ≻X is not already defined, we obtain

the following preference relation (no information on

the preference for X if Y is false makes XY and XY

incomparable):
XY

XYXY

XY

b. X▽Z(P(πi)) and φ(P(π j)). The agent explains his

preferences X▽Z by φ: he wants to satisfy X or Z

if φ is satisfied.

First, we set Var(Z) ∈ Pa(Var(X)), Var(X) ∈
Pa(Var(Z)). If ≻X is not already defined, we have:

D N |= φ′ ∧ Z: X ∼ X(CPT (X)), D N |= φ′ ∧ Z:

X ≻ X(CPT (X)).
Otherwise, ≻X ,φ′,Z= X ∼ X , ≻X ,φ′,Z= X ≻ X ,

≻
X ,φ′,Z

= ≻
X ,φ′,Z

= ≻X .

CPT (Z) is defined as CPT (X) by inverting X and Z.

For φ =Y , if ≻X and≻Z are not already defined, we

obtain the following preference relation (again, the

lack of preference information on X and Z when Y

is false yields incomparability among states where Y

is false):

XY ZXY Z

XY Z

XY Z

XY Z

XY Z

XY ZXY Z

c. X&Z(P(πi)) and φ(P(π j)). The agent explains his

preferences on X&Z by φ.

• If ≻X is not already defined, we have: D N |=
φ′ : X ≻ X(CPT (X)).
Otherwise, ≻X ,φ′= X ≻ X , ≻

X ,φ′
= ≻X ,

• CPT (Z) is defined as CPT (X) by replacing X

by Z.

d. X 7→ Z(P(πi)) and φ(P(π j)). The agent explains his

preferences on X 7→ Z by φ: he wants to satisfy X

and after Z if φ is satisfied.

If ≻X is not already defined, we have D N |= φ′ :

X ≻ X(CPT (X)) and we set Var(X)∈ Pa(Var(Z)).5

If ≻Z is not yet defined, we have : D N |= φ′ ∧X :

Z ≻ Z(CPT (Z)), D N |= φ′∧X : Z ∼ Z(CPT (Z)).
Else, ≻Z,(φ′∧X)= Z ≻ Z, ≻Z,(φ′∧X)= Z ∼ Z,

≻
Z,(φ′∧X)= ≻Z,(φ′∧X)=≻Z.

e. ψ(P(πi)) and φ(P(π j)). We can apply rules 8 by

decomposing ψ.

5Otherwise, there is no need to modify ≻X . This is what we call a

‘partial elaboration’. Variables that were evoked since preferences on

X were introduced are parents of Z but not of X . For example, if an

agent commits to a preference for Monday then Afternoon, and later in

the discourse he commits to 2oclock, then Afternoon is 2oclock’s parent

but not Monday’s.
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f. ✸(ψ)(P(πi)) and ✸(φ)(P(π j)). We treat this like a

free choice EDU (see rule 5).

g. ✸(ψ)(P(πi)) and φ(P(π j)), where φ is non modal.

We treat this like ψ(P(πi)) and φ(P(π j)) (see rule

8.e)

Let’s briefly look at how the rule changes for

Q-elabA(π1,π2) (where the subscript A identifies the

speaker of π2):

9. Q-ElabA(π1,π2) implies that we update A’s CP-

net description D N by applying the rule for

Elab(π1,π2), where if π2 expresses no preferences

on their own, we simply make the P(π2) description

equal to the P(π1) description. Thus A’s CP-net de-

scription is updated with the preferences expressed

by utterance π1, regardless of who said π1.

QAP Answers to questions affect preferences in complex

ways:

10. The first case concerns yes/no questions and there

are two cases, depending on whether B replies yes

or no:

Yes QAPB(π1,π2) where π2 is yes. B’s pref-

erence descriptions are updated by apply-

ing Commit(ElabB(π1,π2),D N ) (and so B’s

preference description include preferences ex-

pressed by π1 and π2).

No QAPB(π1,π2) where π2 is no. If P(π1)
and P(π2) are consistent, then B’s pref-

erence descriptions are updated by ap-

plying CommitB(ElabB(π1,π2),D N );
otherwise, they are updated by applying

Commit(Correction(π1,π2),D N ) (see rule

13).

11. When π1 is a wh-question and QAPB(π1,π2), B’s

preferences over variables in π1 and π2 are ex-

actly the same as the ones defined for a yes/no

question where the answer is yes. Variables in π2

will refine preferences over variables in π1. So,

B’s preference descriptions are updated by applying

CommitB(ElabB(π1,π2),D N ).

In previous rules, it is relatively clear how to update the

preference commitments. However, in some cases it’s not

clear what the answer in a QAP targets: in Could we meet

the 25 in the morning? No, I can’t., we do not know if

No is about the 25 and the morning, or only about the

morning. So, we define the following rule for managing

cases where the target is unknown :

12. If we know the target, we can change the description

of the CP-net. Otherwise, we wait to learn more.

Correction and Plan-Correction allow a speaker to rec-

tify a prior commitment to preferences. Self-corrections

also occur in the corpus: I could do it on the 27th. No I

can not make it on the 27th, sorry I have a seminar. Cor-

rection and Plan-Correction can have several effects on

the preferences. For instance, they can correct preference

entries. That is, given Correction(π1,π2), some variables

in P(π1) are replaced by variables in P(π2) (in the self-

correction example, every occurrence of 27 in P(π1) is

replaced with 27 and vice versa). We have a set of rules

of the form X ←{Y1, . . . ,Ym}, which means that the vari-

able X ∈ Var(P(π1)) is replaced by the set of variables

{Y1, . . . ,Ym} ⊆ Var(P(π2)). We assume that X can’t de-

pend on {Y1, . . . ,Ym} before the Correction is performed.

Then replacement proceeds as follows:

13. If Pa(X) = /0, we add the description D N |= Yk ≻
Y k(CPT (Yk)) for all k ∈ {1, . . . ,m} and remove X ≻
X(CPT (X)) (or X ≻ X(CPT (X))). Otherwise, we

replace every description of CPT (X) with an equiv-

alent statement using Yk (to describe CPT (Yk)), for

all k ∈ {1, . . .m}.

The specific target of the correction behaves similarly to

the target of a QAP. In some cases we don’t know the

target, in which case we apply rule 12.

Plan-Correction can also lead to the modification of an

agent’s own plan because of other agent’s proposals. In

this case it corrects the list of parent variables on which

a preference depends. We call that list of variables the

operative variables. Once the operative variables are

changed, Plan-Correction can elaborate a plan if some

new preferences are expressed. For example, all agents

have agreed to meet next week, so in their CP-net descrip-

tion, there is the entry Week1≻Week1. Then discussion

shows that their availabilities are not compatible and one

of them says "okay, that week is not going to work.". That

does not mean the agent prefers Week1 to Week1 because

both agreed on Week1 as preferable. Rather, Week1 has

been removed as an operative variable in the following

discourse segments. This leads us to the following rule:

14. For Plan-Correction(π1,π2) which corrects

the list of parent variables, the operative vari-

able list becomes the intersection of all Pa(X)
where X ∈ Var(P(π1)). We can now apply

Commit(Plan-Elab(π1,π2),D N ), if P(π2) contains

some new preferences φ. If the CPT affected by a

rule has no entry for the current operative variable

list O , then O : φ has to be added to D N .

Continuation, Contrast and Q-Cont pattern with the

rule for Elab. Alternation patterns with rule 8.b.6 Expla-

nation, Explanation*, Result, Qclar (clarification ques-

tion), Commentary, Summary and Acknowledgment

6The rule for Alternative questions like Do you want fish or chicken?

is a special case yielding φ▽ψ(P(π)), but we don’t offer details here.
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either do nothing or have the same effect on preference

elicitation as Elab. Sometimes, adding these preferences

via the Elab rule may yield an unsatisfiable CP-net de-

scription, because an implicit correction is involved. If an

evaluation of the CP-net (see next section) is performed

after a processing of one of these rules shows that the

CP-net description is not satisfiable, then we apply the

rule 13, associated with Correction.

6 From Descriptions to Models

Each dialogue turn adds constraints monotonically to the

descriptions of the CP-nets to which the dialogue partic-

ipants commit. We have interpreted each new declared

variable in our rules as independent, which allows us to

give a domain independent description of preference elic-

itation. However, when it comes to evaluating a CP-net

description for satisfiability, we need to take into account

various axioms about preference (irreflexivity and transi-

tivity), and axioms for the domain of conversation: in our

case, temporal designations (Wednesdays are not Tues-

days and so on). This typically adds dependencies among

the variables in the description. In the case of the Verb-

mobil domain, since the variable Monday means essen-

tially "to meet on Monday", Monday implies Meet , and

this must be reflected via a dependency in the CP-net: we

must view the variable Meet as filling a hidden slot in

the variable Monday in the preference description, Meet :

Mon≻Mon. This likewise allows us to fill in the negative

clauses of the CP-net description: we can now infer that

Meet : Mon ≻ Mon. These axioms also predict certain

preference descriptions to be unsatisfiable. For instance,

if we have Mon ≻Mon, our axioms imply Mon ≻ Tues,

Mon ≻Wed, etc. At this point we can calculate, ceteris

paribus, inconsistencies on afternoons and mornings of

particular days.

Domain knowledge also allows us to collapse Boolean

valued variables that all denote, say, days or times of the

day into multiple valued variables. So for instance, our

domain independent algorithm from dialogue moves to

preference descriptions might yield:

(4) Meet∧31.01∧30.01∧02.02: am≻ am

Domain knowledge collapses all Boolean variables for

distinct days into one variable with values for days to get:

(5) Meet∧02.02: am≻ pm

This leads to a sizeable reduction in the set of variables

that are used in the CP-net.

We can test any CP-net description for satisfiability by

turning the description formulas into CP-net entries. Our

description automatically produces a directed graph over

the parent variables. We have to check that the ≻ state-

ments form an irreflexive and transitive relation and that

each variable introduced into the CP-net has a preference

entry consistent given these constraints. If the description

does not yield a preference entry for a given variable X ,

we will add the indifference formula X ∼ X as the entry.

If our CP-net description meets these requirements, this

procedure yields a minimal CP-net. Testing for satisfia-

bility is useful in eliciting preferences from several dis-

course moves like Explanation, Qclar or Result, since in

the case of unsatisfiability, we will exploit the Correction

rule 13 with these moves.

7 Evaluation of the proposed method

We evaluate our method by testing it against the judg-

ments of three annotators on three randomly chosen un-

seen test dialogues from the Verbmobil corpus. The

test corpus contains 75 EDUs and the proportion of dis-

course relations is the same as in the corpus overall. The

three annotators were naive in the sense that they were

not familiar with preference representations and prefer-

ence reasoning strategies. For each dialogue segment,

we checked if the judges had the same intuitions that we

did on: (i) how commitments to preferences are extracted

from EDUs, and (ii) how preferences evolve through dia-

logue exchange.

The judges were given a manual with all the instructions

and definitions needed to make the annotations. For ex-

ample, the manual defined preference to be "a notion of

comparison between one thing at least one other". The

manual also instructs annotators to label each EDU with

the following four bits of information: (1) preferences

(if any) expressed in the EDU; (2) dependencies between

preferences expressed in the EDU; (3) dependencies be-

tween preferences in the current EDU and previous ones;

and (4) preference evolution (namely, the appearance of

a new factor that affects preferred outcomes, update to

preferences over values for an existing factor, and so on).

For each of these four components, example dialogues

were given for each type of decision they would need to

make, and instructions were given on the format in which

to code their judgements. Appendix A shows an example

of an annotated dialogue.

Table 2 presents results of the evaluation of (i). For each

EDU, we asked the annotator to list the preferences ex-

pressed in the EDU and we compared the preferences ex-

tracted by each judge with those extracted by our algo-

rithm. The triple (a, b, c) respectively indicates the pro-

portion of common preferences (two preference sets Γi

and Γ j are common if (Γi = Γ j) or (∃x ∈ Γi,y ∈ Γ j ,x→
y)—for example, the preference MeetBefore2≻MeetAt2

implies MeetAt2 ≻ MeetAt2), the proportion of prefer-

ences that one judge extracts and the other judge or our al-

gorithm misses and the proportion of preferences missed

by one judge and extracted by the other judge or by our

algorithm. The average annotator-algorithm agreement

(AAA) is 75.6% and the average inter-annotator agree-
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Our algorithm J1 J2 J3 % of EDUs that commit to preferences

Our algorithm (83, 4, 13) (91, 0, 9) (91, 0, 9) 76%

J1 (83, 13, 4) (85, 7, 8) (91, 4, 5) 80%

J2 (91, 9, 0) (85, 8, 7) (92, 4, 4) 86%

J3 (91, 9, 0) (91, 5, 4) (92, 4, 4) 84%

Table 2: Evaluating how preferences are extracted from EDUs.

Our algorithm J1 J2 J3

Our algorithm (85, 71) (96, 100) (93, 86)

J1 (85, 71) (89, 71) (91, 86)

J2 (96, 100) (89, 71) (98, 86)

J3 (93, 86) (91, 86) (98, 86)

Table 3: Evaluating how preferences evolve through dialogue.

ment (IAA) is 77.9%; this shows that our method for ex-

tracting preferences from EDUs is reliable.

The evaluation (ii) proceeds as follows. For each EDU, we

ask the judge if the segment introduces new preferences

or if it updates, corrects or deletes preferences commited

in previous turns. As in (i), judges have to justify their

choices. Table 3 presents the preliminary results where

the couple (a,b) indicates respectively the proportion of

common elaborations (preference updates or new prefer-

ences) and the proportion of common corrections. Since

elaboration is also applied in case of other discourse re-

lations (e.g., Q-Elab), the measure a evaluates the rules

8, 9, 10 (yes) and 11. Similarly, the measure b evalu-

ates the rules 10 (no), 13 and 14. We obtain AAA=91%

IAA=92.7% for elaboration and AAA=85.7% IAA=81%

for correction.

8 Conclusion

We have proposed a compositional method for elicit-

ing preferences from dialogue consisting of a domain-

independent algorithm for constructing a partial CP-net

description of preferences, followed by a domain-specific

method for identifying the minimal CP-net satisfying the

partial description and domain constraints. The method

supports qualitative and partial information about prefer-

ences, with CP-nets benefiting from linear algorithms for

computing the optimal outcome from a set of preferences

and their dependencies. The need to compute intentions

from partially defined preferences is crucial in dialogue,

since preferences are acquired and change through dia-

logue exchange.

Our work partially confirms that CP-nets have a certain

naturalness, as the map from dialogue moves to prefer-

ences using the CP-net formalism is relatively intuitive.

The next step is to implement our method. This depends

on extracting discourse structure from text, which, though

difficult, is becoming increasingly tractable for simple

domains (Baldridge and Lascarides, 2005b). We plan to

extract CP-net descriptions from EDUs and to evaluate

these descriptions using "multi-valued variables" auto-

matically. We will then evaluate our method on a large

number of dialogues.

Our work here is also and more generally a first step to-

wards modelling the complex interaction between what

agents say, what their preferences are, and what they take

the preferences of other dialogue agents to be. It leads

to a conception of dialogue that’s more general than one

based purely on Gricean cooperative principles (Grice,

1975). On a purely Gricean approach, conversation is

cooperative in at least two ways: a basic level concern-

ing the conventions that govern linguistic meaning (ba-

sic cooperativity); and a level concerning shared attitudes

towards what is said, including shared intentions (con-

tent cooperativity). While basic cooperation is needed

for communication to work at all, content cooperativ-

ity involves strongly cooperative axioms like Coopera-

tivity (interlocutors normally adopt the speaker’s inten-

tions) (Allen and Litman, 1987, Grosz and Sidner, 1990,

Lochbaum, 1998). Our approach allows for divergent

preferences and divergent intentions, i.e. conversations

that aren’t based on content cooperativity. This will al-

low us to exploit information about conflicting agents’

preferences and game-theoretic techniques that are inher-

ent in the logics of CP-nets for computing optimal moves

(Bonzon, 2007). And in contrast to Franke et al. (2009),

who analyse conversations where content cooperativity

doesn’t hold using a game-theoretic framework, our ap-

proach allows for partial and qualitative representations

of preferences rather than demanding complete and quan-

titative representations of them.
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Appendix A : Treatment of an example

We illustrate in this section how our rules work on an

example. Since this dialogue was also evaluated by our

judges (cf section 7), we give where relevant some details

on those annotations. The example is as follows:

(6) π1. A: so, I guess we should have another meet-

ing

π2. A: how long do you think it should be for.

π3. B: well, I think we have quite a bit to talk

about.

π4. B: maybe, two hours?

π5. B: how does that sound.

π6. A: deadly,

π7. A: but, let us do it anyways.

π8. B: okay, do you have any time next week?

π9. B: I have got, afternoons on Tuesday and

Thursday.

π10. A: I am out of Tuesday Wednesday Thurs-

day,

π11. A: so, how about Monday or Friday

Table 4 is the DSDRS associated with (6).

Relation(πi, [π j − πk]) indicates that a rhetorical re-

lation holds between the segment πi and a segment

consisting of π j, π j+1, . . . , πk

π1 provides an atomic preference. We apply the rule

1 and so CommitA(π1,D N A) adds the description

D N A |= M ≻M(CPT (M)) where M means Meet.

π2 We have Q-Elab(π1, π2). A continues to commit to

M in π2 and no new preferences are introduced by

π2. We apply rule 9, which makes the P(π2) de-

scription the same as P(π1)’s.

π3 is linked to π2 with QAP. B accepts A’s preference

and we apply the rule 11 since π2 is a wh-question.

Thus CommitB(ElabB(π2,π3),D N B) adds the de-

scription D N B |= M ≻M(CPT (M)). It is interest-

ing to note that some judges consider that agent’s

utterance in π3 indicates a preference towards "talk-

ing a long time" while other judges consider, as our

method predicts, that this segment does not convey

any preference.

π4 is linked to π3 by Q-Elab. B commits to a new

preference. We apply rule 9, rule 8 and then rule

8.a. The preference on the hour is now dependent

on the preference on meeting; i.e., D N B |= M :

2h ≻ 2h(CPT (2h)), where the variable 2h means

two hours.

π5 is related to π4 with the Q-Cont relation. We

then follow the same rule as the continued relation,

namely Q-Elab. We apply rule 9 which does not

change the CP-net description of B because π5 does

not convey any preference.

π6 is related to π5 with QAP relation. In this case, it’s

not clear what is the QAP target and so we apply

rule 12: we wait to learn more and we do not change

B’s CP-net description.

All the Judges indicated that segments π5 and π6

are ambiguous and therefore hesitated to say if they

commit to preferences. For example in π6, do we

have a preference for meeting more than 2 hours

or less than 2 hours? This indecision is compatible

with the predictions of rule 12.

π7 A accepts B’s preference. We apply rule 9 and then

rule 8 to obtain:

D N A |= M ≻M(CPT (M)),
D N A |= M : 2h≻ 2h(CPT (2h)).

π8 is linked to π7 by Q-Elab. B introduces a new pref-

erence for meeting next week.

We apply rule 9 and then 8 to obtain:

D N B |= M ≻M(CPT (M)),
D N B |= M : 2h≻ 2h(CPT (2h)),
D N B |= M∧2h : NW ≻NW (CPT (NW )) where the

variable NW means next week.

π9 is linked to π8 by Plan-Elab. π9 expresses com-

mitments to preference that already involve a

CP-net description. B introduces three prefer-

ences: one for meeting on Tuesday, the other

for meeting on Thursday and given the conjunc-

tion of preferences Tues ∧ T hurs, one for time

afternoon (of Tuesday and Thursday). That is,

((✸(Tues)∧✸(T hurs)) 7→ Aft)(P(π9)). We apply

the equivalence (3) and obtain :

(✸(Tues▽Thurs)→ Aft)(P(π9)).
Then, we apply rules 8.g, 8.b and 8.d. The CP-net

description of B is thus updated as follows:

D N B |= M ∧ 2h ∧ NW ∧ Tues : Thurs ≻

T hurs(CPT (T hurs)),
D N B |= M ∧ 2h ∧ NW ∧ Tues : Thurs ∼
T hurs(CPT (T hurs)),
D N B |= M ∧ 2h ∧ NW ∧ T hurs : Tues ≻
Tues(CPT (Tues)),
D N B |= M ∧ 2h ∧ NW ∧ T hurs : Tues ∼
Tues(CPT (Tues)),
D N B |= M ∧ 2h ∧ NW ∧ (T hurs ∨ Tues) : Aft ≻
Aft(CPT (Aft)).

Most judges express here a preference ranking over

outcomes. For instance, if B elaborates by adding

the preference "I have got Monday morning too"

(as it is in the test corpus), some consider the rank-

ing "(Tuesday or Thursday afternoons) ≻ (Monday
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Turn A’s SDRS B’s SDRS

1 π1A : Q-Elab(π1,π2) /0

2 π1A:is the same as in turn 1 π2B : Q-Elab(π1, [π2−π5])∧QAP(π2, [π3−π5])∧

Q-Elab(π3,π)

π : Q-Cont(π4,π5)

3 π3A : Q-Elab(π1, [π2−π7])∧QAP(π2, [π3−π7])∧ π2B: is the same as in turn 2

Q-Elab(π3, [π4,π7])∧QAP(π,π′)

π : Q-Cont(π4,π5),π
′ : Contrast(π6,π7)

4 π3A: is the same as in turn 3 π4B : Q-Elab(π1, [π2−π9])∧QAP(π2, [π3−π9])∧

Q-Elab(π3, [π4−π9])∧QAP(π, [π6−π9])∧

Q-Elab(π′,π′′)

π : Q-Cont(π4,π5),π
′ : Contrast(π6,π7)

π′′ : Plan-Elab(π8,π9)

5 π5A : Q-Elab(π1, [π2−π11])∧QAP(π2, [π3−π11])∧ π4B: is the same as in turn 4

Q-Elab(π3, [π4−π11])∧QAP(π, [π6−π11])∧

Q-Elab(π′, [π8−π11])∧QAP(π′′,π′′′)

π : Q-Cont(π4,π5),π
′ : Contrast(π6,π7)

π′′ : Plan-Elab(π8,π9),π
′′′ : Q-Elab(π10,π11)

Table 4: The DSDRS for Dialogue (6).

morning)≻ (other days)", while others consider the

ranking "(Tuesday or Thursday afternoon) or (Mon-

day morning)≻ (other days)". We did not treat such

preference ranking.

π10 is related to π9 by QAP where A answers no to B’s

question asked in π8. We apply rule 10 (no). Since

Tues&Weds&Thurs(P(π10)) is not consistent with

((✸(Tues) ∧✸(T hurs)) 7→ Aft)(P(π9)), we apply

CommitA(Correction(π9,π10),D N A), which adds

the preference Weds to A’s description and then

the rule 13 where Tues and T hurs are respectively

replaced by Tues and T hurs :

D N A |= M∧2h∧NW : Tues≻ Tues(CPT (Tues)),
D N A |= M ∧ 2h ∧ NW : T hurs ≻
T hurs(CPT (T hurs)),
D N A |= M ∧ 2h ∧ NW : Weds ≻
Weds(CPT (Weds)).

π11 Finally, this segment is linked to π10 with Q-Elab

where Mond▽Fri(P(π11)). We apply rules 9 and

8.b and update A’s CP-net description as follows:

D N A |=M∧2h∧NW ∧Tues∧T hurs∧Weds∧Fri :

Mond ≻Mond(CPT (Mond)),
D N A |=M∧2h∧NW ∧Tues∧T hurs∧Weds∧Fri :

Mond ∼Mond(CPT (Mond)),
D N A |= M ∧ 2h ∧ NW ∧ Tues ∧ T hurs ∧Weds ∧
Mond : Fri≻ Fri(CPT (Fri)),
D N A |= M ∧ 2h ∧ NW ∧ Tues ∧ T hurs ∧Weds ∧
Mond : Fri∼ Fri(CPT (Fri)).

The evaluation of this dialogue also reveals to what extent

naive annotators reason with binary (Monday preferred

to not Monday) or multi-valued variables (Monday pre-

ferred to Tuesday). Most judges use multi-valued vari-

ables to express the preference extracted from an EDU,

and the way in which our method exploits domain knowl-

edge to yield the minimal CP-net satisfying the descrip-

tion reflects this. In addition, some judges use a small

set of variables (for example the variable time of meeting

that groups together the notion of week, day, hours, etc.)

while others use a distinct variable for each preference.

Finally, we also noticed that judges do not describe the

same preference dependencies. For example, in:

(7) We could have lunch together and then have the

meeting from one to three?

some consider that the preference on having lunch is in-

dependent from the preference on the meeting (in this

case, they consider that the preference on the period one

to three is independent from the preference on meeting)

while others consider that the two preferences are depen-

dent.
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Abstract

We present a method of evaluating the imme-

diate performance impact of user state mis-

classifications in spoken dialogue systems.

We illustrate the method with a tutoring sys-

tem that adapts to student uncertainty over and

above correctness. First we define a rank-

ing of user states representing local perfor-

mance. Second, we compare user state trajec-

tories when the first state is accurately clas-

sified versus misclassified. Trajectories are

quantified using a previously proposed met-

ric representing the likelihood of transitioning

from one user state to another. Comparison of

the two sets of trajectories shows whether user

state misclassifications change the likelihood

of subsequent higher or lower ranked states,

relative to accurate classification. Our tutoring

system results illustrate the case where user

state misclassification increases the likelihood

of negative performance trajectories as com-

pared to accurate classification.

1 Introduction

Spoken dialogue systems research has shown that

natural language processing errors can negatively

impact global system performance. For exam-

ple, automatic speech recognition errors have been

shown to negatively correlate with user satisfaction

surveys taken after the system interaction is over

(e.g., (Walker et al., 2000a; Pon-Barry et al., 2004)).

Automatic user state classification errors have

also been shown to negatively impact global per-

formance in spoken dialogue systems (e.g., (Pon-

Barry et al., 2006)). For example, in our prior work

with an uncertainty-adaptive spoken dialogue com-

puter tutoring system, we found that recognizing and

adapting to the user’s state of uncertainty, over and

above his/her state of correctness, significantly im-

proved global learning over all users (as measured

by tests taken before and after the system interac-

tion). However, this was only true when the user

uncertainty was manually labeled during the inter-

action by an unseen human “wizard of oz” (Forbes-

Riley and Litman, 2011b); it was not true when the

uncertainty was automatically labeled by the system.

Further analysis showed that uncertainty classifica-

tion errors largely accounted for the global perfor-

mance decrease in our fully automated system. In

particular, only a small proportion of users’ actual

uncertainty was being accurately classified by the

system (Forbes-Riley and Litman, 2011a).1

The question we address in this study is how to

analyze the impact of automatic user state classifi-

cation errors when analyzing performance at a local

level. In particular, is there a measurable local per-

formance difference when one compares what hap-

pens in a dialogue after a turn is accurately classi-

fied versus misclassified? We show here how user

state trajectories can be used to answer this ques-

tion. First, a ranking of user states is defined (Sec-

tion 3.1). Second, user state trajectories are com-

puted from two sets of system dialogue: one in

1In natural language processing (NLP) research, the terms

“(in)correct” and “(un)certain” can have multiple interpreta-

tions. To avoid confusion, we reserve these terms in this paper

only to refer to the semantic content and affective/attitudinal ex-

pression of user answers (respectively). When referring to the

NLP performance of our system, we use the terms “accurately

classified” and “misclassified”.
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which the user state of interest is accurately clas-

sified in the first turn in the trajectory, and another

in which it is misclassified (Section 3.2). Trajec-

tories are quantified as the likelihood of transition-

ing from one user state to another (D’Mello et al.,

2007). Comparison of the two sets of trajectories in-

dicates how user state misclassifications change the

relative likelihood of subsequent states. Transitions

to higher ranked states indicate improved local per-

formance while transitions to lower ranked states in-

dicate decreased local performance.

In our research, we are interested in this question

because we hypothesize that accurate and inaccurate

user state classification in our uncertainty-adaptive

system yielded immediate differences in user behav-

ior. We further hypothesize that our uncertainty-

adaptive system had a negative immediate impact

on the user’s state when (un)certainty was misclas-

sified, as compared to when (un)certainty was ac-

curately classified. Our user state trajectory results

support these hypotheses. We find that (un)certainty

misclassifications increased the likelihood of transi-

tioning to the lowest ranked user state in the next

turn. In contrast, accurate (un)certainty classifica-

tion yielded an increased likelihood of more positive

performance trajectories (Section 4).

More generally, this question is relevant to other

automatically classified user states and other types

of dialogue systems, whenever the goal is to un-

derstand the immediate impact of user state classi-

fication errors on user behavior during the dialogue

(Sections 3.1 and Section 5).

2 The System and Dialogues

We apply this local performance analysis to dia-

logues between college students and our fully auto-

mated spoken dialogue tutoring system, ITSPOKE.2

Two sets of dialogues are used here, which come

from two versions of ITSPOKE: the uncertainty-

adaptive and non-adaptive versions. Both ver-

sions automatically classify user (un)certainty and

(in)correctness for each turn. However, the non-

adaptive version’s responses are based only on

(in)correctness, while the uncertainty-adaptive ver-

sion provides an uncertainty adaptation to uncer-

2ITSPOKE(Intelligent Tutoring SPOKEn dialogue) is a

spoken, modified version of Why2-Atlas (VanLehn et al., 2002).

tain+correct answers. All dialogues were collected

in our prior experiment comparing global learn-

ing across the uncertainty-adaptive and non-adaptive

system versions (see Section 1). The uncertainty-

adaptive system yielded 120 dialogues (1957 student

turns) from 24 subjects. The non-adaptive system

yielded 125 dialogues (2065 student turns) from 25

subjects. Our analysis will focus on the dialogues

from the uncertainty-adaptive system (Section 4.1);

the dialogues from the non-adaptive system will be

used for comparison (Section 4.2).

Briefly, ITSPOKE tutors 5 physics problems (one

per dialogue), in a Tutor Question - Student Answer

- Tutor Response format. The tutor questions seri-

ally present topics needed to solve each problem; ad-

jacent questions concern identical or closely related

topics. After each tutor question, the student answer

is digitized from head-mounted microphone input

and sent to the Sphinx2 recognizer, which yields an

automatic transcript. The answer’s (in)correctness is

then automatically classified based on this transcript,

using the TuTalk semantic analyzer (Jordan et al.,

2007). Simultaneously, the answer’s (un)certainty

is automatically classified by inputting features of

the speech signal, the automatic transcript, and the

dialogue context into a logistic regression model.3

All natural language processing components were

trained using prior ITSPOKE corpora.

The dialogue manager determines the appropriate

tutor response and sends it to the Cepstral text-to-

speech system. The uncertainty-adaptive and non-

adaptive system versions give the same response to

incorrect answers (regardless of (un)certainty): in-

correctness feedback (e.g., “That’s not right”) fol-

lowed by additional remedial content to help stu-

dents understand why their answer was incorrect.

Both versions also give the same response to cer-

tain+correct answers: correctness feedback only

(e.g., “That’s right”). The two versions differ in their

response to uncertain+correct answers. The non-

adaptive version responds with correctness feed-

back only, while the uncertainty-adaptive version re-

sponds with correctness feedback followed by addi-

tional remedial content to help students resolve their

uncertainty. This uncertainty adaptation is based on

3The uncertainty model includes lexical, pitch, temporal,

and energy features as well as tutor question and user gender,

and is described further in (Forbes-Riley and Litman, 2011a).
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tutor1: Let’s begin by looking at the motion of the man and his keys while he’s holding them. How does his velocity

compare to that of his keys?

student-automatic1: his also the is the same as that of his keys points force (certain+incorrect)

student-manual1: his velocity is the same as that of his keys while he’s holding them (uncertain+correct)

tutor2: Actually... Their velocities must be the same, because the man’s holding his keys, so they’re not moving with

respect to each other. [...] What are the forces exerted on the man after he releases his keys?

student-automatic2: gravity (uncertain+correct)

student-manual2: gravity?? (uncertain+correct)

non-adaptive-tutor3: Right. So what’s the direction of the force of gravity on the man (e.g., vertically up)?

uncertainty-adaptive-tutor3: Right. Gravity is the only force acting on the man. This force is also called the weight

of the man. It’s always present when an object is in earth’s gravitational field. So what’s the direction of the force of

gravity on the man (e.g., vertically up)?

Figure 1: Annotated Dialogue Example Showing Uncertainty Adaptation and User State Classifications

prior tutoring research, which argues that incorrect-

ness and uncertainty are both signals of a “learn-

ing impasse”, i.e., an opportunity to better learn the

material (VanLehn et al., 2003). Our uncertainty

adaptation only provides additional remedial con-

tent after the uncertain+correct impasse, because in-

correctness impasses (uncertain and certain) already

receive remedial content from the non-adaptive sys-

tem. It is assumed that this content helps resolve

both incorrectness and uncertainty (when present).

After the experiment, each student answer

(turn) was manually transcribed and labeled for

(un)certainty and (in)correctness. One labeler

performed the annotation based on schemes devel-

oped and evaluated on prior ITSPOKE corpora,

where this labeler and another labeler displayed

interannotator reliability of 0.85 and 0.62 Kappa

on (in)correctness and (un)certainty, respec-

tively (Forbes-Riley and Litman, 2011a).4 Com-

parison of the automatic and manual labels yielded

84.7% accuracy for automatic (in)correctness

classification and 80.3% accuracy for auto-

matic (un)certainty classification. However, the

(un)certainty model had an uncertainty recall of

only about 20%, while the (in)correctness model

had a correctness recall of about 80% (Forbes-Riley

and Litman, 2011a).5

4Because these evaluations showed that this trained labeler

could reliably annotate (un)certainty and (in)correctness in IT-

SPOKE dialogues, no further evaluations were performed.
5The lower recall for predicting uncertainty is neverthe-

Figure 1 illustrates ITSPOKE’s natural language

processing components and the two system versions.

The first answer is classified as certain+incorrect

(student-automatic1) but manually labeled as un-

certain+correct (student-manual1); the manual and

automatic transcripts are also substantially differ-

ent. Because this answer was misclassified as in-

correct, both versions give the same response (tu-

tor2). The second answer is accurately classified as

uncertain+correct. The non-adaptive system thus ig-

nores the uncertainty and only provides correctness

feedback (non-adaptive-tutor3), while the adaptive

system responds with correctness feedback and ad-

ditional remedial content to help resolve the uncer-

tainty (uncertainty-adaptive-tutor3).

3 Local Performance Evaluation

Here we discuss how to evaluate the local impact of

user state misclassification in dialogue systems.

3.1 Defining a User State Severity Ranking

Building on tutoring research that views both uncer-

tainty and incorrectness as signals of learning im-

passes (Section 2), we previously defined a sever-

ity ranking for the four impasse states correspond-

ing to all combinations of binary (in)correctness

less higher than always predicting no uncertainty (a majority

class baseline has 0% recall), and is on par with prior work in

affect-adaptive tutoring systems, e.g. (Walonoski and Heffer-

nan, 2006); in general affective systems research has found it

difficult to accurately predict positive occurrences of affect.
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Impasse State: certain+incorrect uncertain+incorrect uncertain+correct certain+correct

Severity: most less least none

Figure 2: User Impasse State Severity Ranking

and (un)certainty (Forbes-Riley and Litman, 2011a).

This ranking, shown in Figure 2, reflects the as-

sumption that a student must perceive an impasse in

order to resolve it. A state of uncertainty reflects this

awareness. Therefore, the most severe type of learn-

ing impasse occurs when a student is incorrect but

not aware of it. Impasse states of decreasing sever-

ity occur when the student is incorrect but aware that

s/he might be, and correct but believes s/he may not

be, respectively. No impasse exists when a student

is correct and not uncertain about it.

In our prior work, this ranking of user states was

independently validated by showing that average im-

passe state severity negatively correlates with global

learning gain in our system dialogues (Forbes-Riley

and Litman, 2011a). In other words, a higher pro-

portion of user states with less severe or no impasses

directly relates to higher global learning gain.

More generally, the idea of ranking user states in

terms of those that do or do not represent communi-

cation impasses applies to other dialogue system do-

mains and other user state dimensions as well. For

example, in information-seeking domains, frustra-

tion and anger are common affective states whose

occurrence during the dialogue signals severe com-

munication problems (Batliner et al., 2003), while

hang-ups and turns requesting a human operator are

other types of user states whose occurrence dur-

ing the dialogue signals severe communication prob-

lems (Walker et al., 2000b).

Moreover, state trajectories can be used to repre-

sent abstractions over other types of user (or system)

behaviors. In our tutoring system analysis, repre-

senting user states in terms of only (un)certainty and

(in)correctness is an abstraction that we find useful

for analyzing impasse trajectories. However, dur-

ing run-time, a finite-state dialogue manager con-

sisting of 142 states actually controls the system’s

operation, and uses many other features besides user

uncertainty and incorrectness to determine the sys-

tem’s response (e.g. the physics concepts related to

the current system question, the history of prior stu-

dent answers to similar questions, etc.). Any of these

states could be analyzed as well to understand their

local performance impact, as could their analogs in

other system domains. For example, in a train di-

alogue system, while the actual state representation

used during operation could be quite complex, for

a trajectory analysis a simpler representation could

be suitable, one which tracks whether the system

knows the values of the n attributes needed to query

the database. The state ranking in this case would

be over equivalence classes of states: states with n

attributes known > states with n-1 attributes known

> ... > initial state with 0 attributes known.

3.2 Computing User State Trajectories

Local trajectories of user states during a dialogue

can be computed as the likelihood of transitioning

from the user state in turn n to the user state in turn

n+1. Here we use D’Mello et al.’s metric, transition

likelihood L (D’Mello et al., 2007).

Transition likelihood L is computed as shown be-

low, where n refers to the impasse state in turn n

and n+1 refers to the impasse state in turn n+1. As

shown, L is computed as the conditional probabil-

ity that the user state in turn n+1 will occur given

that the user state in turn n has occurred, adjusted

for the base rate of occurrence of the user state in

turn n+1. The denominator normalizes the result so

that L ranges from -∞ to 1. L=1 indicates that n+1

always follows n over and above the probability of

n+1 occurring. L=0 indicates that n+1 follows n at

the chance level. L<0 indicate that the likelihood of

n+1 following n is much lower than the base rate of

n+1 occurring.6

L(n→n+1) =
P (n+1|n)−P (n+1)

1−P (n+1)

Transition likelihood L has previously been used

to compute the likelihood of transitioning from one

affective state to another (e.g., from confusion to

6Note that this metric, which assesses the adjusted probabil-

ity of one user state following another, is equivalent to Kappa

in computing agreement among annotators after adjusting for

chance (D’Mello et al., 2007).
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frustration) in a single set of dialogues between

student and computer tutor (D’Mello et al., 2007).

Transition likelihood L has also been used to com-

pare how the likelihoods of transitioning from one

affective state to another vary across two differ-

ent sets of dialogues collected with two different

versions of an affect-adaptive tutoring system (Mc-

Quiggan et al., 2008). Our analysis is based on

this analysis, but extends it in three ways: 1) our

transitions involve complex user states composed of

two dimensions ((un)certainty and (in)correctness),

2) the user states in our transitions are ranked to

enable a local performance analysis, 3) our perfor-

mance analysis is applied to the question of how user

state misclassification impacts local performance,

by comparing transition likelihoods after accurate

and inaccurate user state classifications.

In this prior work and in our work, likelihoods

for each transition are computed for each user (over

all dialogues of a user). ANOVAs with post-hoc

pairwise tests can then determine if there were sig-

nificant differences between all possible transitions

from the current user state in turn n.

To investigate how user state misclassifications

impact local performance, two user trajectories are

computed per user for each n→n+1 transition: one

when the manual and automatic user state labels

for turn n agreed, and another when they did not

agree. In both cases, using the manual label for turn

n+1 enables the true final user state to be compared

across the two sets of trajectories. Comparison of

the final state in the two sets of trajectories indicates

how user state misclassifications change the relative

likelihood of the subsequent user states. Transitions

to higher ranked states indicate improved local per-

formance while transitions to lower ranked states in-

dicate decreased local performance.

4 Impact of User State Misclassifications

in Uncertainty-Adaptive ITSPOKE

We now apply this analysis to the uncertainty-

adaptive ITSPOKE dialogues, to investigate how

user state misclassification impacts the local perfor-

mance of the uncertainty adaptation.

Since the complex user state of uncertain+correct

triggers the uncertainty adaptation, misclassifying

(un)certainty or (in)correctness can potentially im-

pact the local performance of the adaptation. How-

ever, as noted in Section 2, we previously found

that uncertainty misclassifications in our system

were more severe than correctness misclassifica-

tions. Thus, to streamline our analysis and avoid

data skew issues, we focus on how (un)certainty

misclassifications in manually labeled correct an-

swers impact our local performance trajectories.

There are 1270 manually labeled correct turns in

the dialogues collected with uncertainty-adaptive

ITSPOKE. In the dialogues collected with non-

adaptive ITSPOKE (which we will use for compari-

son), there are 1353 manually labeled correct turns.

We hypothesize that when (un)certainty misclas-

sification in correct answers causes the uncertainty

adaptation to be erroneously triggered or blocked,

we will see a negative performance impact, in terms

of an increased likelihood of transitioning to a more

severe impasse state when uncertainty is misclassi-

fied as compared to when it is accurately classified.

4.1 Uncertainty-Adaptive ITSPOKE Results

Accurate Uncertainty Classification: Figure 3

presents descriptive statistics for the likelihood (L)

that a manually labeled uncertain+correct answer

accurately classified as uncertain in turn n will tran-

sition to each of the four manually labeled impasse

states in turn n+1. As noted in Section 3.2, L=0 indi-

cates that the transition likelihood is equal to chance,

while L>0 and L<0 indicate likelihoods greater and

less than chance, respectively.

An ANOVA indicated that there were statistically

significant differences among the likelihoods in Fig-

ure 3 (F(3,56)=3.87, p=.02). The most likely transi-

tions are shown with stripes. Specifically, post-hoc

pairwise tests showed that in turn n+1, an uncer-

tain+incorrect answer (p<.01) or uncertain+correct

answer (p=.02) is significantly more likely than a

certain+correct answer (but are themselves equally

likely). In addition, an uncertain+incorrect answer

is significantly more likely than a certain+incorrect

answer (p=.05), in turn n+1. A dialogue example of

the most likely transition after accurately classified

uncertainty is shown in Figure 5, where it is com-

pared with the misclassified minimal pair in Figure 6

(see Appendix).

These results indicate that accurately classifying

(and thus accurately adapting to) uncertain+correct
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Figure 3: Turn n→ Turn n+1 Transition Likelihoods (L)

after a manually labeled uncertain+correct answer in turn

n is accurately classified as uncertain and receives the un-

certainty adaptation

answers is most likely to yield continued uncertainty

(regardless of correctness) in turn n+1. Prior re-

search (Craig et al., 2004; Kort et al., 2001) has

shown that uncertainty and questioning are positive

and crucial aspects of the learning process. The

continued uncertainty suggests that the uncertainty

adaptation keeps the student engaged in the learn-

ing process, and the equal likelihood of correctness

or incorrectness accompanying this uncertainty sug-

gests that they have not yet unreservedly adopted ei-

ther the correct or incorrect line of reasoning about

the topic under discussion.

To determine whether any of these transitions are

directly tied to global performance, we computed

Pearson’s correlations over all students between the

percentage of each transition and global learning

gain.7 Interestingly, transitioning from an accu-

rately classified correct+uncertain answer to a cor-

rect+certain answer is negatively related to global

learning gain (R=-.458, p=.025). This indicates that

continued uncertainty after the uncertainty adapta-

tion is provided is more beneficial, in the long run,

than no uncertainty. No other trajectories are di-

rectly related to global learning. Although our prior

result, that average impasse severity negatively cor-

relates with global learning gain (Section 3.1), indi-

cates it is better from a global perspective for a stu-

dent to be in a state of no impasse (correct+certain),

it does not tell us the best way for the student to at-

7normalized learning gain = (posttest-pretest)/(1-pretest).

tain this state. The results of our transition correla-

tions shed light on this - they tell us that transitioning

directly from correct+uncertain is not the best way

to attain the no impasse state. We hypothesize that

looking at wider transition windows (e.g., trigrams)

will shed light on what is the best way to attain this

state. For example, it may be that the best way to

transition to a state of no impasse is to do so after

sustained uncertainty (as in Figure 3).

Uncertainty Misclassification: Considering now

user state misclassifications, our results for accu-

rately classified uncertain+correct answers are in

sharp contrast to those for manually labeled uncer-

tain+correct answers misclassified as certain in turn

n. In particular, an ANOVA indicated that all manu-

ally labeled impasse states are equally likely in n+1

(F(3,88)=1.22, p=.32) after a misclassified uncer-

tain+correct answer.8

These results indicate that misclassifying (and

erroneously not adapting to) uncertain+correct an-

swers is as likely to have an immediate negative im-

pact on learning as it is to have a neutral or positive

impact. In particular, the misclassification is likely

to cause some students to transition from the least

severe impasse about the concept in turn n to the

most severe impasse about the concept in turn n+1.9

When they do not receive the uncertainty adaptation,

these students adopt an incorrect line of reasoning in

turn n+1, without any uncertainty about it at all.

As illustration, compare the example in Figure 5,

where uncertainty is accurately classified, with the

example in Figure 6, where uncertainty is misclas-

sified (see Appendix). As shown, the uncertainty in

student-manual1 signals that further explanation is

needed. When received (Figure 5) the student still

makes a math error on the next question, but s/he

appears to understand the task. In contrast, when the

uncertainty adaptation is erroneously not received

(Figure 6), there is no indication that the student’s

understanding has increased; s/he appears to be sim-

ply repeating the number 9.8 (a number which ap-

pears frequently in Newtonian physics). User uncer-

tainty misclassification in other domains could have

8Since the ANOVA results were non-significant, no figure

or correlations are discussed.
9As noted in Section 2, adjacent turns within a dialogue will

either address the same or closely related topics.
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similar effects; in general, if a user is uncertain in

turn n about how to perform a task, and the system

moves on without supplying information to resolve

this uncertainty, there may be an immediate negative

impact if that knowledge is required or presupposed

again in turn n+1.

Accurate Certainty Classification: Turning now

to manually labeled certain+correct answers, Fig-

ure 4 presents descriptive statistics for the likelihood

that when accurately classified as certain in turn

n, certain+correct answers will transition to each

of the four manually labeled impasse states in turn

n+1. An ANOVA indicated that there were statisti-

cally significant differences among these likelihoods

(F(3,92)=17.96, p<.01). The most likely transitions

are shown with stripes. More specifically, post-hoc

pairwise tests showed that in turn n+1, a manually

labeled certain+correct answer is significantly more

likely than any other impasse state (p<.01), and all

other impasse states were equally likely. A dialogue

example of the most likely transition after accurately

classified certainty is shown in Figure 7, where it is

compared with the misclassified minimal pair in Fig-

ure 8 (see Appendix).

These results indicate that accurately classifying

and not adapting to certain+correct answers has an

immediate positive impact on the learning process,

by not introducing learning impasses about concepts

already understood. Note however that Pearson’s

correlations for these transitions showed no signif-

icant relation to global performance.

Certainty Misclassification: Again, our results

for accurately classified certain+correct answers are

in sharp contrast with those found for manually la-

beled certain+correct answers misclassified as un-

certain in turn n. An ANOVA indicated that all man-

ually labeled impasse states are equally likely in turn

n+1 (F(3,72)=0.33, p=.80). These results indicate

that misclassifying and erroneously adapting to cer-

tain+correct answers is as likely to have an imme-

diate negative impact on learning as it is to have a

neutral or positive impact. In particular, the misclas-

sification is likely to cause some students to tran-

sition from no impasse to the most severe impasse

state. When they erroneously receive the uncertainty

adaptation, these students go from no impasse at all

in turn n to an incorrect line of reasoning in turn n+1,

Figure 4: Turn n→ Turn n+1 Transition Likelihoods (L)

after a manually labeled certain+correct answer in turn n

is accurately classified as certain and does not receive the

uncertainty adaptation

without any uncertainty about it at all.

As illustration, compare the example in Figure 7,

where certainty is accurately classified, with the ex-

ample in in Figure 8, where certainty is misclas-

sified (see Appendix). As shown, the certainty in

student-manual1 signals that no further explanation

is needed so the system can move on (Figure 7).

When the uncertainty adaptation is erroneously re-

ceived even though the student is certain (Figure 8),

this appears to have caused the student to stop pay-

ing close attention and thus provide an obviously in-

correct answer to an easy question. User certainty

misclassification in other domains could have simi-

lar effects; in general, if a user is already certain in

turn n about how to perform a task, and the system

“wastes” his/her time by resupplying information

that is already understood, there may be an imme-

diate negative impact in terms of loss of focus, dis-

engagement, or even decreased understanding, that

cause the task in turn n+1 to be performed incor-

rectly.

4.2 Comparing Non-Adaptive ITSPOKE

As a sanity check, we performed the same trajec-

tory analysis on the dialogues from the non-adaptive

version of the system. The purpose here was to con-

firm the presupposition of the above analysis, that

uncertainty-adaptive ITSPOKE was actually pro-

ducing different local behaviors than non-adaptive

ITSPOKE. In other words, since the non-adaptive
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system ignores uncertainty, there should be no dif-

ference in transition likelihoods when uncertainty is

accurately classified versus when it is misclassified.

This expectation was borne out. ANOVAs indi-

cated that in the non-adaptive system, a manually

labeled uncertain+correct answer is equally likely

to transition to any of the four manually labeled

impasse states in turn n+1, regardless of whether

it was accurately classified as uncertain in turn n

(F(3,48)=0.25, p=.86) or misclassified as certain in

turn n (F(3,92)=0.07, p=.98). Thus as expected, un-

certain+correct answers in the non-adaptive system

pattern like uncertain+correct answers misclassified

as certain in the uncertainty-adaptive system. In

both cases, we see the same negative immediate per-

formance impact of not giving uncertain+correct an-

swers the uncertainty adaptation.

ANOVAs with post-hoc pairwise tests further in-

dicated that in the non-adaptive system, a manually

labeled certain+correct answer is significantly more

likely to transition to a certain+correct answer than

to any other manually labeled impasse state, regard-

less of whether it was accurately classified as certain

in turn n (ANOVA:(F(3,96)=20.81, p<.001), post-

hoc tests: p<.001) or misclassified as uncertain in

turn n (ANOVA:(F(3,80)=14.00, p<.001), post-hoc

tests: p<.001). Thus as expected, certain+correct

answers in the non-adaptive system pattern like ac-

curately classified certain+correct answers in the

uncertainty-adaptive system. In both cases, we see

the same positive immediate performance impact of

not giving manually labeled certain+correct answers

the uncertainty adaptation.

4.3 Comparing Local and Global Performance

Results

Finally, in analyses such as this one, comparing lo-

cal and global performance results can help pinpoint

specific areas for future system redesign. In our

case, this comparison suggests the most important

aspect to focus on with respect to improving our un-

certainty model.

In particular, as noted in Section 1, we previ-

ously found that the low uncertainty recall of our

system (approximately 20%) had a negative global

performance impact; mistaking so much true uncer-

tainty for certainty substantially reduced the amount

users learned (Forbes-Riley and Litman, 2011a).

We also showed in this prior work that mistaking

certainty for uncertainty did not negatively impact

the amount users learned. These results suggested

that the system should be less cautious in applying

the uncertainty-adaptive behavior; i.e., applying it

whenever there is some possibility that the user is ac-

tually uncertain, even if it means applying it to some

turns that are actually certain.

On the other hand, our local performance analy-

sis in this paper showed that (un)certainty misclas-

sification increased the likelihood of an immediate

negative impact on learning. These results suggest

that the system should be more cautious in applying

the uncertainty-adaptive behavior; i.e., only apply-

ing it when there is a high probability that the user

is actually uncertain.

Together these local and global results suggest

that we should focus on improving uncertainty re-

call without decreasing uncertainty precision, in our

uncertainty model. With this goal in mind, we are

currently exploring the use of features and methods

from recent INTERSPEECH emotion and paralin-

guistic challenges (Schuller et al., 2009; Schuller et

al., 2010).

5 Conclusion and Future Directions

This paper presents an approach for analyzing the

immediate impact of user state misclassifications in

dialogue systems. A ranking of user states is de-

fined, and then user state trajectories are compared

when the first state is accurately classified versus

misclassified. Trajectories are quantified using a

previously proposed metric representing the likeli-

hood of transitioning between states. Comparison

of the two sets of trajectories shows whether mis-

classifications change the likelihood of subsequent

higher or lower ranked states, relative to accurate

classification. We illustrated the approach with an

adaptive tutoring system that automatically detects

and adapts to student uncertainty.

As our results indicate, the approach can be used

to answer questions which global performance anal-

yses overlook. First, the analysis shows whether

user state misclassifications actually matter locally

- whether these errors have an immediate effect on

user behavior or not. Moreover, the analysis can de-

termine whether this effect is positive or negative or
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neutral. In our tutoring system data, we found that

misclassifying user uncertainty had a negative im-

mediate impact on user behavior, relative to accurate

classification.

The analysis can also confirm that a dialogue in-

tervention actually changes user behaviors. In our

tutoring system data, we found that the adaptive sys-

tem yielded significantly different user state trajec-

tories than the non-adaptive system, even though,

as noted in Section 1, our prior global performance

analysis did not show any overall differences among

the global performance metrics that we examined

across the adaptive and non-adaptive systems.

In addition, the analysis can confirm that a dia-

logue intervention shifts user behaviors in the de-

sired direction. In our tutoring system data, we

found that the immediate effect of accurately adapt-

ing to uncertainty was most likely to be continued

uncertainty. Although the adaptation does not yield

an immediate transition to the highest ranked user

state, the outcome is clearly more positive than that

of ignoring uncertainty, which increases the likeli-

hood of transitioning to the lowest ranked user state.

Finally, the local performance results can shed

light on the steps needed to improve global perfor-

mance, by investigating how the two are related. In

our tutoring system data, we found that there is not a

one-to-one relationship between the most beneficial

local and global outcomes. In particular, transition-

ing directly to the highest ranked (no impasse) state

after receiving the uncertainty adaptation was neg-

atively correlated to global learning gain. We hy-

pothesized that looking at wider transition windows

(e.g., trigrams) will shed light on what is the best

local path to the highest ranked state.

We conclude by emphasizing that state trajecto-

ries can be used to represent abstractions over var-

ious types of user (or system) behaviors, in various

domains, whenever their local performance impact

is viewed as important to understand.
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APPENDIX

tutor1: If an object in freefall begins with a velocity of zero, what’ll its velocity be a second later? Please specify the

units too.

student-automatic1: 9.8 meters per second (uncertain+correct)

student-manual1: 9.8 meters per second?? (uncertain+correct)

tutor2: Fine. Because it’s in freefall, its acceleration is 9.8m/s2. This tells us that every second, its velocity increases

by 9.8 m/s. Therefore, at one second its velocity is 0 m/s, and a second later, its velocity is 9.8m/s. So, what’ll its

velocity be a second after that?

student-manual2: 18.6 meters per second?? (uncertain+incorrect)

Figure 5: Annotated Dialogue Example of Most Likely Transition after Accurate Uncertainty Classification

tutor1: If an object in freefall begins with a velocity of zero, what’ll its velocity be a second later? Please specify the

units too.

student-automatic1: 9.8 meters per second (certain+correct)

student-manual1: 9.8 meters per second?? (uncertain+correct)

tutor2: Fine. So, what’ll its velocity be a second after that?

student-manual2: 9.8 meters per second (certain+incorrect)

Figure 6: Annotated Dialogue Example of Negative Impact of Uncertainty Misclassification

tutor1: There’s only one horizontal force exerted on the truck during the collision with the car. What is it?

student-automatic1: impact force (certain+correct)

student-manual1: the impact force (certain+correct)

tutor2: Right. Now let’s find the forces exerted on the truck in the vertical direction during the collision. First, what

vertical force is always exerted on an object near the surface of the earth?

student-manual2: gravity (certain+correct)

Figure 7: Annotated Dialogue Example Showing Most Likely Transition after Accurate Certainty Classification

tutor1: There’s only one horizontal force exerted on the truck during the collision with the car. What is it?

student-automatic1: impact force (uncertain+correct)

student-manual1: the impact force (certain+correct)

tutor2: Right. The problem statement says the car and the truck are both traveling in a straight horizontal line when

they collide. So the impact force of the truck on the truck must be in the horizontal direction. It also says they are

driving on a patch of frictionless ice when they collide. So there is no friction to take into account. This means that

the impact force is the only horizontal force on the truck. Now let’s find the forces exerted on the truck in the vertical

direction during the collision. First, what vertical force is always exerted on an object near the surface of the earth?

student-manual2: normal force (certain+incorrect)

Figure 8: Annotated Dialogue Example Showing Negative Impact of Certainty Misclassification
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Abstract 

Instructional efficacy of automated Con-
versational Agents designed to help small 
groups of students achieve higher learning 
outcomes can be improved by the use of 
social interaction strategies. These strate-
gies help the tutor agent manage the atten-
tion of the students while delivering useful 
instructional content. Two technical chal-
lenges involving the use of social interac-
tion strategies include determining the 
appropriate policy for triggering these 
strategies and regulating the amount of so-
cial behavior performed by the tutor. In this 
paper, a comparison of six different trigger-
ing policies is presented. We find that a 
triggering policy learnt from human beha-
vior in combination with a filter that keeps 
the amount of social behavior comparable 
to that performed by human tutors offers 
the most effective solution to the these 
challenges. 

1 Introduction 

While Conversational Agents have been shown to 
be an effective technology for delivering instruc-
tional content to students in a variety of learning 
domains and situations (Grasser et. al., 2005; Ku-
mar et. al., 2007; Arnott et. al., 2008), it has been 
observed that students are more likely to ignore 
and abuse the tutor in a collaborative learning set-
ting (with 2 or more students) compared to the case 
of one-on-one tutoring (Bhatt et. al., 2004; Kumar 

et. al., 2007). In our prior work (Kumar et. al., 
2010a), we have addressed this problem by em-
ploying agents that are capable of performing both 
instructional behavior as well as social behavior. In 
our initial implementation, the social behavior per-
formed by these agents was composed of eleven 
social interaction strategies that were triggered by 
a set of hand crafted rules (Kumar and Rosé, 
2010b). Section 2 provides additional details about 
these strategies. 

Comparison between the social behavior trig-
gered by our hand crafted rules and that triggered 
by a human tutor revealed significant perception 
benefits (more likeable, higher task satisfaction, 
etc.) for the human triggering policy. Also, the stu-
dents in a wizard-of-oz condition who interacted 
with the tutors whose social behaviors were trig-
gered by humans had better learning outcomes 
(0.93σ) with respect to a No social behavior base-
line. The condition where students interacted with 
the rule-based automated tutors was also signifi-
cantly better (0.71σ) than the No social behavior 
baseline in terms of learning outcomes. While the 
learning outcomes of the rule-based tutors was not 
significantly worse than the human tutor, in com-
bination with the perception outcomes, we see the 
potential for further improvement of conversation-
al agents by employing a better triggering policy. 

Building on these prior results, in this paper we 
explore a way to improve the effectiveness of so-
cially capable tutor agents that uses a triggering 
policy learnt from a corpus of human behavior. 
The underlying hypothesis of this approach is that 
a human-like triggering policy would lead to im-
provements in the agent’s performance and percep-

227



tion ratings compared to a rule-based triggering 
policy. As a first step towards verifying this hypo-
thesis, we learnt a collection of triggering policies 
from a corpus of human behavior. While the focus 
of this paper is to evaluate the most human-like 
triggering policy learnt from data in terms of its 
perception benefits and learning outcomes, Section 
4 summarizes our efforts on learning triggering 
policies. 

Before we discuss the details of the evaluation 
we conducted, Section 3 presents an analysis of 
mediating factors that provides insights into the 
reasons behind the effectiveness of social behavior. 
The design and procedure of the user study we 
conducted to evaluate the learnt triggering policies 
is described in Section 5. Finally, Section 6 dis-
cusses the results of this evaluation. 

2 Social Interaction Strategies 

In our prior work (Kumar et. al., 2010; Ai et. al., 
2010; Kumar et. al., 2011), we have developed and 
evaluated automated tutors for two different educa-
tional domains equipped with eleven social interac-
tion strategies. These strategies, listed in Table 1, 
correspond to three positive socio-emotional inte-
raction categories identified by Bales (1950): 
Showing Solidarity, Showing Tension Release and 
Agreeing. 

Appendix A shows excerpts of an interaction 
between three students and a tutor during a college 
freshmen mechanical engineering learning activity.  
The shaded turns demonstrate realizations of some 
of the eleven social interaction strategies. 

Turns 7-12 shows the tutor initiating and partic-
ipating in group formation using Strategy 1a (Do 
Introductions) by greeting the students and asking 
for their names. In turn 53, the tutor is employing 
Strategy 3b (Show Comprehension / Approval) in 
response to a student opinion expressed in turn 52. 
When one of the students becomes inactive in the 
interaction, the tutor uses strategy 1e (Encourage) 
realized as a targeted prompt shown in turn 122 to 
elicit a response from the inactive student. Turn 
148 demonstrates Strategy 1d (Complement / 
Praise) to appreciate student participation in a con-
ceptual tutoring episode that concluded at turn 147. 
Finally, turn 152 shows a realization of Strategy 2c 
(Express Enthusiasm, Elation, Satisfaction) which 
is tied to either the start or the end of lengthy prob-
lem solving steps in the learning activity such as 

calculating the outcome of certain design choices 
made by the students during the learning activity. 
 

1. Showing Solidarity 
Raises other's status, gives help, reward 
1a. Do Introductions 
Introduce and ask names of all participants 
1b. Be Protective & Nurturing 
Discourage teasing 
1c. Give Re-assurance 
When student is discontent, asking for help 
1d. Complement / Praise 
To acknowledge student contributions 
1e. Encourage 
When group or members are inactive 
1f. Conclude Socially 
 
2. Showing Tension Release 
Jokes, laughs, shows satisfaction 
2a. Expression of feeling better 
After periods of tension, work pressure 
2b. Be cheerful 
2c. Express Enthusiasm, Elation, Satisfaction 
On completing significant steps of the task 
 
3. Agreeing 
Shows passive acceptance, understands, 
concurs, complies 
3a. Show Attention 
To student ideas as encouragement 
3b. Show Comprehension / Approval 
To student opinions and orientations 

Table 1. Social Interaction Strategies for three  
social-emotional interaction categories 

3 Effect of Social Behaviors 

We have observed the the use of social behavior in 
collaborative learning settings can help in improv-
ing learning outcomes (Kumar et. al., 2010a). This 
observation is not necessarily consistent with intui-
tion. On the one hand, we could attribute this to the 
ability to manage the user’s (student) attention to-
wards the agent (tutor) by displaying the social 
behavior. At the same time, we could argue against 
the use of social behavior by considering it as a 
potential distraction from the task. In an earlier 
experiment (Kumar et. al., 2010c), we found that it 
is important to keep the amount of social behavior 
at an optimal level in order to observe the learning 
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benefits of the social behavior and to avoid its dis-
traction costs. 
 
1 Tutor Are you paying attention to this? 
2 S006 of course 
3 S001 yes 

4 Tutor What would happen if the stress in 
our Wrench is too high? 

5 S006 fail 
6 S001 it'd fail 
7 S014 it would break. 
8 Tutor That's right. The wrench can break! 

9 Tutor A wrench that can break in normal 
use is not safe! 

10 S006 :( 

11 Tutor 
In general, to keep a wrench safe, 
we want to keep the stress in the 
wrench high or low? 

12 S006 lowwww 
13 S001 low 
14 Tutor Right, stress should be kept low. 

15 Tutor Which material property deter-
mines when the stress is too high? 

16 S001 yield strength? 
 

Table 2. Excerpt of a Conceptual Tutoring Episode 

 
In this section, we present a corpus analysis to 

discover an underlying model of how the social 
behavior affects learning outcomes. We used a 
corpus of collaborative learning interactions be-
tween teams of three or more students and a tutor. 
The interactions involve the teams performing a 
learning activity which lasts approximately 40 mi-
nutes. During this time, the tutors provide direc-
tions, hints and conceptual tutoring. Each team 
undergoes up to four conceptual tutoring episodes. 
An episode is a system-initiated conversation dur-
ing which the tutor leads the students through a 
directed line of reasoning to help them reflect upon 
a concept related to the learning activity. An ex-
cerpt of a tutoring episode discussing the relation-
ship between stress and safety is shown in Table 2. 

3.1 Coding Tutoring Episodes 

Each turn in all the tutoring episodes of the 32 inte-
ractions between a team of students and an auto-
mated tutor were annotated using a coding scheme 
described here. The tutor turns were categorized as 
either Respondable (TR) if the students were ex-

pected to the respond to that tutor turn or Not Res-
pondable (TU) otherwise. In Table 2, all the 
shaded turns are labeled as Respondable. 
 

 
Figure 1. Venn Diagram of Episode Turn Annotations 

 
Student Turns are categorized into one of three 

categories. Good turns (SG) identifies turns where 
the students are showing attention to a respondable 
tutor turn (e.g. Turn 2 & 3 in Table 2) or the stu-
dents are giving a correct or an incorrect response 
to a direct question by the tutor (e.g. Turns 5, 6, 7, 
12, 13 & 16). Counterproductive (Bad) student 
turns (SB) include students abusing the tutor or 
ignoring the tutor (e.g. talking to another student 
when the students are expected to respond to a tu-
tor turn). Student turns that are not categorized as 
Good or Bad are labeled as Other (SO). Turn 10 is 
an example of SO because it is a response to a tu-
tor turn (9) where no student response is expected. 
Figure 1 shows a Venn diagram of the different 
annotations. All five categories are mutually exclu-
sive. 

3.2 Structural Equation Modeling 

In order to discover an underlying model of how 
the use of social behavior affects student learning, 
we used a structural equation modeling (SEM) 
technique (Scheines et. al., 1994). 

Data: To measure learning outcomes, our data 
comprised of scores from pre-test and post-test 
administered to 88 students who were part of the 
32 teams whose data was annotated for this analy-
sis. We normalized the number of Good (SG) and 
Bad (SB) student turns by the number of Respond-
able (TR) tutor turns and included normalized SG 
(nSG) and normalized SB (nSB) as measures of 
interaction characteristics of each student in our 
dataset. Total number of social turns performed by 
the tutor in each interaction was included as a cha-
racteristic of social behavior displayed by the tutor. 
Finally, the total amount of time (in seconds) that 
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the students spent on the tutoring episodes was 
included as a characteristic of the interaction quali-
ty during the tutoring episodes. 

Prior Knowledge: The only prior knowledge 
input to the model stated that the pre-test occurs 
before the post-test. 

Discovered Models: We used Tetrad IV to dis-
cover a structural equation model in the data com-
prising of 6 fields (PreTest, PostTest, nSG, nSB, 
SocialTurns, EpisodeDuration) for each of the 88 
students. Figure 2 shows the structural equation 
model discovered by Tetrad using the dataset de-
scribed above. p-Value of 0.46 for this model con-
firms the hypothesis used by Tetrad for its 
statistical analysis i.e. the model was not discov-
ered randomly. Note that unlike other statistical 
tests, SEM models built using Tetrad are evaluated 
as significant if the p-Value is greater than 0.05. 
The numbers on the arrows are correlation coeffi-
cients and the numbers on the boxes indicate mean 
values for each variable. 
 

 
 

Figure 2. SEM discovered using all 6 variables in our 
dataset 

 
Besides the obvious causal effect of PreTest 

score on PostTest score, we find that as the dura-
tion of the tutoring episodes (EpisodeDuration) 
increases, the learning outcomes deteriorate. We 
notice that an increase in the normalized number of 
Bad student turns increases EpisodeDuration indi-
cating that students who abuse or ignore the tutor 
are likely to not pay attention to the learning con-
tent presented during the tutoring episodes, hence 
prolonging the tutoring episode as the tutor tries to 
get the students through the instructional content. 
Furthermore, we observe that social behavior helps 
in counteracting the negative learning effect of Bad 
interaction behaviors of the students. Tutors that 

perform social behavior are capable of managing 
the student’s attention and get the students through 
the tutoring episode faster. 

3.3 Discussion 

The SEM analysis discussed in the previous sec-
tion helps us better understand the relationship be-
tween the use of social behavior and student 
learning in a collaborative learning setting. Let’s 
consider the duration of the tutoring episodes as an 
indicator of the students’ attention to the tutor 
(higher duration lower attention). We see that 
social behavior helps in managing the students’ 
attention, which may be affected negatively by 
counterproductive/bad interaction behavior from 
the students. 

Besides suggesting that social behavior could be 
a useful strategy for directing student attention, it 
also suggests that social behavior may not serve 
this function where counterproductive student be-
havior is not present or where it does not occur 
enough to negatively impact task behavior. This is 
because a minimum amount of time needs to be 
spent on each tutoring episode to deliver the in-
structional of the concept being discussed. In the 
absence of counterproductive student behavior, 
episode duration may be close to that minimum. 

Also, in an earlier analysis (Hua et. al., 2010) in 
a different learning domain where the social beha-
viors described in Section 2 were employed, we 
have observed that the number of abusive/negative 
comment made by the students about the tutor dur-
ing the interaction were significantly higher in a 
condition where the tutors performed a high 
amount of social behavior. This suggests that the 
relationship between the SocialTurns and Episo-
deDuration variables may not be linear in extreme 
cases and emphasizes the importance of perform-
ing an optimal amount of social behavior. 

4 Triggering Social Behavior 

Aside from designing, implementing and regulat-
ing the amount of social behavior performed by 
automated tutors, one of the challenges involved in 
the appropriate use of social interaction strategies 
is that of triggering these strategies only at the 
most appropriate moments during the interaction. 
Our initial implementation of these strategies 
(Kumar & Rosé, 2010b) achieved this using a set 
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of hand crafted rules that used features such as re-
cent student turns, state of the tutoring plan, etc. 

Here we will summarize our efforts on building 
a better triggering policy using a data-driven ap-
proach that models the behavior of human tutors at 
triggering the social interaction strategies listed in 
Table 1. Using a corpus of 10 interactions between 
a group of students and partially automated tutors 
whose social behaviors were triggered by human 
tutors, we attempt to learn a triggering policy that 
predicts when the human tutors will trigger a social 
strategies. Currently, we focus on only learning a 
triggering policy that determines if a social beha-
vior should be performed. The choice of which 
behavior is performed when triggered by the policy 
is still based on the rules used in our earlier im-
plementation as discussed in Section 5.3. 

In order to compare the triggers generated by a 
policy, we use a binary sequence comparison me-
tric called kKappa (Neikrasz & Moore, 2010) de-
veloped for evaluating discourse segmentation 
approaches. The metric allows a soft penalty for 
misplacing a trigger (or a segment boundary) with-
in a window of k turns. 

We developed a large margin learning algo-
rithm following McDonald et. al. (2005) that itera-
tively learns the coefficients of a linear function in 
the feature space that separates turns where human 
tutors decided to trigger a social behavior from the 
rest of the turns. Instead of using an instance-based 
objective function (like square-loss), our algorithm 
maximizes the kKappa metric over a provided 
training set. The function learnt this way can be 
used as a triggering policy by using it at every turn 
during an interaction to predict if a human tutor 
would trigger a social behavior. We used a collec-
tion of automatically extractable features that 
represent the lexical and semantic content of recent 
student and tutor turns, current discourse state and 
activity levels of the students. 

While details of the objective evaluation of the 
various learnt triggering policies is beyond the 
scope of this paper, we found that the best per-
forming strategy (k-κ = 0.13) was significantly bet-
ter than a random baseline (k-κ = 0.01) as well as 
the rule based triggering policy (k-κ = -0.09) used 
in our initial implementation. Also, the policy 
learnt by our algorithm outperformed policies 
learnt by algorithms such as Linear Regression (k-
κ = 0.00) and Logistic Regression (k-κ = 0.05) that 
use instance-based loss metrics (Hall et. al., 2009). 

5 User Study 

Here we will present an experiment we conducted 
to evaluate the effectiveness of various ways to 
trigger social behavior discussed in Section 4. This 
experiment is a step towards verifying the hypo-
thesis that a human-like triggering policy could 
outperform a rule-based triggering policy that was 
used in our earlier experiments (Kumar et. al., 
2010a). We use the same interactive situation for 
the experiment presented here as in our earlier 
work. Freshmen mechanical engineering students 
enrolled at an American university participate in a 
computer-aided engineering lab that is divided into 
three parts, i.e., Computer-Aided Design (CAD), 
Computer-Aided Analysis (CAA) and Computer-
Aided Manufacturing (CAM). Students practice 
the use of various engineering software packages 
for all three parts as they design, analyze and man-
ufacture an Aluminum wrench. Our experiment is 
conducted during the second part (CAA) of the lab. 

5.1 Procedure & Materials 

The Computer-Aided Analysis lab comprises of 
two activities. The first activity involves analyzing 
a wrench design given to the students by specify-
ing certain loading conditions and simulating the 
stresses and deformations in the wrench. Students 
are led by a teaching assistant during this activity. 
They spend approximately 25 minutes performing 
this activity. At the end of the analysis activity, the 
students see a simulation of the stress distribution 
in the body of the wrench. 

After the analysis activity, a pre-test is adminis-
tered. Each student spends 10 minutes working on 
the pre-test individually. The pre-test comprises of 
11 questions, 8 of which are multiple-choice ques-
tions and the other 3 are short essay type questions. 

The second activity of the CAA lab is a colla-
borative design activity. During this activity, stu-
dents work in teams of three. Student in the same 
team are seated in separate parts of the lab and can 
only communicate using a text-based chatroom 
application (Mühlpfordt and Wessner, 2005). The 
chatroom application also provides a shared work-
space in the form of a whiteboard. 

After the pre-test, students are given written in-
structions describing the collaborative design ac-
tivity. The instructions ask the students to design a 
better wrench in terms of ease of use, cost of mate-
rials and safety compared to the wrench they ana-
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lyzed earlier. The students are expected to come up 
with three new designs in 40 minutes by varying 
parameters like dimensions and materials of the 
wrench. The instructions also include various for-
mulae and data that the students might need to use 
for their designs. Besides course credit, the instruc-
tions mention an additional giftcard for the team 
that comes up with the best design ($10 for each 
member of the winning team). 

Students are asked to log in to their respective 
team’s chatroom. They spend the next 40 minutes 
working on the collaborative design activity. Be-
sides the three students, the chatroom for each 
team includes an automated tutor. The tutor guides 
the students through the first two designs suggest-
ing potential choices for dimension and materials 
for each design. As the design activity progresses, 
the tutor initiates four conceptual tutoring episodes 
to help the students reflect upon underlying me-
chanical engineering concepts like stress, force, 
moment, safety, etc., that are relevant to the design 
activity. 

Our experimental manipulation happens during 
this 40 minute segment. The tutor in each team’s 
chatroom is configured to perform social behavior 
using different triggering policies as specified by 
the condition assigned to the team. The conditions 
are discussed in the next section. Irrespective of 
the condition, each team receives the 4 conceptual 
tutoring episodes. Every student performs all the 
steps of this procedure like all other students. 

At the end of the collaborative design activity, a 
post-test and a survey are administered. Students 
are asked to spend 15 minutes to first complete the 
test and then the survey. The post-test is the same 
test used for pre-test. The survey comprises of 15 
items shown in Appendix B. The students are 
asked to rate each item on a 7-point Likert scale 
ranging from Strongly Disagree (1) to Strongly 
Agree (7). The 15 items on the survey include 11 
items eliciting perception of the tutor. 9 of the 11 
items state positive aspects of the tutor (e.g. …tutor 
was friendly…). The other 2 items stated negative 
aspects about the tutor (e.g. …tutor’s responses got 
in the way…). Besides the items about the tutor, 2 
items elicited the student’s rating about the colla-
borative design activity. The last 2 items were 
about the student’s satisfaction with their perfor-
mance on the design task. 

In total, both the activities that are part of the 
CAA lab take approximately 1 hour 40 minutes. 

5.2 Experimental Design 

The teams participating in the experiment de-
scribed here were divided into six conditions. 
These conditions determined the triggering policy 
and the amount of social behavior performed by 
the automated tutors. Tutors in the None condition 
did not perform any social behavior. Tutors in the 
Rules condition used the same hand crafted rule-
based triggering policy employed in our earlier 
experiment (Kumar et. al., 2010a). Following the 
results from another experiment (Kumar & Rosé, 
2010c), the automated tutors in the Rules condition 
performed a moderate amount of social behavior 
(atmost 20% of all tutor turns). On average, the 
Rules policy triggered 25 social turns per interac-
tion. 

The RandomLow and RandomHigh condi-
tions used a random triggering policy with a social 
ratio filter to regulate the amount of social beha-
vior. In both the random conditions, the tutor 
would trigger social behavior using a random 
number generator to generate the confidence of 
triggering a social behavior after every turn (by a 
student or a tutor). In the RandomLow condition, a 
behavior would be triggered if the confidence was 
above 0.91. In the RandomHigh condition, a beha-
vior would be triggered if the confidence was 
above 0.85. On average, the RandomLow condi-
tion had 23 behaviors triggered per interaction. 
About 37 behaviors were triggered in the Ran-
domHigh condition. 

The LearntLow and LearntHigh conditions 
used the best triggering policy learnt from a corpus 
of human triggering of social behavior as discussed 
in Section 4. The same social ratio filter used in the 
random conditions was used in these two condi-
tions also. As in the case with RandomLow and 
RandomHigh, different values of a confidence pa-
rameter were used for the LearntLow and Learn-
tHigh conditions to control the number of social 
behaviors triggered. On average, the LearntLow 
condition had 22 triggers and the LearntHigh con-
dition had 28 triggers. 

5.3 Generating Behaviors 

The various triggering policies described above for 
each of our experimental conditions only deter-
mine when a tutor agent will perform a social be-
havior. In order to perform the social behavior in 
actual use, the agent must not only determine when 
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a behavior should be triggered, but also determine 
which behavior should be performed when a trig-
ger is received. Our implementation of the tutor 
agent used in this experiment provides a conti-
nuous stream of scores for each of the eleven so-
cial interaction strategies that the tutor can 
perform. The scores are computed using hand-
crafted functions that use the same features used in 
our rule-based triggering policy (Kumar et. al., 
2010b). When a social behavior is triggered, a rou-
lette wheel selection is used to determine the strat-
egy to be performed. The circumference of the 
wheel assigned to each strategy is proportional to 
the score of each strategy. If the score of all the 
strategies is zero, a generic social prompt is per-
formed. 

6 Results 

126 students enrolled in an introductory mechani-
cal engineering course at an American university 
participated in the experiment described in this 
paper. The experiment was conducted on two sepa-
rate days separated by one week. On each day, four 
sessions of the Computer-Aided Analysis lab were 
conducted, and students attended only one as-
signed session. Session assignment was made 
based on an alphabetic split. The 126 students were 
divided into 42 teams. 20 teams participated on the 
first day of the experiment. They were evenly split 
into four conditions (None, Rules, RandomHigh & 
LearntHigh). The remaining 22 teams participated 
on the second day. Out of these, 5 teams each were 
assigned to the None and RandomLow condition. 6 
teams each were assigned to the Rules and 
LearntLow conditions. 

The rest of this section presents detailed results 
and analysis of this experiment. To summarize, we 
found that out of the six evaluated policies only the 
LearntLow policy that uses a triggering model 
learnt from human triggering data and generates a 
moderate amount of social behavior is consistently 
better than the other policies in terms of both per-
formance as well as perception outcomes. Also, the 
LearntLow policy is found to be most efficient at 
delivering the instructional content as indicated by 
the smallest EpisodeDuration in Table 5. 

6.1 Learning Outcomes 

The learning outcomes analysis presented here 
shows the advantage of using a triggering policy 

learnt from a corpus of human triggering behavior 
along with a filtering technique that regulates the 
amount of social behavior as shown in Table 3. 

We first verified that there was no significant 
difference between the six conditions on the pre-
test scores. As in the case of previous experiments 
using this learning activity, we saw that the learn-
ing activity was pedagogically beneficial to the 
students irrespective of the condition. There was a 
significant improvement in test scores between 
pre-test and post-test { p < 0.0001, F(1,250) = 
26.01, effect-size = 0.58σ }. 

There was no significant effect of the condition 
assigned to each team on the total test scores. 
However, there was a significant effect on the test 
scores of short-essay type questions using the pre-
test score as a covariate and the condition as a fac-
tor { p < 0.05, F(5, 119) = 2.88 }. The adjusted 
post test scores for the short essay type questions 
and their standard deviations are shown in Table 3. 
Post-hoc analysis showed that the LearntLow con-
dition was significantly better than LearntHigh 
condition { effect-size = 0.65σ }. Also, Random-
Low condition was marginally better than Learn-
tHigh condition { p < 0.07, effect-size = 0.62σ }. 
 

 
Mean St.Dev. 

LearntLow 5.12 0.54 
RandomLow 5.06 0.67 
None 4.75 1.13 
RandomHigh 4.59 1.09 
Rules 4.38 0.89 
LearntHigh 3.98 1.74 

 

Table 3. Mean and Standard Deviation of Adjusted Post 
Test Scores for Short Essay Type Questions 

 
This result further supports the observation 

from our earlier experiment (Kumar & Rosé, 
2010c) which demonstrated that importance of per-
forming the right amount of social behavior. Both 
RandomLow and LearntLow conditions employ 
the non-linear social ratio filter which keeps the 
amount of allowed social behavior at a level com-
parable to the amount of social behavior performed 
by human tutors. 

Since the primary objective of the experiment 
described here was to evaluate a learnt triggering 
policy with respect to a rule-based triggering poli-
cy, we repeated the ANCOVA for the short essay 
type question using data from only the Rules, 
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LearntLow and LearntHigh conditions. We found a 
significant effect of condition on the post-test score 
using pre-test score as a covariate { p = 0.01, 
F(2,62) = 4.98 }. A post-hoc analysis showed that 
the LearntLow condition was significantly better 
than the LearntHigh condition as above and  the 
LearntLow condition was marginally better than 
the Rules condition { p ≈ 0.08, effect-size = 0.84σ 
}. We observe that a triggering policy learnt from 
human triggering behavior can achieve a marginal 
improvement on learning outcomes compared to 
our existing rule-based triggering policy. This is 
consistent with our hypothesis. 

6.2 Perception Ratings 

We averaged the student’s rating for the 11 items 
about the tutor into a single tutor rating measure 
used here. Rating on the two negative statements 
about the tutor were inverted (7→1, 6→2, and so 
on) for this calculation.    
 

 
Mean St.Dev. 

Rules 4.74 1.45 
LearntLow 4.56 1.58 
None 4.42 1.49 
RandomHigh 3.74 1.63 
LearntHigh 3.55 1.26 
RandomLow 3.18 0.91 

 

Table 4. Mean and Standard Deviation of Tutor Ratings 

 
We found a significant effect of condition on 

the tutor ratings { p < 0.01, F(5,120) = 3.83 }. Ta-
ble 4 shows the mean and standard deviations of 
tutor ratings for each condition. Post-hoc analysis 
showed that only the Rules condition was signifi-
cantly better than the RandomLow condition. Also, 
we found that Rules was marginally better than 
LearntHigh condition { p < 0.08 } and both Learnt-
Low and None conditions was marginally better 
than RandomLow condition { p < 0.08 }. 

While we did not see a significant improvement 
in perception due the use of a learnt triggering pol-
icy when compared to a rule-based triggering poli-
cy, we find an advantage over using a random 
triggering policy (RandomLow) which was as 
good as a learnt policy on the learning outcomes. 
The results from the tutor’s perception ratings fur-
ther support the importance of timing and regulat-
ing the amount of social behavior. 

We did not find any significant effect of condi-
tion on the ratings about the design activity or stu-
dent’s task satisfaction. 

6.3 Analysis of Tutoring Episodes 

In order to understand the results from the experi-
ment presented in this paper, we applied the struc-
tural equation model discussed earlier (Figure 2) to 
the data collected from our current experiment. 
Figure 3 shows the model for our current experi-
ment (p=0.4492). Only four variables were used 
because the annotations of good and bad student 
behavior are not available at this time. 
 

 
 

Figure 3. SEM applied to data from this experiment 
 

 
Mean St.Dev. 

RandomHigh 540.80 49.50 
LearntHigh 534.80 61.00 
None 523.88 41.54 
Rules 519.80 102.70 
RandomLow 519.20 74.40 
LearntLow 484.00 69.80 

 
Table 5. Mean and Standard Deviation of Duration 

of Tutoring Episodes 
 

We see that most of the model parameters (p-
Value, means & correlations) are similar to para-
meters for the model shown in Figure 2. However, 
the correlation between SocialTurns and Episode-
Duration is much smaller. Also, note that the mean 
of EpisodeDuration is smaller compared to that in 
Figure 2 which indicates that lesser counterproduc-
tive behavior was displayed by the students in this 
experiment. The conceptual tutoring episodes are 
operating closer to the minimum episode duration 
which leaves a smaller room for improvement by 
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the use of social interaction strategies. As dis-
cussed in Section 3.3, this explains the smaller cor-
relation between SocialTurns and EpisodeDuration 
in Figure 3. 

Table 5 shows the mean and standard deviations 
of the duration of tutoring episodes for each condi-
tion. Even though the differences are not signifi-
cant, the LearntLow policy has the lowest duration 
indicating higher student attention than the other 
conditions. 

7 Discussion 

Prior work in the field of human-human interaction 
and human-machine interaction in the form of di-
alog systems has emphasized the importance of 
timing the display of behavior to achieve natural 
and/or productive interactions. In general, timing 
of interactive behaviors (verbal as well as non-
verbal) has been studied in the context of joint ac-
tivities being performed by the participants. Beha-
viors are timed to achieve and maintain 
coordination between the participants (Clark, 
2005). Specifically, among other topics, timing of 
low-level (signal) interaction like turn-taking has 
been the subject of several investigations (Raux & 
Eskenazi, 2008; Takeuchi et. al., 2004). 

On the other hand, the use of social behavior by 
conversational agents to support students has been 
proposed (Veletsianos et. al., 2009; Gulz et. al., 
2010). Work in the area of affective computing and 
its application to tutorial dialog has focused on 
identification of student’s emotional states and us-
ing those to improve choice of behavior performed 
by tutors (D’Mello et. al., 2005). Our prior work 
(Kumar et. al., 2010; Kumar et. al., 2007) has 
shown that social behavior motivated from empiri-
cal research in small group communication (Bales, 
1950) can help in effectively supporting students in 
collaborative learning settings. Use of social inte-
raction in other applications of conversational 
agents besides education has been investigated 
(Bickmore et. al., 2009; Dybala et. al., 2009; Doh-
saka et. al., 2009). 

The experiments presented here bridges these 
two tracks of research specifically proposing a so-
lution to the challenge of timing social behavior in 
the context of a supporting collaborative learning. 
Compared to the work on timing signal-level joint 
activities like turn-taking, this work focuses on the 
timing of joint activities at the conversation level. 

The success of our algorithm at learning a model 
of timing conversational behaviors in the context 
of an interactive task could potentially offer a gen-
eral approach for realizing such behaviors in other 
conversational agents. 

8 Conclusion  

In this paper, we presented an experiment that 
compared the effectiveness of several social beha-
vior triggering policies. Specifically, we compared 
a triggering policy learnt from a corpus of human 
triggering behavior to a rule-based policy which 
has previously been shown to be successful at trig-
gering effective social behavior in a collaborative 
learning activity. 

The presented experiment provides further evi-
dence in support of the intuition that timing of so-
cial behavior and regulating the amount of social 
behavior are critical to improving performance and 
perception outcomes. A triggering policy based on 
human-like timing in combination with a filter that 
attempts to keep amount of social behavior at the 
same level as human tutors was shown to be mar-
ginally better than the rule-based policy on learn-
ing outcomes. Also, on perception measures, we 
found that the human-like policy is marginally bet-
ter than a random triggering policy which uses the 
same filter to control the amount of social beha-
vior.  Only the learned model provides a win both 
on learning and on perception measures. 

In order to better understand the effect of use of 
social behavior by automated tutors on student’s 
learning outcomes, we presented a structured mod-
el which suggests that social behavior helps in 
achieving higher learning outcomes by allowing 
the tutor to better manage the student’s attention. 
Following this model, we saw that a human-like 
triggering policy is able to achieve higher student 
attention as indicated by the smaller duration of 
tutoring episodes. 

We found a significant negative correlation { 
coefficient = -0.20, p < 0.05 } between the tutor’s 
perception rating and number of social behaviors 
triggered when none of the social interaction strat-
egies were applicable. As next steps, our best trig-
gering policy could be potentially further refined 
by achieving a closer integration of the triggering 
model with the social behavior generation mechan-
ism to prevent triggering when none of the eleven 
strategies could be generated. 
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Appendix A. Excerpts of an interaction between three students and an automated tutor demonstrating 
some of the social interaction strategies listed in Table 1. 
 

7 Tutor Hi, I am your tutor for today's lab. 
8 Tutor Lets introduce ourselves briefly. I am Avis. 
9 S083 Hey Avis! I'm _name1_ 
10 S073 Im _name2_ 
11 S089 i'm _name3_ 
12 Tutor Its nice to meet you all. :) 
13 Tutor Let's get started by reviewing the base design in your worksheet. 

 
Strategy 1a: Do Introductions 

 
48 S083 R we using the same material? 
49 S073 I assume so 
50 S073 just changing the length 
51 S089 yeah we have multiple design steps 
52 S089 so probably for now 
53 Tutor cool :) 
54 S083 O ok 

 
Strategy 3b: Show Comprehension / Approval 

 
119 Tutor Is this a safe wrench? 
120 S073 and then is the same for design 2 
121 S073 so yes the wrench is safe 
122 Tutor _name1_ ... any thoughts you'd like to contribute? 
123 S083 its a safer wrench if its in steel 

 
Strategy 1e: Encourage (inactive members) 

 
143 S073 high 
144 Tutor Right, higher yield stress is better. 
145 S089 so steel or titanium 
146 S089 but have fun paying for that... 
147 Tutor All other things being equal, you want to choose a stronger material. 
148 Tutor It's good to have your contributions to the discussion :-) 
149 S073 yay 

 
Strategy 1d: Complement / Praise 

 
150 S073 :) 
151 Tutor Let's improve design 1 by using Steel for our 2nd _truncated_ 
152 Tutor I am happy to be working with our team 
153 S083 thanks :-) 
154 Tutor You can start calculating the fields in the worksheet _truncated_ 
155 S089 woo... 

 
Strategy 2c: Express Enthusiasm, Elation, Satisfaction 
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Appendix B. Survey administered to the participants at the end of the Collaborative Design Activity 

 
Using the following scale, Indicate to what extent you agree with each of the following items. 

 

1 2 3 4 5 6 7 
Strongly 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neutral Somewhat 
Agree 

Mostly 
Agree 

Strongly 
Agree 

 
 
 

The tutor was part of my team. 1 2 3 4 5 6 7 

The tutor provided good ideas for the discussion. 1 2 3 4 5 6 7 

The tutor received my contributions positively. 1 2 3 4 5 6 7 

The tutor was friendly during the discussion. 1 2 3 4 5 6 7 

The tutor responded to my contributions. 1 2 3 4 5 6 7 

The tutor helped in lowering the tension in my group. 1 2 3 4 5 6 7 

The tutor was paying attention to our conversation. 1 2 3 4 5 6 7 

Overall, I liked the tutor very much. 1 2 3 4 5 6 7 

I think the tutor was as good as a human tutor. 1 2 3 4 5 6 7 

I often ignored what the tutor was saying. 1 2 3 4 5 6 7 

The tutor's responses got in the way of our conversation. 1 2 3 4 5 6 7 

The design challenge was exciting. 1 2 3 4 5 6 7 

I did my best to come up with good designs. 1 2 3 4 5 6 7 

I am happy with the discussion I had with my group. 1 2 3 4 5 6 7 

Overall, we were successful at meeting our goals during the design challenge. 1 2 3 4 5 6 7 
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Abstract

Mental modeling is crucial for natural human-
robot interactions (HRI). Yet, effective mech-
anisms that enable reasoning about and com-
munication of mental states are not available.
We propose to utilize adverbial cues, routinely
employed by humans, for this goal and present
a novel algorithm that integrates adverbial
modifiers with belief revision and expression,
phrasing utterances based on Gricean conver-
sational maxims. The algorithm is demon-
strated in a simple HRI scenario.

1 Introduction

Advances in robotics and autonomous systems are
paving the way for the development of robots that
can take on increasingly complex tasks without the
need of minute human supervision. As a result
of this greater autonomy, the interaction styles be-
tween humans and robots are slowly shifting from
those of humans micromanaging robot behaviors
(e.g., via remote controls) to more higher-level in-
teractions (e.g., verbal commands) which are re-
quired for many mixed initiative tasks where hu-
mans and robots work together in teams (e.g., in
search and rescue missions). In order for these joint
human-robot interactions to be productive and effi-
cient, robots must have the ability to communicate in
natural and human-like ways (Scheutz et al., 2007).
Natural human-like communication in robots, how-
ever, requires us to tackle several challenges, includ-
ing the development of robust natural language (NL)
competencies and the ability to understand and uti-
lize a variety of affective, gestural, and other non-

linguistic cues that are indicative of the interlocu-
tor’s mental states. Hence, natural human-like in-
teraction also requires the construction and mainte-
nance of mental models of other agents, especially
in the context of collaborative team tasks where ac-
tions among multiple agents must be coordinated,
often through natural language dialogues.

Several recent efforts are aimed at endowing
robots with natural language processing capabilities
to allow for verbal instructions as a first step (e.g.,
(Brenner, 2007; Dzifcak et al., 2009; Kress-Gazit et
al., 2008; Rybski et al., 2007; Kollar et al., 2010)).
Independently, user modeling has been extensively
explored in order to generate more natural and pro-
ductive human-machine interactions (Kobsa, 2001),
including adapting the natural language output of di-
alogue systems based on mental models of human-
users (Wahlster and Kobsa, 1989). However, there
is currently no integrated robotic architecture that
includes explicit mechanisms for efficiently convey-
ing natural language information about the robot’s
“mental states” (i.e., beliefs, goals, intentions) to a
human teammate. Yet, such mechanisms are not
only desirable to make the robot’s behavior more in-
tuitive and predictable to humans, but can also be
crucial for team success (e.g., quick updates on goal
achievement or early corrections of wrong human
assumptions).

We propose a novel integrated belief revision and
expression algorithm that allows robots to track and
update the beliefs of their interlocutors in a way
that respects Gricean maxims about language usage.
The algorithm explicitly models and updates task-
relevant beliefs and intentions of all participating
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agents. Whenever a discrepancy is detected between
a human belief (as implied in a natural language ex-
pression uttered by the human) and the robot’s men-
tal model of the human, the robot generates a natural
language response that corrects the discrepancy in
the most effective way. To achieve effectiveness, the
robot uses linguistic rules about the pragmatic im-
plications of adverbial modifiers like “yet”, “still”,
“already”, and others that are used by humans to ef-
fectively communicate their beliefs and intentions.

The rest of the paper is organized as follows. We
start with a motivation of our approach based on
Gricean maxims. Then, we introduce formalizations
of linguistic devices that humans use to generate ef-
fective task-based dialogue interactions and present
our algorithm for generating appropriate utterances
in response to human queries. Next we use a simple
remote human-robot interaction scenario to demon-
strate the operation of the algorithm, followed by a
discussion and summary of our contributions.

2 Motivation

Joint activity often requires agents to monitor and
keep track of each others’ mental states to ensure ef-
fective team performance. For example, searchers
during rescue operations in disaster zones typically
coordinate their (distributed and remote) activities
through spoken natural language interactions via
wireless audio links to keep team members informed
of discoveries and plans of other team members. Co-
ordination as part of joint activities requires two im-
portant processes in an agent: (1) building and main-
taining a mental model of the other agents’ beliefs
and intentions (based on perceived, communicated,
and inferred information), which is critical for sit-
uational awareness (Lison et al., 2010); and (2) ac-
tively supporting the maintenance of others’ mental
models of oneself (e.g., by proactively communicat-
ing new information to the other agents in ways that
will allow them to update their mental models).

Cohen et al. (1990), for example, discuss the
necessity of various communicative acts that serve
to synchronize agent belief-models. These com-
municative acts include both linguistic and non-
linguistic cues, such as utterances of confirmation
(“okay.”) or signals that indicate intention (putting
on a turn-signal). In addition to utilizing explicit

cues to synchronize belief-models, humans employ
various other mechanisms to convey information
about one’s own belief-state, in particular, various
linguistic devices. A simple, but very powerful lin-
guistic mechanism is the use of adverbial cues.

Consider a scenario where one agent wants to
know the location of another agent, e.g., whether
the agent is at home. A straightforward way to ob-
tain this information is to simply ask “Are you at
home?” The other agent can then answer “yes” or
“no” accordingly. Now, suppose the first agent knew
that the second agent was planning to be at home at
some point. In that case, the agent might ask “Are
you at home yet?” Note that semantically both ques-
tions have the same meaning, but their pragmatic
implications are different as the second implies that
that agent 1 knows that agent 2 was planning to be
at home, while no such implication can be inferred
from the first query. Conversely, suppose that agent
2 responded “not yet” in the first example (instead
of “no”). While the semantic meaning is the same as
“no”, “not yet” communicates to agent 1 that agent
2 has the goal to be home. In general, adverbs like
“yet” can be used to convey information about one’s
(or somebody else’s) beliefs concerning mutually-
recognized goals and intentions. Not surprisingly,
humans use them regularly and with ease to aid their
interlocutors with maintaining an accurate model of
their beliefs and goals.

The challenges that need to be addressed to al-
low robots to have the above kinds of linguistic ex-
changes are: (1) how to formalize the functional
roles of adverbial modifiers in different sentence
types, and how to use the formalized principles to
(2) perform belief updates and (3) generate effective
natural language responses that are natural, succinct,
and complete. To tackle these three challenges, we
turn to Gricean principles that have long be used in
pragmatics as guiding principles of human commu-
nicative exchanges.

3 NL Understanding and Generation

Grice (1975) proposed four general principles to aid
in the pragmatic analysis of utterances. Phrased as
rules, it is unsurprising that they have been used
as an inspiration for NL generation systems before.
Dale and Reiter (1995) have enlisted the maxims in
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their design of an algorithm to generate referring ex-
pressions, while others have cited Gricean influence
in utterance selection for intelligent tutor systems
(Eugenio et al., 2008). The particular maxims we
considered are the maxims of quality (G1), quantity
(G2), and relevance (G3): (G1) requires one to not
say what one believes is false or for which one lacks
adequate evidence; (G2) requires one to make con-
tributions as informative as necessary for the current
purposes of the exchange, but not more informative;
and (G3) tersely states “be relevant.”

Our approach to belief-model synchronization
and utterance selection is based on the above max-
ims and attempts to select the most appropriate re-
sponse to another agent’s query based on relevance
of semantic content. It uses speech pragmatic mean-
ing postulates for linguistic devices such as adver-
bial modifiers to search for a succinct and natural
linguistic representation that captures the intended
updates. Rather than explicitly communicating each
and every proposition that needs to be communi-
cated to a human to allow the person to update
their mental model of the robot, the algorithm makes
heavy use of “implied meanings”, i.e., propositions
that humans will infer from the way the informa-
tion is phrased linguistically. This allows for much
shorter messages to be communicated than other-
wise possible and addresses the second maxim of
quantity.

3.1 Formalizing pragmatic implications

We start by introducing four types of sentences
as they are found in typical dialogue interac-
tions: statements (expressed through declarative
sentences), questions (expressed through interrog-
ative sentences), commands (expressed through
imperative sentences) and acknowledgments (ex-
pressed through words like “okay”, “yes”, “no”,
etc.). For simplicity, we restrict the discussion to
one predicate at(α, λ) which states that agent α is
in location λ.

3.1.1 Statements
We will use the form Stmt(α, β, φ, µ) to ex-

press that agent α communicates φ to agent β us-
ing adverbial modifiers in a set µ. For exam-
ple, Stmt(A2, A1,¬at(A2, home), yet) means that
agent A2 tells A1 that it is not at home yet. Note

that we are indifferent about the exact linguistic rep-
resentation of φ here as the goal is to capture the
pragmatic implications.

If α informs β that it is at λ without any adverbial
modifiers or additional contextual information, then
we can assume using (G1) that α is indeed at that
location:

[[Stmt(α, β, at(α, λ), {})]]c := at(α, λ) (1)

Here we use [[..]]c to denote the “pragmatic mean-
ing” of an expression in context c, which includes
task, goal, belief and discourse aspects. Next, we
inductively define the pragmatic meanings for sev-
eral adverbial modifiers “still”, “already”, “now”,
and “not yet” (the meanings of compound expres-
sions such as at(α, λ1) ∧ ¬at(α, λ2) are defined re-
cursively in the usual way).

If α states that it is “still” at λ, one can infer that
α is at λ and that α will not be at λ at some point in
the future:

[[Stmt(α, β, at(α, λ), {still})]]c := (2)
[[Stmt(α, β, at(α, λ)), {}]]c ∧ Future(¬at(α, λ))

If α states that it is “already” at λ, one can infer that
α is at λ and that α had a goal (expressed via the
“G” operator) to be at λ at some point in the past:

[[Stmt(α, at(α, λ), {already})]]c := (3)
[[Stmt(α, β, at(α, λ), {}]]c ∧ Past(G(α, at(α, λ)))

If α states that it is “now” at λ, one can infer that α
is at λ and that α had not been at λ at some point in
the past:

[[Stmt(α, β, at(α, λ), {now})]]c := (4)
[[Stmt(α, β, at(α, λ)), {}]]c ∧ Past(¬at(α, λ))

If α states that it is “not...yet” at λ, one can infer
that α is not at λ, but has an intention to be at λ.

[[Stmt(α, β,¬at(α, λ), {yet})]]c := (5)
¬at(α, λ) ∧G(α, at(α, λ))

Even in our limited domain, one must be cog-
nizant of the ambiguities that arise from how ad-
verbial cues are deployed. In addition to the simple
presence of an adverbial cue, the location of the ad-
verb in a sentence and prosodic factors may affect
the intended meaning of the utterance. For instance,
consider the statements: (a) I am now at λ; (b) I am
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at λ now; (c) I am still at λ; and (d) I am still at λ.
Statement (a) is a simple situational update utterance
as described above, while (b) could be construed as
a statement akin to “I am already at λ. Statement
(d) could be interpreted as additionally signaling the
frustration of the agent, beyond conveying the infor-
mation from (c).

It should also be noted that our analysis of these
adverbial cues is to be understood in the limited
context of these simple task-related predicates (e.g.
at(α, λ)). Formal definition of these adverbial cues
in general cases is beyond the scope of this paper.
For instance, “yet” could be used in a context when
the predicate is not intended by the agent to which it
applies (e.g. “Has Bill been fired yet?”). In this case,
it would probably be incorrect to infer that the agent
Bill had a goal to be fired. Instead an inference could
be made regarding the probabilistic judgments of the
interlocutors regarding the topic agent’s future state.
However, in the context of this paper, it is assumed
that “yet” is used in the context of goals intended by
agents.

3.1.2 Questions
Here we will limit the discussion to two question

types, the “where” question (regarding locations)
and simple “Yes-No” questions.

If α asks β about its location in the general sense
(“where are you?”), then one can infer that α has an
intention to know (expressed via the “IK” operator,
see (Perrault and Allen, 1980)) where β is located:

[[Askloc(α, β, {})]]c := IK(α, at(β, λ)) (6)

for some λ.
If α asks β whether it is at λ, then one can infer

that α has an intention to know whether β is at λ:

[[Askyn(α, β, at(β, λ), {})]]c := IK(α, at(β, λ)) (7)

If β is asked by α whether it is “still” at λ, β can in-
fer that α believes (expressed via the “B” operator)
that β is currently at λ:

[[Askyn(α, β, at(β, λ), {still})]]c := (8)
[[Askyn(α, β, at(β, λ), {})]]c ∧B(α, at(β, λ))

If β is asked by α whether it is at λ “yet”, β can
infer that α believes that β has a goal to be at λ:

[[Askyn(α, β, at(β, λ), {yet})]]c := (9)
[[Askyn(α, β, at(β, λ), {})]]c ∧B(α,G(β, at(β, λ)))

3.1.3 Question-Answer Pairs
Next, we consider how discourse context as pro-

vided by question-answer pairs can further specify
the pragmatic implications.

If α asks β whether it is at λ with
any set of adverbial modifiers µ (i.e.,
Prior(Askyn(α, β, at(β, λ), µ)) ∈ c), and β
responds by stating that it is “still” at λ, then one
can infer that α has the belief that β was at λ in the
recent past:

[[Stmt(β, α, at(β, λ), {still})]]c := (10)
[[Stmt(β, α, at(β, λ), {})]]c
∧B(α,RecPast(at(β, λ)))

where Prior(Askyn(α, β, at(β, λ), µ)) ∈ c. Also,
RecPast(φ) denotes that φ was true in the recent
past, as distinct from φ holding at some arbitrary
point in the past (i.e. Past(φ)). This distinction is
necessary as it only makes sense to use the adverbial
cue at this point if agent α believed at(β, λ) at some
relative and recent point in the past. Formalizing this
would require keeping track of the points in time at
which certain propositions are believed. To avoid
committing to a particular temporal modeling sys-
tem, we make the simplifying assumption that the
RecPast operator is not applied in rules (10) and
(11), which is sufficient for the very simple interac-
tions examined in this paper.

If α asks β whether it is at λ with any set of ad-
verbial modifiers µ, and β responds by stating that it
is “now” at λ, then one can infer that α has the belief
that β is was not at λ in the recent past:

[[Stmt(β, α, at(β, λ), {now})]]c := (11)
[[Stmt(β, α, at(β, λ), {})]]c
∧B(α,RecPast(¬at(β, λ)))

where Prior(Askyn(α, β, at(β, λ), µ)) ∈ c.

3.1.4 Commands
We also briefly describe how command process-

ing (which we have studied elsewhere in much
greater detail (Dzifcak et al., 2009)) can be aug-
mented with the inclusion of pragmatic meanings.
If α orders β to travel to λ, then one can infer that α
has a goal for β to be at λ and that α intends to know
whether β has received its new goal:

[[Cmd(α, β, at(β, λ), {})]]c := (12)
G(α, at(β, λ))

∧IK(α,G(β, at(β, λ)))
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It would be an oversimplification to assume that
the proposition G(β, at(β, λ)) is immediately un-
derstood by all listening agents. In order to generate
the appropriate goal belief in the target agent, ad-
ditional inference rules need to be considered. The
following rule states that β will instantiate the goal
G(β, at(β, λ)) when it believes α has the same goal
and it believes authority(α, β), which denotes that
α has command authority over β:

G(α, at(β, λ)) ∧ authority(α) ⇒
G(β, at(β, λ))

Other agents would have to wait for an acknowledg-
ment that this inference has indeed taken place (as β
could have not heard the initial command utterance).
These acknowledgment utterances are described in
the subsequent section.

3.1.5 Acknowledgments
Finally, we consider typical forms of acknowledg-

ment. If α utters an acknowledgment (e.g., “OK.”)
when the previous utterance was a positive statement
of location by β, then one can infer α no longer has
the intention to know β’s location:

[[Ack(α, β, {})]]c := ¬IK(α, at(β, λ)) (13)

for some λ where for any M
Prior(Stmt(β, α, at(β, λ), {M})) ∈ c.

If α utters an acknowledgment (e.g., “OK.”) when
the previous utterance was a command by β to be at
λ, then one can infer that

[[Ack(α, β, {})]]c := (14)
G(α, at(α, λ)) ∧G(β, at(α, λ))

∧¬IK(β,G(α, at(α, λ)

where Prior(Cmd(β, α, at(α, λ), {M})) ∈ c for
any M .

We should note here that the distinction between
explicitly not intending-to-know and the lack of an
intention-to-know has been blurred in the above
rules for the sake of simplicity. As described
in the subsequent section, agent beliefs are re-
moved when contradicted in the current system (i.e.
Remove(φ,Bα) ⇔ (¬φ) ∈ Bα). A more com-
prehensive belief update system should allow for a
mechanism to remove beliefs without the need for
explicit contradiction.

3.2 Agent Modeling and Belief Updates

Belief updates occur whenever an agent α receives
an utterance Utt from another agent β in context
c. First, [[Utt]]c is computed using the pragmatic
principles and definitions developed in Section 3.1.
For simplicity, we assume that agents adhere to
the Gricean maxim of quality and, therefore, do
not communicate information they do not believe.
Hence, all propositions φ ∈ [[Utt]]c are assumed
to be true and to the extent that they are inconsis-
tent with existing beliefs of α as determined by α′s
inference algorithm ⇒b

α, the conflicting beliefs are
removed from the agent’s sets of beliefs Belself (b
here denotes some finite bound on the inference al-
gorithm, e.g., resources, computation time, etc.).1

To model other agents hearing the utterance, agent
α derives the set BαBγ = {ψ|B(γ, ψ) ∈ Belself}
for all other agents γ 6= α. The agent updates these
belief sets by applying the same rules as it does to
Belself .

It should be noted that these belief update rules
are indeed simplifications designed to avoid the is-
sue of resolving conflicting information from dif-
ferent sources. These belief update rules would be
problematic, for instance, when agents have incor-
rect beliefs (and proceed to communicate them), as
no method for belief disputation exists. For the pur-
pose of illustrating the implementation and utility of
adverbial cues, however, they should suffice. We
set up our environment and rule sets such that the
autonomous agent has perfect information about it-
self (specifically location), and no utterances exists
to communicate propositions that are not about one-
self.

3.3 Sentence Generation

Depending on the sentence type α received (and the
extent to which meanings can be resolved, an issue
we will not address in this paper), different response
sentence types are appropriate (e.g., a yes-no ques-

1Note that we are not making any assumption about a partic-
ular inference algorithm or its (as it will, in general, depend on
the expressive power of the employed logic to represent mean-
ings), only that if a contradiction can be reached using the in-
ference algorithm, the existing belief needs to be removed (oth-
erwise existing beliefs are taken to be consistent with the impli-
cations of the utterance). In our implemented system, we use a
simplified version of the resolution inference principle.
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tion requires a statement answering the question).
The generation of an appropriate response proceeds
in two steps. First, based on the agent’s current set
of beliefs Belself , we determine the set of proposi-
tions Φcomm that the agent has an interest in con-
veying. Second, we attempt to find the smallest ut-
terance Utt given a set of pragmatic principles (as
specified in Section 3.1) that communicates one or
more of these propositions and implies the rest for
recipient β.

3.3.1 What to say
In obtaining a set Φcomm of propositions to com-

municate, α may obey the Gricean maxim of qual-
ity by adding a proposition φ to Φcomm only if
φ ∈ Belself . The maxims of relevance and quan-
tity are heeded by restricting believed propositions
to be conveyed solely to those that either correct a
false belief of β or provide β some piece of infor-
mation it wants to know. Specifically, we find the
set of all propositions used to correct false beliefs
Φrev, defined as:

ψ ∈ Φrev ⇔ ∃β, φ :

B(β, φ) ∧ φ ∈ Belself ∧ (ψ ⇒b
α ¬φ)

The set of all propositions other agents want to
know, ΦIK , can be defined as:

ψ ∈ ΦIK ⇔ ∃β, φ : ψ ∈ Belself∧
IK(β, φ ∈ Belself ) ∧ (ψ ⇒b

α φ ∨ ψ ⇒b
α ¬φ)

The final set of propositions to convey is obtained
by merging these two sets, Φcomm = Φrev ∪ ΦIK .
Note that this set is always consistent because propo-
sitions are added to Φrev and ΦIK if and only if they
exist in Belself , which is maintained to be consis-
tent.

3.3.2 How to say it
Once Φcomm has been obtained, αmust select po-

tential utterances to produce. It starts by generating
an initial set Utt0 of utterances that in the present
context c imply some subset of Φcomm:

(u ∈ Utt0) ⇔ ∃Φ ∈ Φcomm∀φ ∈ Φ : ([[u]]c ⇒b
α φ)

Currently, this is achieved by searching through
the set of all utterances defined by rules such as those

found in Section 3.1. Note that while this approach
is feasible for our quite limited domain, more effi-
cient methods for identifying candidate utterances
must be developed as the number of understood ut-
terances grows.

Applying the maxim of quality, this set can be
pruned of all utterances that are defined by addi-
tional propositions that we either have no evidence
for (“unsupported”) or explicitly believe to be false:

False(φ) ⇔ ∃ψ : ψ ∈ Belself ∧ (ψ ⇒b
α ¬φ)

NoSupp(φ) ⇔ ¬∃ψ : ψ ∈ Belself ∧ (ψ ⇒b
α φ)

Using these conditions, we can generate a new sub-
set of utterance candidates Utt1:

(u ∈ Utt1) ⇔ ¬∃φ : ([[u]]c ⇒b
α φ)

∧(False(φ) ∨NoSupp(φ)))

Applying the maxim of quantity, utterances that
revise or add the most beliefs to other agent belief-
spaces ought to be favored:

RevBel(β, φ) ⇔
∃ψ : B(β, ψ) ∈ Bself ∧ (ψ ⇒b

α ¬φ)

AddBel(β, φ) ⇔ B(β, φ) 6∈ Belself

Using these definitions, we can derive the
“correction-score” of an utterance by counting
the number of propositions φ ∈ [[u]]c that revise or
add a belief for β.

If multiple candidate utterances still exist at this
point, we can again apply the maxim of quantity to
favor utterances that convey the most (true) informa-
tion. Because all definitions with false propositions
have been eliminated, we can simply count the num-
ber of true propositions derived from the utterance,
thereby favoring semantically richer utterances. At
this point, if multiple candidate utterances are still
available, the difference is of stylistic nature only
and we may choose an arbitrary one. Note that the
correct usage of adverbial modifiers emerges natu-
rally from these rules as utterances that include in-
appropriate adverbs are removed in Utt1, while ut-
terances that include appropriate adverbial cues are
subsequently favored.

244



4 Case Study

We now demonstrate the operation of the proposed
algorithm in a simple joint activity scenario where
a robot (R) is located at nav-point 1 and correctly
knows its location, having the initial belief-space
BR = {at(R,N1)}. The remote human operator
starts by asking:
O: R, where are you?

R updates its beliefs based on this question:
u := parse(“O: R, where are you?”)
→ u := Askloc(O,R, {})
[[u]]c := {IK(O, at(R,N1)), IK(O, at(R,N2)),
IK(O, at(R,N3))}
Pcontra := contradictedTerms([[u]]c, Bself )
BR := (BR − Pcontra) + [[u]]c
BRBO := (BRBO − Pcontra) + [[u]]c

which yields a new belief-space:
BR := {at(R,N1), IK(O, at(R,N1)),
IK(O, at(R,N2)), IK(O, at(R,N3)),
B(O, IK(O, at(R,N1))), B(O, IK(O, at(R,N2))),
B(O, IK(O, at(R,N3)))}

Next, R proceeds to respond. For compactness, we
refer below to utterance candidates according to the
index of the applicable rules from Section 3.1, so
that u13 denotes Ack(α, β, {}).

BRBO := {IK(O, at(R,N1)), IK(O, at(R,N2))
IK(O, at(R,N3))}
Φrev := {}; ΦIK := {at(R,N1)}
Φcomm := {at(R,N1)};
→ Utt0 := {u1, u2, u3, u4}

R now has an initial set of candidate utterances,
which it prunes using the rules from Section 3.3.2.

[[u1]]c := at(R,N1)
[[u2]]c := at(R,N1) ∧ Future(¬at(R,N1))
[[u3]]c := at(R,N1) ∧ Past(G(R,N1))
[[u4]]c := at(R,N1) ∧ Past(¬at(R,N1))
→ Utt1 := {u1}

Thus, R chooses the utterance of the form,
Stmt(R,O, at(R,N1), {}), and responds:
R: I am at N1.

Finally, R processes its own utterance so that it can
update its beliefs according to rule (1):

BR := {at(R,N1), IK(O, at(R,N1)),
IK(O, at(R,N2)), IK(O, at(R,N3)),
B(O, IK(O, at(R,N1))), B(O, IK(O, at(R,N2))),
B(O, IK(O, at(R,N3))), B(O, at(R,N1)}

When the operator responds:
O: Okay.

R also processes this acknowledgment to update its
beliefs according to rule (13):

BR := {at(R,N1), B(O, at(R,N1)}

R proceeds to respond, but finds that it has nothing
to convey.

BRBO := {at(R,N1)}
; Φrev := {}; ΦIK := {}
; Φcomm := {};
→ Utt0 := {}

Thus, R generates no utterance. Now let us suppose
that R moves to N2, and enough time elapses such
that the operator forfeits his/her conversational turn.
R then proceeds to generate an utterance.

BR := {at(R,N2), Past(at(R,N1))}
BRBO := {at(R,N1)}
Φrev := {at(R,N2)}; ΦIK := {}
Φcomm := {at(R,N2)}
→ Utt0 := {u1, u2, u3, u4}
[[u1]]c := at(R,N2)
[[u2]]c := at(R,N2) ∧ Future(¬at(R,N2))
[[u3]]c := at(R,N2) ∧G(R,N2)
[[u4]]c := at(R,N2) ∧ Past(¬at(R,N2))
→ Utt1 := {u1, u4}

So, R must now resolve which of these candidate
utterances to select by choosing the one that revises
the most beliefs of O, or failing that, the one that has
the most true propositions.

at(R,N2)⇒ ¬at(R,N1)
→ NumRev([[u1]]c) := 1;NumRev([[u4]]c) := 1;
NumTrue([[u1]]c) := 1;NumTrue([[u4]]c) := 2;
→ Uttfinal := u4

Thus, R chooses the utterance of the form,
Stmt(R,O, at(R,N2), {now}), and responds:
R: I am now at N2.

R again processes its own utterance to update its be-
liefs according to rule (4). If O then asks:
O: R, are you still at N2?

R updates its beliefs according to rule (10):
BR := {at(R,N2), B(O, at(R,N2)),
Past(at(R,N1)), B(O,Past(at(R,N1))),
IK(O, at(R,N2)), B(O, IK(O, at(R,N2)))}

Next, R generates a response:
Φrev := {}; ΦIK := {at(R,N2)}
Φcomm := {at(R,N2)};
→ Utt0 := {u1, u2, u10, u11}
[[u1]]c := at(R,N2)
[[u2]]c := at(R,N2) ∧ Future(¬at(R,N2))
[[u10]]c := at(R,N2) ∧B(O, at(R,N2))
[[u11]]c := at(R,N2) ∧B(O,¬at(R,N2))
→ Utt1 := {u1, u10}
→ NumRev([[u1]]c) := 0;NumRev([[u10]]c) := 0;
NumTrue([[u1]]c) := 1;NumTrue([[u10]]c) := 2;
→ Uttfinal := u10

replying with the utterance:
R: I am still at N2.
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and processes its own utterance to updates its beliefs
according to rule (10). O’s acknowledgment:
O: Okay.

causes R to update its beliefs according to rule (13):
BR := {at(R,N2), B(O, at(R,N2)),
Past(at(R,N1)), B(O,Past(at(R,N1)))}

R does not generate a response as there are no be-
liefs to revise or intentions to know. Now suppose
R moves back to N1, without O’s knowledge, after
which O commands:
O: R, go to N1.

R, updates its belief according to rule (12):
BR := {at(R,N1), B(O, at(R,N2)),
Past(at(R,N2)), B(O,Past(at(R,N2))),
G(R, at(R,N1)), G(O, at(R,N1)),
IK(O,G(R, at(R,N1))),
B(O,G(R, at(R,N1))),
B(O, IK(O,G(R, at(R,N1)))),
B(O,G(O, at(R,N1)))}

and proceeds to generate a response:
Φrev := {at(R,N1)}
ΦIK := {G(R, at(R,N1))}
Φcomm := {at(R,N1), G(R, at(R,N1))}
→ Utt0 := {u1, u2, u3, u4}
[[u1]]c := at(R,N1)
[[u2]]c := at(R,N1) ∧ Future(¬at(R,N1))
[[u3]]c := at(R,N1) ∧G(R, at(R,N1))
[[u4]]c := at(R,N1) ∧ Past(¬at(R,N1))
→ Utt1 := {u1, u3, u4}
→ NumRev([[u1]]c) := 1;NumRev([[u3]]c) := 2;
NumRev([[u4]]c) := 1
→ Uttfinal := u3

Thus, R responds:
R: I am already at N1.

5 Discussion and Related Work

While the above case study was kept simple due to
space restrictions, it demonstrates the utility of our
utterance generation method in adapting NL output
at the sentence-level based on a mental-model of an
interlocutor. In particular, we adapted utterances by
employing adverbial modifiers, which serve to make
the speaker’s belief-space more transparent and nat-
ural, which was the main motivation for the devel-
opment of the formal framework with rules for ad-
verbial modifiers in the first place. Other examples
of adaptations that are intended to make an auto-
mated system’s reasoning and internal state repre-
sentations more open and clear to human-users in-
clude the sentence-level adaptation of restaurant rec-
ommendations (Walker et al., 2007) and the adapta-

tion of query-phrasing in a robotic context (Kruijff
and Brenner, 2009). In addition to conveying in-
formation about one’s own mental state, pragmatic
principles and rules, such as those we have pre-
sented, may be deployed to reason about the in-
tentions and beliefs of others (Perrault and Allen,
1980).

The current system, while a promising step to-
wards more natural task-based dialogue interactions,
has several limitations. Aside from lexical and se-
mantic limitations, the currently implemented ad-
verbial modifiers are restricted to very simple pred-
icates. Clearly, these restrictions will have to be
addressed and the formal definitions will have to
be widened. Moreover, the system currently does
not handle situations where a human’s mental state
changes without the robot’s knowledge, which can
cause misunderstandings that need to be detected
and corrected effectively. Additionally, agents can
be mistaken about their beliefs. Real-world com-
plexities such as these suggest the inclusion of han-
dling uncertainty in a belief modeling system (Lison
et al., 2010), potentially by assigning beliefs confi-
dence values. This is clearly an important topic for
future work.

User-model based adaptation of NL output at the
sentence level that includes multi-modal compo-
nents (Walker et al., 2004) has also not been ad-
dressed. Further study is required to determine
whether our Gricean-inspired utterance selection
method can also be applied to non-linguistic com-
munication modalities. Finally, the current sys-
tem can only handle simple perceptual updates and
has limitations when handling multi-robot dialogues
(neither of which are discussed here for space rea-
sons). The challenges of perceptual updates that will
have to be addressed are investigated in the con-
text of a plan-based situated dialogue system for
robots in (Brenner, 2007) and extensions to multi-
robot scenarios are explored in (Brenner and Kruijff-
Korbayova, 2008).

6 Conclusion

Competency in mental modeling is a crucial com-
ponent in the development of natural, human-like
interaction capabilities for robots in mixed initia-
tive settings. We showed that the ability to under-
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stand and employ adverbial modifiers can help both
in constructing mental models of human operators
and conveying one’s own mental state to others.

To this end, we made three contributions. First,
we introduced a framework for formalizing different
sentence types and the pragmatic meanings of ad-
verbial modifiers. Second, we showed how one can
perform belief updates based on implied meanings
of adverbial modifiers. And third, we introduced
a novel algorithm for generating effective responses
that obey three Gricean maxims and aid the listener
in appropriate belief updates. The core properties of
the algorithm are that it corrects false or missing be-
liefs in other agents, that it provides an agent with
information that is wanted, that it never generates an
utterance that implies false propositions, and that it
first favors utterances that convey more (true) propo-
sitions after favoring utterances that revise or add
more beliefs to the listener’s belief-space. Finally,
we demonstrated our algorithm responding to basic
operator queries in a simple case study, correctly us-
ing adverbial cues to sound more natural and convey
more information regarding its beliefs.

There are extensive avenues to pursue future
work. For instance, we plan to extend the algo-
rithm to include multi-modal perceptual integration
as well as multi-agent multi-dialogue capabilities.
A variety of empirical evaluations would be desir-
able to evaluate the efficacy and naturalness of the
proposed adverbial cues in simulated and real HRI
tasks. Additionally, empirical evaluations could also
be performed to observe additional cues to incorpo-
rate into the system.
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Abstract

This paper presents a progressively challeng-
ing series of experiments that investigate clar-
ification subdialogues to resolve the words in
noisy transcriptions of user utterances. We fo-
cus on user utterances where the user’s spe-
cific intent requires little additional inference,
given sufficient understanding of the form. We
learned decision-making strategies for a dia-
logue manager from run-time features of our
spoken dialogue system and from observation
of human wizards we had embedded within it.
Results show that noisy ASR can be resolved
based on predictions from context about what
a user might say, and that dialogue manage-
ment strategies for clarifications of linguistic
form benefit from access to features from spo-
ken language understanding.

1 Introduction

Utterances have literal meaning derived from their
linguistic form, and pragmatic intent, the actions
speakers aim to achieve through words (Austin,
1962). Because the channel is usually not noisy
enough to impede communication, misunderstand-
ings that arise between adult human interlocutors
are more often due to confusions about intent, rather
than about words. Between humans and machines,
however, verbal interaction has a much higher rate
of linguistic misunderstandings because the channel
is noisy, and machines are not as adept at using spo-
ken language. It is difficult to arrive at accurate rates
for misunderstandings of form versus intent in hu-
man conversation, because the two types cannot al-
ways be distinguished (Schlangen and Fern’andez,

2005). However, one estimate of the rate of mis-
understandings of literal meaning between humans,
based on text transcripts of the British National Cor-
pus, is in the low range of 4% (Purver et al., 2001),
compared with a 30% estimate for human-computer
dialogue (Rieser and Lemon, 2011). The thesis
of our work is that misunderstandings of linguis-
tic form in human-machine dialogue are more ef-
fectively resolved through greater reliance on con-
text, and through closer integration of spoken lan-
guage understanding (SLU) with dialogue manage-
ment (DM). We investigate these claims by focusing
on noisy speech recognition for utterances where the
user’s specific intent requires little additional infer-
ence, given sufficient understanding of the form.

This paper presents three experiments that pro-
gressively address SLU methods to compensate for
poor automated speech recognition (ASR), and com-
plementary DM strategies. In two of the experi-
ments, human wizards are embedded in the spoken
dialogue system while run-time SLU features are
collected. Many wizard-of-Oz investigations have
addressed the noisy channel issue for SDS (Zollo,
1999; Skantze, 2003; Williams and Young, 2004;
Skantze, 2005; Rieser and Lemon, 2006; Schlangen
and Fern’andez, 2005; Rieser and Lemon, 2011).
Like them, we study how human wizards solve the
joint problem of interpreting users’ words and in-
ferring users’ intents. Our work differs in its ex-
ploration of the role context can play in the literal
interpretation of noisy language. We rely on knowl-
edge in the backend database to propose candidate
linguistic forms for noisy ASR.

Our principal results are that both wizards and our
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SDS can achieve high accuracy interpretations, in-
dicating that predictions about what the user might
be saying can play a significant role in resolving
noise. We show it is possible to achieve low rates
of unresolved misunderstanding, even at word error
rates (WER) as poor as 50%-70%. We achieve this
through machine learned models of DM actions that
combine standard DM features with a rich number
and variety of SLU features. The learned models
predict DM actions to determine whether a reliable
candidate interpretation exists for a noisy utterance,
and if not, what action to take. The results support
an approach to DM design that integrates the two
problems of understanding form and intent.

The next sections present related work, our library
domain and our baseline SDS architecture. Subse-
quent sections discuss the SLU settings across the
three experiments, and present the experimental de-
signs and results, discussion and conclusion.

2 Related Work

Previous WOz studies of wizards’ ability to pro-
cess noisy transcriptions of speaker utterances in-
clude the use of real (Skantze, 2003; Zollo, 1999)
or simulated ASR (Kruijff-Korbayová et al., 2005;
Williams and Young, 2004). WOz studies that
directed their attention to the wizard include ef-
forts to predict: the wizard’s response when the
user is not understood (Bohus 2004); the wizard’s
use of multimodal clarification strategies (Rieser
and Lemon, 2006; Rieser and Lemon, 2011); and
the wizard’s use of application-specific clarification
strategies (Skantze, 2003; Skantze, 2005). WOz
studies that address real or simulated ASR reveal
that wizards can find ways to not respond to utter-
ances they fail to understand (Zollo, 1999; Skantze,
2003; Kruijff-Korbayová et al., 2005; Williams and
Young, 2004). For example, they can prompt the
user for an alternative attribute of the same object.
Our work differs in that we address clarifications
about the words used, and rely on a rich set of SLU
features. Further, we compare behavior across wiz-
ards. Our SDS benefits from models of the most
skilled wizards.

To limit communication errors incurred by faulty
ASR, an SDS can rely on strategies to detect and re-
spond to incorrect recognition output (Bohus, 2004).

The SDS can repeatedly request user confirmation
to avoid misunderstanding, or ask for confirmation
using language that elicits responses from the user
that the system can handle (Raux and Eskenazi,
2004). When the user adds unanticipated informa-
tion in response to a system prompt, two-pass recog-
nition can rely on a concept-specific language model
to improve the recognition of the domain concepts
within the utterance containing unknown words, and
thereby achieve better recognition (Stoyanchev and
Stent, 2009). An SDS could take this approach one
step further and use context-specific language for in-
cremental understanding of noisy input throughout
the dialogue (Aist et al., 2007).

Current work on error recovery and grounding for
SDS assumes that the primary responsibility of a
dialogue management strategy is to understand the
user’s intent. Errors of understanding are addressed
by ignoring the utterances where understanding fail-
ures occur, asking users to repeat, or pursuing clari-
fications about intent. These strategies typically rely
on knowledge sources that follow the SLU stage.
The RavenClaw dialogue manager, which represents
domain-dependent (task-based) DM strategy as a
tree of goals, triggers error handling by means of a
single confidence score associated with the concepts
hypothesized to represent the user’s intent (Bohus
and Rudnicky, 2002; Bohus and Rudnicky, 2009).
Features for reinforcement learning of MDP-based
DM strategies include a few lexical features and a
measure of noise analogous to WER (Rieser and
Lemon, 2011). The WOz studies reported here yield
learned models of specific actions in response to
noisy input, such as whether to treat a candidate in-
terpretation as correct, or to pursue one of many pos-
sible clarification strategies, including clarifications
of form or intent. These models rely on relatively
large numbers of features from all phases of spoken
language understanding, as well as on typical dia-
logue management features.

3 CheckItOut

3.1 Domain

Our domain of investigation simulates book orders
from the Andrew Heiskell Braille and Talking Book
Library, part of the New York Public Library and the
Library of Congress. Patrons order books by tele-
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phone during conversation with a librarian, and re-
ceive them by mail. Patrons typically have identify-
ing information for the books they seek, which they
get from monthly newsletters. In a corpus of eighty
two calls recorded at the library, we found that most
book requests by title were very faithful to the actual
title. Challenges to SLU in this domain include the
size of the database, the size of the vocabulary, and
the average sentence length.

While large databases have been used for inves-
tigations of phonological query expansion (Georgila
et al., 2003), much of the research on DM strategy
relies on relatively small databases. A recent study
of reinforcement learning of DM strategy modeled
as a Markov Decision Process reported in (Rieser
and Lemon, 2011) relies on a database of 438 items.
In (Gordon and Passonneau, 2011) we compared
the SLU challenges faced by CheckItOut and the
Let’s Go bus schedule information system, both of
which rely on the same architecture (Raux et al.,
2005). The Let’s Go corpus contained 70 bus routes
names and 1300 place names, and a mean utterance
length of 4.4 words. The work reported here uses the
full 2007 version of Heiskell’s database of 71,166
books and 28,031 authors, and a sanitized version
of its 2007 patron database of 5,028 active patrons.
Authors and titles contribute 45,636 distinct words,
with a 10.43% overlap between the two. Average
book title length is 5.4 words; 26% of titles are 1-2
words, 44% are 3-5 words, 20% are 6 to 10. Con-
sequently, our domain has relatively long utterances.
The syntax of book titles is much richer than typical
SDS slot fillers, such as place or person names.

To achieve high-confidence SLU, we integrate
voice search into the SLU components of our two
SDS experiments (Wang et al., 2008).1 Our custom
voice search query relies on Ratcliff/Obershershelp
(R/O) pattern matching (Ratcliff and Metzener,
1988), the ratio of the number of matching charac-
ters to the total length of both strings. This simple
metric captures gross similarities without overfitting
to a specific application domain. The criteria for se-
lecting R/O derive from our first offline experiment,
described in Section 4.2.

For an experiment focused only on a single turn
1In concurrent work on a new SDS architecture, we use en-

sembles of SLU strategies (Gordon and Passonneau, 2011; Gor-
don et al., 2011).

(a) Baseline CheckItOut

(b) Embedded Wizard

Figure 1: CheckItOut information pipeline

exchange beginning with a user book request, we
queried the backend directly with the ASR string.
For a subsequent experiment on full dialogues, we
queried the backend with a modified ASR string, be-
cause the SDS architecture we used permits backend
queries to occur only during the dialogue manage-
ment phase, after natural language understanding.
The next section describes this architecture.

3.2 Architecture

CheckItOut, our baseline SDS, employs the Olym-
pus/RavenClaw architecture developed at Carnegie
Mellon University (CMU) (Raux et al., 2005; Bo-
hus and Rudnicky, 2009). SDS modules commu-
nicate via message passing, controlled by a central
hub. However, the information flow is largely a
pipeline, as depicted in Figure 1(a). The Pocket-
Sphinx recognizer (Huggins-Daines et al., 2006) re-
ceives acoustic data segmented by the audio man-
ager, and passes a single recognition hypothesis to
the Phoenix parser (Ward and Issar, 1994). Phoenix
sends one or more equivalently ranked semantic
parses to the Helios confidence annotator (Bohus
and Rudnicky, 2002), which selects a parse and as-
signs a confidence score. The Apollo interaction
manager (Raux and Eskenazi, 2007) monitors the
three SLU modules–the recognizer, the semantic
parser, and the confidence annotator–to determine
whether the user or SDS has the current turn. To
a limited degree, Apollo can override the early seg-
mentation decisions based solely on pause length.
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Confidence-annotated concepts from the semantic
parse are passed to the RavenClaw DM, which de-
cides when to prompt the user, present information
to her, or query the backend database.

A wizard server communicates with other mod-
ules via the hub, as shown in Figure 1(b). For each
wizard experiment, we constructed a graphical user
interface (GUI). Wizard GUIs display information
for the wizard in a manageable form, and allow the
wizard to query the backend or select communica-
tive actions that result in utterances directed to the
user. Figure 1(b) shows an arrow from the speech
recognizer directly to the wizard: the recognition
string has been vetted by Apollo before it is dis-
played to the wizard.

4 Experiments and Results

The experiments reported here are an off-line pilot
study to identify book titles under worst case recog-
nition (Title Pilot), an embedded WOz study of a
single turn exchange involving book requests by ti-
tle (Turn Exchange), and an embedded WOz study
of dialogues where users followed scenarios that in-
cluded four books at a time (Full WOz). To evaluate
the impact of learned models of wizard actions from
the Full WOz wizard data, we evaluated CheckItOut
before and after the dialogue manager was enhanced
with wizard models for specific actions.

4.1 Experimental Settings

All three experiments use the full database for
search. To control for WER, the knowledge sources
for speech recognition and semantic parsing vary
across experiments. For each experiment, Table 1
indicates the acoustic model (AM) used, the num-
ber of hours of domain-specific spontaneous speech
used for AM adaptation, the number of titles used
to construct the language model (LM), the type of
LM, the type of grammar rules in the Phoenix book
title subgrammar, and average WER as measured by
Levenstein word edit distance (Levenshtein, 1996).

For the first two experiments, we used CMU’s
Open Source WSJ1 dictation AMs for wideband
(16kHz) microphone (dictation) speech. For Full
WOz we adapted narrowband (8kHz) WSJ1 dicta-
tion speech with about eight hours of data collected
from Turn Exchange and two hours of scripted spon-

taneous speech typical of CheckItOut dialogues.
Logios is a CMU toolkit for generating a pseudo-

corpus from a Phoenix grammar. It produces a set
of strings generated by Phoenix production rules,
which in turn are used to build an LM (Carnegie
Mellon University Speech Group, 2008). Before we
explain the three rightmost columns in Table 1, we
first briefly describe Phoenix, the Phoenix book title
subgrammar, and how we combine title strings with
a Logios pseudo-corpus.

Phoenix is a context-free grammar (CFG) parser
that produces one or more semantic frames per
parse. A semantic frame has slots, where each slot is
a concept with its own CFG productions (subgram-
mar). To accommodate noisy ASR, the parser can
skip words between frames or slots. Phoenix is well-
suited for restricted domains, where a frame repre-
sents a particular type of subdialogue (e.g., ordering
a plane ticket), and slots represent constrained con-
cepts (e.g., departure city, destination city). Phoenix
is not well-suited for book titles, which have a rich
vocabulary and syntax, and no obvious component
slots. The CFG rules for the Turn Exchange book ti-
tle subgrammar consisted of a verbatim rule for each
book title. Rules that consisted of a bag-of-words
(BOW; i.e., unordered) for each title proved to be
too unconstrained.2 In Turn Exchange, interpreta-
tion of ASR consisted primarily of voice search; the
highly constrained CFG rules (exact words in exact
order) had little impact on performance. For base-
line CheckItOut dialogues, and for Full WOz, we
required more constrained grammar rules that would
preserve Phoenix’s robustness to noise.

To avoid the brittleness of exact string CFG rules,
and the massive over-generation of BOW CFG rules,
we wrote a transducer that mapped dependency
parses of book titles to CFG rules. When ASR
words are skipped, book title parses can consist of
multiple slots. We used MICA, a broad-coverage
dependency grammar (Bangalore et al., 2009) to
parse the entire book title database. When a set
of titles is selected for an experiment, the corre-
sponding MICA parses are transduced to the rele-
vant CFG productions, and inserted into a Phoenix
grammar. Productions for the author subgrammar

2BOW Phoenix rules for book titles are used in a more re-
cent Olympus/RavenClaw system inspired in part by Check-
ItOut (Lee et al., 2010), with a database of 15,088 eBooks.
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Exp. AM Adapted # Titles for LM LM Grammar rules WER
Title Pilot WSJ1 16kHz NA 500 unigram NA 0.76
Turn Exchange WSJ1 16kHz NA 7,500 trigram title strings 0.71
Full WOz WSJ1 8kHz 10 hr. 3,000 Logios + book data Mica-based 0.50 (est)

Table 1: SLU settings across experiments

consist largely of a first name slot followed by a last
name slot. The remaining portions of the Phoenix
CheckItOut grammar consist of subgrammars for
book request prefixes and affixes (e.g., ”I would like
the book called”), for confirmations and rejections,
phone numbers, book catalogue numbers, and mis-
cellaneous additional concepts. The set of subgram-
mars excluding the book title and author subgram-
mars (book requests, confirmations, and so on; the
grammar shell) are the same for all experiments.
The MICA-based book title grammar also provides
several features (e.g., number of slots in a parse) for
machine learning.

The Title Pilot LM consisted of unigram frequen-
cies of the 1400 word types from a random sample
(without replacement) of 500 titles. For Turn Ex-
change, a trigram LM was constructed from 7,500
titles randomly selected from the 19,708 titles that
remained after we eliminated one-word titles and ti-
tles with below average circulation. For Full WOz,
3,000 books were randomly selected from the full
book database (with no more than three titles by
the same author, and no one-word titles). Logios
was used on the grammar shell to generate an initial
pseudo-corpus, which was combined with the book
title and author strings to generate a full pseudo-
corpus for the trigram LM (denoted as “Logios +
book data” in Table 1).

4.2 Title Pilot

The Title Pilot (Passonneau et al., 2009) was an of-
fline investigation of how reliance on prior knowl-
edge in the database might facilitate interpretation
of noisy ASR. It demonstrates that given the context
of things a user might say, ASR that is otherwise un-
intelligible becomes intelligible.

Three males each read 50 randomly selected ti-
tles from the LM subset of 500 (see Table 1). Their
average WER was 0.75, 0.83 and 0.69, respectively.
Three undergraduates (A, B, C) were each given one
of the sets of 50 recognition strings from a different
speaker. Each also received a plain text file listing all

the titles in the database, and word frequency statis-
tics for the book titles. Their task was to try to find
the correct title, and to provide a brief description of
their overall strategy.

A was accurate on 66.7% of the titles he matched,
B and C on 71.7%. We identified similar strate-
gies for A and B, including number of exact word
matches, types of exact word matches (e.g., content
words were favored over stop words), rarity of ex-
act word matches, and phonetic similarity. Analysis
of C’s responses showed dependency on number and
types of exact word matches, and on miscellaneous
strategies that could not be grouped. Through in-
spection, we determined that similarity in length and
number of words were important factors. From this
experiment, we concluded that humans are adept at
interpreting noisy ASR when provided with context;
that voice search (queries to the backend with ASR)
would prove useful, given an appropriate similarity
metric; and that there would likely always be uncer-
tain cases that might lead to false hits. As we discuss
below, two of seven Turn Exchange wizards were
fairly adept, and five of six Full WOz wizards were
very adept, at avoiding false hits from voice search.

4.3 Turn Exchange

The offline Title Pilot suggested that voice search
could lead to far fewer non-understandings, given
some predictions as to the actual words a noisy ASR
string might represent. The next experiment ad-
dressed, in real time, the question of what level of
accuracy might be achieved through an online im-
plementation of voice search for book requests by
title (Passonneau et al., 2010; Ligorio et al., 2010b).
We embedded wizards into the CheckItOut SDS to
present them with live ASR, and to collect runtime
recognition features. On the GUI, variations in the
display fonts for ASR and voice search returns cued
the wizard to gross differences in word-level recog-
nition confidence, and similarities between an ASR
string and each candidate returned by the search.
Learned models of wizard actions indicated that
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recognition features such as acoustic model fit and
speech rate, along with various measures of sim-
ilarity between the ASR output string and candi-
date titles, number of books ordered thus far (Re-
centSuccess), and number of relatively close candi-
date matches, were useful in modeling the most ac-
curate wizards. These results show that DM strat-
egy for determing what actions to take, given an in-
terpretation of a user request, can depend on subtle
recognition metrics.

In Turn Exchange, users requested books by ti-
tle from embedded wizards. Speech input and out-
put was by microphone and headset, with wizards
and users seated in separate rooms, each using a dif-
ferent GUI. Seven undergraduates (one female and
six males, including two non-native speakers of En-
glish) participated as paid subjects. Each of the 21
possible pairs of students met for five trials. A trial
had two sessions. In the first, one student served as
wizard and the other as user for a session in which
the user requested 20 books by title. In the second
session, the students reversed roles. We collected
4,192 turn exchanges.

The GUI displayed the ASR corresponding to the
user utterance, with confident words in bolder font.
The wizard could query the backend with some or
all of the ASR. Voice search results displayed a sin-
gle candidate above a high R/O threshold with all
matching words in boldface, or three candidates of
moderate similarity with matching words in medium
bold, or five to ten candidates of lower similarity in
grayscale. There were four available wizard actions:
to offer a candidate title to the user in a confident
manner (through Text-to-Speech), to offer a title ten-
tatively, to select two or more candidates and ask a
free-form question about them (here the user would
hear the wizard’s speech), or to give up. The user in-
dicated whether an offered candidate was correct, or
indicated the quality and appropriateness of a wiz-
ard’s question. A prize would go to the wizard who
offered the most correct titles.

The top ranked search return was correct 65.24%
of the time. The two wizards who most often offered
the top ranked return (81% and 86% of the time)
both achieved 69.5% accuracy. The two best wiz-
ards (W4 and W5) could detect search returns that
did not contain the correct title, thus avoiding false
hits. On average, they offered the top return only

73% of the time and both achieved the highest accu-
racy (83.4%).

Several classification methods were used to pre-
dict the four wizard actions: firm offer, tentative of-
fer, question, and give up. Features (N=60) included
many ASR metrics, such as word-level confidence,
AM fit, and three measures of speech rate; various
measures of the average similarity or overlap be-
tween the ASR string and the candidate titles from
the R/O query; the dialogue history; the number of
candidates titles returned; and so on. The learned
classifiers, including C4.5 decision trees (Quinlan,
1993), all had similar performance. Learned trees
for W4 and W5 both had F measures of 0.85. De-
cision trees give a transparent view of the relative
importance of features; those nearer the root have
greater discriminatory power. Common features at
the tops of trees for all wizards were the type and
size of the query return, how often the wizard had
chosen the correct title in the last three title cycles,
the average of the maximum number of contiguous
exact word matches between the ASR string and the
candidate titles, and the Helios confidence score.

We trained an additional decision tree to learn
how W4 (the best wizard) chose between offering
a title versus asking a question (F=0.91 for making
an offer; F=0.68 for asking a question). The tree
is distinctive in that it splits at the root on a mea-
sure of speech rate. If the ASR is short (as mea-
sured both by the number of recognition frames and
the words), W4 asks a question if the query return
is not a single title, and either RecentSuccess=1 or
ContiguousWord-Match=0, and the acoustic model
score is low. Note that shorter titles are more con-
fusable. If the ASR is long, W4 asks a question
when ContiguousWordMatch=1, RecentSuccess=2,
and either CandidateDisplay = NoisyList, or Helios
Confidence is low, and there is a choice of titles.

4.4 Full WOz

The third experiment was a full WOz study demon-
strating that embedded wizards could achieve high
task success by relying on a large number of actions
that included clarifications of utterance form or in-
tent. Here we briefly report results on task success
and time on task in a comparision of baseline Check-
ItOut with an enhanced version, CheckItOut+, that
incorporates learned models of wizard actions. The
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evaluation demonstrates improved performance with
more books ordered, more correct books ordered,
and less elapsed time per book, or per correct book.

For Full WOz (Ligorio et al., 2010a), CheckItOut
relied on VOIP (Voice over Internet Protocol) tele-
phony. Users interacted with the embedded wizards
by telephone, and wizards took over after Check-
ItOut answered the phone. After familiarization
with the task and GUI, nine wizards auditioned and
six were selected. There were ten users. Both groups
were evenly balanced for gender. Users were di-
rected to a website that presented scenarios for each
call. The scenario page gave the user a patron iden-
tity and phone number, and author, title and cata-
logue number information for four books they were
to order. Each user was to make at least fifteen calls
to each wizard; we recorded 913 usable calls.

A single trainer prepared the original nine wizard
volunteers one at a time. First, each trainee practiced
on data from the experiments described above. Next,
the trainer explained the wizard GUI and demon-
strated it, serving as wizard on a sample call. Fi-
nally, the trainee served as wizard on five test calls
with guidance from the trainer. The trainer chose the
six most skilled and motivated trainees as wizards.

The GUI had two screens, one for user login
and one for book requests. Users identified them-
selves by scenario phone number. The book re-
quest screen had a scrollable frame displaying the
ASR for each user utterance. Separate frames on
the GUI displayed the query return, dialogue history,
basic actions (e.g., querying the backend with a cus-
tom R/O query, or prompting the user for a book),
and auxiliary actions (e.g., removing a book from
the order in progress). Finally, wizards could select
among four types of dialogue acts: signals of non-
understanding, or clarifications about the ASR, the
book request or the query return. A dialogue act se-
lected by the wizard was passed to a template-based
natural language generator, and then to a Text-to-
Speech component. Due to their complexity, calls
could be time consuming. A clock on the GUI indi-
cated call duration; wizards were instructed to finish
the current book request and then terminate the call
after six minutes.

A wizard’s precision is the proportion of books
she offer that correctly match the user’s request; five
of the six wizards had precision over 90%. A wiz-

ard’s recall is the number of books in the scenario
that she correctly identified. The two best wizards,
WA and WB, had the highest recall, 63% and 67%
respectively.

The number of book requests per dialogue was
tallied automatically. Some dialogues were termi-
nated before all scenario books could be requested.
Also, a wizard who experienced problems with a
book request could abandon the current request and
prompt the user for a new book. The user could re-
sume the abandoned book request later in the dia-
logue. In such cases, the abandoned and resumed re-
quests for the same book would count as two distinct
book requests. Given these facts, the ratio of number
of correct books to number of book requests yields
only an approximate estimate of how many scenario
books were correctly identified. WA correctly iden-
tified 2.69 books per call from 3.64 requests per call,
yielding a total success rate of 73.9% per book re-
quest, and 67.25% per 4-book scenario. WB cor-
rectly identified 2.54 books per call from 4.44 re-
quests per call, yielding success rates of 57.21% per
request and 63.50% per 4-book scenario. WA and
WB had quite distinct strategies. WA persisted with
each book request and exploited a wide range of
the available GUI actions, with the greatest num-
ber of actions per book request among all wizards
(N=8.24). WB abandoned book requests early and
moved on to the next book request, exploited rela-
tively fewer GUI actions, and had the fewest actions
per book request (N=5.10).

From 163 features that characterize the ASR,
search, current user utterance, current turn ex-
change, current book request, and the entire dia-
logue, we learned models for three types of wiz-
ard actions: select a non-understanding prompt, per-
form a search, or select a prompt to disambiguate
among search returns. We used three machine learn-
ing methods for classification: decision trees, logis-
tic regression and support vector machines. Table 2
gives the accuracies and overall F measures for de-
cision trees that model WA and WB. (All learning
methods have similar performance.)

Of note here is the range of features that predict
when the best wizards selected a non-understanding,
shown in Table 3. In addition, the two models de-
pend partly on different features. Trees for the other
actions in Table 2 have similarly diverse features.
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Wizard Action Acc F
A Non-Understanding 0.71 0.71
B Non-Understanding 0.73 0.73
A Disambiguate 0.80 0.81
B Disambiguate 0.86 0.87
A Search 0.94 0.95
B Search 0.93 0.94

Table 2: Performance of learned trees

To evaluate the benefit of learned models of wiz-
ard actions for SDS, we conducted two data collec-
tions where subjects placed calls following the same
types of scenarios used in Full WOz. For our base-
line evaluation of CheckItOut, 10 subjects were re-
cruited from Columbia University and Hunter Col-
lege. Each was to place a minimum of 50 calls over
a period of three days; 562 calls were collected. For
each call, subjects visited a web page that presented
a new scenario. Each scenario included mock patron
data for the caller to use (e.g., name, address and
phone number), a list of four books, and instructions
to request one book by catalogue number, one by
title, one by author, and one by any of those meth-
ods. At three points during their calls, subjects com-
pleted a user satisfaction survey containing eleven
questions adapted from (Hone and Graham, 2006).

CheckItOut+ is an enhanced version of our SDS
in which the DM was modified to include learned
models for three decisions. The first determines
whether the system should signal non-understanding
in response to the caller’s last utterance, and exe-
cutes before voice search would take place. The
second determines whether to perform voice search
with the ASR (i.e., before the parse, in contrast to
CheckItOut). The third executes after voice search,
and determines whether to offer the candidate with
the highest R/O score to the user. The evaluation
setup for CheckItOut+ also included 10 callers who
were to place 50 calls each; 505 calls were collected.

Here we report results that compare the number
of books ordered per call, the number of correct
books per call, the elapsed time per book ordered,
and elapsed time per correct book. T-tests show all
differences to be highly significant. (A full discus-
sion of the evaluation results will appear in future
publications.) Callers to CheckItOut+ nearly always
ordered four books (3.998), compared with 3.217 for
the baseline (p < 0.0001). There was an increase
of correct books in the order from 2.40 in the base-

Feature WA WB
# books ordered so far Y Y
% unparsed ASR words Y N
Avg. word confidence Y N
# explicit confirms in call Y Y
# MICA slots per concept Y N
# searches in call Y N
Most recent wizard action N Y
Most frequent concept in call N Y
Speech rate N Y
# user utts. this request N Y
# author searches in call Y Y
Normalized LM score this utt Y Y

Table 3: Features that predict wizards’ non-
understanding

line to 2.70 in CheckItOut+ (p < 0.0001). The total
elapsed time per call increased by only 13 seconds
from 210.93 to 223.96 (p < 0.0175). Given that
CheckItOut+ callers ordered more books and more
correct books, CheckItOut+ performed much faster.
The elapsed time per ordered book decreased from
65.57 to 56.01 seconds, and decreased from 87.89 to
82.95 seconds per correct books.

5 Discussion

Spoken language understanding has been relatively
under-investigated in SDS design. Our experiments
suggest that tighter integration of all phases of SLU
with dialogue management can lead to more robust
system behavior. We illustrate here with an exam-
ple of WA’s strategic questioning in which a non-
understanding is avoided, and WA builds on partial
understanding to identify the user’s objective.

In response to ASR MARY .JO. EARTH, where
the ’.’s bracket an unconfident word, WA’s search
returned three authors with first name Mary, and
last names that had moderate character overlap with
.JO. EARTH. WA first asked whether the book
was by Mary O’Hara. When the user responded
negatively, WA confirmed the first name, prompted
for the last name, and got SURE as the ASR. WA fi-
nally confirmed that the book was by Mary Stewart.
Although it took four turns, WA was able to identify
the correct book.

In general, the Full WOz corpus contains a very
high proportion of wizard questions. In the to-
tal corpus of 20,415 caller utterances, there were
11,562 wizard questions. The types of questions
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S1: What’s the next book?
U1: .BARBARA. THREE THREE
S2: Is the author barbara freethy?
U2: YES
S3: Would you like ’some kind of wonderful’ by

BARBARA FREETHY?
U3: YES

(a) Example 1

S1: Sorry, I misunderstood. Can you repeat the author?
U1: DIDN’T I AM THE .GOLDEN. ARM
S2: Is the title ’THE man with THE golden ARM ’?
U2: NO
S3: Sorry, I misunderstood. Can you repeat the title please?
U3: .A. .AMBLING. .THE. .GAME. .EDELMAN. STORY
S4: Is the title ’up and running the jami goldman STORY ’?
U4: YES

(b) Example 2

Figure 2: Sample Clarification Subdialogues

wizard’s ask not only often lead to successful con-
cept identification, they also avoid prompting the
user to repeat what they said. Previous work has
presented results showing that the hyperarticulation
associated with user repetitions often leads users to
slow their speech, speak more loudly, and pronounce
words more carefully, which hurts recognition per-
formance (Hirschberg et al., 2004).

Figure 2 illustrates two clarification subdialogues
from CheckItOut+. The first illustrates how prior
knowledge about what a user might say provides
sufficient constraints to interpret ASR that would
otherwise be unintelligible. The first word in the
ASR for the caller’s first utterance is bracketed by
’.’, which again represents low word confidence.
The high confidence words THREE THREE are
phonologically and orthographically similar to the
actual author name, Freethy. Note that from the
caller’s point of view, the same question shown
in S3 could be motivated by confusion over the
words alone, as in this case, or confusion over the
words and multiple candidate referents (e.g., Bar-
bara Freethy versus Freeling).

The second clarification subdialogue illustrates
how confusions about the linguistic input can be
resolved through strategies that combine questions
about words and intents. The prompt at system turn
3 indicates that the system believes that the caller
provided a title in user turn 1, which is incorrect.
The caller responds with the title, however, which
provides an alternative means to guess the intended

book, Jami Goldman’s memoir Up and Running.

6 Conclusion

The studies reported here are premised on two hy-
potheses about the role spoken language understand-
ing plays in SDS design. First, prior knowledge
derived from the context in which a dialogue takes
place can yield predictions about the words a user
might produce, and that these predictions can play
a key role in interpreting noisy ASR. Here we have
used context derived from knowledge in the appli-
cation database. Similar results could follow from
predictions from other sources, such as an explicit
model of the alignment of linguistic representa-
tions proposed in the work of Pickering and Gar-
rod (e.g., (Pickering and Garrod, 2006). Second,
closer integration of spoken language understanding
and dialogue management affords a wider range of
clarification subdialogues.

Our results from the experiments reported here
support both hypotheses. Our first experiment
demonstrated that words obscured by very noisy
ASR (50% ≤ WER ≤ 75%) can be inferred by re-
liance on what might have been said, predictions
that came from the database of entities in the do-
main. We assume that an SDS that interacts well
when ASR quality is poor will perform all the better
when ASR quality is good. Our second experiment
demonstrated that two of five human wizards were
able to achieve high accuracy in on-line resolution
of noisy ASR, when presented with no more than ten
candidate matches. Run-time recognition features
not available to the wizards were nonetheless useful
in modeling the ability of the two best wizards to
avoid false hits. Our third experiment demonstrated
that wizards could achieve high task success on full
dialogues where callers requested four books, and
an enhancement of our baseline SDS with learned
models of three wizard actions led to improved task
success with less time per subtask. The variety of
features that contribute to learned models of wiz-
ard actions demonstrates the advantages of embed-
ded wizardry, as well as the benefit of DM clarifica-
tion strategies that include features from all phases
of SLU.
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Abstract

This paper addresses a first step toward a
spoken dialogue system that evokes user’s
spontaneous backchannels. We construct
an HMM-based dialogue-style text-to-speech
(TTS) system that generates human-like cues
that evoke users’ backchannels. A spoken
dialogue system for information navigation
was implemented and the TTS was evaluated
in terms of evoked user backchannels. We
conducted user experiments and demonstrated
that the user backchannels evoked by our TTS
are more informative for the system in detect-
ing users’ feelings than those by conventional
reading-style TTS.

1 Introduction

One of the most enduring problems in spoken di-
alogue systems research is realizing a natural dia-
logue in a human-human form. One direction re-
searchers have been utilizing spontaneous nonverbal
and paralinguistic information. For example,

This paper focuses on backchannels, one of the
most common forms of para-linguistic information
in human-human dialogue. In particular, we focus
on users’ verbal feedback, such as “uh-huh” (called
Aizuchi in Japanese), and non-verbal feedback in the
form of nods. Such backchannels are very com-
mon phenomena, and considered to be used to fa-
cilitate smooth human-human communications. In
this regard, Maynard (Maynard, 1986) indicated that
such backchannels are listener’s signals to let the
speaker continue speaking (continuer), to indicate
that the listener understands and consents. It was
also hypothesized that humans detect feelings ex-
pressed via backchannels, and the correlation be-
tween backchannel patterns and user interests was
examined (Kawahara et al., 2008). These studies in-
dicate that detection of spontaneous user backchan-

∗ currently with Japan Advanced Institute of Science and
Technology (JAIST)

nels can benefit spoken dialogue systems by provid-
ing informative cues that reflect the user’s situation.
For instance, if a spoken dialogue system can detect
user’s backchannels, it can facilitate smooth turn-
taking. The system can also detect user’s feelings
and judge if it should continue the current topic or
change it.

Despite these previous studies and decades of
analysis on backchannels, few practical dialogue
systems have made use of them. This is proba-
bly due to the fact that users do not react as spon-
taneously to dialogue systems as they do to other
humans. We presume one of the reasons for this
is the unnatural intonation of synthesized speech.
That is, conventional speech synthesizers do not pro-
vide users with signs to elicit backchannels; an ap-
propriate set of lexical, acoustic and prosodic cues
(or backchannel-inviting cues (A. Gravano and J.
Hirschberg, 2009)), which tends to precede the lis-
tener’s backchannels in human-human communica-
tion. Though recorded human speech can provide
such cues, it is costly to re-record system’s speech
every time system scripts are updated. In this work,
we therefore tackle the challenge of constructing
dialogue-style text-to-speech (TTS) system that in-
spires users to make spontaneous backchannels un-
der the hypothesis of:

People will give more spontaneous backchannels to
a spoken dialogue system that makes more spontaneous
backchannel-inviting cues than a spoken dialogue system
that makes less spontaneous ones.
which is derived from the Media Equation (Reeves
and Nass, 1996).

2 Related Works

A number of studies have aimed at improving
the naturalness of TTS. Though most of these
have focused on means of realizing a clear and
easy-to-listen-to reading-style speech, some at-
tempts have been made at spontaneous conversa-
tional speech. Andersson (Andersson et al., 2010)
and Marge (Marge et al., 2010) focused on lexi-
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cal phenomena such as lexical filler and acknowl-
edgments in spontaneous speech, and showed that
inserting them improves the naturalness of human-
computer dialogues. In this work, we tackle con-
structing a natural dialogue-style TTS system focus-
ing on prosodic phenomena such as intonation and
phoneme duration.

In the field of conversation analysis, many studies
analyzed backchannels in human-human dialogue
focusing on lexical and non-verbal cues (Koiso et
al., 1998; Ward and Tsukahara, 2000; A. Gravano
and J. Hirschberg, 2009). For instance these cues
were examined in preceding utterances, such as in
part-of-speech tags, length of pause, power contour
pattern, and F0 contour pattern around the end of
the Inter-Pausal Units (IPUs). (A. Gravano and J.
Hirschberg, 2009) showed that when several of the
above cues occur simultaneously, the likelihood of
occurrence of a backchannel will increase.

Several studies also utilized the above findings
for spoken dialogue systems. Okato (Okato et al.,
1996) and Fujie (Fujie et al., 2005) trained models to
predict backchannels, and implemented spoken di-
alogue systems that make backchannels. Our goal
differs in that it is to inspire users to give backchan-
nels.

3 Construction of Spoken Dialogue TTS

3.1 Spoken Dialogue Data collection for TTS

In order to make spontaneous dialogue-style TTS
that can evoke backchannels, we construct a spon-
taneous dialogue-style speech corpus that contains
backchannel-inviting cues, and then train an HMM
acoustic model for synthesis.

We collected our training data by dubbing a script
of our Kyoto Sightseeing Guidance Spoken Dia-
logue Corpus (Misu et al., 2009), a set of itinerary-
planning dialogues in Japanese. In the dialogue
task, the expert guide has made recommendations on
sightseeing spots and restaurants until has decided
on a plan for the day. With the guide’s recommen-
dations, many users give spontaneous backchannels.
We made a set of dialogue scripts from the corpus,
and asked voice actors to act them out.

When preparing the dialogue script for dubbing,
we first removed fillers and backchannels from the
transcripts of the dialogue corpus. We then anno-
tated the guide’s end of the IPUs, where the the
user made backchannels, with #. A sample dialogue
script is shown in Figure 6. We asked two profes-
sional voice actresses to duplicate the spoken dia-

logue of the script, with playing the role of the tour
guide, and the other as the tourist, sitting face-to-
face. During the recording, we asked the tour guide
role to read the scenario with intonation so that the
tourist role would spontaneously make backchan-
nels at the points marked with #. The tourist was
allowed to make backchannels at will at any pause
segments the guide made. We recorded 12 dialogue
sessions in total. The speech data was manually la-
beled, and 239.3 minutes of tour guide utterances,
which are used to train our HMM for the TTS sys-
tem, were collected. The training data is comple-
mented by the ATR 503 phonetically balanced sen-
tence set (Abe et al., 1990), so as to cover deficien-
cies in the phoneme sequence. The sentence set is
collected from news articles, and data consists of
43.1 minutes of reading-style speech.

3.2 Analysis of Collected Speech Data

Before training the HMM, we analyzed the collected
spoken dialogue data to confirm if the recorded di-
alogue speech data contained backchannel-inviting
prosodic cues. We compared prosodic features of
the dialogue speech data with those of the reading-
style speech data (phonetically balanced sentences
that we collected). Following the findings of a pre-
vious study (Koiso et al., 1998), we investigated the
duration, F0 contour pattern and power contour pat-
tern of the final phoneme of the IPUs1.

In conversation analysis of Japanese, the F0 con-
tour pattern label of the final phoneme is often used.
While the contour pattern is usually manually la-
beled, we roughly determined the patterns based on
the following procedure. We first normalized the log
F0 scale using all utterances so that it has zero mean
and one standard deviation (z-score: z = (x−μ)/σ).
We then divided each final phoneme of the IPU into
former and latter parts, and calculated the F0 slope
of each segment by linear regression. By combina-
tion of following three patterns, we defined nine F0

contour patterns for the final phonemes of the IPUs.
The pattern of the segment was judged as rise if the
slope was larger than a threshold θ. If the slope was
less than the threshold−θ, the pattern was judged as
fall. Otherwise, it was judged as flat. Here, θ was
empirically set to 5.0. The power contour patterns
of the IPUs were estimated by a similar procedure.

We analyzed 3,311 IPUs that were not followed

1For this study, we define an IPU as a maximal sequence
of words surrounded by silence longer than 200 ms. This unit
usually coincides with one Japanese phrasal unit.
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Table 1: Prosodic analysis of final phonemes of IPUs
(dialogue script vs. newsarticle script)

dialogue newsarticle
dur. phoneme [msec] 177.1 (± 83.6) 119.4 (± 31.3)

average (± standard deviation)

F0 power
pattern dialogue news dialogue news
rise-rise 3.7 % 10.4 % 0.0 % 0.0 %
rise-flat 2.6 % 2.1 % 0.0 % 0.0 %
rise-fall 18.8 % 3.2 % 0.0 % 0.0 %
flat-rise 4.8 % 11.5 % 0.0 % 0.0 %
flat-flat 3.5 % 1.8 % 0.0 % 9.2 %
flat-fall 12.6 % 2.7 % 13.6 % 0.1 %
fall-rise 29.2 % 47.0 % 0.0 % 0.0 %
fall-flat 7.7 % 9.0 % 86.0 % 90.7 %
fall-fall 17.1 % 12.3 % 0.0 % 0.0 %

by a turn-switch in the dialogue-style speech data
and 645 non-sentence-end IPUs in the reading-
style speech data. The prosodic features of final
phonemes of these IPUs are listed in Table 1.

According to a study (Koiso et al., 1998), in which
prosodic features of IPUs followed by a turn-hold
with backchannel, without backchannel and turn-
switch were compared, a long duration in the final
phoneme is a speaker’s typical sign to keep floor.
The same study also reported that the flat-fall and
rise-fall pattern of F0 and power are more likely
to be followed by a backchannel than a turn-hold
without a backchannel and turn-switch. In our col-
lected speech corpus, there were actually signifi-
cant (p < 0.01) differences in the duration of the
final phoneme between that in the dialogue-style
speech and in reading-style speech. There was
also significant (p < 0.01) difference in the oc-
currence probability of the above two prosodic pat-
terns between dialogue-style speech and reading-
style speech data. These figures indicate that
as a whole the collected dialogue-style data con-
tains more backchannel-inviting cues than collected
reading-style speech data.

We trained HMM for our TTS system Ximera
using the HMM-based Speech Synthesis System
(HTS) (Zen et al., 2007). We adopted mel log spec-
trum approximation (MLSA) filter-based vocod-
ing (SPTK, 2011), a quint-phone-based phoneme
set and five state HMM-based acoustic modeling.
All training data including reading-style speech data
were used for model training.

4 User Experiment

4.1 Dialogue System used for Experiment

To evaluate our TTS system based on users’ reac-
tions, a sightseeing guidance spoken dialogue sys-

Figure 1: Screen shot of the dialogue system

tem that assist users in making decision was im-
plemented. The system can explain six sightseeing
spots in Kyoto. The system provides responses to
user requests for explanation about a certain spot.
Each descriptive text on a sightseeing spot consists
of 500 (±1%) characters, 30 phrases. The text is
synthesized using section 3 TTS2. We set the speech
rate of our TTS as nine phoneme per second.

A display is used to present photos of the tar-
get sightseeing spot and an animated 3D desktop
avatar named Hanna. Figure 1 shows the GUI
the user sees. The avatar can express its status
through several motions. For example, when the
user begins speaking, it can express the state of
listening using the listener’s motion, as shown in
the figure. A sample dialogue with the system is
shown in Table 7. A video (with English subtitles)
of an sample dialogue with a user can be seen at
http://mastarpj.nict.go.jp/˜xtmisu/video/TTS.wmv.

To compare the effectiveness of our TTS in
evoking users’ spontaneous backchannels, we con-
structed a comparison system that adopts a conven-
tional reading-style TTS system. An HMM model
was trained using 10-hour reading-style speech by
another professional female narrator. Other settings,
such as the descriptive text and avatar agent, were
the same as those of the base system.

4.2 Comparison of Prosodic Features of the
Synthesized Speech

Prior to the experiments, we investigated the
prosodic features of the final phoneme of IPUs in
the synthesized explanations on six spots to confirm
if they contain backchannel-inviting cues. The re-
sults are given in Table 2.

Tendencies in the duration of the final phoneme
and prosody pattern distribution of the synthesized

2The descriptive texts are not included in the training data.
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Table 2: Prosodic analysis of final phonemes of IPUs
(dialogue-style TTS vs. reading-style TTS)

dialogue synth. reading synth.
dur. phoneme [msec] 172.9 (± 29.6) 126.1 (± 19.1)

average (± standard deviation)

F0 power
pattern dialogue reading dialogue reading
rise-rise 5.4 % 0.0 % 0.0 % 0.0 %
rise-flat 2.0 % 0.0 % 1.7 % 0.0 %
rise-fall 23.5 % 0.0 % 46.3 % 5.3 %
flat-rise 5.0 % 0.0 % 0.0 % 0.0 %
flat-flat 1.7 % 0.0 % 4.0 % 9.2 %
flat-fall 15.8 % 0.0 % 22.8 % 18.1 %
fall-rise 15.8 % 0.0 % 0.7 % 0.0 %
fall-flat 3.4 % 0.0 % 7.0 % 0.0 %
fall-fall 27.5 % 100.0 % 17.4 % 76.5 %

speech by the dialogue-style TTS system were simi-
lar to that of recorded dialogue speech, suggests that
the constructed dialogue-style TTS system can du-
plicate the backchannel-inviting cues of the recorded
original speech. The synthesized dialogue-style
speech also contained much more rise-fall and flat-
fall patterns in F0 and power than that generated by
the reading-style TTS system. The average dura-
tion of the final phoneme was also longer. Consider-
ing the fact that the speech data was generated from
the same script, this indicates that the synthesized
speech by the dialogue-style TTS system contains
more backchannel-inviting features than that by the
reading-style TTS system.

4.3 Experimental Setup

We evaluated the TTS systems using 30 subjects
who had not previously used spoken dialogue sys-
tems. Subjects were asked to use the dialogue sys-
tem in two settings; dialogue-style TTS system and
reading-style TTS system. The experiment was con-
ducted in a small (about 2 m2) soundproof room
with no one else present.

We instructed the subjects to speak with the avatar
agent Hanna (not with the system). We also told
them that the avatar agent was listening to their
speech at all times using the microphone, and was
observing their reactions using the camera above the
display3. Subjects were given the task of acquiring
information about three candidate sightseeing spots
in Kyoto shown on the display and then selecting
one that they liked. An example dialogue with the
system is shown in Table 7. A video (with English
subtitles) showing a real user dialogue can be seen
at http://mastarpj.nict.go.jp/˜xtmisu/video/exp.avi.

3The system did not actually sense the subjects’ reactions.

Table 3: Questionnaire items
1. Overall, which speech was better?
2. Which speech had easier-to-understand explanations?
3. For which speech did you feel compelled to give

backchannels?
4. Which speech was more appropriate for this system?
5. Which speech had more human-like explanation?

(a) both

(b) dialogue style

(c) reading style

(d) neither

#5#4

#3#2#1

Figure 2: Questionnaire results

After the subject selected from candidate spots,
we changed the TTS system settings and instructed
the user to have another dialogue session selecting
one of another three spots. Considering the effects of
the order, the subjects were divided into four groups;
the first group (Group 1) used the system in the order
of “Spot list A with dialogue-style speech → Spot
list B with reading-style speech,” the second group
(Group 2) worked in reverse order. Groups 3 and 4
used a system alternating the order of the spot sets.

5 Experimental Results
5.1 Questionnaire Results

After the experiments, subjects were asked to fill in
a questionnaire about the system. Table 3 shows the
questionnaire items. The subjects selected (a) both
are good, (b) dialogue-style speech was better, (c)
reading-style speech was better, or (d) neither were
good. Figure 2 shows the results.

The dialogue-style speech generally earned
higher ratings, but reading-style was slightly higher
in items #2 and #5. This tendency is likely at-
tributable to the fact that the dialogue-style speech
had worse clarity and naturalness than reading-style.
The mean opinion score (MOS), which is often used
to measure clarity and naturalness of TTS, of the
dialogue-style TTS was in fact 2.79, worse than 3.74
for the reading-style.

5.2 Analysis of Frequency of Backchannels

We analyzed the number of backchannels that users
made during the dialogue session. We manually
annotated subjects’ verbal feedbacks, such as “uh-
huh” and nodding of the head using the recorded
video. Out of 30 subjects, 26 gave some form of
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Table 4: Percentages and average number of users who made backchannels
TTS % users made BCs # average BCs taken

Group 1: (Dialogue→ Reading) Dialogue-style 100.0% (50.0%, 100.0%) 30.4 (1.8, 28.6)
(Spot list A→ Spot list B) Reading-style 100.0% (50.0%, 87.5%) 26.1 (3.1, 23.0)

Group 2: (Reading→ Dialogue) Dialogue-style 75.0% (25.0%, 62.5%) 12.7 (0.5, 12.2)
(Spot list A→ Spot list B) Reading-style 75.0% (25.0%, 62.5%) 12.9 (1.3, 11.6)

Group 3: (Dialogue→ Reading) Dialogue-style 100.0% (28.6%, 100.0%) 14.0 (0.4, 13.6)
(Spot list B→ Spot list A) Reading-style 100.0% (0%, 100.0%) 19.3 (0, 19.3)

Group 4: (Reading→ Dialogue) Dialogue-style 87.5% (42.9%, 87.5%) 28.2 (4.7, 23,5)
(Spot list B→ Spot list A) Reading-style 100.0% (71.4%, 87.5%) 24.8 (6.5, 18.3)

All: Dialogue-style 86.7% (36.7%, 86.7%) 21.1 (1.7, 19.4)
Reading-style 90.0% (40.0%, 83.3%) 20.6 (2.4, 18.2)

Total backchannel (verbal feedback [Aizuchi], nodding)

backchannel to the system. Table 4 shows the per-
centages and average number of times subjects gave
backchannels. Many users made more backchannels
using the dialogue-style TTS system. Despite the
significant difference in questionnaire item #3, there
were no significant differences in the average num-
ber of users’ backchannels.

5.3 Informativeness of Backchannels

We then evaluated the TTS in terms of the informa-
tiveness of evoked backchannels. The spontaneous
prosodic pattern of the backchannels is expected
to suggest positive/negative feelings on regarding
the recommended candidate. One promising use
of backchannels in our application is for detecting
users’ feelings about the currently focused on spot,
and choosing to continue the explanation on the cur-
rent topic if the user seems interested, or otherwise
change the topic. We therefore label backchannels
made during the systems explanation of the spot
that the user finally selected as “positive” and those
made during the explanations of the other two spots
as “negative” and consider distinguishing between
them. In human-human dialogues, it was confirmed
that when a user responds promptly, the majority of
responses are positive, and more backchannels also
suggest positive responses (Kawahara et al., 2008).

We investigated the informativeness of the
backchannels based on their classification rate, or
whether the system can distinguish positive and neg-
ative backchannels, using 10-fold cross-validation.
That is, the backchannels evoked by the dialogue-
style TTS system were divided into 10 groups and
nine were used for training and the other for classi-
fication tests. We trained decision trees using J4.8
algorithm using timing, frequency, total frequency
throughout the session and type of backchannel (ver-
bal feedback or nod) as the feature set. The classifi-
cation error cost of the positive sample was set to (#
negative samples / # positive samples) considering

the difference in the number of positive and nega-
tive samples. Ten trials were conducted by chang-
ing the test set and the average classification rate
was calculated. The classification rate of backchan-
nels evoked by the system with dialogue-style TTS
was 71.4%, The confusion matrix of the classifi-
cation is shown below. We obtained precisions of
62.8% in the classification of the positive backchan-
nels, and 73.2% in that of the negative backchan-
nels. The rates are significantly higher than chance
rates of 33.5% and 66.5%. This result indicates
the backchannels evoked by the dialogue-style TTS
were informative for the system.

Table 5: Confusion matrix of classification
→ classified as positive negative
↓ label
positive 76 141
negative 45 386

The classification rate of the reading-style TTS
system was calculated in the same way. The av-
erage classification rate of backchannels evoked by
reading-style TTS was a significantly lower 47.4%,
meaning they were not informative at all.

These results suggest that our dialogue-style TTS
system can evoke more spontaneous and informative
backchannels that reflects users’ intentions than the
conventional reading-style one. This classification
rate is not completely satisfactory, but we expect that
users’ feeling can be detected after observing several
backchannels. We also believe that we can estimate
users’ interest more precisely by combining verbal
information of dialogue acts (Misu et al., 2010).

6 Conclusions

This paper presented our first steps toward a spoken
dialogue system that evokes users’ spontaneous lis-
tener’s reactions. We constructed a dialogue-style
TTS and confirmed that by generating human-like
backchannel-inviting cues, the system can evoke
user’s spontaneous backchannels, which are infor-
mative for the system.
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Table 6: Example dialogue scenario used for recording (translation of Japanese)
Guide And Kyomizu-dera.
Guide Yeah, it is very famous for.
Guide There is this like wooden balcony#, and you can’t see the whole city#, but you can see a

good part of the city from there. And it is a beautiful view.
User It is nice. You have been there?
Guide Yes, many a times.
Guide Unfortunately, in winter it is not very green#, and there are not any flowers.
User So if there is snow will they close the stairs or will they - we are just going to be careful

walking the steps?
Guide You have to be careful going up.
Guide Basically, it’s a slope it’s a slope#, so if it’s very icy - if there is, you know, like black

ice#, you might want to rethink hiking up that slope. But usually it is okay# in the winter.
I mean, Kyomizu-dera and this whole area, like every tourist eventually makes their way
here#, whether they are Japanese or foreign.

Guide So, I am sure the paths should be clear.
Guide Yeah, that is a good spot too.

Table 7: Example dialogue with the system (translation of Japanese)
System Hello, my name is Hanna, a tour guide for sightseeing in Kyoto. Nice to meet you. Please

say “Okay” when you have decided which spot you would like to know about first.
User Okay.
System Which spot would you like to know about?
User Tell me about Shinnyo-do temple.
System Sure, I’ll explain Shinnyo-do temple.
System Shinnyo-do is a Buddhist Tendai Temple in Sakyo-ku, Kyoto City and the formal name is

Shinsho Gokuraku-ji. You may take the bus directly from Kyoto Station for about thirty
minutes, and the fee is two hundred twenty yen. The admission fee for the temple is five
hundred yen. The temple was established in nine hundred eighty-four A.D., when Amida
Nyorai-zo; a principle image from Mt. Hiei was placed in the Imperial villa of this area.

System Shall I continue?
User Sure.
System The temple is famous, especially for its coloring of autumn leaves; Red Maple stand on both

sides of the stone-paved approach, and it appears as though the temple is placed inside a
maple forest. . . .

. . .
System That’s all about this spot.
System Which spot would you like to know about next?
User Daitoku-ji please.
. . .
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Abstract 

This paper reports on an experiment that 
investigates clarification subdialogues in 
intentionally noisy speech recognition. 
The architecture learns weights for mix-
tures of grounding strategies from exam-
ples provided by a human wizard 
embedded in the system. Results indicate 
that the architecture learns to eliminate 
misunderstandings reliably despite high 
word error rate. 

1 Introduction 

We seek to develop spoken dialogue systems 
(SDSs) that communicate effectively despite un-
certain input. Our thesis is that a task-oriented 
SDS can perform well despite a high degree of 
recognizer noise by relying on context. The SDS 
described here uses FORRSooth, a semi-
synchronous architecture under development for 
task-oriented human-computer dialogue. Our 
immediate goals are to reduce non-
understandings of user utterances (where the 
SDS produces no interpretation) and to eliminate 
misunderstandings (where the SDS misinterprets 
user utterances). The experiment recounted here 
investigates subdialogues consisting of an initial 
user response to a system prompt, and any sub-
sequent turns that might be needed to result in 
full understanding of the original response. Our 
principal finding is that a FORRSooth-based 
SDS learns to build on partial understandings 
and to eliminate misunderstandings despite noi-

sy ASR. 
A FORRSooth-based SDS is intended to inte-

ract effectively “without the luxury of perfect 
components” (Paek and Horvitz, 2000), such as 
high-performance ASR. FORRSooth relies on 
portfolios of strategies for utterance interpreta-
tion and grounding, and learns to balance them 
from its experience. Its confidence in its inter-
pretations is dynamically calibrated against its 
past experience. At each user utterance, FORR-
Sooth selects grounding actions modulated to 
build upon partial interpretations in subsequent 
exchanges with the user. 

The experiment presented here bootstraps the 
SDS with human expertise. In a Wizard of Oz 
(WOz) study, a person (the wizard) replaces se-
lected SDS components. Knowledge is then ex-
tracted from the wizard’s behavior to improve 
the SDS. FORRSooth uses the Relative Support 
Weight Learning (RSWL) algorithm (Epstein and 
Petrovic, 2006) to learn weights that balance its 
individual strategies. Training examples for 
grounding strategies are based upon examples 
produced by an ablated wizard who was re-
stricted to the same information and actions as 
the system (Levin and Passonneau, 2006). 

Our domain is the Andrew Heiskell Braille 
and Talking Book Library. Heiskell’s patrons or-
der their books by telephone, during conversa-
tion with a librarian. The next section of this 
paper presents related work. Subsequent sections 
describe the weight learning, the SDS architec-
ture, and an experiment that challenges the ro-
bustness of utterance interpretation and 
grounding with intentionally noisy ASR. We 
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conclude with a discussion of the results.  

2 Related Work  

Despite increasingly accurate ASR methods, di-
alogue systems often contend with noisy ASR, 
which can arise from performance phenomena 
such as filled pauses (er, um), false starts (fir- 
last name), or noisy transmission conditions. 
SDSs typically experience a higher WER when 
deployed. For example, the WER reported for 
Carnegie Mellon University’s Let’s Go Public! 
went from 17% under controlled conditions to 
68% in the field (Raux et al., 2005).  

To limit communication errors, an SDS can 
rely on strategies to detect and recover from in-
correct recognition output (Bohus, 2007). One 
such strategy, to ask the user to repeat a poorly 
understood utterance, can result in hyperarticula-
tion and decreased recognition (Litman, 
Hirschberg and Swerts, 2006). Prior work has 
shown that users prefer explicit confirmation 
over dialogue efficiency (fewer turns) (Litman 
and Pan, 1999). We hypothesize that this results 
from an inherent tradeoff between efficiency and 
user confidence. We assume that evidence of 
partial understanding increases user confidence 
more than evidence of non-understanding does. 
FORRSooth learns to ask more questions that 
build on partial information, and to make fewer 
explicit confirmations and requests to the user to 
repeat herself. 

While many techniques exist in the literature 
for semantic interpretation in task-oriented, in-
formation-seeking dialogue systems, there is no 
single preferred approach. SDSs rarely combine 
a portfolio of NLU (natural language under-
standing) resources. FORRSooth relies on “mul-
tiple processes for interpreting utterances (e.g., 
structured parsing versus statistical techniques)” 
as in (Lemon, 2003). These range from voice 
search (querying a database directly with ASR 
results) to semantic parsing.  

Dialogue systems should ground their under-
standing of the user’s objectives. To limit com-
munication errors, an SDS can rely on strategies 
to detect and recover from incorrect recognition 
output (Bohus, 2007). In others’ work, the 
grounding status of an utterance is typically bi-
nary (i.e., understood or not) (Allen, Ferguson 
and Stent, 2001; Bohus and Rudnicky, 

2005; Paek and Horvitz, 2000) or ternary (i.e., 
understood, misunderstood, not understood) 
(Bohus and Rudnicky, 2009). FORRSooth’s 
grounding decisions rely on a mixture of strate-
gies, are based on degrees of evidence (Bohus 
and Rudnicky, 2009; Roque and Traum, 2009), 
and disambiguate among candidate interpreta-
tions. Work in (DeVault and Stone, 2009) on 
disambiguation in task-oriented dialogue differs 
from ours in that it addresses genuine ambigui-
ties rather than noise resulting from inaccurate 
ASR.  

3 FORR and RSWL 

FORRSooth is based on FORR (FOr the Right 
Reasons), an architecture for learning and prob-
lem solving (Epstein, 1994). FORR uses se-
quences of decisions from multiple rationales to 
solve problems. Implementations have proved 
robust in game learning, simulated pathfinding, 
and constraint solving. FORR relies on an adap-
tive, hierarchical mixture of resource-bounded 
procedures called Advisors. Each Advisor em-
bodies a decision rationale. Advisors’ opinions 
(comments) are combined to arrive at a decision. 
Each comment pairs an action with a strength 
that indicates some degree of support for or op-
position to that action. An Advisor can make 
multiple comments at once, and can base its 
comments upon descriptives. A descriptive is a 
shared data structure, computed on demand, and 
refreshed only when required. For each decision, 
FORR consults three tiers of Advisors, one tier 
at a time, until some tier reaches a decision.  

FORR learns weights for its tier-3 Advisors 
with RSWL. Relative support is a measure of the 
normalized difference between the comment 
strength (confidence) with which an Advisor 
supports an action compared to other available 
choices. RSWL learns Advisors’ weights from 
their comments on training examples. The de-
gree of reinforcement (positive or negative) to 
an Advisor's weight is proportional to its 
strength and relative support for a decision. 

4 FORRSooth 

FORRSooth is a parallelized version of FORR. 
It models task-oriented dialogue with six FORR-
based services that operate concurrently: INTE-
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RACTION, INTERPRETATION, SATISFACTION, 
GROUNDING, GENERATION, and DISCOURSE. 
These services interpret user utterances with re-
spect to system expectations, manage the con-
versational floor, and consider competing 
interpretations, partial understandings, and alter-
native courses of action. All services have 
access to the same data, represented by descrip-
tives. In this section, we present background on 
SATISFACTION and INTERPRETATION, and pro-
vide additional detail on GROUNDING.  

The role of SATISFACTION is to represent di-
alogue goals, and to progress towards those 
goals through spoken interaction. Dialogue goals 
are represented as agreements. An agreement is 
a subdialogue about a target concept (such as a 
specific book) whose value must be grounded 
through collaborative dialogue between the sys-
tem and the user (Clark and Schaefer, 1989). 
Agreements are organized into an agreement 
graph that represents dependencies among them. 
Task-based agreements are domain specific, 
while grounding agreements are domain inde-
pendent (cf. (Bohus, 2007)). An interpretation 
hypothesis represents the system’s belief that the 
value of a specific target (e.g., a full name or a 
first name) occurred in the user’s speech.  

The role of INTERPRETATION is to formulate 
hypotheses representing the meaning of what the 
user has said. INTERPRETATION relies on tier-3 
Advisors (essentially, mixtures of heuristics). 
Each Advisor constructs comments on speech 
recognition hypotheses. A comment is a seman-
tic concept (hypothesis) with an associated 
strength. More than one Advisor can vote for the 
same hypothesis. Confidence in any one hypo-
thesis is a function of votes, learned weights for 
Advisors, and comment strengths.  

In previous work, we showed that INTERPRE-
TATION Advisors can produce relatively reliable 
hypotheses given noisy ASR, with graceful de-
gradation  as recognition performance decreases 
(Gordon, Passonneau and Epstein, 2011). For 
example, at WER between 0.2 and 0.4, the con-
cept accuracy of the top hypothesis was 80%. 
That work left open how to decide whether to 
use the top INTERPRETATION hypothesis. Here 
FORRSooth learns how to assess its INTERPRE-
TATION confidence, and what grounding actions 
to take given different levels of confidence. 

Over the life of a FORRSooth SDS, INTER-
PRETATION produces hypotheses for the values 
of target concepts. FORRSooth records the mean 
and variance of the comment strengths for each 
INTERPRETATION hypothesis, and uses them to 
calculate INTERPRETATION’s merit. Merit 
represents FORRSooth’s INTERPRETATION con-
fidence as a dynamic, normalized estimate of the 
percentile in which the value falls. Merit compu-
tations improve initially with use of the SDS, 
and can then shift with the user population and 
the data. FORRSooth’s approach differs from 
supervised confidence annotation methods that 
learn a fixed confidence threshold from a corpus 
of human-machine dialogues (Bohus, 2007). 

The role of GROUNDING is to monitor the sys-
tem’s confidence in its interpretation of each us-
er utterance, to provide evidence to the user of 
its interpretation, and to elicit corroboration, fur-
ther information, or tacit agreement. To ground a 
target concept, FORRSooth considers one or 
more hypotheses for the value the user intended, 
and chooses a grounding action commensurate 
with its understanding and confidence.  

GROUNDING updates the agreement graph by 
adding grounding agreements to elicit confirma-
tions or rejections of target concepts, or to dis-
ambiguate among target concepts. A grounding 
agreement’s indicator target represents the ex-
pectation of a user response. Once a sufficiently 
confident INTERPRETATION hypothesis is bound 
to an indicator target, the grounding agreement 
executes side effects that strengthen or weaken 
the hypothesis being grounded. Recursive 
grounding (where the system grounds the user’s 
response to the system’s previous grounding ac-
tion) can result if the system’s expectation has 
not been met by the next system turn.  

GROUNDING makes two kinds of decisions, 
each with its own set of tier-3 Advisors. The 
first, commit bindings, indicates that the system 
is confident in the value of a target concept. In 
this experiment, decisions to commit to a value 
are irrevocable. The other kind of decision se-
lects the next grounding utterance for any target 
concepts that have not yet been bound. The deci-
sion to ground a target concept is made by tier-3 
Advisors that consider the distribution of hypo-
thesis merit, as well as the success or failure of 
the grounding actions taken thus far. 
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5 FX2 

FX2 is a FORRSooth SDS constructed for the 
current experiment. The ten FX2 INTERPRETA-
TION Advisors are described in (Gordon, 
Passonneau and Epstein, 2011). Here we de-
scribe its GROUNDING actions and Advisors.  

FX2 can choose among six grounding actions. 
Given high confidence in a single interpretation, 
it commits to the binding of a target value with-
out confirmation. At slightly lower confidence 
levels, it chooses to implicitly confirm a target 
binding, with or without a hedge (e.g., the tag 
question “right?”). At even lower confidence, 
the grounding action is to explicitly confirm. 
Given competing interpretations with similarly 
high confidence, the grounding action is to dis-
ambiguate between the candidates. Finally, FX2 
can request the user to repeat herself. 

We give two examples of the twenty-three 
FX2 grounding Advisors. Given two interpreta-
tion hypotheses with similar confidence scores, a 
disambiguation Advisor votes to prompt the user 
to disambiguate between them. The strength for 
this grounding action is proportional to the ratio 
of the two hypotheses’ scores. To avoid repeated 
execution of the same grounding action, one 
grounding Advisor votes against actions to re-
peat a prompt for the same target, especially if 
ASR confidence is low. In FX2, RSWL facili-
tates the use of multiple Advisors for INTERPRE-
TATION and GROUNDING by learning weights for 
them that reflect their relative reliability. We de-
scribe next how we collect training examples 
through an ablated wizard experiment. 

6 Experimental Design 

This experiment tests FX2’s ability to learn IN-
TERPRETATION and GROUNDING weights. In 
each dialogue, FX2 introduces itself, prompts 
the subject for her name or a book title, and then 
continues the dialogue until FX2 commits to a 

binding for the concept, or gives up. 
Four undergraduate native English speakers 

(two female, two male) participated. Speech in-
put and output was through a microphone head-
set. The PocketSphinx speech recognizer 
produced ASR output (Huggins-Daines et al., 
2006) with Wall-Street Journal dictation acous-
tic models adapted with ten hours of spontane-
ous speech. We built distinct trigram statistical 
language models for each type of agreement us-
ing names and titles from the Heiskell database. 

We collected three data sets, referenced here 
as baseline, wizard, and learning. Each had two 
agreement graphs: UserName seeks a grounded 
value for the patron's full name, and BookTitle 
seeks a grounded value for a book title. 120 di-
alogues were collected for each dataset.  

FX2 includes an optional wizard component. 
When active, the wizard component displays a 
GUI showing the current interpretation hypo-
theses for target concepts, along with their re-
spective merit. A screen shot for the wizard GUI 
appears in Figure 1. 

A wizard dialogue activates the wizard com-
ponent and uses INTERPRETATION as usual, but 
embeds a person (the wizard) in GROUNDING. 
The wizard’s purpose in this experiment is to 
provide training data for GROUNDING. After 
each user turn, the wizard makes two decisions 
based on data from the GUI: whether to consider 
any target as grounded, and which in a set of 
possible grounding actions to use next. The GUI 
displays what FX2 would choose for each deci-
sion; the wizard can either accept or override it. 

Ordinarily, a FORR-based system begins with 
uniform Advisor weights and learns more ap-
propriate values during its experience. Because 
correct interpretation and grounding are difficult 
tasks, however, we chose here to prime these 
weights and hypothesis merits using training ex-
amples collected during development. Develop-
ment data for INTERPRETATION included 200 
patron names, 400 book titles, and 50 indicator 

Figure 1. The wizard GUI displays hypotheses for a title from a user utterance. 
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concepts. ASR output for each item, along with 
its correct value, became a training example. 
Development data for GROUNDING came from 
20 preliminary wizard dialogues. The develop-
ment data also served to prime hypothesis merit. 

Each subject had 30 dialogues with the sys-
tem for the baseline dataset. For the wizard data 
set, FX2 used the same primed weights and me-
rits as the baseline. The wizard’s grounding ac-
tions and the target graphs on which they were 
based were saved as training examples. Weights 
for GROUNDING Advisors were learned from the 
development data training examples and the 
training examples saved from the wizard data set 
together before collecting the learned data set.  

7 Results and Discussion 

We assess system performance as follows. A 
true positive (tp) here is a dialogue that made no 
grounding errors and successfully grounded the 
root task agreement; a false positive (fp) made at 
least one grounding error (where the system en-
tirely misunderstood the user). A false negative 
(fn) occurs when the system gives up on the 
task. Precision is tp/(tp+fp), recall is tp/(tp+fn), 
and F is their mean. We measure WER using 
Levenshtein edit distance (Levenshtein, 1966). 
Because the audio data is not yet transcribed, we 
estimated average WER from the speaker's first 
known utterance (n=360). Overall estimated 
WER was 66% (54% male, 78% female).  

An ideal system engages in dialogues that 
have high precision, high recall, and economical 
dialogue length (as measured by number of sys-
tem turns). Table 1 reports that data. There is a 
significant increase in precision across the three 
data sets, a small corresponding decrease in re-
call, and an overall gain in F measure. The pre-
cision demonstrated by the system during 
dialogues in the learned data set is as good or 
better than that reported for our best embedded 
human wizards in full dialogue experiments 
(Ligorio, Epstein and Passonneau, 2010).  

Table 2 shows the distribution of the system's 

grounding actions for the three data sets. The 
grounding actions in the learned data set are 
similar to the wizard’s; clearly, RSWL learned 
well. Figure 2 illustrates an effective learned 
grounding behavior in which GROUNDING votes 
to abandon the current grounding strategy on 
turn 5 in favor of an approach designed to elicit 
an utterance from the user more likely to be 
processed correctly by the speech recognizer.  

Our experiment suggests that misunderstand-
ings due to ASR errors can be significantly re-
duced by a close integration between spoken 
language understanding resources and grounding 
behavior, together with the use of fine-grained 
confidence measures. Despite intentionally noisy 
ASR with an estimated average WER of 66%, 
FX2 did not experience a single misunderstand-
ing during 120 clarification dialogues after it had 
trained with RSWL on examples provided by an 
embedded wizard. After training, the system's 
actions closely resembled the wizard's, indicat-
ing that the system’s grounding strategies were 
sufficiently expressive to approximate the wi-
zard's actions. FX2 accommodates a variety of 
independent spoken language understanding re-
sources. It relies on RSWL and on merit, a self-
normalizing estimate of the confidence percen-
tile in which an interpretation hypothesis falls.  

Turn Utterance ASR 
1 What title would you like?  

2 Family and Friends family 
.friends. 

3 

I have two guesses. The first is 
Family and Friends. The 
second is Family Happiness. 
Is it either of these? 

 

4 The first one .nest. 
.first. 

5 Let’s try something else. Is the 
full title Family and Friends?  

6 Yes yes 

Condition Precision Recall F Length 
Baseline 0.65 0.78 0.72 4.36 
Wizard 0.89 0.76 0.83 4.05 
Learned 1.00 0.71 0.86 3.86 

Condition Conf Disambig Repeat Other 
Baseline 0.23 0.19 0.50 0.08 
Wizard 0.09 0.50 0.35 0.06 
Learned 0.15 0.52 0.32 0.01 

Table 1. Performance across three data sets.  Table 2. Distribution of grounding actions. 

 
Figure 2. Example of learned GROUNDING behavior. 
The rightmost column is the top ASR hypothesis. 
Periods delimit unconfident words in the ASR. 
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Abstract

We present a novel annotation scheme for
cross-cultural argumentation and persuasion
dialogues. This scheme is an adaptation of
existing coding schemes on negotiation, fol-
lowing a review of literature on cross-cultural
differences in negotiation styles. The scheme
has been refined through application to cod-
ing both two-party and multi-party negotia-
tion dialogues in three different domains, and
is general enough to be applicable to differ-
ent domains with few if any extensions. Di-
alogues annotated with the scheme have been
used to successfully learn culture-specific di-
alogue policies for argumentation and persua-
sion.

1 Introduction

In both cooperative and non-cooperative negotiation
the nature of the arguments used can be crucial for
the outcome of the negotiation. Argumentation and
persuasion are basic elements of negotiation. More-
over, different cultures favor different types of argu-
ments (Koch, 1983; Han and Shavitt, 1994; Zaharna,
1995; Brett and Gelfand, 2006). For example, it is
claimed that Western individualistic cultures favor
arguments based on logic over arguments that appeal
to emotions. On the other hand, people from East-
ern collectivistic cultures are more likely to use ar-
guments in which the beneficiary is not themselves.
Furthermore, Arab cultures tend to favor more indi-
rect ways of argumentation and expression (Koch,
1983; Zaharna, 1995).

∗Now at the University of Texas at San Antonio.

In order to analyze negotiation in detail, including
aspects such as persuasion, negotiation, and cross-
cultural differences, we have developed a novel
annotation scheme. General purpose annotation
schemes such as DAMSL (Core and Allen, 1997)
and DIT++ (Bunt, 2006) represent moves in the dia-
logue but do not capture enough details of the inter-
action to distinguish between different styles of per-
suasion and argumentation, especially cross-cultural
differences.

Our goal for developing this coding scheme is
two-fold. First, we aim to fill the gap in the litera-
ture of cross-cultural argumentation and persuasion.
To our knowledge this is the first annotation scheme
designed specifically for coding cross-cultural argu-
mentation and persuasion strategies. Previous work
on cross-cultural negotiation, e.g. Brett and Gelfand
(2006), has not focused on argumentation or per-
suasion in particular. Also, previous work on argu-
mentation, e.g. Prakken (2008), has not attempted to
capture cross-cultural differences in argumentation
and persuasion strategies. Second, we use this cod-
ing scheme to annotate negotiation dialogues to au-
tomatically learn argumentation and persuasion di-
alogue policies for different cultures (Georgila and
Traum, 2011).

2 Related Work

2.1 Non-Culture Related Argumentation and
Persuasion

The topic of negotiation has widely been studied
across various fields including social and behavioral
science (Kern et al., 2005), and computer science
(Sidner, 1994; Rosé and Torrey, 2004). Our spe-
cific focus is on the role of argumentation and per-
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suasion. Sycara (1990) studied the role of argumen-
tation in negotiation with regard to the role of ar-
guments in changing the decision process of the in-
terlocutor. Most attempts have focused on study-
ing the structure of argumentation and persuasion,
often using formal logic (Cohen, 1987; Prakken,
2008). Dung (1995) showed that argumentation can
be viewed as a special form of logic programming
with negation as failure. An argumentation scheme
is defined as a structure or template for forming an
argument. Schemes are necessary for identifying
arguments, finding missing premises, analyzing ar-
guments, and evaluating arguments (Pollock, 1995;
Katzav and Reed, 2004; Walton et al., 2008).

Recently, there has been some work on using ma-
chine learning techniques for automatically inter-
preting (George et al., 2007) and generating argu-
ments (Zukerman, 2001). Note also the work of Pi-
wek (2008) who performed a study on how argu-
ments can be presented as fictive dialogues. Finally,
there are a few persuasive dialogue systems, e.g.
Daphne (Grasso et al., 2000) and BIAS (Bayesian In-
teractive Argumentation System) (Zukerman, 2001).

2.2 Cross-Cultural Argumentation and
Persuasion

There is a vast amount of research on cultural ef-
fects on negotiation. Brett and Gelfand (2006) iden-
tify three aspects in cross-cultural negotiation: indi-
vidualism vs. collectivism, egalitarianism vs. hierar-
chy, and low context vs. high context communica-
tion. Typically Western individuals are individualis-
tic, egalitarian, and use low context communication
while Eastern individuals are collectivistic, hierar-
chical, and use high context communication.1

Although there has been a considerable amount of
work on building agents that can negotiate (Traum
et al., 2003; Rosé and Torrey, 2004), little has been
done towards building agents that can take into ac-
count culture aspects of negotiation (Cassell, 2009;
Paruchuri et al., 2009; Traum, 2009).

Our literature review on cross-cultural argumen-
tation and persuasion showed that there are com-
paratively few papers related to cross-cultural argu-
mentation and persuasion in dialogue. Most work
on cross-cultural studies is based on survey experi-

1In high-context cultures the listener must understand the
contextual cues in order to grasp the full meaning of the mes-
sage. In low-context cultures communication tends to be spe-
cific, explicit, and analytical.

ments rather than dialogue analysis. Below we sum-
marize the works that we were influenced by the
most.

Peng and Nisbett (1999) studied the way Chinese
vs. European-American people reason about con-
tradiction. By contradiction, here, we mean op-
posing pieces of information. Chinese individuals
adopt a dialectical or compromise approach by re-
taining basic elements of the opposing perspectives.
European-American people select one of the per-
spectives as correct and dismiss the opposing ones.

Koch (1983) linguistically analyzed several per-
suasive texts in contemporary Arabic in which there
was both repetition of form and repetition of con-
tent. She found that Arabs use repetition as a means
for persuasion. This strategy is called “presentation
as proof” or “argumentation by presentation”. Thus
in Arabic argumentation it is the presentation of an
idea that is persuasive, not the logical structure of
proof which Westerners see behind the words. Za-
harna (1995) examined how the Arab and American
cultures have two distinct perspectives for viewing
the role of language, for structuring persuasive mes-
sages, and for communicating effectively with their
audiences. For Arabs emphasis is on form over func-
tion, affect over accuracy, and image over meaning,
which is in line with the work of Koch (1983).

Finally, Cialdini’s work (1998) identified six prin-
ciples of persuasion: reciprocation (tendency to re-
turn favors), scarcity (associated with high value),
authority (tendency to follow authority figures), so-
cial proof (one is looking to the behavior of other in-
dividuals to determine her own actions), liking (one
tends to do things for people that she likes), and
commitment and consistency (one has difficulty to
reverse her commitments).

3 Our Annotation Scheme

We have developed a novel scheme for coding cross-
cultural argumentation and persuasion strategies.
This scheme is based on the literature review pre-
sented in section 2.2, as well as our own analysis of
three very different kinds of negotiation (section 4).
To develop this annotation scheme, we started by
adapting existing coding schemes on negotiation de-
veloped by Pruitt and Lewis (1975), Carnevale et al.
(1981), and Sidner (1994). We were also influenced
by the work of Prakken on argumentation and di-
alogue (2008), and the work of Cialdini (1998) on
persuasion (see section 2.2). Our annotation scheme
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was further refined by iteratively applying it to three
different negotiation domains.

In our coding scheme, we use three dimensions
for annotating an utterance: speech act, topic, and
response or reference to a previous utterance. We
have divided our codes for speech acts in categories.
Below we can see each category and the codes that
are included in it with explanatory examples, mostly
drawn from the florist-grocer dialogues described in
section 4.1.

3.1 Topic Tracking
start topic Let’s talk about the design.
end topic We are done with the design.
redirect topic We need to get back to the task.

3.2 Information Exchange
This category includes providing and requesting in-
formation, broken down into three kinds of informa-
tion that are about the negotiation (priority, value,
preference) as well as a fourth category (fact) which
can be further subdivided, depending on the issue
being negotiated (e.g. for the toy domain in sec-
tion 4.3, there are specializations for origin, func-
tion, and utility of the toy).

request info.priority Which issue is the most impor-
tant to you?

request info.value How much money will I get if I
give you this?

request info.preference What do you think about
the blue color?

request info.fact What will happen to the flowers if
the temperature gets higher?

provide info.priority I care most about tempera-
ture.

provide info.value You get $50 more if you agree to
lower the temperature by one degree.

provide info.preference I like design A.
provide info.fact (just a simple fact, neither prefer-

ence nor priority nor value) So one of them will
be yours and one mine.

3.3 Information Comparison
note similarities We both need the temperature to

be relatively low.
note differences It seems that you want design A

and I prefer design C.
project othersposition So you want an equal distri-

bution of rent.

3.4 Clarifications/Confirmations
request clarification I am not getting any more

money with more customers coming in?
provide clarification Not necessarily.
request confirmation Did you say 68 degrees?
self clarification (when the speaker tries to expand

on her ideas) Because when I thought temper-
ature, I was thinking temperature for the prod-
ucts, not temperature for the atmosphere.

3.5 Offer
We use the following format for an offer:
offer.〈type〉.〈beneficiary〉.〈directness〉. For a “re-
quest offer”, generally only the directness field is
used.

Type can take the following values: “standard”,
“tradeoff”, “compromise”, “concession”, and “re-
traction”. The difference between “compromise”
and “concession” is subtle. “Concession” means
that “I don’t really want to do this but I’ll do it be-
cause there is no other way”. “Compromise” is like
splitting the difference and it does not imply that the
speaker does not like the option.

Beneficiary can be “me”, “you”, “both”, “else”,
or “null”. By beneficiary we mean who the offer or
argument would be good for (see also section 3.7).
So for example, if one’s argument is “it will be too
cold for the customers” then “beneficiary=else”.

Directness can be “direct” or “indirect”. An of-
fer or argument is “indirect” when it needs to be in-
ferred. For example, when the grocer says “well let’s
say there are lots of other local florists competing for
your prices”, she means that this is why advertising
is important, but this needs some kind of inference,
so the argument is indirect.

Below we can see examples of various types of
offers (the beneficiary and directness dimensions are
omitted for brevity).

offer.standard How about 62 degrees?
offer.tradeoff (between different issues) I’ll agree

on 64 degrees if you agree on design A.
offer.compromise Well should we just say 50/50?
offer.concession There is no other way so I agree

on 64 degrees.
offer.retraction I changed my mind, I don’t want de-

sign A.
request offer What temperature do you suggest?
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3.6 General Reaction
accept Okay, 62 degrees is fine. or Yes, I said 62

degrees.
reject 62 degrees is too low for me. or No, I didn’t

say that.
acknowledge I see.

Note that “accept” is used for accepting offers and
confirmation requests but also for agreement, for ex-
ample, when one interlocutor agrees with the argu-
ment of the other interlocutor. “Reject” is used for
rejecting offers and confirmation requests but also
for disagreement.

3.7 Argumentation
An argument follows the following format:
〈role〉.〈type〉.〈beneficiary〉.〈directness〉. The role
can be “provide argument”, “attack argument”,
“rebut argument”, “undercut argument”, and “ac-
cept defeat”. Beneficiary and directness are defined
as in section 3.5. Below we can see examples of dif-
ferent argument roles.

provide argument The temperature must be low for
my flowers to stay fresh.

attack argument (without necessarily providing a
counter-argument) What you say does not make
sense.

rebut argument (provide a counter-argument) Yes,
but my customers wouldn’t want to shop in such
a low temperature.

undercut argument (invalidate an argument) You
don’t need a low temperature in the shop. Your
flowers can be refrigerated to stay fresh.

accept defeat You are right, I could use a refriger-
ator.

We have identified the following argument types:
ideology (what is “right”), logic, fairness, prece-
dent, God’s will, promise for the future, honor, duty,
identity, authority, refer to relationship, appeal to
feelings, social responsibility, assurance (abstract
promises), stories/metaphors, ordinance, design
(aesthetics and functionality), effect/consequence,
cost/means. These types are mostly inspired by our
literature review (see section 2.2), as well as our ob-
servations in the domains that we used for develop-
ing the annotation scheme.

An example logical argument is “my flowers need
low temperatures to stay fresh”. An example argu-
ment that appeals to fairness is “I helped you last

time so it’s fair to help me now”. Arguments that
appeal to logic are more likely to appear in indi-
vidualistic cultures. Arguments that appeal to duty,
honor, social responsibility, ideology, and fairness
are more common in collectivistic cultures. Sto-
ries/metaphors are very common in Arab cultures
(Koch, 1983; Zaharna, 1995).

3.8 Other Speech Acts
repetition I prefer design A. I said design A.
heavy commitment $50 is all I can give, not a cent

more.
weak commitment Let’s assume that we agree on

this and continue.
meta task discussion (try to figure out the task) You

are the grocer and I am the florist.
self contradiction Speaker A: I like design C.

Speaker A (later): Design C is terrible.
show concern I understand that this solution would

not be good for you.
putdown You are stubborn.
show frustration I’m really sick and tired of this.
threat If you don’t accept my offer I won’t do busi-

ness with you again.
miscellaneous Yes, flowers are beautiful.

4 Applications of the Annotation Scheme
on Various Corpora

In order to prove its generality we applied this cod-
ing scheme to three different negotiation domains.

4.1 Florist-Grocer Domain
The first domain was dialogues between American
undergraduates playing the role of a florist and a gro-
cer who share a retail space. The dialogues were
collected by Laurie R. Weingart, Jeanne M. Brett,
and Mary C. Kern at Northwestern University. The
florist and the grocer negotiate on four issues: the
design of the space, the temperature, the rent, and
their advertising policy. Using the above coding
scheme we annotated 21 dialogues. Example anno-
tations of speech acts are given in Figure 1, as well
as the examples in section 3, above.

The final scheme was the result of several cy-
cles of dialogue annotations and revisions of the
coding manual. We used the florist-grocer annota-
tions to measure inter-annotator reliability between
four annotators. In three cycles of annotation, we
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measured agreement on speech acts only and com-
plex speech acts were unified, for example, all the
“provide argument” are treated as a single category.
Krippendorff’s α (Krippendorff, 1980) rose from
0.375 to 0.463 to 0.565.2

After analyzing these results we noticed that the
main problems in terms of inter-annotator relia-
bility were the confusion between “accept” and
“acknowledge” (e.g. the utterance “yeah” could
be either, depending on the context), and the
confusion between “provide argument.logic”, “pro-
vide argument.effect”, and “provide info”. So we
revised the manual as follows: in order for some-
thing to be annotated as “accept” vs. “acknowledge”
we need to look forward in the dialogue; if an ar-
gument’s type is both “logic” and “effect” then “ef-
fect” supersedes; “provide info” is just provision of
a piece of information with no argumentative role.

4.2 SASO Domain

In this second domain (Traum et al., 2008), we an-
notated role-play dialogues in English between a US
Army captain and a Spanish doctor in Iraq. We have
annotated five dialogues so far. An example is given
in Figure 2.

4.3 Toy-Naming Domain

Finally, in the third domain groups of four people
negotiate in English, Spanish, and Arabic about how
to name a toy. The dialogues were part of the UTEP-
ICT Cross-Cultural dialogue corpus (Herrera et al.,
2010). We have annotated five dialogues in English
and three in Arabic so far, and are currently work-
ing on Spanish. An example is given in Figure 3.
The “redirect topic” act was added based on this do-
main (to cover cases where one person consciously
redirects the group’s attention to the task when they
drift off-topic for an extended period of time). Also,
we added three domain-specific specializations of
“provide info.fact” and “request info.fact”: “pro-
vide info.fact.function” (discussion about what one
can do with the toy or things that it does or has, e.g.
a secret compartment); “provide info.fact.origin”
(where the toy was manufactured or bought); “re-
quest info.fact.utility” (a person prompts the others
for ideas or examples of how the toy could be used
and marketed).

2Krippendorff’s α is 0.460 in the first cycle if we exclude
one of the annotators who annotated only 72% of the items.

5 Discussion

We believe that this annotation scheme can be used
for analyzing and modeling the fine differences of
argumentation and negotiation styles, cross-task,
and cross-culture, as well as providing a basis for
artificial agents to engage in differentiated negotia-
tion behavior.

Our first use of the annotated florist-grocer di-
alogues was for learning dialogue policies using
simulated users and Reinforcement Learning (RL)
(Georgila and Traum, 2011). To facilitate RL we
had to make a few simplifications, for example, fo-
cus only on the temperature issue. In particular, we
built policies for individualistic vs. altruistic florists
(and grocers). Our results in simulation were consis-
tent with our reward functions, i.e. the florist individ-
ualist agreed on low temperatures while interacting
with the grocer altruist, the florist altruist agreed on
high temperatures vs. the grocer individualist, etc.
Details are given in (Georgila and Traum, 2011).

6 Conclusion

We presented a novel annotation scheme for cross-
cultural argumentation and persuasion dialogues.
This scheme is based on a review of literature on
cross-cultural argumentation and persuasion, and
adaptation of existing coding schemes on negotia-
tion. Our annotation scheme is also based on our ob-
servations from its application to coding both two-
party and multi-party negotiation dialogues in three
different domains, and is general enough to be ap-
plicable to different domains with minor or no mod-
ifications at all. Furthermore, dialogues annotated
with the scheme have been used to successfully learn
culture-specific dialogue policies for argumentation
and persuasion.
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C. Rosé and C. Torrey. 2004. DReSDeN: Towards a
trainable tutorial dialogue manager to support negoti-
ation dialogues for learning and reflection. In Proc. of
ITS.

C.L. Sidner. 1994. An artificial discourse language for
collaborative negotiation. In Proc. of the National
Conference on Artificial Intelligence.

K. Sycara. 1990. Persuasive argumentation in negotia-
tion. Theory and Decision, 28(3):203–242.

D. Traum, J. Rickel, S. Marsella, and J. Gratch. 2003.
Negotiation over tasks in hybrid human-agent teams
for simulation-based training. In Proc. of AAMAS.

D. Traum, S. Marsella, J. Gratch, J. Lee, and A. Hartholt.
2008. Multi-party, multi-issue, multi-strategy negotia-
tion for multi-modal virtual agents. In Proc. of IVA.

D. Traum. 2009. Models of culture for virtual human
conversation. In Proc. of HCI International.

D. Walton, C. Reed, and F. Macagno. 2008. Argumenta-
tion Schemes. Cambridge University Press.

R.S. Zaharna. 1995. Understanding cultural preferences
of Arab communication partners. Public Relations Re-
view, 21(3):241–255.

I. Zukerman. 2001. An integrated approach for generat-
ing arguments and understanding rejoinders. In Proc.
of the International Conference on User Modeling.

277



Appendix

Florist: How does that work for you? (request info.preference)
Grocer: Well, personally for the grocery I think it is better to have a higher temperature. (pro-
vide argument.logic.me.indirect)
Grocer: Just because I want the customers to feel comfortable. (elaborate)
Florist: Okay. (acknowledge)
Grocer: And also if it is warm, people are more apt to buy cold drinks to keep themselves comfortable and
cool. (elaborate)
Florist: That’s true. (accept)
Florist: But what about your products staying fresh? Don’t they have to stay fresh or otherwise? (re-
but argument.logic.you.direct)

Figure 1: Example annotated dialogue with speech acts in the florist-grocer domain.

Captain: I think if you just made the compromise, we could provide so much for you if you just agreed to
let us move the clinic. (offer.standard.you.direct)
Doctor: Look I need to get back to my patients. They’re dying now. They’re dying. (show frustration)
Captain: They wouldn’t be dying if you let us move the clinic to the US Army base with the additional
medical support. (provide argument.logic.else.direct)
Doctor: Well they wouldn’t be dying if I was there. (rebut argument.logic.else.direct)
Doctor: Why don’t you provide us with additional medical support and get out of our lives? (re-
quest offer.direct)

Figure 2: Example annotated dialogue with speech acts in the SASO domain.

Speaker 3: Blue pal. (offer.standard.null.direct)
Speaker 4: Blue pal. (acknowledge)
Speaker 2: Blue pal. (acknowledge)
Speaker 4: That sounds pretty good. I actually like the idea. (accept)
Speaker 1: What if it’s a different color? (provide argument.logic.null.direct)
Speaker 2: Yeah, what if it’s like pink and purple. . . (elaborate)
Speaker 4: Uh I like blue pal. I think that one’s pretty cool. . . (provide info.preference)
Speaker 2: Something pal like your pal. (offer.standard.null.direct)
Speaker 4: Blue pal the singing singing pal the singing pal the singing and dancing buddy. The beast you
don’t want to get angry. (offer.standard.null.direct)
Speaker 2: That’s too long. (reject)
Speaker 2: It has to be short. (provide argument.logic.null.direct)
Speaker 1: Furball. (offer.standard.null.direct)
Speaker 4: A short name... Actually a good really long name might work because everything out there is
short... (rebut argument.logic.null.direct)

Figure 3: Example annotated dialogue with speech acts in the toy-naming domain.
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Abstract

We present an approach to performing auto-
mated evaluations of pipeline architectures in
natural language dialogue systems. Our ap-
proach addresses some of the difficulties that
arise in such automated evaluations, includ-
ing the lack of consensus among human an-
notators about the correct outputs within the
processing pipeline, the availability of multi-
ple acceptable system responses to some user
utterances, and the complex relationship be-
tween system responses and internal process-
ing results. Our approach includes the devel-
opment of a corpus of richly annotated tar-
get dialogues, simulations of the pipeline pro-
cessing that could occur in these dialogues,
and an analysis of how system responses vary
based on internal processing results within the
pipeline. We illustrate our approach in two im-
plemented virtual human dialogue systems.

1 Introduction

Natural language dialogue systems are typically im-
plemented as complex modular systems, with a
range of internal modules performing tasks such
as automatic speech recognition (ASR), natural
language understanding (NLU), dialogue manage-
ment (DM), natural language generation (NLG),
and speech synthesis (TTS). A common design is
for systems to adopt a pipeline architecture. In a
pipeline, each user utterance is processed in a se-
ries of successive processing steps, with the output
of each module serving as the input of the next mod-
ule, until the system’s response is determined.

∗Now at Saarland University, Germany.

While there are many approaches to dialogue sys-
tem evaluation (see e.g. (Walker et al., 1997; Eck-
ert et al., 1997; Walker, 2005)), in many ways, the
primary data for assessing the performance of a di-
alogue system comes from the collection of live in-
teractive dialogues between an implemented system
and members of its intended user population. Yet,
live dialogue-based evaluation suffers from a num-
ber of limitations and drawbacks. Each dialogue set
can be expensive and time-consuming to collect, and
may only reflect a specific version of a system under
active development. Additional effort is also gener-
ally necessary to identify specific system responses
as problematic or unacceptable. Further annotation
and analysis is then necessary to diagnose and pin-
point the cause of the problematic responses, so that
the relevant pipeline module(s) may be improved.

In this paper, we present and discuss an approach
to performing automated evaluations of pipeline ar-
chitectures. Our approach involves the development
of a corpus of annotated target dialogues, starting
from Wizard-of-Oz data. Our automated evaluation
assesses the support for these target dialogues in a
pipeline system architecture. It is not designed as a
substitute for live system evaluations, but rather as
a complement to them which may help to alleviate
some of these challenges to understanding system
performance and streamlining development. In par-
ticular, unlike the PARADISE framework (Walker
et al., 1997), which aims to evaluate dialogue agent
strategies — by relating overall user satisfaction to
various other metrics (task success, efficiency mea-
sures, and qualitative measures) — our approach
takes the agent’s dialogue strategy for granted (in
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Figure 1: Simplified pipeline architecture.

the form of a set of target dialogues that exemplify
the desired strategy), and instead zooms in and aims
to directly evaluate the dialogue system’s module
pipeline. Specifically, our approach quantifies the
ability of the pipeline to replicate the processing
steps needed to reproduce a set of target responses.
In our analysis, we place a special emphasis on the
possible lack of consensus among human annotators
about what the processing results should be. We do
not aim to further analyze the system’s live dialogue
behavior in terms of user satisfaction, task success,
or other global measures.

2 Research Setting

The work presented in this paper has been designed
to support the dialogue behavior of two virtual hu-
man systems, the SimCoach and Tactical Ques-
tioning (TACQ) systems. SimCoach (Rizzo et al.,
2011) is an on-going project aiming at empower-
ing military personnel and their significant others
with online healthcare assistance for Post-Traumatic
Stress Disorder (PTSD), depression, and family-
related problems. The SimCoach character encour-
ages users to talk about any concerns or problems
they may have. TACQ (Gandhe et al., 2008) is de-
signed to support simulation and training for tactical
questioning skills, and provides virtual humans who
have information but will not answer certain ques-
tions unless the user cooperates by agreeing to their
requests, offering promises in their favor, and so on.
In this work, we have developed target dialogues for
the Amani character, who has been an eyewitness of
a recent shooting incident.

For simplicity, in the experiments reported in this
paper, we have used simplified versions of these two
dialogue systems. The simplification removes ASR
from TACQ,1 and removes NLG and TTS from both
systems. This yields a simple two-module pipeline
architecture that we depict in Figure 1. Note that
the input to NLU is a typed English utterance, and

1SimCoach always uses an instant messaging style typed in-
put interface.

the output of the NLU module (also the input to the
DM module) is a speech act representation. The out-
put of the DM, which we treat here as the system’s
response to the user, is also a speech act represen-
tation. Both of these systems use statistical classi-
fication models for NLU (Leuski and Traum, 2010;
Sagae et al., 2009), and finite state machine models
for DM (Gandhe et al., 2008; Rizzo et al., 2011).

3 Target Dialogues

Target dialogues are annotated versions of dialogues
a system designer would like the system to support.

3.1 Developing Target Dialogues

Wizard-of-Oz (WoZ) and role play dialogues pro-
vide valuable data to designers of dialogue systems,
especially in the form of natural dialogue data and
insights into human-level performance and strate-
gies for the specific dialogue task. However, in prac-
tice, system builders may not be able to implement
all of the strategies and competences of the wizards
or role players, and simplifications may be needed.

SimCoach target dialogues were developed from
a collection of 10 WoZ dialogues in which clini-
cians (wizards) and veterans (users) interacted with
each other. We also built Amani target dialogues for
TACQ starting from 19 WoZ dialogues. Each user
utterance and wizard’s response was annotated with
a target NLU speech act and one or more target DM
speech acts (i.e., the system response).2 The 10 Sim-
Coach target dialogues contain 376 user utterances
and 547 target system response speech acts. The 19
Amani target dialogues contain 317 user utterances
and 354 target system response speech acts. For ex-
cerpts of the SimCoach and Amani target dialogues,
see Tables A.1 and A.2 in the Appendix.

To create our target dialogues, we adjusted the
WoZ dialogues to reflect a number of system de-
sign limitations as well as wizard deviations from
the desired dialogue policy. These changes included
removing unsupported wizard utterances and sub-
dialogues, inserting or reordering system responses
due to wizard mistakes, and introducing clarification
subdialogues for unsupported user utterances.

2For both SimCoach and TACQ, the DM may generate one
or multiple speech acts in response to a user utterance.
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3.2 Formalizing Target Dialogues
Let P = 〈p1, ..., pk〉 be the pipeline in a system con-
taining k modules. We use St to denote the pipeline
state, which includes the internal states of any mod-
ules that maintain an internal state, at time t.

For a user input xt that occurs at time t, when
the pipeline state is St, we write A(P, St, xt) =

〈y1, ..., yk〉 to represent the actual sequence of out-
puts from the pipeline modules, where yi is the out-
put of module pi for i = 1...k.

For a variety of reasons, these actual module out-
puts may differ from the target module outputs for
this input and pipeline state. Let T (P, St, xt) =

〈z1, ..., zk〉 be the target pipeline response to input
xt, i.e. the sequence of target outputs from each of
the pipeline modules.

A target dialogue D = 〈(x1, T1), ..., (xN , TN )〉,
then, is a sequence of user inputs and corresponding
target pipeline responses. Specifically, for time t =
1...N , Tt = T (P, S∗t , xt) = 〈z1, ..., zk〉 is the target
pipeline response to input xt, where S∗t is the target
pipeline state at each time t.

An important detail is that the target pipeline state
S∗t is the state that the pipeline would be in if all
previous user inputs had triggered exactly the tar-
get pipeline responses. Formally, let S∗1 be the ini-
tial state of the dialogue system pipeline. Then, let
S∗t+1 = update(S∗t , xt, Tt), where we use an update
function to capture the effect on the internal state of
the pipeline of the target response Tt to xt. Note that
the target pipeline state may differ from the actual
pipeline state, if an actual pipeline response differs
from the target pipeline response. For example, if
a previous user utterance was misunderstood by an
NLU module, then at run-time, the actual informa-
tion state inside the DM module would reflect this
earlier misunderstanding, while the target pipeline
state would include a corrected version of the in-
formation state. Using corrected information states,
and corrected pipeline states more generally, enables
the utterances within a target dialogue to be consid-
ered independently in a pipeline evaluation.3

We can say that a pipeline P is compatible with
3It also highlights how our pipeline evaluation results do not

translate directly into performance metrics for live dialogues,
as deviations and errors in system responses in live dialogues
may affect the subsequent interaction in ways that are difficult
to predict and deviate substantially from the target dialogues.

User Utterance NLU Speech Act DM Response
Having difficulty
sleeping... bad
dreams.. Wake up
a few times every
night

answer.observable.
sleeping-problems

question.
depression-pre-
check-list.1

answer.observable.
wakeup-generic

question.
depression-pre-
check-list.1

answer.observable.
wakeup-nightmare

question.
ptsd-pre-checklist.1

Table 1: Sample of Different NLU Speech Acts

a target dialogue D = 〈(x1, T1), ..., (xN , TN )〉 iff
A(P, S∗t , xt)[k] = Tt[k] for all t = 1...N . In other
words, for every user utterance, the actual system
response, as emitted by the last (kth) module in the
pipeline, matches the target system response.4 Both
the SimCoach and TACQ pipelines are compatible
in this sense with their target dialogues (Section 3.1).

3.2.1 Addressing the Lack of Consensus
A considerable challenge in the improvement of

pipeline performance is the lack of consensus about
the desired internal processing steps: different sys-
tem designers or human annotators often disagree
about what the intermediate results should be. For
example, in a system such as TACQ or SimCoach,
there may be substantial disagreement among hu-
man annotators about the correct NLU output for
each utterance; see e.g. (Artstein et al., 2009). Table
1 exemplifies 3 different possible NLU speech act
annotations for a user utterance to SimCoach. Note
that for the first two, the DM outputs the same sys-
tem response (which incidentally is the target re-
sponse). However, the third speech act yields a
different response. In our automated evaluations,
rather than trying to resolve all disagreements, our
approach is to characterize the frequency with which
these kinds of phenomena occur in the pipeline.

To support this analysis, for a target dialogue
D = 〈(x1, T1), ..., (xN , TN )〉, we assume then that
each input xt is associated not only with the target
pipeline response Tt, but also with a collection of an-
notations At = 〈a1, ..., ak〉. These annotations may
be derived from a number of independent sources

4A technical detail: for both SimCoach and TACQ, the DM
sometimes emits multiple speech acts; to accommodate these
cases, for now we treat the target DM output as a set of speech
acts A, and count each actual output DM speech act as an in-
dependent match if it matches any speech act in A (ignoring
order). A more complex matching scheme could be employed.
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S = {s1, ..., sl}, and we write ai(s) = wi to denote
the correct output wi for module pi according to an-
notation source s ∈ S . These independent “anno-
tation sources” might be human annotators, or com-
peting module algorithms, for example.

We can then capture the hypothetical effect of us-
ing annotation source s in place of some module pi

within the pipeline. To do so, we consider the effect
of replacing the output of module pi with ai(s), and
using this as the input to subsequent modules in the
pipeline. Let P k

i+1 = 〈pi+1, ..., pk〉 be the remainder
of the pipeline, starting at module pi+1. For input
xt, we can notate the hypothetical pipeline response,
if module i were replaced by annotation source s,
by H(P k

i+1, S
∗
t , ai(s)) = 〈yi+1, ..., yk〉. We will write

h
s\i
t for the hypothetical system response to the user

input at time t, if source s were substituted for the
output of module i: h

s\i
t = H(P k

i+1, S
∗
t , ai(s))[k] =

yk. For a target dialogue of length N , we can sum-
marize the frequency with which the hypothetical
pipeline response would match the target system re-
sponse by a performance measure:

Pstrict =
1

N

N∑
t=1

match(h
s\i
t , Tt[k])

where match(x, y) = 1 if x = y and 0 otherwise.5

A second form of lack of consensus issue is the
existence of multiple acceptable system responses
within a system. Returning to the example in Ta-
ble 1, system designers might decide that either of
the two system responses here would be accept-
able. In some cases, actual NLU outputs which dif-
fer from the target NLU output will simply result in
the system giving alternative acceptable system re-
sponses, as in this example. In other cases, they may
lead to unacceptable system responses.

We measure the frequency with which these phe-
nomena occur as follows. For a target dialogue
D = 〈(x1, T1), ..., (xN , TN )〉, let each input xt be
associated with a set Rt = {r1, ..., rm} of system
responses which differ from the target system re-
sponse Tt[k], but are also acceptable in design terms.
Given these alternative responses, we can then de-
fine a more permissive performance measure:

Pmultiple =
1

N

N∑
t=1

match(h
s\i
t , Tt[k], Rt)

5This strict agreement measure can be easily generalized to
measure the proportion of matches in a set of target dialogues.

NLU
speech act
source

Percent of NLU
speech acts

identical to...
(N=317)

Percent of system
response speech

acts identical to...
(N=354)

the
target
NLU
speech
act
(target)

the target
or other
acceptable
NLU
speech act
(humanall)

a target
system
response
speech
act

a target or
acceptable
system
response
speech act

target 100% 100% 99.4% 100%
human1 79.3% 95.4% 84.2% 88.4%
human2 76.7% 99.7% 86.7% 93.8%
human3 59.3% 90.2% 69.6% 78.8%
NPCEditor 42.3% 50.5% 55.3% 57.4%

Table 2: TACQ Amani Evaluation Results

where

match(h
s\i
t , Tt[k], Rt) =


1 if h

s\i
t = Tt[k]

1 if h
s\i
t ∈ Rt

0 otherwise

.

4 Results

4.1 Annotations and Results for TACQ
We collected a range of annotations for the 19 TACQ
Amani target dialogues, including 6 sources of NLU
speech acts for the 317 user utterances: target (the
target NLU speech act for each utterance); 3 inde-
pendent human annotations of the best NLU speech
act for each utterance; humanall (a set containing
all of the alternative acceptable NLU speech acts
for each utterance, according to the same single re-
searcher who prepared target); and NPCEditor, the
NLU speech act output from NPCEditor (Leuski and
Traum, 2010), the NLU module for TACQ.

We analyzed the effect of differing NLU speech
act sources on the responses given by the system.
We present the results in Table 2. (For a de-
tailed processing example, see Table A.2 in the Ap-
pendix.) The first (leftmost) column of numbers
shows the percentage of NLU speech acts from each
source that are identical to the target NLU speech
act. These results highlight how human annotators
do not always agree with each other, or with the
target. The agreement among the human annota-
tors themselves, measured by Krippendorf’s alpha
(Krippendorff, 2007) is 0.599 (see also (Artstein et
al., 2009)). In the second column of numbers, we
tabulate the frequency with which the NLU speech
acts are present in humanall. While these numbers
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are higher, they do not reach 100% for the human
annotators, suggesting that a single annotator is un-
likely to be able to circumscribe all the NLU speech
acts that other annotators might find acceptable.

Despite the frequent disagreements among human
annotators, this evaluation shows that the impact on
the target system responses is less than might be ex-
pected. In the third column of numbers, we calculate
Pstrict which measures the effect of using each of
NLU sources, in place of the NLU module’s actual
output, on the pipeline’s ability to produce the tar-
get response. As the table implies, the pipeline often
produces the target system response (third column)
even when the NLU source disagrees with the target
(first column). Indeed, for all the NLU sources ex-
cept for target, the pipeline is significantly more
likely to produce the target system response than the
NLU source is to produce the target NLU speech act
(Wilcoxon test, p < 0.001 for each source).

We also calculate Pmultiple (last column) which
measures the effect of using each NLU source on
the pipeline’s ability to produce either the target or
any other acceptable system response. As the ta-
ble shows, the actual system responses are often ac-
ceptable when they differ from the target responses.
Although this effect seems weaker for NPCEditor,
Wilcoxon tests reveal that for every source other
than target, the differences between Pstrict and
Pmultiple are significant at p < 0.005. This evalu-
ation confirms that the pipeline is significantly more
likely to deliver an acceptable system response than
a target response, and helps quantify to what ex-
tent NLU outputs that differ from the target remain
problematic for the pipeline performance.

4.2 Annotations and Results for SimCoach
We gathered a set of annotations for the 10 Sim-
Coach target dialogues, including 3 sources of NLU
speech acts for the 376 user utterances: target,
human1, and mxNLU (the NLU speech act output
from mxNLU (Sagae et al., 2009), the NLU mod-
ule for SimCoach). We present the evaluation re-
sults in Table 3. As the table shows, our indepen-
dent human annotator often disagreed with the target
NLU speech act. Despite the 72.1% agreement rate,
the system’s response to the human NLU speech act
agreed with the target response 93.3% of the time.

In comparison, mxNLU shows somewhat higher

NLU speech
act source

NLU speech acts
identical to target
(N = 376)

System response
speech acts identical
to target (N = 547)

target 100% 100%
human1 72.1% 93.3%
mxNLU 75.3% 91.1%

Table 3: SimCoach Evaluation Results

agreement (75.3%) with the target NLU annotation.
While this might at first suggest “super-human”
NLU performance, in reality it is because the target
NLU annotation was constructed in very close con-
sultation with the training data for mxNLU.6 Despite
showing higher agreement with target NLU speech
acts, the system responses were not more likely to
match the target system responses with mxNLU.
The explanation is that disagreements for mxNLU
were more serious, reflecting more misunderstand-
ings and failures to understand than occur with a hu-
man annotator, and more deviations from the target
responses. This highlights the value of looking be-
yond the performance of individual modules.

5 Conclusions and Future Work

We have presented an approach to performing au-
tomated evaluations of pipeline architectures, and
demonstrated its application in two implemented
virtual human dialogue systems. The pipeline eval-
uation provided several insights into the current
pipeline performance, including what performance
would be attainable if human-level NLU were possi-
ble. In future work, we would like to expand beyond
our simplified two-module pipeline, and investigate
the connection between our automated pipeline eval-
uations and performance in live dialogues.
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Appendix

t User Utterance (xt) Target NLU Speech
Act (t1)

Target System
Response (t2)

Textual Version of Target System Response

9 my husband seems distant,
and we have been arguing a
lot more lately

answer.observable.
family-problem

question.bio-info.
has-kids

Does he have children?

10 yes, 2 answer.yes question.family-
pre-checklist.6

In his family, do people collaborate together to
find the best way to solve problems?

Table A.1: Excerpt from a SimCoach Target Dialogue.

t User Utterance (xt) Source of NLU
Speech Act

NLU Speech Act (gloss) System Response Speech Acts (gloss)

1 hi amani. NPCEditor hello hello
target NLU hello hello

2 i wanted to talk to you about
the recent shooting that
occurred

NPC Editor Tell me more about the_ incident location of the_incident is the_shop
target NLU Is amani willing to talk? amani is willing to talk

3 do you know who was
responsible?

NPC Editor What is perpetrator of the_ incident ? perpetrator of the_incident is Saif
target NLU What is name of strange_man ? player should offer ’give-safety’

Table A.2: Excerpt from a TACQ target dialogue, including pipeline module processing.
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Abstract

Linguistic markers of personality traits have
been studied extensively, but few cross-
cultural studies exist. In this paper, we eval-
uate how native speakers of American English
and Arabic perceive personality traits and nat-
uralness of English utterances that vary along
the dimensions of verbosity, hedging, lexical
and syntactic alignment, and formality. The
utterances are the turns within dialogue frag-
ments that are presented as text transcripts to
the workers of Amazon’s Mechanical Turk.
The results of the study suggest that all four di-
mensions can be used as linguistic markers of
all personality traits by both language commu-
nities. A further comparative analysis shows
cross-cultural differences for some combina-
tions of measures of personality traits and nat-
uralness, the dimensions of linguistic variabil-
ity and dialogue acts.

1 Introduction

English has been used as a lingua franca across the
world, but the usage differs. The variabilities in En-
glish introduced by dialects, cultures, and non-native
speakers result in different syntax and words ex-
pressing similar meanings and in different meanings
attributed to similar expressions. These differences
are a source of pragmatic failures (Thomas, 1983):
situations when listeners perceive meanings and af-
fective attitudes unintended by speakers. For exam-
ple, Thomas (1984) reports that usage of Illocution-
ary Force Indicating Devices (IFIDs, such as “I warn
you”, (Searle, 1969)) in English by native speak-
ers of Russian causes the speakers to sometimes

appear “inappropriately domineering in interactions
with English-speaking equals.” Dialogue systems,
just like humans, may misattribute attitudes and mis-
interpret intent of user’s utterances. Conversely, they
may also cause misattributions and misinterpreta-
tions on the user’s part. Hence, taking into account
the user’s dialect, culture, or native language may
help reduce pragmatic failures.

This kind of adaptation requires a mapping from
utterances, or more generally, their linguistic fea-
tures, to meanings and affective attributions for each
of the target language communities. In this paper
we present an exploratory study that evaluates such
a mapping from the linguistic features of verbosity,
hedging, alignment, and formality (as defined in
Section 3.1) to the perceived personality traits and
naturalness across the populations of native speak-
ers of American English and Arabic.

Estimating the relationship between linguistic
features and their perception across language com-
munities faces a number of methodological difficul-
ties. First, language communities shall be outlined,
in a way that will afford generalizing within their
populations. Defining language communities is a
hard problem, even if it is based on the “mother
tongue” (McPherson et al., 2000). Next, linguistic
features that are potentially important for the adap-
tation must be selected. These are, for example,
the linguistic devices that contribute to realization of
rich points (Agar, 1994), i.e. the behaviors that sig-
nal differences between language communities. To
be useful for dialogue system research, the selected
linguistic features should be feasible to implement in
natural language generation and interpretation mod-
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ules. Then, a corpus of stimuli that span the variabil-
ity of the linguistic features must be created. The
stimuli should reflect the context where the dialogue
system is intended to be used. For example, in case
of an information-giving dialogue system, the stim-
uli should include some question-answer adjacency
pairs (Schegloff and Sacks, 1973). Finally, scales
should be chosen to allow for scoring of the stimuli
with respect to the metrics of interest. These scales
should be robust to be applied within each of the lan-
guage communities.

In the remainder of this paper, we describe each of
these steps in the context of an exploratory study that
evaluates perception of English utterances by native
speakers of American English and Arabic. Our ap-
plication is an information-giving dialogue system
that is used by the robot receptionists (roboception-
ists) in Qatar and the United States (Makatchev et
al., 2009; Makatchev et al., 2010). In the next sec-
tion, we continue with an overview of the related
work. Section 3 introduces the experiment, includ-
ing the selection of stimuli, measures, design, and
describes the recruitment of participants via Ama-
zon’s Mechanical Turk (MTurk). We discuss results
in Section 4 and provide a conclusion in Section 5.

2 Related work

2.1 Cross-cultural variability in English

Language is tightly connected with culture (Agar,
1994). As a result, even native speakers of a lan-
guage use it differently across dialects (e.g. African
American Vernacular English and Standard Amer-
ican English), genders (see, for example, (Lakoff,
1973)) and social statuses (e.g. (Huspek, 1989)),
among other dimensions.

Speakers of English as a second language display
variabilities in language use that are consistent with
their native languages and backgrounds. For exam-
ple, Nelson et al. (1996) reports that Syrian speakers
of Arabic tend to use different compliment response
strategies as compared with Americans. Aguilar
(1998) reviews types of pragmatic failures that are
influenced by native language and culture. In partic-
ular, he cites Davies (1987) on a pragmatic failure
due to non-equivalence of formulas: native speakers
of Moroccan Arabic use a spoken formulaic expres-
sion to wish a sick person quick recovery, whereas in

English the formula “get well soon” is not generally
used in speech. Feghali (1997) reviews features of
Arabic communicative style, including indirectness
(concealment of wants, needs or goals (Gudykunst
and Ting-Toomey, 1988)), elaborateness (rich and
expressive language use, e.g. involving rhetorical
patterns of exaggeration and assertion (Patai, 1983))
and affectiveness (i.e. “intuitive-affective style of
emotional appeal” (Glenn et al., 1977), related to
the patterns of organization and presentation of ar-
guments).

In this paper, we are concerned with English us-
age by native speakers of American English and na-
tive speakers of Arabic. We have used the features
of the Arabic communicative style outlined above
as a guide in selecting the dimensions of linguistic
variability that are presented in Section 3.1.

2.2 Measuring pragmatic variation

Perception of pragmatic variation of spoken lan-
guage and text has been shown to vary across
cultures along the dimensions of personality
(e.g. (Scherer, 1972)), emotion (e.g. (Burkhardt et
al., 2006)), deception (e.g. (Bond et al., 1990)),
among others. Within a culture, personality traits
such as extraversion, have been shown to have
consistent markers in language (see overview in
(Mairesse et al., 2007)). For example, Furnham
(1990) notes that in conversation, extraverts are less
formal and use more verbs, adverbs and pronouns.
However, the authors are not aware of any quantita-
tive studies that compare linguistic markers of per-
sonality across cultures. The present study aims to
help fill this gap.

A mapping between linguistic dimensions and
personality has been evaluated by grading es-
says and conversation extracts (Mairesse et al.,
2007), and by grading utterances generated automat-
ically with a random setting of linguistic parame-
ters (Mairesse and Walker, 2008). In the exploratory
study presented in this paper, we ask our participants
to grade dialogue fragments that were manually cre-
ated to vary along each of the four linguistic dimen-
sions (see Section 3.1).
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3 Experiment

In the review of related work, we presented some ev-
idence supporting the claim that linguistic markers
of personality may differ across cultures. In this sec-
tion, we describe a study that evaluates perception
of personality traits and naturalness of utterances by
native speakers of American English and Arabic.

3.1 Stimuli

The selection of stimuli attempts to satisfy three ob-
jectives. First, our application: our dialogue system
is intended to be used on a robot receptionist. Hence,
the stimuli are snippets of dialogue that include four
dialogue acts that are typical in this kind of em-
bodied information-giving dialogue (Makatchev et
al., 2009): a greeting, a question-answer pair, a dis-
agreement (with the user’s guess of an answer), and
an apology (for the robot not knowing the answer to
the question).

Second, we would like to vary our stimuli along
the linguistic dimensions that are potentially strong
indicators of personality traits. Extraverts, for exam-
ple, are reported to be more verbose (use more words
per utterances and more dialogue turns to achieve
the same communicative goal), less formal (Furn-
ham, 1990) (in choice of address terms, for exam-
ple), and less likely to hedge (use expressions such
as “perhaps” and “maybe”) (Nass et al., 1995). Lex-
ical and syntactic alignment, namely, the tendency
of a speaker to use the same lexical and syntactic
choices as their interlocutor, is considered, at least
in part, to reflect the speaker’s co-operation and will-
ingness to adopt the interlocutor’s perspective (Hay-
wood et al., 2003). There is some evidence that the
degree of alignment is associated with personality
traits of the speakers (Gill et al., 2004).

Third, we would like to select linguistic dimen-
sions that potentially expose cross-cultural differ-
ences in perception of personality and naturalness.
In particular, we are interested in the linguistic de-
vices that help realize rich points (the behaviors that
signal differences) between the native speakers of
American English and Arabic. We choose to real-
ize indirectness and elaborateness, characteristic of
Arabic spoken language (Feghali, 1997), by vary-
ing the dimensions of verbosity and hedging. High
power distance, or influence of relative social status

on the language (Feghali, 1997), can be realized by
the degrees of formality and alignment.

In summary, the stimuli are dialogue fragments
where utterances of one of the interlocutors vary
across (1) dialogue acts: a greeting, question-answer
pair, disagreement, apology, and (2) four linguistic
dimensions: verbosity, hedging, alignment, and for-
mality. Each of the linguistic dimensions is parame-
terized by 3 values of valence: negative, neutral and
positive. Within each of the four dialogue acts, stim-
uli corresponding to the neutral valences are repre-
sented by the same dialogue across all four linguistic
dimensions. The four linguistic dimensions are real-
ized as follows:

• Verbosity is realized as number of words within
each turn of the dialogue. In the case of the
greeting, positive verbosity is realized by in-
creased number of dialogue turns.1

• Positive valence of hedging implies more ten-
tative words (“maybe,” “perhaps,” etc.) or ex-
pressions of uncertainty (“I think,” “if I am
not mistaken”). Conversely, negative valence
of hedging is realized via words “sure,” “defi-
nitely,” etc.

• Positive valence of alignment corresponds to
preference towards the lexical and syntactic
choices of the interlocutor. Conversely, neg-
ative alignment implies less overlap in lexical
and syntactic choices between the interlocu-
tors.

• Our model of formality deploys the follow-
ing linguistic devices: in-group identity mark-
ers that target positive face (Brown and Levin-
son, 1987) such as address forms, jargon and
slang, and deference markers that target nega-
tive face, such as “kindly”, terms of address,
hedges. These devices are used in Arabic po-
liteness phenomena (Farahat, 2009), and there
is an evidence of their pragmatic transfer from
Arabic to English (e.g. (Bardovi-Harlig et al.,
2007) and (Ghawi, 1993)). The set of stimuli
that vary along the formality are presented in
Table 2.

Each dialogue fragment is presented as a text on
1The multi-stage greeting dialogue was developed via

ethnographic studies conducted at Alelo by Dr. Suzanne
Wertheim. Used with permission from Alelo, Inc.
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an individual web page. On each page, the partici-
pant is asked to imagine that he or she is one of the
interlocutors and the other interlocutor is described
as “a female receptionist in her early 20s and of
the same ethnic background” as that of the partici-
pant. The description of the occupation, age, gender
and ethnicity of the interlocutor whose utterances
the participant is asked to evaluate should provide
minimal context and help avoid variability due to the
implicit assumptions that subjects may make.

3.2 Measures

In order to avoid a possible interference of scales,
we ran two versions of the study in parallel. In
one version, participants were asked to evaluate the
receptionist’s utterances with respect to measures
of the Big Five personality traits (John and Srivas-
tava, 1999), namely the traits of extraversion, agree-
ableness, conscientiousness, emotional stability, and
openness, using the ten-item personality question-
naire (TIPI, see (Gosling et al., 2003)). In the other
version, participants were asked to evaluate the re-
ceptionist’s utterances with respect to their natu-
ralness on a 7-point Likert scale by answering the
question “Do you agree that the receptionist’s utter-
ances were natural?” The variants of such a natural-
ness scale were used by Burkhardt et al. (2006) and
Mairesse and Walker (2008).

3.3 Experimental design

The experiment used a crossed design with the fol-
lowing factors: dimensions of linguistic variability
(verbosity, hedging, alignment, or formality), va-
lence (negative, neutral, or positive), dialogue acts
(greeting, question-answer, disagreement, or apol-
ogy), native language (American English or Arabic)
and gender (male or female).

In an attempt to balance the workload of the par-
ticipants, depending on whether the participant was
assigned to the study that used personality or nat-
uralness scales, the experimental sessions consisted
of one or two linguistic variability conditions—12
or 24 dialogues respectively. Hence valence and dia-
logue act were within-subject factors, while linguis-
tic variability dimension were treated as an across-
subject factor, as well as native language and gen-
der. Within each session the items were presented in

Language Country N

Arabic Algeria 1
Bahrain 1
Egypt 56
Jordan 32
Morocco 45
Palestinian Territory 1
Qatar 1
Saudi Arabia 5
United Arab Emirates 13
Total 155

American English United States 166

Table 1: Distribution of study participants by country.

a random order to minimize possible carryover ef-
fects.

3.4 Participants

We used Amazon’s Mechanical Turk (MTurk) to re-
cruit native speakers of American English from the
United States and native speakers of Arabic from
any of the set of predominantly Arabic-speaking
countries (according to the IP address).

Upon completion of each task, participants re-
ceive monetary reward as a credit to their MTurk ac-
count. Special measures were taken to prevent mul-
tiple participation of one person in the same study
condition: the study website access would be re-
fused for such a user based on the IP address, and
MTurk logs were checked for repeated MTurk user
names to detect logging into the same MTurk ac-
count from different IP addresses. Hidden questions
were planted within the study to verify the fluency
in the participant’s reported native language.

The distribution of the participants across coun-
tries is shown in Table 1. We observed a regional
gender bias similar to the one reported by Ross et al.
(2010): there were 100 male and 55 female partici-
pants in the Arabic condition, and 63 male and 103
female participants in the American English condi-
tion.

4 Results

We analyzed the data by fitting linear mixed-effects
(LME) models (Pinheiro and Bates, 2000) and per-
forming model selection using ANOVA. The com-
parison of models fitted to explain the personality
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and naturalness scores (controlling for language and
gender), shows significant main effects of valence
and dialogue acts for all pairs of personality traits
(and naturalness) and linguistic features. The results
also show that for every personality trait (and nat-
uralness) there is a linguistic feature that results in
a significant three-way interaction between its va-
lence, the native language, and the dialogue act.
These results suggest that (a) for both language com-
munities, every linguistic dimension is associated
with every personality trait and naturalness, for at
least some of the dialogue acts, (b) there are differ-
ences in the perception of every personality trait and
naturalness between the two language communities.

To further explore the latter finding, we conducted
a post-hoc analysis consisting of paired t-tests that
were performed pairwise between the three values of
valence for each combination of language, linguis-
tic feature, and personality trait (and naturalness).
Note, that comparing raw scores between the lan-
guage conditions would be prone to find spurious
differences due to potential culture-specific tenden-
cies in scoring on the Likert scale: (a) perception
of magnitudes and (b) appropriateness of the inten-
sity of agreeing or disagreeing. Instead, we compare
the language conditions with respect to (a) the rela-
tive order of the three valences and (b) the binarized
scores, namely whether the score is above 4 or be-
low 4 (with scores that are not significantly different
from 4 excluded from comparison), where 4 is the
neutral point of the 7-point Likert scale.

The selected results of the post-hoc analysis are
shown in Figure 1. The most prominent cross-
cultural differences were found in the scoring of
naturalness across the valences of the formality di-
mension. Speakers of American English, unlike the
speakers of Arabic, find formal utterances unnatu-
ral in greetings, question-answer and disagreement
dialogue acts. Formal utterances tend to also be
perceived as indicators of openness (omitted from
the plot) and conscientiousness by Arabic speakers,
and not by American English speakers, in disagree-
ments and apologies respectively. Finally, hedging
in apologies is perceived as an indicator of agree-
ableness by American English speakers, but not by
speakers of Arabic.

Interestingly, no qualitative differences across
language conditions were found in the perception

of extraversion and stability. It is possible that this
cross-cultural consistency confirms the view of the
extraversion, in particular, as one of most consis-
tently identified dimensions (see, for example, (Gill
and Oberlander, 2002)). It could also be possi-
ble that our stimuli were unable to pinpoint the
extraversion-related rich points due to a choice of
the linguistic dimensions or particular wording cho-
sen. A larger variety of stimuli per condition, and an
ethnography to identify potentially culture-specific
linguistic devices of extraversion, could shed the
light on this issue.

5 Conclusion

We presented an exploratory study to evaluate a set
of linguistic markers of Big Five personality traits
and naturalness across two language communities:
native speakers of American English living in the
US, and native speakers of Arabic living in one
of the predominantly Arabic-speaking countries of
North Africa and Middle East. The results suggest
that the four dimensions of linguistic variability are
recognized as markers of all five personality traits by
both language communities. A comparison across
language communities uncovered some qualitative
differences in the perception of openness, conscien-
tiousness, agreeableness, and naturalness.

The results of the study can be used to adapt nat-
ural language generation and interpretation to native
speakers of American English or Arabic. This ex-
ploratory study also supports the feasibility of the
crowdsourcing approach to validate the linguistic
devices that realize rich points—behaviors that sig-
nal differences across languages and cultures.

Future work shall evaluate effects of regional di-
alects and address the issue of particular wording
choices by using multiple stimuli per condition.
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Greeting Question-Answer Disagreement Apology

A: Good morning.
B: What’s up? Need
anything?

A: Could you tell me where
the library is?
B: Just go to the end of the
hallway, you can’t miss it.

A: Could you tell me where the library is?
B: Go to the second floor.
A: I thought it was on the first floor.
B: No, honey, there is none on the first floor.

A: Could you tell me
where the library is?
B: Sorry about that, I have
no idea.

A: Good morning.
B: Good morning. How
may I help you?

A: Could you tell me where
the library is?
B: It’s at the end of the hall-
way on your left.

A: Could you tell me where the library is?
B: It’s on the second floor.
A: I thought it was on the first floor.
B: No, there is no library on the first floor.

A: Could you tell me
where the library is?
B: Sorry, I don’t know.

A: Good morning.
B: Good morning, sir
(madam). Would you
allow me to help you
with anything?

A: Could you tell me where
the library is?
B: Kindly follow this hallway
and you will encounter the
entrance on your left.

A: Could you tell me where the library is?
B: Yes, you may find the library on the second floor.
A: I thought it was on the first floor.
B: I am afraid that is not correct, there is no library on
the first floor.

A: Could you tell me
where the library is?
B: I have to apologize, but
I don’t know.

Table 2: Stimuli that correspond to negative (top row), neutral (middle row), and positive (bottom row) formality.

greeting qa disagree apology

American English, formality, naturalness

1
2

3
4

5
6

7 ** ** **
**

** ** ** **

greeting qa disagree apology

Arabic, formality, naturalness

1
2

3
4

5
6

7 ** *
**

**
**

greeting qa disagree apology

American English, formality, conscienciousness

1
2

3
4

5
6

7 ** *
** * *

greeting qa disagree apology

Arabic, formality, conscienciousness

1
2

3
4

5
6

7 *
*

**
*

greeting qa disagree apology

American English, hedging, agreeableness

1
2

3
4

5
6

7 * **
**

**
** **

**
**

greeting qa disagree apology

Arabic, hedging, agreeableness

1
2

3
4

5
6

7

**
**

Figure 1: A subset of data comparing scores on the Big Five personality traits and naturalness as given by native
speakers of American English (left half of the page) and Arabic (right half of the page). Blue, white, and pink bars
correspond to negative, neutral, and positive valences of the linguistic features respectively. Dialogue acts listed along
the horizontal axis are a greeting, question-answer pair, disagreement, and apology. Error bars the 95% confidence
intervals, brackets above the plots correspond to p-values of paired t-tests at significance levels of 0.05 (∗) and 0.01
(∗∗) after Bonferroni correction.
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Abstract

We present a new approach to dialogue man-
agement based on the use of multiple, inter-
connected policies. Instead of capturing the
complexity of the interaction in a single large
policy, the dialogue manager operates with a
collection of small local policies combined
concurrently and hierarchically. The meta-
control of these policies relies on an activation
vector updated before and after each turn.

1 Introduction

Many dialogue domains are naturally open-ended.
This is especially the case in situated dialogue,
where the conversational agent must operate in con-
tinuously changing environments where there is of-
ten no single, pre-specified goal to achieve. De-
pending on the situation and the (perceived) user re-
quests, many distinct tasks may be performed. For
instance, a service robot for the elderly might be
used for cleaning, monitoring health status, and de-
livering information. Each of these tasks features a
specific set of observations, goals, constraints, inter-
nal dynamics, and associated actions.

This diversity of tasks and models poses signif-
icant challenges for dialogue systems, and particu-
larly for dialogue management. Open-ended inter-
actions are indeed usually much more difficult to
model than classical slot-filling applications, where
the application domain can provide strong con-
straints on the possible dialogue transitions. Using
machine learning techniques to learn the model pa-
rameters can help alleviate this issue, but only if the
task can be efficiently factored and if a sufficient
amount of data is available. Once a model of the

interaction and its associated environment is avail-
able, a control policy then needs to be learned or
designed for the resulting state space. The extrac-
tion of good control policies can be computationally
challenging, especially for interactions which si-
multaneously combine partial observability (to deal
with noisy and incomplete observations) and large
state spaces (if the optimal behaviour depends on a
wide range of user- and context-specific factors) –
which is the case for many open-ended domains.

In this paper, we present ongoing work on a new
approach to dialogue management which seeks to
address these issues by leveraging prior knowledge
about the interaction structure to break up the full
domain into a set of smaller, more predictable sub-
domains. Moving away from the idea of capturing
the full interaction complexity into a unique, mono-
lithic policy, we extend the execution algorithm of
the dialogue manager to directly operate with a col-
lection of small, interconnected local policies.

Viewing dialogue management as a decision pro-
cess over multiple policies has several benefits.
First, it is usually easier for the application devel-
oper to model several small, local interactions than
a single large one. Each local model can also be in-
dependently modified, extended or replaced without
interfering with the rest of the system, which is cru-
cial for system maintenance. Finally, different the-
oretical frameworks can be used for different poli-
cies, which means that the developer is free to decide
which approach is most appropriate to solve a spe-
cific problem, without having to commit to a unique
theoretical framework for the whole application. For
instance, one policy might be expressed as a solu-
tion to a Partially Observable Markov Decision Pro-
cess (POMDP) while another policy is encoded as a
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hand-crafted finite-state controller, and the two can
be integrated in the same control algorithm.

One of the challenges when operating with mul-
tiple policies is the “meta-control” of these policies.
At each turn, the system must know which policy
is currently in focus and is responsible for deciding
the next action to perform. Since dialogue manage-
ment operates under significant uncertainty, the sys-
tem can never be sure whether a given policy is ter-
minated or not. We thus need a “soft” control mech-
anism which is able to explicitly account for the un-
certainty about the completion status of each policy.
This is precisely what we present in this paper.

The rest of the paper is as follows. We first pro-
vide general definitions of dialogue policies, and
present an algorithm for dialogue management oper-
ating on multiple policies. We then present an imple-
mentation of the algorithm together with an empiri-
cal evaluation of its performance, and conclude the
paper by comparing our approach to related work.

2 Background

We start by providing a generic definition of a pol-
icy which can hold independently of any particular
encoding. Dialogue policies can indeed generally
be decomposed in three basic functions, which are
called consecutively upon each turn: (1) observation
update, (2) action selection and (3) action update.

2.1 Observation update
The role of observation update is to modify the pol-
icy’s current state1 upon receiving a new observa-
tion, which can be linguistic or extra-linguistic.

Observation update is formally defined as a func-
tion OBS-UPDATE : S × O → S which takes as in-
put the current state s and a new observation o, and
outputs the updated state s′. For instance, a finite-
state controller is expressed by a set of nodesN and
edges E , where the state is expressed by the current
node, and the update mechanism is defined as:

OBS-UPDATE(s, o) =

{
s′ if ∃ an edge s o−→ s′

s otherwise

In information-state approaches (Larsson and
Traum, 2000), the update is encoded in a collection

1We adopt here a broad definition of the term “state” to ex-
press any description of the agent’s current knowledge. In a
POMDP, the state thus corresponds to the belief state.

of update rules which can be applied to infer the new
state. In POMDP-based dialogue managers (Young
et al., 2010), the observation update corresponds to
the belief monitoring/filtering function.

2.2 Action selection

The second mechanism is action selection, whose
role is to select the optimal (communicative) action
to perform based on the new estimated state. The
action selection is a function π : S → Awhich takes
the updated state as input, and outputs the optimal
action to execute (which might be void).

Different encodings are possible for the action se-
lection mechanism. Finite-state controllers use a
straightforward mechanism for π, since each state
node in the graph is directly associated with a unique
action. Information-state approaches provide a map-
ping between particular sets of states and actions
by way of selection rules. Decision-theoretic ap-
proaches such as MDPs and POMDPs rely on an
estimated action-value function which is to be max-
imised: π(s) = arg maxaQ(s, a). The utility func-
tion Q(s, a) can be either learned from experience
or provided by the system designer.

2.3 Action update

Once the next action is selected and sent for execu-
tion, the final step is to re-update the dialogue state
given the action. Contrary to the two previous func-
tions which can be found in all approaches, this third
mechanism is optional and is only implemented in
some approaches to dialogue management.

Action update is formally defined as a function
ACT-UPDATE : S × A → S. Finite-state and
information-state approaches typically have no ex-
plicit account of action update. In (PO)MDPs ap-
proaches, the action update function is computed
with the transition function of the model.

3 Approach

3.1 Activation vector

To enable the dialogue manager to operate with mul-
tiple policies, we introduce the notion of activation
value. The activation value of a policy i is the prob-
ability P (φi) that this policy is in focus for the in-
teraction, where the random variable φi denote the
activation of policy i. In the rest of this paper, we
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shall use bt(φi) to denote the activation value of pol-
icy φ at time t, given all available information. The
bt(φi) value is dependent on both the completion
status of the policy itself and the activations of the
other policies: bt(φi) = P (φi|si, bt(φ1), ...bt(φn)).
We group these values in an activation vector bΦ =
〈b(φ1)...b(φn)〉 which is updated after each turn.

3.2 Activation functions
To compute the activation values, we define the two
following functions associated with each policy:

1. LIKELIHOODi(s, o) : S × O → [0, 1] computes
the likelihood of the observation o if the policy
i is active and currently in state s. It is therefore
an estimate of the probability P (o|φi, s).

2. ACTIVATIONi(s) : S → [0, 1] is used to deter-
mine the probability of policy i being active at
a given state s. In other words, it provides an
estimate for the probability P (φi|s).

These functions are implemented using heuris-
tics which depend on the encoding of the policy.
For a finite-state controller, we realise the function
LIKELIHOOD(s, o) by checking whether the observa-
tion matches one of the outward edges of the current
state node – the likelihood returns a high probability
if such a match exists, and a low probability oth-
erwise. Similarly, the ACTIVATION function can be
defined using the graph structure of the controller:

ACTIVATION(s) =

{
1 if s non-final
δ if s final with outgoing edges
0 if s final w/o outgoing edges

where δ is a constant between 0 and 1.

3.3 Constraints between policies
In addition to these activation functions, various
constraints can hold between the activation of re-
lated policies. Policies can be related with each
other either hierarchically or concurrently.

In a hierarchical mode, a policy A triggers an-
other policy B, which is then executed and returns
the control to policyA once it is finished. As in hier-
archical planning (Erol, 1996; Pineau, 2004), we im-
plement such hierarchy by distinguishing between
primitive actions and abstract actions. An abstract
action is an action which corresponds to the execu-
tion of another policy instead of leading directly to

a primitive action. With such abstract actions, the
system designer can define a hierarchical structure
of policies as illustrated in Figure 1. When a policy
A executes an abstract action pointing to policy B,
the activation value of policy B is increased and the
one of policy A proportionally decreased. This re-
mains so until policy B terminates, at which point
the activation is then transferred back to policy A.

Figure 1: Graphical illustration of a hierarchical policy
structure. Dotted lines denote abstract actions.

In a concurrent mode, policies stand on an equal
footing. When a given policy takes the turn after an
observation, the activations of all other concurrent
policies are decreased to reflect the fact that this part
of the interaction is now in focus. This redistribution
of the activation mass allows us to run several poli-
cies in parallel while at the same time expressing a
“preference” for the policy currently in focus. The
“focus of attention” is indeed crucial in verbal inter-
actions, and in linguistic discourse in general (Grosz
and Sidner, 1986) – humans do not arbitrarily switch
from one topic to another and back, but rather con-
centrate on the most salient elements.

The set of constraints holding between the activa-
tion values of hierarchical and concurrent policies is
encoded in a simplified Bayesian network.

3.4 Execution algorithm

Algorithm 1 illustrates how the activation values
are exploited to select the optimal action for mul-
tiple policies. The algorithm relies on a set of pro-
cesses P , where a process i is associated with a spe-
cific policy, a current state si for the policy, and a
current activation value b(φi) ∈ bΦ. As we have
seen, each policy is fully described with five func-
tions: LIKELIHOOD(s, o), OBS-UPDATE(s, o), π(s),
ACT-UPDATE(s, a), and ACTIVATION(s). A network
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of conditional constraints C on the activation vector
is also given as input to the algorithm.

Algorithm 1 operates as follows. Upon receiv-
ing a new observation, the procedure loops over
all processes in P and updates the activation val-
ues b′(φi) for each given the likelihood of the ob-
servation (with η as a normalisation factor). Once
this update is completed, the process p with the
highest activation is selected, and the function
GET-OPTIMAL-ACTION(p, o) is triggered.

Algorithm 1 : MAIN-EXECUTION (P, o)

Require: P: the current set of processes
Require: C: network of constraints on bΦ
Require: o: a new observation

1: for all i ∈ P do
2: P (o|φi, si)← LIKELIHOODi(si, o)
3: b′(φi)← η · P (o|φi, si) · b(φi)
4: end for
5: Select process p← arg maxi b

′(φi)
6: a∗ ← GET-OPTIMAL-ACTION(p, o)

7: for all i ∈ P do
8: P (φi|si)← ACTIVATIONi(si)
9: Prune i from P if inactive

10: Compute b(φi) given P (φi|si) and C
11: end for
12: return a∗

Within GET-OPTIMAL-ACTION, the state of the pro-
cess is updated given the observation, the next action
a∗ is selected using π(s) and the state is updated
again given this selection. If the action is abstract,
the above-mentioned procedure is repeated until a
primitive action is reached. The resulting hierarchi-
cal structure is recorded in children(p) which details,
for each process p ∈ P , the list of its children pro-
cesses. To ensure consistency among the activation
values in this hierarchy, a constraint is added to C for
each process visited during execution.

Once the action a∗ is found, the activation values
b(φi) are recomputed according to the local activa-
tion function combined with the constraints C. Pro-
cesses which have become inactive (i.e. which have
transferred control to one parent process) are also
pruned from P . Finally, the action a∗ is returned.

Algorithm 2 : GET-OPTIMAL-ACTION (p, o)

Require: p: process with current state sp

Require: o: a new observation
Require: children(p): list of current processes di-

rectly or indirectly forked from p

1: sp ← OBS-UPDATEp(sp, o)
2: a∗ ← πp(sp)
3: sp ← ACT-UPDATEp(sp, a

∗)

4: if a∗ is an abstract action then
5: Fork new process q with policy from a∗

6: Add q to set of current processes P
7: a∗ ← GET-OPTIMAL-ACTION(q, o)
8: children(p)← 〈q〉+ children(q)
9: else

10: children(p)← 〈〉
11: end if
12: Add to C the constraint b(φp) =

(1−
∑

i∈children(p) b(φi)) · P (φp|sp)

13: return a∗

4 Evaluation

The described algorithm has been implemented and
tested with different types of policies. We present
here a preliminary experiment performed with a
small dialogue domain. The domain consists of a
(simulated) visual learning task between a human
and a robot in a shared scene including a small num-
ber of objects, described by various properties such
as color or shape. The human asks questions re-
lated to these object properties, and subsequently
confirms or corrects the robot’s answers – as the case
may be. We account for the uncertainty both in the
linguistic inputs and in the visual perception.

We model this domain with two connected poli-
cies, one top policy handling the general interac-
tion (including engagement and closing acts), and
one bottom policy dedicated to answering each user
question. The top policy is encoded as a finite-state
controller and the bottom policy as a POMDP solved
using the SARSOP algorithm, available in the APPL
toolkit2 (Kurniawati et al., 2008). A sample run is
provided in Appendix A.

The experiment was designed to empirically com-
pare the performance of the presented algorithm

2http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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with a simpler hierarchical control algorithm which
does not use any activation vector, but where the
top policy is blocked until the sub-policy releases
its turn. The policies themselves remain identical
in both scenarios. We implemented a handcrafted
user simulator for the domain, and tested the poli-
cies with various levels of artificial noise.

The average return for the two scenarios are pro-
vided in Figure 2. The results show that activation
values are beneficial for multi-policy dialogue man-
agement, especially in the presence of noise.. This is
due to the soft control behaviour provided by the ac-
tivation vector, which is more robust than hierarchi-
cal control. Activation values provide a more fine-
grained mechanism for expressing the completion
status of a policy, and therefore avoid fully “block-
ing” the control at a given level.
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Figure 2: Average return (as generated by the hand-
crafted user simulator) for the two connected policies,
using either the present algorithm or strict hierarchical
control. 400 runs are used for each level of noise.

5 Related work

The exploitation of prior structural knowledge in
control has a long history in the planning commu-
nity (Erol, 1996; Hauskrecht et al., 1998), and has
also been put forward in some approaches to di-
alogue modelling and dialogue management – see
e.g. (Grosz and Sidner, 1990; Allen et al., 2000;
Steedman and Petrick, 2007; Bohus and Rudnicky,
2009). These approaches typically rely on a task de-
composition in goals and sub-goals, and assume that
the completion of each of these goals can be fully

observed. The novel aspect of our approach is pre-
cisely that we seek to relax this assumption of per-
fect knowledge of task completion. Instead, we treat
the activation/termination status of a given policy as
a hidden variable which is only indirectly observed
and whose value at each turn is determined via prob-
abilistic reasoning operations.

The idea of combining different dialogue man-
agement frameworks in a single execution process
has also been explored in previous work such as
(Williams, 2008), but only as a filtering mecha-
nism – one policy constraining the results of an-
other. Related to the idea of concurrent policies,
(Turunen et al., 2005) describes a software frame-
work for distributed dialogue management, mostly
focussing on architectural aspects. In the same vein,
(Lemon et al., 2002; Nakano et al., 2008) describe
techniques for dialogue management respectively
based on multi-threading and multi-expert models.
(Cuayáhuitl et al., 2010) describe an reinforcement
learning approach for the optimisation of hierarchi-
cal MDP policies, but is not extended to other types
of policies. Closest to our approach is the PolCA+
algorithm for hierarchical POMDPs presented in
(Pineau, 2004), but unlike our approach, her method
does not support temporally extended actions, as the
top-down trace is repeated after each time step.

6 Conclusion

We introduced a new approach to dialogue manage-
ment based on multiple, interconnected policies con-
trolled by activation values. The values are updated
at the beginning and the end of each turn to reflect
the part of the interaction currently in focus.

It is worth noting that the only modification re-
quired in the policy specifications to let them run
in a multi-policy setting is the introduction of the
two functions LIKELIHOOD(s, o) and ACTIVATION(s).
The rest remains untouched and can be defined in-
dependently. The presented algorithm is therefore
well suited for the integration of dialogue policies
encoded in different theoretical frameworks.

Future work will focus on various extensions of
the approach and the use of more extensive evalua-
tion metrics. We are also investigating how to ap-
ply reinforcement learning techniques to learn the
model parameters in such multi-policy paradigms.
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A Example of execution with two policies

We provide here an example of execution of Algo-
rithm 1 with the two policies described in the evalua-
tion section. Figure 3 illustrates the policy hierarchy,
which consists of two policies connected with an ab-
stract action. The finite-state graph of the top policy
is shown in Figure 4.

“hi!”

Bottom policy (POMDP)

Top policy (finite-state)

“how may I 
help you?”

“goodbye!”

“the object is X”

“I don’t know the 
colour/shape”

“do you mean the 
1st/2nd object?”

“could you 
repeat?”

“which 
object?”

(X=green,red, 
blue,round,

squared,etc.)

... ...

Figure 3: Hierarchical structure of the two policies.

(wait 1 s.)Robot: “hi!”

User: (received new intention)Robot: “how 
may I help you?”

User: “hi robot!”

(timeout)

Robot: (trigger 
POMDP)

Robot: “goodbye!”

User: “goodbye robot!”

User: (received 
new intention)

Figure 4: Finite-state controller for the top policy.

A.1 Example of interaction
Transcript A.1 provides a full example of interaction
as generated by the user simulator. Human utter-
ances can contain variable noise levels, which makes
it necessary to use clarification requests when the
user intention is unclear (lines 5 and 10).

Contextual knowledge can also influence how the
dialogue unfolds – here, the robot knows that the
first object is blue but is uncertain about the second
object. Such contextual knowledge is expressed in
terms of hidden variables in the POMDP model.

The execution of Algorithm 1 for the above ex-
ample proceeds as follows. From line 1 to line 4, the
set P contains one single process, based on the top

Transcript A.1 Example of interaction
1: HUMAN: Hi robot!
2: ROBOT: Hi! [wait 1 s.]
3: ROBOT: How may I help you?
4: HUMAN: Could you tell me the colour of

the first object? [trigger POMDP]
5: ROBOT: Sorry, could you repeat?
6: HUMAN: What colour is the first object?
7: ROBOT: It is blue
8: HUMAN: That’s right
9: HUMAN: Now, could you tell me the colour

of the second object? [trigger POMDP]
10: ROBOT: Do you mean the second object?
11: HUMAN: Yes
12: ROBOT: I don’t know
13: HUMAN: It is green
14: ROBOT: Thanks
15: HUMAN: Ok I’m done. Goodbye!
16: ROBOT: Goodbye! [close interaction]

policy. This process is fully activated. At line 5, the
new user intention is mapped to the abstract action,
and thus to the creation of a second process based
the POMDP policy. This second process becomes
highly activated due its function ACTIVATION(s).
Given the constraint holding between the activation
values of two processs, the high activation of the bot-
tom process leads to a proportional reduction of the
activation value of the top process.

The utterance at line 8 is interpreted as a signal
that the user intention has been met, and the acti-
vation value of the bottom process is subsequently
decreased. The top process is then partially reac-
tivated, and interprets the utterance at line 9 as a
new user intention, leading to the creation of a new
POMDP process. This process handles the interac-
tion until the line 14, where the control is transferred
back to the finite-state controller.

The better performance of Algorithm 1 compared
to strict hierarchical control is due to the lines 8− 9.
In the presence of noise, the transition to the second
question might not be detected (if the confidence
scores of the utterance is below a fixed threshold). In
such case, the dialogue manager might stay “stuck”
in the first POMDP process instead of interpreting
the utterance as a new question.
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Abstract 

We describe a novel world model frame-
work designed to support situated human-
robot communication through improved 
mutual knowledge about the physical 
world. This work focuses on enabling a  
robot to store and use semantic information 
from a human located in the same envi-
ronment as the robot and respond using 
human-understandable terminology. This 
facilitates information sharing between a 
robot and a human and subsequently pro-
motes team-based operations. Herein, we 
present motivation for our world model, an 
overview of the world model, a discussion 
of proof-of-concept simulations, and future 
work. 

1 Introduction 

As robots become more ubiquitous, their interac-
tions with humans must become more natural and 
intuitive for humans. One of the main challenges to 
natural human-robot interaction is the “language 
barrier” between humans and robots. While a con-
siderable amount of work has gone into making 
robot dialogue more human-like (Fong et al., 
2005), the content of the conversation is frequently 
highly scripted.  

An essential precondition to intuitive human-
robot dialogue is the establishment of a common 

ground of understanding between humans and ro-
bots (Kiesler, 2005). Operators expect information 
to be presented in a way such that they can connect 
it with their own world information. This implies a 
need for robots to be capable of expressing infor-
mation in human-understandable terms. By shifting 
some responsibility for establishing common 
ground to robots, interactions between humans and 
robots become considerably more natural for  
humans by reducing the need for humans to “trans-
late” the robot’s information. 

Ultimately, the robot’s world model is a key 
contributor to the “language barrier.” Because  
humans and robots view and think about the world 
differently (having different “sensors” and “pro-
cessing algorithms”), they subsequently have 
different world representations (Figure 1). Humans 
tend to think of the world as objects in space, while 
robotic representations vary based on sensors, but 
are typically coordinate-based representations of 
 

 
 
Figure 1. Humans and robots think and subse-
quently communicate about the world using 
different terminology. 
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free and occupied space. This presents a consider-
able challenge when humans want to communicate 
naturally with robots. For robots to become active 
partners for humans, they must be better able to 
share the information they have gathered about the 
world. To that end, we have begun to address the 
“language barrier” by focusing on how information 
is stored by the robot. 

We have developed a novel world model repre-
sentation that will enable a robot to merge 
information communicated by its human team-
mates with its own situational awareness data and 
use the resulting “operating picture” to drive plan-
ning and decision-making for navigation in 
unfamiliar environments. The ultimate aim of this 
research is to enable robots to communicate with 
humans and maintain an “actionable awareness” of 
the environment. This provides a number of bene-
fits: 
• Increased robot situational awareness. The robots 

will be able to learn about, store, and recall envi-
ronmental information obtained from humans (or 
other robots). This can include information the  
robot would be incapable of getting on its own,  
either because it has not visited that region of the 
environment or because it is not capable of sens-
ing that information. 

• Increased human situational awareness. Humans 
will be able to receive information from robots in 
human-understandable terms. 

• Reduced workload and training for human-robot 
interaction. Because robots will be able to com-
municate in human-understandable terms, people 
will be able to interact with robots in ways that are 
more natural to humans. As a result, people will 
need fewer specialized interfaces to interact with 
robots and subsequently less training. 

• Improved collaboration. Because people and ro-
bots will be able to share information, the team 
will be able to operate more efficiently. Each team 
member will be able to contribute to team 
knowledge, which will allow for better planning. 

2 World Model Overview 

Our world model framework was designed using 
several key principles: that information must be 
stored in both human-understandable terms and in 
a format usable by the robot; that information must 
be capable of being added, deleted, or modified 
during operations; and that the world model 
framework should be capable of integrating with a 

wide variety of external systems including pre-
existing perception and planning systems.  

To meet these principles, we have developed a 
layered framework that has internal functions for 
managing the world model and can integrate with 
external systems that use the world model, such as 
systems that populate it (perception systems) or 
use it to govern robotic actions (planning systems) 
(Figure 2).  
 

 
 
Figure 2. We have developed a two-layer world 
model that integrates with external functions via 
translation functions to support the use of a variety 
of robotic capabilities. 
 

Layered world models have shown promise for 
both robot navigation (Kuipers and Byun, 1991; 
Mataric, 1990) and for communication with  
humans (Kennedy et al., 2007; Zender et al., 
2008). Additionally, work in symbol grounding has 
supported robotic actions based on natural lan-
guage interactions (Jacobsson et al., 2008, Hsiao et 
al., 2008). We leverage this research and extend it 
with the aim of supporting human-robot infor-
mation sharing, robot navigation, and use by 
external systems. 

The bottom layer stores a spatiotemporal de-
scription of the environment expressed in metrical 
terms. While there are several different possibili-
ties for how this location-based information could 
be stored, we use a grid-based representation be-
cause it is commonly used by existing planners 
(e.g., a cost map-based planner) and it allows for 
flexibility of information storage. While our 
framework supports the inclusion of an arbitrary 
number of grids, our experimental prototype uses 
three: an occupancy grid that stores free and occu-
pied space, an “object” grid, and a “terrain” grid. 
The object grid stores the types of objects in each  
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cell in ascending order of vertical position (e.g., 
“table, plate, apple”). The terrain grid stores terrain 
type in each cell and may also have multiple  
entries per cell (e.g., “sand, boulders” or “grass”). 

The top layer stores a relational description of 
the situation in semantic terms compatible with 
typical human descriptions of the physical envi-
ronment. We use node-attribute structures in which 
objects (e.g., chairs, keys, trees, people, buildings) 
are represented as nodes that have a list of corre-
sponding attributes (e.g., type, color, GPS 
coordinates, last time sensed, source of infor-
mation, etc.). The nodes are connected by their 
relationships, which are human-understandable 
concepts (e.g., “near” or “above”). The graph form 
of the semantic layer supports the many, varied 
types of relationships between objects. There are 
many ways to express the physical relationships 
between objects, and humans often use ambiguous 
terms (Crangle et al., 1987). By establishing the 
semantic layer as a connected graph, we aim to 
support these ambiguous terms and ultimately pro-
vide a way for the robot to process their meaning. 

In the top layer of the world model, we use an 
ontological representation to model the world, and 
include both an “upper ontology” that provides a 
template for what information can be included in 
the world as well as an instantiated world built 
from experience. In addition to providing a frame-
work that stores the list of all objects that could be 
present in the world, their associated attributes, and 
the possible relationship between the objects, this 
upper layer includes other information such as the 
robot’s goals and current high level plans and addi-
tional information the robot has about itself or the 
world (e.g., domain theory or object affordances). 
An additional benefit of an ontology-based repre-
sentation is that it supports the inclusion of objects 
despite uncertainty. If a perception algorithm can-
not confidently identify an object but can classify 
it, this class of object can be stored in the semantic 
layer of the world model and refined as more  
information is made available. 

To support a consistent, complete view of the 
world, translation functions translate the infor-
mation between the layers and assimilation 
functions merge information within layers. These 
translation functions support symbol grounding 
and enable the robot to use both semantically-
described information along with sensed data. The 
translation functions are a set of functions, each of 

which translates an attribute, for example, a color 
translation function that translates between RGB 
values and a semantic label. More interesting are 
the location-based translation functions, for exam-
ple “near A” translates to “within 2 meters of A’s 
position.” This introduces uncertainty into the po-
sition of the object and so we use a probabilistic 
approach for placing any unsensed (but described) 
object in the bottom layer. The location of the  
object is updated once the object is sensed by the 
robot. 

The assimilation algorithms, which are also still 
in development, are built upon data fusion ideas 
because they merge data from multiple sources. 
Because a considerable amount of existing work 
has been done on integrating (assimilating) infor-
mation at the sensor level, to date we have focused 
on assimilation in the semantic layer of our world 
model. We have developed heuristic-based algo-
rithms that compare information stored in the 
world model with actively sensed information  
(essentially creating a temporary world model of 
the area currently being sensed by the robot). Dur-
ing operation, the robot’s sensor detects an object 
and outputs a vector of possible object classifica-
tions. Each object classification has an associated 
confidence along with attributes of the object  
including size, color, etc. The assimilation compo-
nent pulls all objects within a prescribed radius of 
the newly sensed object’s location from the world 
model to compare them with the newly sensed  
object. The assimilation algorithm starts with the 
object closest in position to the newly sensed ob-
ject and stops comparing objects if an object is 
determined to be “same as” the newly sensed  
object or if all objects with the prescribed radius 
are compared and none match.  

To compare our newly sensed object with one 
of the objects already in the world model, the  
assimilation algorithm compares the object vectors, 
which contain the list and confidence in each ob-
ject type and object attributes such as color, size, 
and location. Some attributes (like source of  
information) are ignored in this calculation. To 
compare two objects, we compute the distance  
between the object vectors. This distance is com-
puted through a pairwise comparison of attributes 
in the vector lists. These distances are then 
weighted according to “importance” in assimila-
tion process, for example objects with similar type 
should be more likely to be merged than objects 
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that only have similar color. We then sum the 
weighted distances; if sum is less than a prescribed 
threshold, we assume the objects are the same and 
then merge them. If not the same, the algorithm 
checks this object against the other objects within 
the radius and if none are found, adds the object as 
a new object. To merge objects, the algorithm 
merges the attribute vectors of the temporary ob-
ject and the original object. Some parts of the 
vectors are averaged (e.g., color), some amalga-
mated (e.g., data source), and some pick one of the 
values (e.g., pick most recent time). Additionally, 
because it is stored in the world model, we can  
incorporate logic about the world to facilitate  
assimilation (e.g., “this object is immovable so it 
must not have changed position”). While this algo-
rithm has served as an initial assimilation 
algorithm, we will continue researching and  
designing assimilation algorithms to better support 
the uncertainty present in the sensing outputs (e.g., 
false positives). 

One of the key requirements of our world mod-
el is that it be able to integrate with external 
robotic systems. To accomplish this, the world 
model layers integrate with external functions that 
serve as translators to existing (or future) func-
tions. These external translation functions pull 
relevant information from the world model and 
present it in a form usable by a planner. For exam-
ple, we have created a planning translator that 
takes the grids from the physical layer and produc-
es a cost map for a ground robot (with set 
parameters), which can then be used by any cost 
map-based planner. 

3 Proof-of-Concept Simulations 

To evaluate the feasibility of our world model 
framework, we performed several proof-of-concept 
simulations designed to both demonstrate and test 
the capabilities of our world model and subse-
quently to help the design process. We created 
different environments using Player/Stage and ran 
the robot through two scenarios. In both scenarios, 
humans needed robotic assistance to escape from a 
burning building and communicated with the robot 
using natural language. In the first scenario, a  
mobile robot was asked by a group of trapped peo-
ple to unlock a door and alert them when the door 
was open. In the second scenario, two mobile  
robots were tasked with searching for trapped  

people and coordinating with first responders. Be-
cause the focus of the simulations was on 
evaluating the world model itself, we made the  
assumption that the robot had both camera and 
LIDAR sensors and had processing algorithms  
capable of outputting an object classification and a 
confusion matrix. We assumed the robot had both 
a speech processing and synthesis mechanism with 
which it could communicate verbally with people 
in the environment. We assumed the robot had a 
common A* planner that used a cost map represen-
tation for planning.  

The first scenario highlighted the ability for the 
robot to understand and use human-communicated 
information by adding a human-described object to 
its world model and planning based on this assimi-
lated information. At the beginning of the scenario, 
a human described the location of a key (“near the 
desk in the room with one table and one desk”) and 
told the robot to open the locked east door. The 
human did not tell the robot to use the key to  
unlock the door, instead the robot used object  
affordances stored in its world model to establish a 
high-level plan of getting the key, then unlocking 
the door. When the human told the robot about the 
location of the key, the robot stored this location in 
the top layer and translated the object’s position 
down to the bottom layer using a probabilistic 
translation algorithm that placed the key in the bot-
tom layer at the most likely position within a 
certain region (whose size and position corre-
sponded to “nearness”). The robot used a simple 
cost map-based planner to plan its movements and 
so the system created a cost map from all the rele-
vant bottom layer information in a format used by 
a classic A* planner. As a result, this scenario 
showed that our world model enabled the robot to 
use information gathered by a human teammate 
and expressed in semantic terminology without a 
specially designed planner.  

The second scenario illustrated the merits of our 
world model for responding to humans. In this 
scenario, once the robot had searched the environ-
ment, it was asked a series of questions by a first 
responder including: “How many people did you 
find?” and “How do I get to the fire extinguisher?” 
The latter question was particularly interesting  
because it forced the robot to describe a path in 
semantic terminology (as opposed to a list of way-
points). The robot used information from its top 
layer to describe the path from the first responder’s 
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current position to the fire extinguisher. This sce-
nario highlighted the ability for the robot to 
produce human-understandable and useful infor-
mation despite having gathered the information 
using its low-level sensors and planner. 

In both of the scenarios, the robot was given 
both instructions and information verbally from 
one or more of the people in the robot’s environ-
ment. The robot stored this described information 
in the world model and merged it with the infor-
mation the robot had gathered with its own sensors 
to form a cohesive view of the world. The robot 
then used both the described and sensed infor-
mation to formulate a plan to accomplish its goals. 
At the end of the mission, the robot was asked 
questions about the environment and was able to 
answer using human understandable terminology.  

In these simulations we were able to show the 
robot formulating a plan based on information it 
had not sensed by itself. Because the robot had on-
ly a simple cost map-based planner, it was 
essential that the semantic information be translat-
ed to the grid representations in the bottom layer. 
This allowed the planning translator to produce a 
cost map in the form expected by the planner.  

We used these simulations to inform key design 
decisions including the need to have multiple grids 
in the bottom layer of the world model and to  
incorporate object affordances in the semantic lay-
er. Another key insight was that uncertainty must 
be included in the semantic layer and that it is an 
important element in semantic layer assimilation. 

4 Conclusions and Future Work 

We have designed and developed a world model 
framework that supports situated information shar-
ing between robots and humans. By integrating 
semantic and sensor-based terminology, we have 
enabled a robot to integrate information described 
in natural human terms with its own sensed infor-
mation. In addition, we have shown how a robot 
with a standard A* planning algorithm can thereby 
plan and respond appropriately using information 
obtained in semantic terms.  

Because this world model framework was  
designed to support a variety of robotic operations 
and capabilities, there are many areas of potential 
future work. These include facilitating robotic dia-
logue systems, developing reasoning systems that 
can use the semantic level information to predict 

certain aspects of the world model (such as how an 
event will affect the physical layout of the world or 
where an object will be in a certain amount of 
time), and enabling semantic-level planners that 
can perform high-level planning. 

To further improve the functionality supported 
by this world model framework, there are a num-
ber of areas of future work within the framework 
itself. We are exploring the design changes needed 
to support modeling of dynamic objects and the 
types of assimilation algorithms that exist or need 
to be developed to truly integrate tracks generated 
by external perception systems into our world 
model. We are also looking into how to better  
reason about spatial relationships, particularly 
those that are only true when described from a spe-
cific vantage point. Additionally, we would like to 
improve the translation algorithms by exploring 
additional scenarios and determining what mecha-
nisms are needed. In the area of multi-robot 
coordination, we want to explore physical layer as-
similation, which includes the ability to align 
reference frame for heterogeneous robots. Finally, 
we would also like to apply our world model on 
multiple real robots with speech systems and eval-
uate the world model in a series of real-world 
operations. 
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Abstract

Within our ongoing effort to develop a com-
putational model to understand multi-modal
human dialogue in the field of elderly care,
this paper focuses on pronominal and deictic
co-reference resolution. After describing our
data collection effort, we discuss our anno-
tation scheme. We developed a co-reference
model that employs both a simple notion of
markable type, and multiple statistical mod-
els. Our results show that knowing the type
of the markable, and the presence of simulta-
neous pointing gestures improve co-reference
resolution for personal and deictic pronouns.

1 Introduction

Our ongoing research project, called RoboHelper,
focuses on developing an interface for older people
to effectively communicate with a robotic assistant
that can help them perform Activities of Daily Liv-
ing (ADLs) (Krapp, 2002), so that they can safely re-
main living in their home (Di Eugenio et al., 2010).
We are devising a multi-modal interface since peo-
ple communicate with one another using a variety of
verbal and non-verbal signals, including haptics, i.e.,
force exchange (as when one person hands a bowl to
another person, and lets go only when s/he senses
that the other is holding it). We have collected a
mid size multi-modal human-human dialogue cor-
pus, that we are currently processing and analyz-
ing. Meanwhile, we have started developing one
core component of our multi-modal interface, a co-
reference resolution system. In this paper, we will
present the component of the system that resolves

pronouns, both personal (I, you, it, they), and deictic
(this, that, these, those, here, there). Hence, this pa-
per presents our first steps toward a full co-reference
resolution module, and ultimately, the multi-modal
interface.

Co-reference resolution is likely the discourse
and dialogue processing task that has received the
most attention. However, as Eisenstein and Davis
(2006) notes, research on co-reference resolution
has mostly been applied to written text; this task
is more difficult in dialogue. First, utterances may
be informal, ungrammatical or disfluent; second,
people spontaneously use hand gestures, body ges-
tures and gaze. Pointing gestures are the eas-
iest gestures to identify, and vision researchers in
our project are working on recognizing pointing and
other hand gestures (Di Eugenio et al., 2010). In this
paper, we replicate the results from (Eisenstein and
Davis, 2006), that pointing gestures help improve
co-reference, in a very different domain. Other work
has shown that gestures can help detect sentence
boundaries (Chen and Harper, 2010) or user inten-
tions (Qu and Chai, 2008).

The rest of the paper is organized as follows. In
Section 2 we describe the data collection and the on-
going annotation. In Section 3 we discuss our co-
reference resolution system, and we present experi-
ments and results in Section 4.

2 The ELDERLY-AT-HOME corpus

Due to the absence of multi-modal collaborative
human-human dialogue corpora that include haptic
data beyond what can be acquired via point-and-
touch interfaces, and in the population of interest,307



Figure 1: Experiment Excerpts

we undertook a new data collection effort. Our ex-
periments were conducted in a fully functional stu-
dio apartment at Rush University in Chicago – Fig-
ure 1 shows two screen-shots from our recorded ex-
periments. We equipped the room with 7 web cam-
eras to ensure multiple points of view. Each of the
two participants in the experiments wears a micro-
phone, and a data glove on their dominant hand to
collect haptics data. The ADLs we focused on in-
clude ambulating, getting up from a bed or a chair,
finding pots, opening cans and containers, putting
pots on a stove, setting the table etc. Two students
in gerontological nursing play the role of the helper
(HEL), both in pilot studies and with real subjects.
In 5 pilot dialogues, two faculty members played the
role of the elderly person (ELD). In the 15 real ex-
periments, ELD resides in an assisted living facil-
ity and was transported to the apartment mentioned
above. All elderly subjects are highly functioning at
a cognitive level and do not have any major physical
impairment.

The size of our collected video data is shown
in Table 1. The number of subjects refers to the
number of different ELD’s and does not include the
helpers; we do include our 5 pilot dialogues though,
since those pilot interactions do not measurably dif-
fer from those with the real subjects. Usually one
experiment lasts about 50’ (recording starts after in-
formed consent and after the microphones and data
gloves have been put on). Further, we eliminated
irrelevant content such as interruptions, e.g. by the
person who accompanied the elderly subjects, and
further explanations of the tasks. This resulted in
about 15 minutes of what we call effective data for

each subject; the effective data comprises 4782 turns
(see Table 1).

Subjects Raw(Mins) Effective(Mins) Turns
20 482 301 4782

Table 1: ELDERLY-AT-HOME Corpus Size

The effective portion of the data was transcribed
by the first two authors using the Anvil video anno-
tation tool (Kipp, 2001). A subset of the transcribed
data was annotated for co-reference, yielding 114
sub-dialogues corresponding to the tasks subjects
perform, such as finding bowls, filling a pot with wa-
ter, etc. (see Table 2).

An annotation excerpt is shown in Figure 2.
Markable tokens are classified into PLC(Place),
PERS(Person), OBJ(Object) types, and numbered
by type, e.g., PLC#5. Accordingly, we mark pro-
nouns with types as well, RPLC, RPERS, ROBJ, e.g.
RPLC#5. If a subject produced a pointing gesture,
we generate a markable token to mark what is being
pointed to at the end of the utterance (see Utt. 4 and 5
in Figure 2). Within the same task, if two markables
have the same type and the same markable index,
they are taken to co-refer (hence, longer chains of
reference across tasks are cut into shorter spans).

Haptics annotation is at the beginning. We have
identified grab, hold, give and receive as high-level
haptics phonemes that may be useful from the lan-
guage point of view. We have recently started anno-
tating our corpus with those labels.

Subjects Tasks Utterances Gestures Pronouns
12 114 1920 896 1635

Table 2: Annotated Corpus Size

In order to test the reliability of our annotation,
we double coded about 18% of the data, namely 21
sub-dialogues comprising 213 pronouns, on which
we computed the Kappa coefficient (Carletta, 1996).
Similar to (Rodrıguez et al., 2010), we measured the
reliability of markable annotations, and of link to
the antecedent annotations. As concerns the mark-
able level, we obtained κ=0.945, which is high but
no surprisingly for such a simple task. At the link to
the antecedent level, we compared the links from
pronouns to antecedents in a specified context of 4
utterances, obtaining a reasonable κ=0.723.308



3: PERS#1(HEL/NNP) : RPERS#1(I/PRP) do/VBP n’t/RB see/VB any/DT OBJ#3(pasta/NN) ./.
4: PERS#2(ELD/NNP) : Try/VB over/IN RPLC#5(there/RB) ./. {PLC#5(cabinet/NN)}
5: PERS#1(HEL/NNP) : This/DT RPLC#5(one/NN) ?/. {PLC#5(cabinet/NN)}
6: PERS#2(ELD/NNP) : Oh/UH ,/, yes/RB ./.

Figure 2: Annotation Excerpt

3 Our approach

Utterances and Gestures

Find Markables Generate Candidates

Coreference Pairs

Preprocessing

Markable Model Coreference Model

Figure 3: Co-reference System Architecture

The architecture of our co-reference resolution
system is shown in Figure 3.

We first pre-process a dialogue by splitting turns
into sentences, tokenizing sentences into tokens,
POS tagging tokens. The Markable model is used
to classify whether a token can be referred to and
what type of markable it is. The Markable model’s
feature set includes the POS tag of the token, the
word, the surrounding tokens’ POS tags in a win-
dow size of 3. The model outputs markable classes:
Place/Object/Person, or None, which means the to-
ken is not markable. A pointed-to entity serves as a
markable by default.

To perform resolution, each pronoun to be re-
solved ( I, you, it, they; this, that, these, those, here,
there) is paired with markables in the context of the
previous 2 utterances, the current utterance and the
utterance that follows, by using {pronoun, markable
type} compatibility rules. For example, let’s con-
sider the excerpt in Figure 2. To resolve one in
utterance 5, the system will generate 3 candidate
token pairs: <one(5,2), pasta(3,6)>, <one(5,2),
cabinet(4,-1)>, <one(5,2), cabinet(5,-1)> (includ-
ing the pointed-to markable is a way of roughly ap-
proximating information that will be returned by the
vision component). The elements in those pairs
are tokens with their coordinates in the format (Sen-
tenceIndex, TokenIndex); markables pointed to are
given negative token indices.

The Co-reference model will filter out the pairs
<pronoun, markable> that it judges to be incor-
rect. For the Co-reference model, we adopted a

subset of features which are commonly used in co-
reference resolution in written text. These features
apply to each <pronoun, markable> pair and in-
clude: Lexical features, i.e. words and POS tags for
both anaphora and antecedent; Syntactic features,
i.e. syntactic constraints such as number and per-
son agreement; Distance features, i.e. sentence dis-
tance, token distance and markable distance. Addi-
tionally, the Co-reference model uses pointing ges-
ture information. If the antecedent in the <pronoun,
markable> was pointed to, the pair is tagged as Is-
Pointed. In our data, people often use pronouns
and hand gestures instead of nouns when introduc-
ing new entities. It is not possible to map these
pronouns to a textual antecedent since none exists.
This confirms the findings from (Kehler, 2000): in
a multi-modal corpus, he found that no pronoun is
used without a gesture when it refers to a referent
which is not in focus.

4 Experiments and Discussion

The classification models described above were im-
plemented using the Weka package (Hall et al.,
2009). Specifically, for each model, we experi-
mented with J48 (a decision tree implementation)
and LibSVM (a Support Vector Machine implemen-
tation). All the results reported below are calculated
using 10 fold cross-validation.

We evaluated the performances of individual
models separately (Tables 3 and 4), and of the sys-
tem as a whole (Table 5).

Algorithm Precision Recall F-Measure
J48 0.984 0.984 0.984
LibSVM 0.979 0.936 0.954
Baseline 0.971 0.971 0.971

Table 3: Markable Model Performance

The results in Table 3 are not surprising, since de-
tecting the type of markables is a simple task. In-
deed the results of the baseline model are extremely309



Method J48 LibSVM
Precision Recall F-Measure Precision Recall F-Measure

Text + Gesture 0.700 0.684 0.686 0.672 0.669 0.670
Text Only 0.655 0.656 0.656 0.624 0.624 0.624

Table 4: Co-reference Model Performance

Words Method Features Precision Recall F-Measure

All Pronouns

J48 Text Only 0.544 0.332 0.412
Text + Gesture 0.482 0.783 0.596

LibSVM Text Only 0.56 0.27 0.364
Text + Gesture 0.522 0.6 0.559

Baseline Text Only 0.367 0.254 0.300
Text + Gesture 0.376 0.392 0.384

3rd Person + Deictic

J48 Text Only 0.264 0.028 0.05
Text + Gesture 0.438 0.902 0.589

LibSVM Text Only 0.6 0.009 0.017
Text + Gesture 0.525 0.695 0.598

Baseline Text Only 0.172 0.114 0.137
Text + Gesture 0.301 0.431 0.354

Table 5: Co-reference System Performance (Markable + Co-reference Models)

high as well. We compute the baseline by assigning
to the potential markable (i.e., each word) its most
frequent class in the training set (recall that the four
classes include None as well).

For the Co-reference model, we conducted 2 sets
of experiments to ascertain the effect of including
Gesture in the model. As shown in Table 4, both J48
and LibSVM obtain better results when we include
gestures in the model. χ2 shows that differences in
precision and recall 1 are significant at the p ≤ 0.01
level, though the absolute improvement is not high.

As concerns the evaluation of the whole system,
we ran a 4-way experiment, where we examine the
performance of the system on all pronouns, and on
those pronouns left after eliminating first and second
person pronouns, without and with Gesture informa-
tion. We also ran two sets of baseline experiments.
In the baseline experiments, we link each pronoun
we want to resolve, to the most recent utterance-
markable token and to a pointed-to markable token
(if applicable). Markables are filtered by the same
compatibility rules mentioned above.

Regarding the metrics we used for evaluation, we
used the same method as Strube and Müller (2003),
which is also similar to MUC standard (Hirschman,

1χ2 does not apply to the F-Measure.

1997). As the golden set, we used the human an-
notated links from the pronouns to markables in the
same context of four utterances used by the system.
Then, we compared the co-reference links found by
the system against the golden set, and we finally cal-
culated precision, recall and F-Measure.

Table 5 shows that the F-measure is higher when
including gestures, no matter the type of pronouns.
When we include gestures, there is no difference be-
tween “All Pronouns” and “3rd Person + Deictic”.
In the “3rd Person + Deictic” experiments, we ob-
served huge drops in recall, from 0.902 to 0.028 for
J48, and from 0.695 to 0.009 for LibSVM algorithm.
This confirms the point we made earlier, that 3rd
person pronouns/deictic words (Kehler, 2000) often
do not have textual antecedents, since when accom-
panied by simultaneous pointing they introduce new
entities in a dialogue.

Comparison to previous work is feasible only at a
high level, because of the usage of different corpora
and/or measurement metrics. This said, our model
with gestures outperforms Strube and Müller (2003),
who did not use gesture information to resolve pro-
nouns in spoken dialogue. Strube and Müller (2003)
used the 20 Switchboard dialogues as their experi-
ment dataset, and used the MUC metrics. Our re-310



sults are similar to Eisenstein and Davis (2006), but
there are two main differences. First, the corpus
they used is smaller than what we used in this pa-
per. Their corpus was collected by themselves and
consisted of 16 videos, each video was 2-3 minutes
in length. Second, they used a difference measure-
ment metrics called CEAF (Luo, 2005).

5 Conclusions

In this paper, we presented the new ELDERLY-AT-
HOME multi-modal corpus we collected. A co-
reference resolution system for personal and deic-
tic pronouns has been developed on the basis of the
annotated corpus. Our results confirm that gestures
improve co-reference resolution; a simple notion of
type also helps. The Markable and Co-reference
modules we presented are a first start in developing
a full multi-modal co-reference resolution module.
Apart from completing the annotation of our cor-
pus, we will develop an annotation scheme for hap-
tics, and investigate how haptics information affects
co-reference and other dialogue phenomena. Ulti-
mately, both pointing gestures and haptic informa-
tion will automatically be recognized by the collab-
orators in the project we are members of.
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Abstract

Many dialogue system developers use data
gathered from previous versions of the dia-
logue system to build models which enable the
system to detect and respond to users’ affect.
Previous work in the dialogue systems com-
munity for domain adaptation has shown that
large differences between versions of dialogue
systems affect performance of ported models.
Thus, we wish to investigate how more mi-
nor differences, like small dialogue content
changes and switching from a wizarded sys-
tem to a fully automated system, influence the
performance of our affect detection models.
We perform a post-hoc experiment where we
use various data sets to train multiple mod-
els, and compare against a test set from the
most recent version of our dialogue system.
Analyzing these results strongly suggests that
these differences do impact these models’ per-
formance.

1 Introduction

Many dialogue system developers use data gathered
from previous versions of a system to train models
for analyzing users’ interactions with later versions
of the system in new ways, e.g. detecting users’ af-
fect enables the system to respond more appropri-
ately. However, this training data does not always
accurately reflect the current version of the system.
In particular, differences in the levels of automa-
tion and the presentation of dialogue content com-
monly vary between versions. For example, Raux et
al (2006) changed dialogue strategies for their Let’s
Go bus information system after real-world testing.

Previous work in dialogue systems with regards to
analyzing the impact of using differing training data
has primarily been in the domain adaptation field,
and has focused on two areas. First, previous work
empirically analyzed theneed for domain adapta-
tion, i.e. methods for porting existing classifiers
to unrelated domains. For example, Webb and Liu
(2008) developed a cue-phrase-based dialogue act
classifier using the Switchboard corpus, and tested
on call center data. While this performed reason-
ably, training on the call center corpus and testing
on Switchboard performed poorly.

The second research direction involves propos-
ing methodsfor domain adaptation. Margolis et
al. (2010) observed similar poor performance when
porting their dialogue act classifier between three
corpora: Switchboard, the Meeting Recorder Dia-
log Act corpus, and a machine-translated version of
the Spanish Callhome corpus. They report promis-
ing results through varying their feature set. Blitzer
et al. (2007) also observed poor performance and
theneedfor adaptation when porting product review
sentiment classifiers. They used four review corpora
from Amazon (books, DVDs, electronics, and small
appliances), which yielded 12 cross-domain train-
ing/testing pairs. Their algorithmic adaptation meth-
ods showed promising results.

Our work is in the first direction, as we also em-
pirically analyze the impact of differences in train-
ing and testing corpora to demonstrate theneedfor
adaptation methods. However, our work differs from
domain adaptation, as the corpora in this experiment
all come from one intelligent spoken physics tutor.
Instead, we analyze differences resulting from vary-
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ing levels ofautomation and small changes in dia-
loguecontentbetween versions of our system.

With respect to analyzingautomation, we em-
pirically compare the impact of differences in train-
ing on data from wizarded (WOZ) versus fully au-
tomated systems. Though many systems use data
from a WOZ version of the system to train models
which are then used in fully automated versions of
the system, the effectiveness of this method of dia-
logue system development has not been tested. We
hypothesize that models built with automated data
will outperform models built with wizarded data.

Additionally, minor dialoguecontent changes
typically exist between versions of systems. While
large changes, like changing domains, have been
shown to affect model performance, no work has in-
vestigated the impact of these more minute changes.
We hypothesize that these differences in dialogue
contentpresentation will also affect the models.

Finally, the amount of training data is a well
known factor which affects performance of models
built using supervised machine learning. We hy-
pothesize that combining some, but not all, types of
training corpora will improve the performance of the
trained models, e.g. adding automated data to WOZ
data will improve performance, as this provides fully
automated examples. We hypothesize only provid-
ing more WOZ data will not be as useful.

2 Data

The data used for this work comes from two prior
experiments usingITSPOKE, a spoken tutorial dia-
logue system, which tutors physics novices. Table
1 describes all data used, displaying the number of
users per data set, the number of dialogues between
the system and each user, the total number of user
turns per corpus, and the percentage of turns labeled
uncertain. See Appendix A for more information.

The first experiment, in 2007, compared two
dialogue-based strategies for remediating user un-
certainty over and above correctness (Forbes-Riley
and Litman, 2011b). The goal of this work was to
not only test the hypothesis that this uncertainty re-
mediation would improve users’ learning, but to in-
vestigate what types of dialogue remediation would
improve users’ learning the most. Since this experi-
ment, WOZ-07, was designed to be a gold-standard

case of uncertainty remediation, all natural language
understanding and uncertainty annotation was per-
formed by a human wizard, in real time (WOZ). All
annotations were made at the turn-level.

For WOZ-07, users’ dialogue interactions with
the system would change based on which remedia-
tion strategy they were assigned to. There were two
different dialogue-based remediation strategies. In
addition to varying the strategies, the two control
conditions in this experiment also varied when the
remediation strategy was applied.

The simple remediation dialogue strategy pro-
vided additional information about the physics con-
cept the user was struggling with, or asked them
further questions about the concept. Both control
conditions used thesimpleremediation strategy; one
only applied the strategy when the user was incor-
rect, the other applied it if the user was incorrect and
randomly when the user was correct. Thesimplere-
mediation experimental condition applied the reme-
diation when the user was incorrect, or correct but
uncertain about their answer. The fourth condition
in WOZ-07 used the second dialogue strategy,com-
plexremediation. This strategy changed the way the
remediation was presented, depending on a combi-
nation of the user’s correctness and certainty in their
answer. Only users in thesimpleremediation exper-
imental condition learned more than users in other
conditions. Figure 1 shows an example ofsimplere-
mediation; the tutor acknowledges that the user is in-
correct, saying “Well...”, and then explains the con-
cept the previous question tested. Appendix B com-
paressimpleandcomplexremediation strategies.

Another experiment was performed in 2008,
where users interacted with either a fully automated
(ASR) version ofITSPOKE or a wizarded version.
The goal of this experiment was to see if the learn-
ing gains found in the 2007 experiment would hold
in the ASR version of the system. To mimic the
WOZ-07 experiment, the wizarded version (WOZ-
08) only used thesimpleremediation experimental
condition found in WOZ-07, while the ASR ver-
sion contained thesimpleremediation experimental
condition and bothsimpleremediation control con-
ditions. Thecomplexremediation strategy was not
included due to its poor performance in WOZ-07.
Thus, WOZ-08 and ASR-08 used identical dialogue
strategies, with minor differences in where the reme-
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TUTORp5: (Response to an incorrect answer)Well...
We just discussed that by Newton’s Third law, when two
objects collide, the forces they exert on each other are
equal in magnitude and opposite in direction. This is true
regardless of the objects’ differing masses. So the first
question’s answer is that the impact forces on the truck
and the car will have the same magnitude but opposite
direction. Now, the second question asks about the ve-
hicles’ change in motion. We can use Newton’s Second
law to answer this. What does this law say?

TUTORp6: (Response to a correct, certain answer)Fine.
So the first question’s answer is that the impact forces on
the bus and the motorbike will have the same magnitude,
but opposite direction. Now, the second question asks
about the vehicles’ change in motion. We can use New-
ton’s second law to answer this. What does this law say?

Figure 1: Corpus Excerpt: Remediation in Dialogue 5,
and No Remediation in Isomorphic Dialogue 6

diation would be applied. For the ASR conditions,
all models were trained on WOZ-07 data; users were
randomly assigned to the WOZ-08 or ASR-08 con-
dition as they participated.

In addition to eliminating thecomplexremedia-
tion condition, a sixth dialogue, completely isomor-
phic to the fifth dialogue, was added to all condi-
tions. See Appendix B dialogue examples, high-
lighting their content differences. Figure 1 displays
two ASR-08 tutor turns with the same user. These
turns are from the fifth problem, and the isomorphic
sixth problem. Note that two things change between
these two answers. First, the system responds to the
user’s incorrectness in the first example. Had the
user been correct and uncertain, this is also the di-
alogue s/he would have seen. Second, notice that
problem five discusses a car, while problem six dis-
cusses a motorcycle. To create a completely iso-
morphic problem, the scenario for the dialogue was
changed from a car to a motorcycle.

For both the 2007 and 2008 corpora, all gold-
standard uncertainty annotations were performed by
a trained human annotator. Development and pre-
vious testing of the annotation scheme between this
annotator and another trained annotator resulted in
kappa= 0.62. All wizarded conditions were an-
notated in real-time; all ASR conditions were anno-

Data Set #Usr #Dia #Turn %Unc
WOZ-07 81 5 6561 22.73
WOZ-08 19 6 1812 21.85
ASR-08 72 6 7216 20.55

ASR-08-Train 19 6 1911 21.51
ASR-08-Test 53 6 5305 20.21

Table 1: Description of data sets

tated in a post-hoc manner.
In sum, the main differences between the two sys-

tems’ data are differences inautomation (i.e. WOZ
and ASR) andcontent (i.e. presentation of content,
reflected by differing dialogue strategies, and num-
ber of physics dialogues).

3 Post-Hoc Experiment

In this post-hoc analysis, we will analyze the im-
pact ofcontentdifferences by comparing the perfor-
mance of models built with WOZ-07 and WOZ-08,
and automation differences by comparing models
built with WOZ-08 and ASR-08 data. Instead of the
original study design, where WOZ-08 and ASR-08
subjects were run in parallel, we could have gathered
the WOZ data first, and used the WOZ data and the
first few ASR users for system evaluation and devel-
opment purposes. Thus, for the post-hoc analysis,
we mimic this by using WOZ-08 as a training set,
and splitting ASR-08 into two data sets–ASR-08-
Train (the first few users), and ASR-08-Test. (Please
see the last two rows of Table 1.) We held out the
first 19 users for ASR-08-Train, since this approx-
imates the amount of data used to train the model
built with WOZ-08. For our post-hoc study, the re-
maining 53 ASR users were used as a test set for
all training sets, to mimic an authentic development
lifestyle for a dialogue system. Additionally, this
guaranteed that no users appear in both the training
and testing set given any training set.

As all uncertainty remediation happens at the
turn-level, we classified uncertainty at the turn-level,
and compared these automated results with the gold-
standard annotations. We used all the features that
were designed for the original model. Since previ-
ous experiments with our data showed little variance
between different machine learning algorithms, we
chose a J48 decision tree, implemented byWEKA,1

1http://www.cs.waikato.ac.nz/ml/weka/
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for all experiments due to its easy readability. Since
our class distribution is skewed (see Table 1), we
also used a cost matrix which heavily penalizes clas-
sifying an uncertain instance as certain.

We use simple lexical, prosodic and system-
specific features described in (Forbes-Riley and Lit-
man, 2011a) to build our models. These features
were kept constant through all experiments, so the
results could be directly comparable. For all lexical
features for all data sets, ASR text was used.2 For all
WOZ conditions, we gathered ASR text post-hoc.

We trained models on individual training sets, to
inspect the impact ofcontent andautomation dif-
ferences. We then trained new models on combi-
nations of these original training sets, to investigate
possible interactions. To allow for direct compari-
son, we used ASR-08-Test to evaluate all models.

Since detecting uncertainty is related to detecting
affective user states, we use the evaluation measures
Unweighted Average (UA) Recall and UA Precision,
presented in (Schuller et al., 2009).We also use UA
F-measure. Note that because only one hold-out
evaluation set was used, rather than using multiple
sets for cross-fold validation, we do not test for sta-
tistical significance between models’ results.

4 Results

The first three rows of Table 2 present the results of
training a model on each possible training set indi-
vidually. Note that the number of instances per train-
ing set varies. WOZ-07 simply has more users in the
training set than WOZ-08 or ASR-08-Train. While
WOZ-08 and ASR-08-Train have the same number
of users, the number of turns slightly varies, since
dialogues vary depending on users’ answers.

When comparing WOZ-08 to WOZ-07, first no-
tice that WOZ-08 outperforms WOZ-07 with a
much smaller amount of data. Both are wiz-
arded versions, butcontent differences exist be-
tween these experiments; WOZ-08 only used the
simpleremediation strategy, and added a dialogue.

When comparing ASR-08-Train to the other two
individual training sets, note that it best approxi-
mates the test set. This training condition outper-
forms all others, while using less data than WOZ-

2We used ASR instead of manual transcriptions, to better
approximate automated data.

07. While WOZ-08 and ASR-08 have the same
content, the system changes from wizarded to au-
tomated language recognition. This allows us to di-
rectly compare how differences due toautomation
(e.g. errors in detecting correct answers) can affect
performance of the models. Note that even though
we used ASR transcriptions of WOZ-08 turns, the
effects of ASR errors on later utterances are only
propagated in ASR-08-Train. As ASR-08-Train no-
ticeably outperforms WOZ-08, with approximately
the same amount of training data, we conclude that
using automated data for training better prepares the
model for the data it will be classifying.

As we also wish to investigate how incorporat-
ing more diverse training data would alter the per-
formance of the model, we combined ASR-08-Train
and WOZ-08 with the WOZ-07 training set, shown
in Table 2. We combined these sets practically, as
we wish to test how our model could have performed
if we had used our first few 2008 users to train the
model in the actual 2008 experiment.

First, note that all combination training sets out-
perform individual training sets. As ASR-08-Train
outperformed WOZ-08 for individual training sets,
it is not surprising that WOZ-07+ASR-08-Train out-
performs WOZ-07+WOZ-08.

However, we could have used WOZ-07 for feature
development only, and trained on WOZ-08 + ASR-
08-Train. Since the training and testing sets contain
identical content, it is unsurprising that the preci-
sion for this classifier is high. This classifier does
not perform as well with respect to recall, perhaps
since its training data is not as varied. Also note,
while this model trained on few data points, we used
additional data for feature development purposes.

Combining all three possible training sets does
not outperform WOZ-07+ASR-08-Train; it per-
forms equivalently, and uses much more data. We
hypothesize that, since WOZ-07 constitutes the ma-
jority of the training set, the benefit of including
WOZ-08 may be mitigated. Downsampling WOZ-
07 could test this hypothesis. Alternatively, the ben-
efit of combining WOZ-07+ASR-08-Train could be
that we provide many varied examples in this com-
bined training set. Since WOZ-07 already accounts
for differences in bothcontent and automation,
WOZ-08 doesn’t introduce novel examples for the
classifier, and adding it may not be beneficial.
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Training Set n UA Rec. UA Prec. UA F1
WOZ-07 6561 54.6% 53.0% 53.79%
WOZ-08 1812 58.0% 55.4% 56.67%
ASR-08-Train 1911 60.5% 57.2% 58.80%

WOZ-07 + WOZ-08 8373 66.1% 61.0% 63.45%
WOZ-07 + ASR-08-Train 8472 68.3% 63.5% 65.81%
WOZ-08 + ASR-08-Train 3723 64.0% 73.4% 68.38%
WOZ-07 + WOZ-08 + ASR-08-Train 10284 68.3% 63.6% 65.86%

Table 2: Results; Testing on ASR-08-Test (n = 5305). Bold denotes best performance per metric.

In sum, different training set combinations pro-
vide different benefits. With respect to UA F1 and
UA Precision, WOZ-08 + ASR-08-Train outper-
forms all other training sets. Using only 3723 turns
to train the model, this configuration uses the least
amount of training data. However, this requires pre-
viously collected data, such as WOZ-07, for fea-
ture development purposes. Alternatively, WOZ-
07 + ASR-08-Train performs better than WOZ-08 +
ASR-08-Train with respect to UA Recall, and does
not require a separate feature development set. Thus,
the ‘best’ training set would depend on both the ex-
perimental design, and the preferred metric.

5 Discussion and Future Work

In this paper, we provided evidence that the degree
of automation of a system used to collect training
data can impact the performance of a model when
used in a fully automated system. Since one com-
mon technique of building fully automated dialogue
systems uses a semi-automated wizarded version,
this result suggests incorporating a small amount of
automated data could greatly improve performance
of the models. Our results also suggest that the type
of data is more important than the quantity when
building these models, since well-performing mod-
els were built with small amounts of data. We also
investigated the impact of building models trained
with different dialoguecontent, another common
method of developing dialogue systems. As the
WOZ-08 model outperforms the WOZ-07 model, it
appears that this has a noticeable impact.

However, the WOZ-08 and WOZ-07 experiments
may not have had identical user population, due to
the timing differences between studies. We wish
to perform further post hoc-experiments to analyze
the impact of population differences in our data. To

do so, we will eliminate all dialogue strategy dif-
ferences between WOZ-07 and WOZ-08. To fur-
ther support our results regardingcontent differ-
ences, we wish to split WOZ-08 into two training
sets, one including the sixth problem, and one ex-
cluding it. After controlling for differences in quan-
tity of data, we will analyze the resulting models.
To further strength our results regardingautoma-
tion differences, we will eliminate all differences in
when the remediation dialogue strategy was applied
between the WOZ-08 and ASR-08-Test corpus, and
try to replicate the results found in this paper.

As our results suggest theneedfor applying do-
main adaptation methods to improve models’ per-
formance when there are differences inautomation
andcontent, future work could investigate applying
already existingmethodsfor domain adaptation, and
developing new ones for this problem. In particular,
the results we presented suggest a method for build-
ing a dialogue system that could mitigate the effects
of changes in automation and content. A small wiz-
arded condition, with changes in dialogue content,
could be used for feature development. This data, or
data from another small wizarded condition, could
then be used to train a preliminary model. This pre-
liminary model could be tested with a small num-
ber of users using an automated version. Then, the
data from the preliminary conditions could be used
to build the final model, which would be used for the
current, fully automated version of the system.
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Data Set
Dialogue #5 Dialogue #6
Avg. Avg. Avg. Avg.

#Turn %Unc #Turn %Unc
WOZ-07 15.21 26.87 N/A N/A
WOZ-08 14.37 28.21 13.42 9.02
ASR-08 16.26 19.90 16.28 9.73

ASR-08
-Train 16.05 19.67 16.00 11.84
ASR-08
Test 16.38 19.98 16.38 8.99

Table 3: Dialogue-level description of corpora

Appendix A Differences between corpora

We note that one possible difficulty in using dia-
logues with differingcontentcould be differing lev-
els of users’ uncertainty between those dialogues.
Thus, Table 3 depicts the average percent of uncer-
tain turns over all users, per dialogue. Only Dia-
logues #5 and #6 are presented; average number of
turns and average percent uncertainty do change be-
tween all problems. While the average number of
turns are similar, the percentage of uncertain turns
drops greatly between the two isomorphic problems.

Appendix B Dialogue Examples

We also present dialogue examples from our cor-
pora to illustrate variouscontent differences be-
tween versions ofITSPOKE. The changes between
Dialogues #5 and #6 are as follows: every instance
of “car” in Dialogue #5 with “motorbike,” and ev-
ery instance of “truck” is replaced with “PAT bus.”
Since users discuss Problem #6 withITSPOKE im-
mediately after discussing Problem #5, the drop in
percentage of user uncertainty between Dialogue #5
and Dialogue #6 show in Table 3 might be explained
by this. However, all of the domain-specific words
and all of the knowledge concepts will remain the
same between these two problems.

Figures 1 (in the main paper) and 2 give examples
of the two types of remediation found in the 2007
corpus. ITSPOKE can change its dialogue based on
not only how it presents the content, but also what
feedback it gives. Complexremediation changes
both of these attributes. Table 4 displays possible
feedbacks given to the user, depending on their lev-
els of correctness and certainty. In Figure 2, the seg-

Tutor: What’s the overall net force on the truck equal to?
User: Zero??[Incorrect & Uncertain]
Tutor: That’s not correct, but don’t worry. You seem
to be aware of your mistake. Let’s resolve it.[FEED-
BACK] The net force on the truck is equal to the impact
force on it. Let’s walk through this answer step by step.
[NEW SHORT ANSWER]We can derive the net force on
the truck by summing the individual forces on it, just like
we did for the car. First, what horizontal force is exerted
on the truck during the collision?[EXISTING SUBDIA-
LOGUE]

Figure 2: Example ofComplexuncertainty remediation.

User Answer Examples of
Feedback Phrases
Simple Complex

Correct & That’s That’s right.
Certain right.
Correct & That’s That’s right, but you don’t
Uncertain right. sound very certain, so let’s

recap.
Incorrect & Well... Good try, but that’s not
Uncertain right. It sounds like you

knew there might be an
error in your answer.
Let’s fix it.

Incorrect & Well... I’m sorry, but there’s a
Certain mistake in your answer that

we need to work out.

Table 4: Example Feedback Phrases used inSimpleand
ComplexRemediation

ment of the tutor’s turn is labeled after that segment
is completed (e.g. the Feedback is “That’s not cor-
rect... resolve it.”). The type of remediation can also
change. While Figure 1 depicts the normal remedi-
ation path as if the user had answered incorrectly or
correct but uncertain,complexremediation, shown
in Figure 2, first gives the user a short version of the
answer that they should have given, before moving
down the normal remediation path.
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Abstract

Error-return plots show the rate of error
(misunderstanding) against the rate of non-
return (non-understanding) for Natural Lan-
guage Processing systems. They are a use-
ful visual tool for judging system performance
when other measures such as recall/precision
and detection-error tradeoff are less informa-
tive, specifically when a system is judged on
the correctness of its responses, but may elect
to not return a response.

1 Introduction

Many Natural Language Processing systems make
a distinction between misunderstanding, where the
system interprets an input incorrectly, and non-
understanding, where the system is aware that it is
not able to interpret an input (Bohus and Rudnicky,
2005). This distinction is common in dialogue sys-
tems, where it pertains to Natural Language Under-
standing components which pass their output to a
dialogue manager: a dialogue manager will act on
the contents of misunderstood input, but if it knows
that the input is not understood then it can engage in
a variety of recovery techniques, such as asking for
clarification, moving on, or changing the topic. For
this reason non-understanding is usually preferred to
misunderstanding. While common to dialogue sys-
tems, the concept of non-understanding is useful for
other tasks as well, whenever a system can bene-
fit from the knowledge that its best interpretation is
likely to be incorrect (see below for an example in
question answering).

Detecting non-understanding is a tradeoff: a sys-
tem that is prone to non-understanding will in-

evitably miss some inputs that it would have under-
stood correctly under a forced interpretation. This
is similar but not identical to the familiar trade-
offs between recall and precision (van Rijsbergen,
1979) and between detection and error (Martin et al.,
1997). Recall and precision are measures taken from
information retrieval, where there are typically mul-
tiple documents relevant to a query, and ideal per-
formance is defined as retrieving all and only the
relevant documents: recall measures the “all” part
while precision measures the “only” part, and tun-
ing a system to increase one measure typically im-
plies decreasing its counterpart. Detection and er-
ror apply to forced choice tasks: each input must be
classified as either positive or negative, and decreas-
ing false positives typically implies increasing false
negatives and vice versa. The tradeoff between mis-
understanding and non-understanding is similar to
recall-precision in that a response need not be given
to each input, and is similar to detection-error in that
when a response is given, we only care about its cor-
rectness and not about its exhaustiveness.

There is presently no accepted measure for
the tradeoff between misunderstanding and non-
understanding. A recent example illustrating the
confusion, and need for a standard measure, comes
from the QALD-1 Open Challenge (Question An-
swering over Linked Data).1 The task is defined
as giving a complete and correct answer to a nat-
ural language question, but systems are allowed to
not return an answer. The evaluation metric uses
recall and precision, but they are defined in a non-
standard way. Precision is defined as the number

1http://www.sc.cit-ec.uni-bielefeld.de/sites/www.sc.cit-ec.
uni-bielefeld.de/files/sharedtask.pdf (dated 2011-03-28)
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of correctly answered questions divided by the to-
tal number of answered questions; given that each
question receives at most one answer, this is equiv-
alent to the standard definition of correct answers
divided by the total number of answers provided by
the system – it penalizes misunderstanding and gives
credit to non-understanding. Recall is also defined
in a non-standard way.

number of correctly answered questions
number of questions

This would normally be considered the definition
of accuracy, and it penalizes misunderstanding and
non-understanding equally; the standard definition
of recall is the number of correct answers divided by
the number of available correct answers, and it does
not normally penalize incorrect answers. The reason
for the confusion between recall and accuracy is that
in a task where each question has a unique correct
answer, failure to provide a correct answer to a ques-
tion implies that an available answer has not been
retrieved. What the QALD-1 evaluation does, in
effect, is penalize non-understanding through accu-
racy, and penalize misunderstanding more, through
both accuracy and precision.

To properly evaluate the tradeoff between mis-
understanding and non-understanding we need to
look at each type of error separately. If each in-
put receives a response, then accuracy is the com-
plement of error; if some responses are not re-
turned, then accuracy is the complement of the sum
of errors (misunderstandings) and non-returns (non-
understandings). The relative severity of misunder-
standing and non-understanding will vary based on
the application: a question-answering system that
is required to provide accurate information might
have a low tolerance for misunderstanding, while a
story-driven dialogue system might have a low tol-
erance for asking clarification questions as a result
of non-understanding. The relation between misun-
derstanding and non-understanding is not fixed – a
system with lower error rates under a forced inter-
pretation may turn out to have higher error rates than
a competitor after allowing for non-understanding.
It is therefore useful to look at the entire range of
return rates when evaluating systems. The remain-
der of this paper introduces the error-return plot as
a graphical representation for comparing error rates

across different return rates, and presents examples
for its use from recent experiments.

2 Characteristics of the tradeoff

A Natural Language Processing component that is
capable of indicating non-understanding consists of
two distinct processes: figuring out the best (or most
likely) response to an input, and deciding whether
the best response is likely to be appropriate. These
two processes may be implemented as distinct soft-
ware components, as in the system used for the
experiments in section 4, NPCEditor (Leuski and
Traum, 2010) – a classification-based system for
Natural Language Understanding that chooses the
best interpretation from a fixed set. NPCEditor
first calculates the appropriateness of each avail-
able interpretation, and then compares the score of
the best interpretation to a predetermined threshold;
if the best interpretation falls below the threshold,
NPCEditor indicates non-understanding. Other im-
plementations are, of course, possible – for example,
Patel et al. (2006) describe an architecture where the
system first decides if it can understand the input,
and then tries to determine the interpretation only
if the answer is positive. The two processes may
also be linked more intimately together, but in order
to determine the tradeoff between misunderstand-
ing and non-understanding, there must be some way
to isolate the decision of whether or not the input
has been understood. By varying the sensitivity of
this decision, we can compare the rates of misunder-
standing across different rates of non-understanding.

Decomposing Natural Language Understand-
ing into two distinct processes helps illustrate
the inapplicability of the popular measures of
ROC curves (relative operating characteristic,
Swets, 1973) and DET curves (detection error trade-
off, Martin et al., 1997). These measures only look
at the decision of whether an interpretation is good
enough, while abstracting away the decision about
the actual interpretation. ROC and DET curves were
developed for detection and verification tasks, where
performance is determined by the rate of errors –
misses and false alarms – irrespective of the com-
position of the input. They plot the false alarm rate
against the hit rate (ROC) or miss rate (DET) – that
is, the returned errors as a proportion of all errors
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against the returned (ROC) or missed (DET) correct
responses as a proportion of all correct responses.
Consequently, ROC and DET curves say nothing
about the actual error rate. A system with an er-
ror rate of 10%, where errors are uniformly spread
among correct responses when ranked by the sys-
tem’s confidence, will have identical ROC and DET
curves to a system with an error rate of 40%, 50% or
90% with the errors spread uniformly.

For investigating the tradeoff between misunder-
standing and non-understanding, we want to look
not only at the system’s decision about whether or
not to return an interpretation, but also at the correct-
ness of the chosen interpretation. We therefore need
a plot that reflects the actual error rate as a function
of the return rate.

3 Definition

An error-return plot is a graphical representation of
the tradeoff between errors (misunderstandings) and
failures to return a response (non-understandings).
It applies to systems that react to each input in one
of three possible ways – a correct response, an in-
correct response, or a failure to respond to the input.
The error rate and non-return rate are defined as fol-
lows.

Error rate =
incorrect responses
number of inputs

Non-return rate =
failures to respond
number of inputs

In order to plot the entire range of the tradeoff, the
system is set to make a forced-choice response to
each input. The responses are then ranked according
to the system’s confidence (or whatever other mea-
sure is used to decide when to issue a non-return),
and at each possible cutoff, the non-return rate is
plotted on the horizontal axis against the error rate
on the vertical axis. As the number of non-returns
grows, the number of errors can only go down, so
the plot is monotonically decreasing; at the extreme
right, where no responses are returned, error rates
are necessarily zero, while at the extreme left, the
error rate is equivalent to accuracy under a forced
choice. Lower curves indicate better performance.

Figure 1: Comparing tokenizers, SGT Star data
(Wang et al., 2011, black = baseline)

4 Examples

An example error-return plot is shown in Figure 1.
The plot is taken from Wang et al. (2011), an experi-
ment which tested the effect of using phonetic infor-
mation in a Natural Language Understanding com-
ponent in order to recover from speech recognition
errors. The base system is NPCEditor (Leuski and
Traum, 2010), trained for SGT Star, a virtual charac-
ter who provides information about the U.S. Army to
potential recruits (Artstein et al., 2009). For each in-
put utterance, NPCEditor selects one output out of a
fixed set, based on a learned mapping between input
and output training examples; it also has the capabil-
ity of not returning a response if the classifier’s con-
fidence in the appropriateness of the best choice falls
below a certain threshold. The specific experiment
in Figure 1 tested alternative methods to tokenize the
input: the base tokenizer is represented by the thick
black curve, and uses words as tokens; alternative
tokenizers are shown in thinner lines or in shades of
gray, and they use tokens with various mixtures of
phonetic and word information (phone unigrams, bi-
grams etc.). The test data consisted of utterances for
which the correct interpretation is known, but which
NPCEditor would occasionally fail to classify due to
speech recognition errors.

Figure 1 shows several properties at a glance. The
base tokenizer has a fairly high error rate (over 30%)
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Figure 2: Comparing tokenizers, Twins data
(Wang et al., 2011, black = baseline)

under forced choice, but the error rate decreases
rapidly when non-understanding is allowed (on the
left-hand side of the plot the slope is close to −1,
which is the steepest possible decline). When tol-
erance for non-understanding is low, all the alter-
native tokenizers produce lower error rates than the
baseline; however, increasing the non-understanding
does not affect all tokenizers equally, and the er-
ror rate of the baseline tokenizer improves more
rapidly than others, so that at 30% non-return rate it
is better than most of the alternative tokenizers. Fi-
nally, one alternative tokenizer – the thin black line –
shows best or almost-best performance at all return
rates, supporting the hypothesis of the original ex-
periment, that adding phonetic information to a Nat-
ural Language Understanding component can help
in recovery from speech recognition errors.

Figure 2 is from the same experiment but using
a different data set – the one developed for the the
twins Ada and Grace, two virtual guides at the Mu-
seum of Science in Boston who answer questions
about their neighboring exhibits and about science
in general (Swartout et al., 2010). The overall error
rate is much lower than in Figure 1. Otherwise, the
pattern is similar, though we see that the thin gray to-
kenizer has shifted from a close second-best to being
the worst performer. Once again, the thin black tok-
enizer beats all the others across most return rates.

Figure 3: Augmented classifiers (black = baseline)

Figure 3 shows a different experiment, also using
NPCEditor. This experiment tested the effect of tak-
ing an existing virtual character – the twins Ada and
Grace – and expanding the character’s understand-
ing by adding training input-output pairs extracted
automatically from text (the method for extracting
training data is described in Chen et al., 2011; the
present experiment is currently under review for
publication). The baseline classifier is the thick
black line, trained on the Twins’ original question-
answer links; the alternative classifiers add automat-
ically extracted questions-answer training links from
successive orthogonal domains. All classifiers were
evaluated using the same test set of questions from
the original domain, in order to test how the addition
of orthogonal training data affects performance on
inputs from the original domain. The plot shows that
the effect is quite noticeable: the original classifier
has a 10% absolute error rate, which drops to virtu-
ally zero at a non-return rate of 20% and above; the
augmented classifiers display a higher initial error
rate, and moreover this higher error rate is not easily
mitigated by accepting higher non-return rates. The
augmented classifiers have the advantage of being
able to understand inputs from the added domains,
but the cost is some confusion on the original do-
main, both in terms of understanding the input, and
in the ability to identify non-understanding.
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5 Discussion

The error-return plot is a graphical representation
for looking at the tradeoff between misunderstand-
ing and non-understanding. Evaluating systems ca-
pable of indicating non-understanding is somewhat
tricky, and error-return plots can show information
that is useful when comparing such systems. If
the curve of one system completely dominates the
other, then we can say with confidence that the first
system has better performance. If the curves in-
tersect, then we need to compare the parts of the
curve where we expect actual system performance
to fall, and this will vary by application. The sys-
tems described above all use the same strategy for
dealing with non-understanding: they issue an “off-
topic” response which asks for clarification, stalls,
or changes the conversation topic. The systems are
intended for fairly short question-answer dialogues,
for which an off-topic response rate of about 1 in 5
is usually acceptable, so the critical region is around
20% non-understanding. In applications where it is
possible to judge the relative severity of misunder-
standing and non-understanding, a weighted aver-
age could identify the optimal setting for the non-
understanding threshold. Such an average should
give non-understanding a lower weight than misun-
derstanding, since treating them as equal would ob-
viate the need for identifying non-understanding.

A counterpart to the error rate would be the
“missed chance rate” – the proportion of responses
that would have been correct under forced choice
but were not returned. Curves for missed chances
start at zero (when all responses are returned) and in-
crease with the non-return rate to a maximum of one
minus the absolute error rate. The relation between
the missed chance curve and the error return plot
is straightforward: wherever the error return curve
goes down, the missed chance curve stays level,
and wherever the error return plot stays level, the
missed chance curve goes up. The curves intersect
at the point where the number of misunderstandings
is identical to the number of non-understandings that
would have been correct under forced choice; it is
not clear, however, whether this point has any prac-
tical significance.

Error-return plots suffer from the usual problem
of evaluating single components in a dialogue sys-

tem: since subsequent input is to a certain extent
contingent on system actions, it is conceivable that
a system prone to misunderstanding would trigger
different user utterances than a system prone to non-
understanding. Determining the full consequences
of non-understanding would require running a full
dialogue system with real users under varying set-
tings; error-return plots show the performance of
Natural Language Understanding under the assump-
tion of fixed input.

Overall, error return plots provide useful in-
formation about the tradeoff between misunder-
standing and non-understanding in cases where re-
call/precision, ROC and DET curves are less infor-
mative. They have been used in several recent ex-
periments, and hopefully may gain acceptance as a
standard tool for system evaluation.
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Abstract 

We apply a PARADISE-style evaluation to a 
human-human dialogue corpus that was  col-
lected to support the design of a spoken dialo-
gue system for library transactions.  The book 
request dialogue task we investigate is infor-
mational in nature: a book request is consi-
dered successful if the librarian is able to 
identify a specific book for the patron. 
PARADISE assumes that user satisfaction can 
be modeled as a regression over task success 
and dialogue costs.  The PARADISE model 
we derive includes features that characterize 
two types of qualitative features. The first has 
to do with the specificity of the communica-
tive goals, given a request for an item.  The 
second has to do with the number and location 
of overlapping turns, which can sometimes 
signal rapport between the speakers.  

1 Introduction 

The PARADISE method for evaluating task-based 
spoken dialogue systems (SDSs) assumes that user 
satisfaction can be modeled as a multivariate linear 
regression on measures of task success and dialo-
gue costs (Walker, et al. 1998).  Dialogue costs 
address efficiency, such as length of time on task, 
and effort, such as number of times the SDS fails 
to understand an utterance and re-prompts the user.   
It has been used to compare subjects performing 
the same or similar tasks across distinct SDSs 
(Sanders, et al. 2002). To our knowledge, it has not 
been applied to human-human dialogue.  

For human-human task-based dialogues, we 
hypothesized that user satisfaction would not be 
predicted well by measures of success and dialo-

gue costs alone. We expected that qualitative cha-
racteristics of human-human dialogue, such as the 
manner in which a dialogue goal is pursued, could 
counterbalance high dialogue costs. To test this 
hypothesis, we performed a PARADISE-like eval-
uation of a corpus of human-human library trans-
action dialogues that was originally collected to 
support the design of our SDS (Passonneau, et al. 
2010).  The communicative task we examine is to 
identify a specific set of books of interest from the 
library’s holdings. This can be straightforward if 
the patron requests a book by catalogue number.  It 
can be complex if the patron does not have com-
plete bibliographic information, or if the request is 
non-specific. A book request is successful when 
the librarian identifies a specific book that ad-
dresses the patron’s request. 

Task success was predictive on a training set, 
but not on a held-out test set. Dialogue costs were 
less reliably predictive.  Two additional factors we 
found to be moderate predictors pertained to the 
number of book requests that were non-specific in 
nature, and the amount and location of overlapping 
turns. We refer to these as qualitative features. A 
non-specific book request can lead to a collabora-
tive identification of a specific book, and the costs 
incurred can be worth the effort. We speculate that 
overlapping turns during non-task-oriented subdia-
logue reflects positive rapport between the speak-
ers, while the role of overlapping turns during task-
oriented subdialogue is contingent on other charac-
teristics of the task, such as whether the goal is 
specific or non-specific. 

The three following sections discuss related 
work, our corpus, and our annotation procedures 
and reliability.  We then present how we measure 
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user satisfaction, informational task success on 
book requests, and various dialogue costs.  This is 
followed by results of the application of 
PARADISE to the human-human corpus.  

2 Related Work 

It is commonly assumed that human-computer in-
teraction should closely resemble human-human 
interaction. For example, the originators of social 
presence theory  propose that media that more 
closely resemble face-to-face communication pro-
vide a higher degree of social presence, or aware-
ness of the communicative partner (Short, et al. 
1976), which in turn leads  to communicative suc-
cess. A similar idea is seen in the origins of media 
richness theory (Daft and Lengel 1984), which de-
fines media with more “richness” as having more 
communication cues, and thus enhancing task suc-
cess. A key component of this assumption is that, 
if computers are created with human-like qualities 
then people will view computers similarly to hu-
mans.  We hypothesize that human-machine dialo-
gue need not resemble human-human dialogue in 
all respects, thus we earlier proposed a method to 
investigate human-machine dialogue despite the 
large disparity in the spoken language processing 
abilities of humans versus machines (Levin and 
Passonneau 2006), and applied it work described in 
this proceedings (Gordon, et al. 2011). Here, we 
apply PARADISE to human-human dialogue to 
facilitate comparison. 

Turn-taking in conversation has received a 
significant amount of attention. Early work ex-
amined the types of turn-taking attempts and the 
reasons why such attempts either succeed or fail 
(Beattie 1982). Recent research has focused on the 
acoustic, lexical, and discourse-relevant cues that 
indicate a transition between speakers (Beňuš 
2009, Gravano and Hirschberg 2009). More recent-
ly, turn-taking has been examined in the context of 
multi-tasking dialogues (Yang, et al. 2011). The 
Loqui human-human dialogues often involve mul-
tiple tasks. We do not annotate who has the floor, 
but we do transcribe overlapping speech, where 
there may be competition for the turn  (see below). 

3 Loqui Human-Human Corpus 

Our baseline SDS, CheckItOut, is modeled on 
library transactions for the Andrew Heiskell Braille 

and Talking Book Library of New York City, and 
is part of the Library of Congress.   Patrons request 
books from librarians by telephone, and receive 
book orders (primarily in recorded format) by mail. 
Early in the project, we recorded 175 patron-
librarian calls at the Heiskell Library, 82 of which 
we identified to be primarily about book informa-
tion and book orders. These were transcribed with 
an XML transcription tool, and utterances were 
aligned with the speech signal. The total number of 
words is approximately 24,670, or about 300 
words per dialogue. Our transcription conventions 
are documented on our website.1 

To facilitate analysis of the interactive structure 
of many types of interaction, such as spontaneous 
spoken dialogue, email, and task-oriented dialogue, 
we previously developed Dialogue Function Unit 
(DFU) annotation (Hu, et al. 2009).  The primary 
motivation was to capture information about adja-
cency pairs, sequences of communicative acts in 
which an initial utterance calls forth a responding 
one (Sacks, et al. 1974). DFUs encode links be-
tween the elements of an adjacency pair, and a re-
stricted set of dialogue acts designed to generalize 
across genres of interaction.  Trained annotators 
applied DFU annotations to all 82 dialogues.   

To measure task success and dialogue costs, we 
developed an additional annotation process that 
builds on DFU annotation, as described next.  

4 TSC Annotation 

In our human-human corpus, each patron has a 
different set of goals. For most of the dialogues, at 
least some of the patron’s goals are to request 
books from the librarian.  Other goals include re-
questing an update to the patron’s profile informa-
tion, requesting new equipment for listening to 
recorded books, and so on. The three-step method 
developed for annotating task success, dialogue 
costs and qualitative features (TSC Annotation) 
consists of an annotation step to determine what 
tasks are being executed, and two tabulation steps. 
The 82 dialogues that had already been annotated 
for DFUs were then annotated for task success and 
dialogue costs.2 Three annotators were trained in 
the annotation over the course of several one-hour 
sessions, each of which was devoted to a different 
                                                           
1See resources link at http://www1.ccls.columbia.edu/~Loqui/. 
2 The guidelines are at http://www1.ccls.columbia.edu/ 
~Loqui/resources.html.   
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sample dialogue. Pairs of annotators worked on 
each dialogue, with one annotator reviewing the 
other’s work. Disagreements were adjudicated, and 
interannotator agreement was measured on three 
dialogues. 

4.1 Annotation 

The annotation procedure starts by dividing a tran-
scription of a dialogue into a covering sequence of 
communicative tasks (Dialogue Task Units, or 
DTUs). Each DTU encompasses a complete idea 
with a single goal. It ends when both speakers have 
collaboratively closed the topic, per the notion of 
collaborative contributions to discourse found in 
(Clark and Schaefer 1989). Each DTU is labeled 
with its type.  The two types of DTUs of most re-
levance here are book requests (BRs; where a pa-
tron requests a book), and librarian proposals (LPs; 
where the librarian proposes a book for the patron). 
Each BR or LP is numbered.  Other DTU types 
include Inform (e.g., patron requests the librarian 
to provide a synopsis of a book), and Request-
Action (e.g., patron requests the librarian update 
the patron’s profile). After the DTUs have been 
annotated, success and task measures are tabulated 
for the book requests (BR and LP): the start and 
end lines, the specificity of the request (a request 
for any book by a given author is non-specific), 
and whether the task was successful. 

Figure 1 shows part of a book request DTU.  
The DTU in Figure 1 is unsuccessful; the librarian 

is unable to identify the book the patron seeks. 
Several DTUs might pertain to the same goal, pur-
sued in different ways.  For example, the DTU il-
lustrated here is the second of three in which the 
patron tries to request a book called The Dog 
Whisperer.  The dialogue contains 7 DTUs devoted 
to this request, which is ultimately successful.  

16.1.0  L  wh‐ wha‐ do you have the author?  
    [Request‐Info: author of book] 
17.1.0  P  Cesar Millan  
    [Inform: author is Cesar Millan] 
18.1.0  L  M I L A N? 
    [Request‐Info: is librarian's spelling correct] 
19.1.0  P  yes 
20.1.0  L  <non‐speaking‐librarian‐activity> 
21.1.1  P  can you hold on just {one second} 
    [Request‐Action: can librarian hold] 
21.1.2  L  {sure sure} 
    [Confirm] 
22.1.0  P  I’m back 
23.1.1  L  I’m sorry I’m not seeing anything {by him} 
    [Inform: Nothing by this author] 
23.1.2  P  {really} 
    [Request‐Info: yes/no]  
24.1.0  L  no 
    [Disconfirm] 
    BOOK REQUEST 1.1 

Figure 1. Book request DTU 

Figure 1 also illustrates how we transcribe 
overlapping utterances. Each line in Figure 1 cor-
responds to an utterance, or in the case of overlap-
ping speech, to a time segment consisting of an 
utterance with some overlap. Patron utterance 
21.1.1 is transcribed as ending with overlapping 
speech (in curly braces) where the librarian is also 
speaking within the same time segment (21.1.2). 
This is followed by the patron’s utterance 22.1.0. 
The next time segment (23) also has an overlap, 
followed by the librarian’s turn 24.1.0. As a result, 
we can investigate the proportion of utterances in a 
dialogue or subdialogue with overlapping speech, 
and the types of segments where overlaps occur. 

4.3 Interannotator Agreement 

To assess interannotator agreement among the 
three annotators, we randomly selected dialogues 
from a set that had already been annotated until we 
identified three that had been annotated by distinct 
pairs of annotators. Each was then annotated by a 
different third annotator who had not been a mem-
ber of the original pair. Interannotator agreement 
on DTU boundaries and labels was measured using 
Krippendorff’s alpha (Krippendorff 1980). Alpha 
ranges from 0 for no agreement above chance pre-
diction, given the rate at which each annotation 
value is used, to 1 or -1, for perfect agreement or 
disagreement.   

The three dialogues had alpha values of 0.87, 
0.77 and 0.66, thus all well above agreement that 
could have resulted from chance. The dialogue 
with the highest agreement had 1 book request 
consisting of 2 DTUs. The first DTU had a non-
specific request for two books by a given author, 
that was later reformulated in the second DTU as a 
specific request--by author and titles--for the two 
books. The dialogue with the next highest agree-
ment had 12 specific book requests by catalogue 
number, and one DTU per book request. The di-
alogue with the lowest agreement had 5 book re-
quests, with one DTU per book request. Two were 
by catalogue number, one was by author, and one 
was by author and title. 
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5. Perceived User Satisfaction 
An indirect measure of User Satisfaction for each 
dialogue was provided by two annotators who lis-
tened to the audio while reviewing the transcripts. 
The annotators completed a user satisfaction sur-
vey that was nearly identical to one used in an 
evaluation of CheckItOut, the SDS modeled on the 
library transactions; references to the system were 
replaced with the librarian. It contained ten ques-
tions covering the librarian’s clarity, friendliness, 
helpfulness, and ability to communicate. The anno-
tators rated the perceived response of the caller 
with regard to the survey questions. On a 1 to 5 
scale where 5 was the greatest satisfaction, the 
range was [3.8, 4.7], thus overall, patrons were 
perceived to be quite satisfied.  

6. Task Success 
The dialogue task investigated here is information-
al in nature, rather than a borrowing task. That is, a 
book request is considered successful if the libra-
rian is able to identify the specific book the caller 
is requesting, or if the librarian and patron are able 
to specify a book in the library’s holdings that the 
caller wants to borrow. The actual availability of 
the book is not relevant. Some patrons request a 
specific book, and provide alternative means to 
identify the book, such as catalogue number versus 
title. Some seek unspecified books by a particular 
author, or books in a given genre.  

We calculate task success as the ratio of suc-
cessfully identified books to requested books. The 
total number of books requested ranged from 1 to 
24.  Patron-initiated book requests as well as libra-
rian-initiated proposals are included in the tabula-
tion. In addition, we tabulate the number of 
specific book requests that change in the type of 
information provided (RC, title, author, genre, etc.) 
as well as the number of book requests that change 
in their specificity (non-specific to specific). Final-
ly, we tabulate how many of these changes lead to 
successful identifications of books.  

In general, task success was extremely high. 
More than 90% of book requests were successful; 
for 78% of the dialogues, all book requests were 
successful. This high success rate is to be expected, 
given that most callers are requesting specificc 
books they learn about from a library newsletter, or  
making non-specific requests that the librarian can 
satisfy. 

7. Dialogue Costs and Qualitative Features 
Along with two measures of task success (number 
of successfully identified books: Successful.ID; 
percent of requested books that are successfully 
identified: Percent.Successful), we have 48 meas-
ures of dialogue costs and qualitative features. The 
full list appears in column 1 of the table in Appen-
dix A. Dialogue costs consist of measures such as 
the total number of turns, the total number of turns 
in book requests, the total number of utterances, 
counts of interruptions and misunderstandings by 
either party, and so on. Qualitative features include 
extensive clarifications, the types of book request, 
and overlapping utterances.  

An extensive clarification serves to clarify 
some misunderstanding by the caller, and generally 
these segments take at least ten turns. 

We classify each book request into one of sev-
en types.  These are non-specific by author, non-
specific by genre, specific author, specific title, 
specific author and title, specific set, and specific 
catalogue number.  As shown in the Appendix, we 
also tabulate the total number of specific book re-
quests per dialogue (S.Total) and the total number 
of non-specific requests (NS.Total). 

We tabulate overlapping utterances in a varie-
ty of ways. The average number of overlapping 
utterances per dialogue is 13.9.  A breakdown of 
overlapping utterances into those that occur in 
book requests versus other types of DTU gives a 
mean of 4.36 for book requests compared with 
8.74 otherwise. We speculate that the difference 
results from the potential for overlapping utter-
ances to impede understanding when the utterance 
goals are to request and share information about 
books. In these contexts, overlap may reflect com-
petition for the floor. In contrast, overlapping ut-
terances at points in the dialogue that pertain to the 
social dimension may be more indicative of rap-
port between the patron and the librarian, as a ref-
lection of sharing the floor.  We do not attempt to 
distinguish overlaps with positive versus negative 
effects.  We do, however, tabulate overlapping 
speech in different types of DTUs, such as book 
request DTUs versus other DTUs. 

To illustrate the role of the qualitative fea-
tures, we discus one of the dialogues in our corpus 
that exemplifies a property of these human-human 
dialogues that we believe could inform SDS de-
sign: high user satisfaction can occur despite low 
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success rate on the communicative tasks.   Dialo-
gue 4 had the lowest task success of all dialogues 
(62.5%), yet perceived user satisfaction was quite 
high (4.7).  This dialogue had a large number of 
book requests and librarian proposals, with a mix 
of requests for specific books by catalogue num-
ber, title, or author and title, along with non-
specific requests for works by given authors.  It 
also had a fairly high proportion of overlapping 
speech.  As we discuss next, both dimensions are 
represented in the quantitative PARADISE models 
for predicting user satisfaction. 

8. PARADISE Results 

PARADISE predicts user satisfaction as a linear 
combination of task success and cost variables. 
Here we apply PARADISE to the Loqui library 
corpus, and add qualitative features to task success 
and dialogue costs. Six of the dialogues had no 
book requests, thus did not exemplify the task, 
namely to identify books for the patron in the li-
brary’s holdings.  These six were eliminated.  

We split the data into independent training and 
test sets. From the 76 dialogues with book re-
quests, we randomly selected 50 for deriving a re-
gression model. These dialogues had a total of 211 
book requests (mean=4.22). We reserved 26 dialo-
gues for an independent test of how well the fea-
tures from the user satisfaction model on the 
training set predicted user satisfaction on the test 
set. The test set had 73 book requests (mean=2.81).  

To explore the data, we first did Analysis of 
Variance (ANOVA) tests on the 50 individual fea-
tures as predictors of perceived user satisfaction on 
the training set. Certain features that are typically 
predictive for SDSs were also predictive here.  
Those that were most predictive on their own in-
cluded the proportion of book requests successfully 
identified (Pct.Successful), and several cost meas-
ures such as total length in utterances, and the total 
number of interruptions and misunderstandings. 
However, other features that were predictive here 
that are not typical of human-machine dialogue 
were the number of utterances with overlapping 
speech (Simultaneous.Utterances), and the number 
of book requests that evolved from non-specific  to 
specific (Change.NS.to.S). 

Given the relatively small size of our corpus, 
and the large number of variables, we pruned the 
30 features from the trained model before using 

them to build a regression on the test set. All ana-
lyses were done in the R Statistical Package 
(http://www.r-project.org/). We used the R func-
tion step to apply the Akaike Information Crite-
rion to guide the search through the model space.  
The resulting model relies on 30 of the 50 va-
riables, and has a multiple R-squared of 0.9063 (p= 
0.0001342). Appendix A indicates the 30 features 
selected, and their p-values. For the pruned model, 
we selected half of the 30 features that contributed 
most to the best model found through the step 
function on the training set.  The pruned model had 
a multiple R-squared of 0.5334 (p=0.0075). When 
we used the same features on the test set, the R-
squared was 0.7866  (p=0.0416).  However, the 
significance of individual features differed in train-
ing versus test. Appendix A lists the 15 features 
and their p-values on the training and test sets.  

On the training data, the most significant fea-
tures were Pct.Successful, the total number of di-
alogue segments pertaining to book requests 
(including librarian proposals; BR.request.segs), 
and the total number of book requests (Total.BR). 
The number of non specific book requests that 
evolved into specific requests (Change.NS.to.S) 
and the number of utterances per turn (Utter-
ances.Turns) were marginally significant. 

On the test data, the most significant variables 
were the ratio of overlapping utterances in seg-
ments that were not about book requests to book 
request segments (noBRLP.Overlap.per.TotalRe-
questSegments), the total number of non-specific 
book requests (NS.Total), and the number of over-
lapping utterances (Overlap.Utterances). 

9. Conclusion 

The human-human corpus examined here is an ap-
propriate corpus to compare with human-machine 
dialogue, in that our SDS was modeled on the book 
requests in the human-human corpus.   The R2 val-
ues indicate that the regression models based on 
the 15 features fit the data well, yet the coefficients 
and probabilities are very different. In part, this is 
due to the large number of variables we investi-
gated, relative to the small size of the corpus.  
Nevertheless, the results presented here point to a 
number of dimensions of human-human dialogue 
that contribute to user satisfaction beyond those 
that are typically considered when evaluating hu-
man-machine dialogue.   
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Appendix A: Features 
 Variable Training 

Coeff. 
Training 
p-value 

Pruned 
Coeff 

Pruned 
p-value 

Test 
Coeff. 

Test 
p-value 

1 Successful.ID       
2 Pct.Successful 0.504001 0.005118 0.356516 0.01219 -0.04154 0.86744 
3 Change.NS.to.S 1.440471 0.023525 0.287376 0.05761 0.10284 0.22876 
4 Successful.NS.to.S -1.450301 0.048656     
5 Change.S.to.S       
6 Successful.S.to.S       
7 BR.request.segs -0.201228 0.119857 -0.147057 0.00837 0.02566 0.79277 
8 LP.request.segs 0.146464 0.073138     
9 Total.Request.Segments       

10 Total.BR 0.448858 0.001813 0.147945 0.01220 -0.09960 0.35796 
11 Segments.per.BR 0.296577 0.047333 0.123411 0.17907 -0.08707 0.59903 
12 NS.Author -0.216559 0.090830     
13 NS.Genre -0.138867 0.249339     
14 S.Title          
15 S.AuthorTitle       
16 S.Set -0.953284 6.61e-05     
17 S.RC -0.158897 0.104752     
18 S.Author       
19 S.Total       
20 NS.Total   0.013265 0.75986 -0.27280 0.00716 
21 Turns.in.BR       
22 Utterances    -0.005613 0.013967     
23 Interruptions 0.187876 0.002704 -0.050500 0.29683 -0.29078 0.05378 
24 Misunderstandings       
25 Simultaneous.Utterances -0.151491 0.001967 -0.008705 0.21024 0.02329 0.04179 
26 Extensive.Clarifications -0.181057 1.76e-05 -0.022723 0.25767 -0.08685 0.11608 
27 S.U.Conventional 0.142152 0.006168     
28 S.U.Inform 0.141891 0.001619     
29 S.U.Sidebar  0.107238 0.047303     
30 S.U.BR.RC 0.142538 0.006467     
31 S.U.BR.Title 0.245880 0.000415     
32 S.U.BR.Title.and.Author 0.136412 0.002581     
33 S.U.BR.Genre       
34 S.U.LP 0.176515 0.015598     
35 S.U.R.A. 0.171413 0.001459     
36 S.U.IR.IRA 0.166315 0.001994     
37 Utterances.Turns -0.392267 0.020190 -0.256307 0.08077 0.01731 0.95674 
38 Total.Turns.BR       
39 Turns.in.BR.BR -0.015623 0.093573     
40 BR.Utterances -8.875951 0.000603 -1.104338 0.55174 2.59438 0.33439 
41 NS.Total.per.BR 0.183761 0.177739 -0.102524 0.33547 0.31111 0.10004 
42 S.U.BRLP       
43 S.U.BRLP.per.BR          
44 S.U.BRLP.per.TotalRequestSegs       
45 S.U.nonBRLP       
46 S.U.nonBRLP.per.BR       
47 S.U.nonBRLP.per.TotalRequestSegs 0.024492 0.117363 0.007839 0.33727 -0.06000 0.00848 
48 S.nonRC       
49 S.nonRC.per.BR   -0.370227 0.064299 -0.062149 0.46085 -0.08072 0.47704 
50 S.nonRC.per.TotalRequestSegs       
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Abstract

The semantic annotation of dialogue cor-
pora permits building efficient language un-
derstanding applications for supporting en-
joyable and effective human-machine interac-
tions. Nevertheless, the annotation process
could be costly, time-consuming and compli-
cated, particularly the more expressive is the
semantic formalism. In this work, we propose
a bootstrapping architecture for the semantic
annotation of dialogue corpora with rich struc-
tures, based on Dependency Syntax and Frame
Semantics.

1 Introduction

We propose a cooperative architecture that incre-
mentally generates and improves the annotation of
the French MEDIA dialogue corpus with high-level
semantics (HLS), as a result of the cooperation of
several linguistic modules. MEDIA is a French cor-
pus that has collected about 70 hours of spontaneous
speech from the task of hotel room reservation. It
contains transcribed utterances1 that have been man-
ually segmented2 and annotated with a flat seman-
tics i.e.,concept-value pairs (Bonneau-Maynard et
al., 2005).

∗This work is supported by the Agence Nationale de la
Recherche (ANR) in France and is part of the French Project
PORT-MEDIA.

1Utterances with ellipsis, disfluencies, false starts, reformu-
lations, repetitions and ungrammaticalities and special charac-
ters such as the symbol ’*’ that indicates uncertainty due to
noise in the communication channel.

2The term Segment means sequence of words in utterances.

The HLS semantics, namely the MultiModal In-
terface Language formalism (MMIL) (Denis et al.,
2010), augments the expressivity of the flat seman-
tics by representing communicative actions, predi-
cates, arguments and fine-grained features. Commu-
nicative actions are components built up from two
types of entity (i.e. events and participants), which
are linked together by relations and described by
sets of features (attribute-value pairs). It is possible
to identify in entities a set of main features, which
can be domain-specific. For the semantic annota-
tion, components are mapped to segments in utter-
ances. Figure 1 shows the canonical representation
of an utterance in the corpus in compliance with the
specifications for the annotation3.

2 The Architecture

The architecture (Figure 2) for the automatic anno-
tation has been formulated as a post-interpretation
process that takes place after the syntactic analysis
and semantic role labeling (SRL). Two linguistic re-
sources interact within the architecture, the corpus
and the Frames4. Four linguistic modules are in-
volved in the annotation: the Part-Of-Speech (POS)
tagger, the parsing, the semantic-role labeling (SRL)
and the HLS Builder. The common knowledge base
comprises two knowledge-bases (one for the domain
and the other for the HLS formalism) together with a
relational database management system (RDBMS).
The knowledge bases assure the coherence of the an-

3http://www.port-media.org/doku.php?id=
mmil_for_annotating_media

4Frames is the process in which the frames and frame ele-
ments (FE) are defined.
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Speak

Request

Reserver

(Reserve)

Personne

(People)

Chambre
(Room)

indef.

je (I)

Ville
(City)

Niort

propContent
patient

aObjetRéservé

aBénéficiaires

aLocalisation

Entities Segment Features=Value

Communicative Act:Request je voudrais ... à Niort

Main Event:Reserve faire une réservation

Participant 1:Pronoun je

Participant 2:Chambre d’ une chambre

une refType=indefinite

chambre objType=Chambre

Figure 1: HLS representation for the French utterance “je voudrais
faire une réservation d’ une chambre pour une personne à Niort” (So I
would like to make a reservation for a room for one person in Niort).
It shows a request to reserve: the communicative action is Request the
main event is Reserve. Note that the beneficiary and the patient are two
different roles, the beneficiary is the person, not necessarily the same
speaker, who will use the object reserved (e.g. rooms). The patient is
the speaker. The segmentation of the HLS Component is presented in
the Table, the component is mapped to the whole utterance. The fine-
grained segmentation of features is shown for the Participant 2.

notation while the database assures persistence and
data integrity. The database stores the corpus, the
frames, the results at each level of analysis, as well
as the progress in the annotation. The persistence
permits progressively optimizing the algorithms un-
til the desired annotation is obtained and integrated
into the corpus files. The corpus manager is in
charge of the resources management. Last but not
least, two annotation tools were built: one for the
SRL gold standard (web-based) and the other for the
HLS gold standard (standalone).

Syntactic Analysis. We decided to employ sta-
tistical approaches that could learn the irregularities
of spoken language: the French Tree-Tagger5 and
the dependency-based MALT-PARSER (Nivre et al.,
2007). The parser has been trained with 1449 utter-
ances annotated according to the annotation guide-
lines described in (Cerisara and Gardent, 2009).

5http://www.ims.uni-stuttgart.de/

˜schmid/

Figure 2: General Architecture for the HLS Annotation.

Definition of Frames. Frame Semantics, (Baker
et al., 1998) arranges common background knowl-
edge for situations by grouping verbal, nominal
causative and non-causative predicates. Neverthe-
less, paraphrases are more used in spoken language
than explicitly uttered nouns, adjectives or verbs for
referring to a situation (e.g.‘ask’, ‘request’ or ‘de-
mand’). Here we introduce the term: Frame Evok-
ing Phrase (FEP) for evoking frames and we in-
clude syntactic templates that mirror these phrases
in frames and frame elements (FE). Table 1 summa-
rizes the differences between PORT-MEDIA frames
and FrameNet (Baker et al., 1998).

FrameNet PORT-MEDIA

Frames
Lexical Units Lexical Units, POS tags and templates

MEDIA Flat Semantics

Frame Elements
Lexical Units, Phrase Type Lexical Units, POS tags, templates
and Grammatical Function and dependency relation

Semantic Type Semantic Type
and MEDIA flat semantics

Table 1: Static Characteristics of Frames in FrameNet
and in PORT-MEDIA.

Semantic Role Labeling. We built a rule-based
semantic role labeling for detecting frames and FE
(roles) by using dependency tree-template pattern
matchers that exploit the information already com-
pressed in frames. The SRL detects the bound-
aries of FEP and FE by measuring the syntactic and
semantic similarity between the utterance and the
frame.

HLS Builder.The HLS Builder is the last phase in
the annotation process: it is rule-based and it takes
utterances in the corpus with their flat semantics, de-
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pendency trees and predicates-arguments and builds
the HLS representation (See Figure 1), according to
the specifications for the annotation and the knowl-
edge bases. The dialogue act and main event in
HLS components can be detected from the predi-
cates. Similarly, secondary events and participants
with their features can be detected from the roles and
the flat semantics.

3 Evaluation and Discussion

For evaluating the system we separately com-
puted the accuracy of its linguistic components.
The parser achieved a label attachment score
(LAS) (Nivre et al., 2007) of 86.16%, with a train-
ing set of 1097 utterances and a test-set of 100 utter-
ances. The SRL was evaluated with metrics adapted
from the CONLL 2005 evaluation (Carreras and
Màrquez, 2005) for supporting FEP and allowing
overlapped FEP for different frames. The LAS was
computed by comparing the semantic dependencies
of system’s and gold’s propositions6 and their seg-
ments. The gold standard comprises 115 utterances
annotated with the major frames in the domain:
Request, Reserve and Attributes. The F1-measure
computed for propositions with exactly the same
segments was 56.66%. When verifying whether the
segments contain the same syntactic governor, the
SRL achieves a better score: 71.30%. Finally, vary-
ing the number of excluded words in both segments7

yielded a constant increase of the F1-measure un-
til a maximum of 84.27%. The HLS annotation
was evaluated by measuring the similarity between
gold’s and system’s components with a gold stan-
dard of 330 complex utterances related to the reser-
vation task. When rigorously measuring the equal-
ity of components8, we obtained a F1-measure of
57.79%. Measuring equality of components with-
out being so rigorous with features’ segmentation,
yielded a slightly higher score 63.31%. Finally,
when measuring equality of components by taking

6A proposition is a structure containing the predicate, their
arguments and the semantic relation between them.

7From 1 to n words not common in both segments.
8Two HLS components are equal if their entities and rela-

tions are equal. Two entities are equal if they have the same
segment and features (feature name and feature value) and if
these features are mapped to the same segments in the utter-
ance. Two relations are equal if they have the same source and
target entities as well as the same name

into account only the main features of entities, we
obtained a higher score: 70.65%.

We proposed an architecture for corpus manage-
ment that allows incremental updates over persistent
information until a more accurate semantic annota-
tion is obtained. The preliminary results show a gen-
eral agreement when defining the main features and
the main entities in HLS components and a disagree-
ment when segmenting fine-grained features. We
observed that the system tends to create new entities
when it detects repetitions or references in long ut-
terances. Defining a more precise segmentation pol-
icy in the manual annotation guidelines, augmenting
the training data for parsing, as well as integrating
reference resolution and disambiguation techniques,
will enhance the annotation process. An appealing
research direction would be to integrate and evaluate
machine learning components in the architecture.
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Ryan McDonald and Jens Nilsson and Sebastian
Riedel and Deniz Yuret. 2007. The CoNLL 2007
Shared Task on Dependency Parsing. Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL
2007. Prague, Czech Republic:915–932. Association
for Computational Linguistics.

Christophe Cerisara and Claire Gardent. 2009. Anal-
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Abstract

This paper describes an implemented mono-
lingual Text-to-Text generation system. The
system takes monologue and transforms it to
two-participant dialogue. The system uses
mappings between discourse relations in text
and dialogue acts in dialogue. These map-
pings are extracted from a parallel monologue
and dialogue corpus.

1 Introduction

This paper describes the CODA system,1 a Text-to-
Text generation system that converts text parsed with
discourse relations (Mann and Thompson, 1988)
into information-delivering dialogue between two
characters. By information-delivering dialogue, we
mean dialogue (akin to that used by Plato) that is
used primarily to convey information and possibly
also to make an argument; this in contrast with dra-
matic dialogue which focuses on character develop-
ment and narrative.

Several empirical studies show that delivering
information as dialogue, rather than monologue,
can be particularly effective for education (Craig
et al., 2000; Lee et al., 1998) and persuasion
(Suzuki and Yamada, 2004). Information-delivering
dialogue also lends itself well for presentation
through computer-animated agents (Prendinger and
Ishizuka, 2004).

1CODA stands for COherent Dialogue Automatically gen-
erated from text (see http://computing.open.ac.uk/coda/). The
CODA project is funded by the UK’s Engineering and Physical
Sciences Research Council under Grant EP/G020981/1.

With most information locked up in text (books,
newspapers, leaflets, etc.), automatic generation of
dialogue from text in monologue makes it possible
to convert information into dialogue on demand.

In contrast to previous Text-to-Dialogue sys-
tems (Piwek et al., 2007), the CODA system is data-
driven and modular. The system is composed of
three modules:Dialogue Modeller, Verbalizer,and
Dialogue Merger.

The Dialogue modellerdetermines appropriate
dialogue act sequences that can be used for con-
verting a segment of input text containing a sin-
gle discourse relation into dialogue. The mod-
ule is data-oriented in that the mappings it uses
between discourse structure and dialogue act se-
quences have been derived from the CODA paral-
lel monologue/dialogue corpus (Stoyanchev and Pi-
wek, 2010).

The Verbalizer converts text segments together
with a specification of the target dialogue act types
into dialogue utterances.

The Dialogue modeller and verbaliser compo-
nents overgenerate possible outputs for each dis-
course relation in monologue. TheDialogue Merger
component selects one of the proposed outputs for
each text segment of the input and merges them into
a single coherent dialogue.

2 System Design

In this section we describe the three components of
the system: dialogue modeller, verbalizer, and dia-
logue merger.

Before we look at each of the modules, we, how-
ever, first need to specify more precisely what the
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Input MANNER-MEANS [In September,
Ashland settled the long-simmering
dispute] [by agreeing to pay Iran
$325 million.]

Dialogue 1. (ComplexQ; Explain)
Modeller 2. (Explain; ComplexQ; Explain)

3. (Explain; YesNoQ; Explain)

Verbalizer
DA Seq1

A: How did Ashland settle the long-
simmering dispute in September?
B: By agreeing to pay Iran $325
million.

Verbalizer
DA Seq2

A: In September, Ashland settled
the long-simmering dispute.
B: How?
A: By agreeing to pay Iran $325
million.

Verbalizer
DA Seq3

A: In September, Ashland settled
the long-simmering dispute.
B: By agreeing to pay Iran $325
million?
A: Correct.

Dialogue
Merger

Select one of the DA sequences
based on overall dialogue

Table 1: Example of the output from each component

input for our system is. The system expects text that
has already been annotated with a discourse struc-
ture. There have been recent encouraging advances
in the automatic parsing of discourse structure, e.g.,
see duVerle and Prendinger (2009), but the state-of-
the-art is not yet at a point where it provides suffi-
ciently reliable inputs for our purposes. To demon-
strate the functionality of our system without relying
on still imperfect discourse parsing, we use the RST-
parsed Wall Street Journal corpus as input (Carlson
et al., 2001).

Throughout the remainder of this section, we use
the outputs for each of the modules in Table 1 as a
running example.

2.1 Dialogue Modeller

TheDialogue Modellercomponent takes as input a
snippet of monologue text annotated with discourse
structure. For each input Discourse Relation struc-
ture (DR), the dialogue modeller outputs a set of dia-
logue act (DA) sequences appropriate for expressing
the same information, but now in dialogue form.

TheDialogue modelleruses a configuration XML
file to look up possible DA sequences for the input

DA sequence
YesNoQ; Explain
YesNoQ; Yes; Explain
Explain; ComplexQ; Explain
ComplexQ; Explain
Explain; YesNoQ; Resp-Answer-Yes
Explain; Contradict
Factoid-Info-Req;Factoid-Resp;Explain
Exlain; Resp-Agree;Explain

Table 2: Dialogue act sequences

discourse structure. In the current system configu-
ration we extract these mappings from the CODA
parallel corpus of professionally authored dialogues
and parallel monologues. We use the eight most fre-
quent DA sequences (see Table2) that occur on the
dialogue side of discourse relations in the parallel
dataset. Each discourse relation is mapped to one
or more DA sequences with a score indicating fre-
quency of this mapping in the CODA corpus.

The dialogue modeller can be customised with
mappings from other sources such as a different cor-
pus, manually authored mappings or a mapping ar-
rived at through experimental methods.

The current version of the dialogue modeller sup-
ports input with only one level of discourse structure
annotation. As a result, all input structures contain
parts made of two segments and one discourse rela-
tion between these segments. In the future work, we
plan to implement a dialogue modeller that accepts
more complex (nested) discourse structures.

2.2 Verbalizer

The verbalizer is rule-based and has three types of
rules: discourse relation (DR)-specific, generic, and
canned. All of the rules take as input a monologue
segment and a target dialogue act. DR-specific rules
also use the discourse relation and segment nuclear-
ity of the input segment.2 The verbalization rules are
ordered according to their priority with DR-specific
rules having a higher priority.

Generic and DR-specific rules use the CMU ques-
tion generation tool (Heilman and Smith, 2010) in
combination with syntactic and lexical manipulation
rules. Canned text rules are used to generateAn-
swerYes, AgreeandClarify dialogue acts by proba-

2Nucleus is the more salient segment in a relation.
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bilistic selection from a set of utterances extracted
from the CODA corpus. For example, theAgree
dialogue act is verbalized as one of the statements:
I agree with you; I agree; I couldn’t agree more;
I completely agree; Absolutely; Very true; Right;
True. Probabilistic selection from a list allows us
to generate non-repetitive dialogues. The system is
extendible, such that new rules can be easily added
to the implementation.

2.3 Dialogue Merger

The Dialogue Merger component takes as input ver-
balized dialogue act sequences. The tasks of the Di-
alogue Merger include: 1) selecting the best ver-
balized sequence and 2) assigning speaker roles
(TEACHER or STUDENT) to dialogue turns.

We aim to create diverse dialogues, in particular,
by avoiding repetitive use of the same dialogue act
sequences. This is achieved as follows. Selection of
DA sequence is incremental, considering one rela-
tion at a time. For each relation, the dialogue merger
selects a dialogue act sequence that has been suc-
cessfully verbalized by theverbalizerand which, so
far, has been used the smallest number of times (out
of all the sequences that have been used up to this
point).

Although in the original authored dialogues, both
TEACHER andSTUDENT ask questions and give ex-
planations, in our preliminary experiments observers
made negative comments about mixing initiative be-
tween theSTUDENT and theTEACHER in the gen-
erated dialogues. In the current version, the speaker
roles are assigned based on the dialogue act. All
questions and clarification requests are assigned to
the STUDENT and other dialogue acts are assigned
to theTEACHER.

As an additional post-processing step, to main-
tain perspective in the dialogue, we change pronouns
in the dialogue turns. The turns assigned to the
TEACHER character remain unchanged. The turns
assigned to theSTUDENT character change the per-
spective: non-possessive pronouns are inverted, e.g.
you → I, we → us, my→ your.

3 Conclusions and Further Work

In this paper, we described a Text-to-Dialogue gen-
eration system that converts text annotated with dis-
course relations into dialogue. The system is modu-

lar, data-driven, and takes advantage of state-of-the-
art question generation tools. Our evaluation of the
dialogue modeller and verbalizer components de-
scribed in (Piwek and Stoyanchev, 2011) shows that
both accuracy and fluency of generated dialogues
are not worse than that of human-written dialogues.

We plan to release the CODA Text-to-Dialogue
system as open source code later this year. The sys-
tem can be used as a starting point for researchers
interested in evaluating NLP tools for question gen-
eration, dialogue modelling and paraphrasing in a
dialogue generation task.
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Abstract

We present BEETLE II, a tutorial dialogue sys-
tem which accepts unrestricted language in-
put and supports experimentation with differ-
ent dialogue strategies. Our first system eval-
uation compared two dialogue policies. The
resulting corpus was used to study the impact
of different tutoring and error recovery strate-
gies on user satisfaction and student interac-
tion style. It can also be used in the future to
study a wide range of research issues in dia-
logue systems.

1 Introduction

There has recently been much interest in develop-
ing tutorial dialogue systems that understand student
explanations (Graesser et al., 1999; Aleven et al.,
2001; Nielsen et al., 2008; VanLehn et al., 2007),
because it has been shown that high percentages of
self-explanation and student contentful talk are cor-
related with better learning in human-human tutor-
ing (Chi et al., 1994; Litman et al., 2009). How-
ever, most existing systems use pre-authored tutor
responses for addressing student errors. The advan-
tage of this approach is that tutors can devise reme-
diation dialogues that are highly tailored to specific
misconceptions, providing step-by-step scaffolding
and potentially suggesting additional exercises. The
disadvantage is a lack of adaptivity and generality:
students often get the same remediation for the same
error regardless of their past performance or dia-
logue context. It also becomes more difficult to ex-
periment with different dialogue policies (including
error recovery and tutorial policies determining the

most appropriate feedback), due to the complexities
in applying tutoring strategies consistently in a large
number of hand-authored remediations.

The BEETLE II system architecture is designed to
overcome these limitations (Callaway et al., 2007).
It uses a deep parser and generator, together with
a domain reasoner and a diagnoser, to produce de-
tailed analyses of student utterances and to generate
feedback automatically. This allows the system to
consistently apply the same tutorial policy across a
range of questions. The system’s modular setup and
extensibility also make it a suitable testbed for both
computational linguistics algorithms and more gen-
eral questions about theories of learning.

The system is based on an introductory electric-
ity and electronics course developed by experienced
instructional designers, originally created for use in
a human-human tutoring study. The exercises were
then transferred into a computer system with only
minor adjustments (e.g., breaking down compound
questions into individual questions). This resulted
in a realistic tutoring setup, which presents interest-
ing challenges to language processing components,
involving a wide variety of language phenomena.

We demonstrate a version of the system that un-
derwent a user evaluation in 2009, which found sig-
nificant learning gains for students interacting with
the system. The experimental data collection com-
pared two different dialogue policies implemented
in the system, and resulted in a corpus supporting
research into a variety of questions about human-
computer dialogue interaction (Dzikovska et al.,
2010a).
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Figure 1: Screenshot of the BEETLE II system

2 Example Interaction

The BEETLE II system delivers basic electricity and
electronics tutoring to students with no prior knowl-
edge of the subject. A screenshot is shown in Figure
1. The student interface includes an area to display
reading material, a circuit simulator, and a dialogue
history window. Currently all interactions with the
system are typed. Students read pre-authored cur-
riculum slides and carry out exercises which in-
volve experimenting with the circuit simulator and
explaining the observed behaviour. The system also
asks some high-level questions, such as “What is
voltage?”.

An example dialogue with the system, taken from
the evaluation corpus, is shown in Figure 2. It shows
three key system properties: after the student’s first
turn, which was correct but incomplete, the system
rephrases the correct part of the student answer and
prompts for the missing information. In the second
turn, the system cannot interpret the student utter-
ance, so it responds with a targeted help message
and a hint about the object that needs to be men-

tioned. Finally, in the last turn the system com-
bines the information from the tutor’s hint and the
student’s answers and restates the complete answer
since the current answer was completed over multi-
ple turns.

3 Data Analysis and Future Work

The data collected with the BEETLE II system has
been used to investigate several research questions
regarding discourse and dialogue: the effectiveness
of different error recovery strategies (Dzikovska et
al., 2010b); the underlying dimensions of user sat-
isfaction and their relationship with learning gain
(Dzikovska et al., 2011); the relationship between
(student) alignment in dialogue and learning gain
(Steinhauser et al., 2011); and the differences be-
tween students’ social and metacognitive statements
depending on the interaction style (Dzikovska et al.,
2010a). We are currently annotating the data with
additional interaction parameters, including correct-
ness of student answers and appropriateness of sys-
tem hints. This will allow us to apply PARADISE
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Tutor: Why was bulb A on when switch Y
was open and switch Z was closed?

Student: because it had a closed path
Tutor: Right. There is a closed path. Keep

going.
Student: there was a closed path not effected by

the switch
Tutor: I’m sorry, I’m having a problem un-

derstanding. I don’t understand the
word ‘effect’ here. Here’s a hint. Your
answer should mention a battery.

Student: it has a closed path with the battery
Tutor: You’re on the right track. Here’s the

answer. Bulb A is still contained in a
closed path with the battery.

Figure 2: Example interaction with the system from our
corpus

methodology to get additional insight into which pa-
rameters of tutorial dialogue affect learning gain and
user satisfaction.

We are also adding a speech interface to the sys-
tem, which will open new and interesting research
questions. Students often fail to use domain termi-
nology correctly, and in the tutoring domain it is
important to teach students to use proper terminol-
ogy, so incorrect usage must be detected and cor-
rected. This means that grammar-based language
models are not appropriate for the language mod-
elling, and opens new questions about robust ASR
and language interpretation in such domains.
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Abstract

When a robot is situated in an environment
containing multiple possible interaction part-
ners, it has to make decisions about when to
engage specific users and how to detect and
react appropriately to actions of the users that
might signal the intention to interact.

In this demonstration we present the integra-
tion of an engagement model in an existing di-
alog system based on interaction patterns. As
a sample scenario, this enables the humanoid
robot Nao to play a quiz game with multiple
participants.

1 Introduction

Giving robotic systems the ability to join in conver-
sation with one or multiple users poses many new
challenges for the development of appropriate dia-
log systems and models. When a dialog system is
situated in the real, physical world and used in more
open settings, more effort needs to be spent on estab-
lishing and maintaining clear communication chan-
nels between the system and its users. E.g. the sys-
tem first needs to detect that there are potential users
with whom interacting would be possible, it needs to
decide if a detected person wants to interact with the
system at all and it needs to make decisions when
and how it should try to start an interaction with that
person.

Bohus and Horvitz (2009) have developed a
model for representing the current relation of a user
with such a system (their engagement state) and de-
termining if they want to be involved in an interac-
tion with the system (using explicit engagement ac-

tions and the more abstract engagement intention).
Each user can be engaged in specific interactions
(denoting different “basic unit[s] of sustained, in-
teractive problem-solving”) and there can be multi-
ple such interactions, each with potentially different
users.

This demonstration shows how an engagement
model inspired by these ideas was integrated into
an existing dialog system and how it helps in real-
izing interactive scenarios with a robot that incorpo-
rate cues for the dialog from the system’s environ-
ment. Section 3 gives more details about this model
and how it is used by the dialog.

2 Scenario

As a scenario for this demonstration we chose a sim-
ple quiz game involving the robot Nao as a host play-
ing with one or multiple human users. At first, the
robot waits until one of the human interaction part-
ners approaches. When the person opens the interac-
tion (i.e. by greeting the robot), the system responds
with an appropriate greeting. While the person con-
tinues to show the intention to interact with the robot
(determined by the process described in section 3.1),
the robot will ask questions randomly chosen from
a predefined set and will try to judge if the person
answered them correctly.

When another person enters the robot’s field of
view, the system also tries to determine if they have
the intention to interact with it. If that is the case, the
system suspends the current interaction with the first
person and actively tries to engage the second per-
son, encouraging him or her to join the ongoing quiz
game. The prospective new player can then choose
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Figure 1: Two persons interacting with the developed system.

to join or decline the request.
As long as one of the engaged participants shows

the intention to interact, the robot continues to ask
questions which all participants can try to answer.
The quiz game is stopped either by an explicit re-
quest of one the users or after all participants have
left the scene.

This scenario serves as a good testbed for the in-
tegration of different cues for the engagement model
and how that model affects the actions taken by the
dialog system. The right-hand side of figure 1 shows
two people interacting with the robot during the quiz
game.

3 System Overview

Figure 2 shows an overview of the different com-
ponents involved in the demonstrated system. This
includes components for the perception (e.g. access-
ing images from the robot’s camera and audio from
its microphones), for generating actions (e.g. using
the robot’s text-to-speech system), the dialog system
itself and a memory system for connecting these di-
verse components.

The dialog system used for this demonstration
is called PaMini, which is short for “Pattern-based
Mixed-Initiative human-robot Interaction” and is
described in more detail by Peltason and Wrede
(2010). This dialog system was modified in Klotz

(2010) with a model of engagement based on the
ideas presented by Bohus and Horvitz (2009). In
our adaptation of this model, there are extension
points for integrating different sources of informa-
tion about the user’s engagement intentions and ac-
tions, described in the following section.

3.1 Determining the User’s Actions &
Intention

For determining the user’s actions (e.g. if the user
explicitly wants to start an interaction with the sys-
tem), this demonstration uses a set of possible utter-
ances which are simply matched against the results
of a speech recognition module.

To get an estimation of the user’s intention to in-
teract, the image from the robot’s camera is first used
to detect the faces of users and to estimate their cur-
rent visual focus of attention. A module based on
a framework by Ba and Odobez (2009) is used to
determine probabilities that the user is looking at
each of a pre-defined list of possible focus targets,
including the robot itself and other users visible in
the scene. The upper left of figure 1 shows a visu-
alization of this module’s output. Nao denotes the
robot as the focus target with the highest probabil-
ity, while the designation UN is short for the “unfo-
cused” target.

This list of probabilities is then stored in a mem-
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Figure 2: Components of the developed system.

ory system developed by Wienke and Wrede (2011).
The memory system provides temporal query capa-
bilities which are finally used to guess a user’s cur-
rent intention of interacting with the robot based on
the history of the probabilities that the robot was the
user’s current visual focus of attention target. This
result is also stored in the memory system together
will all other information known about a user.

3.2 Engagement Cues for the Dialog

The dialog system receives the information about the
user’s state and intention from the memory system
and uses it in several rules for controlling its own en-
gagement actions. The intention is e.g. used to deter-
mine if there is a new user that should be persuaded
to join the quiz game described in section 2 and if
any of the users still shows interest so that a new
question should be asked. The general state of the
detected users is also used e.g. to observe when the
users leave the robot’s field of view for a longer pe-
riod of time which causes the dialog system to close
its current interaction.

4 Conclusion

We have shown how an existing dialog system that
was enhanced using an explicit model of engage-
ment can be used to realize interactive scenarios
with a robot that is situated in the physical world.
An estimation of the user’s current visual focus of
attention is used to gauge their intention to engage
the robot in conversation.

A video recording of two people interacting with

the developed system is available online at http:
//youtu.be/pWZLVF2Xa8g
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Abstract 

This demonstration will illustrate an inter-

active immersive computer game, POMY, 

designed to help Korean speakers learn 

English. This system allows learners to ex-

ercise their visual and aural senses, receiv-

ing a full immersion experience to increase 

their memory and concentration abilities to 

a greatest extent. In POMY, learners can 

have free conversations with game charac-

ters and receive corrective feedback to their 

errors. Game characters show various emo-

tional expressions based on learners’ input 

to keep learners motivated. Through this 

system, learners can repeatedly practice 

conversations in everyday life setting in a 

foreign language with no embarrassment. 

1 Introduction 

The needs for computer-based methods for learn-

ing language skills and components are increasing. 

One of the ultimate goals of computer-assisted 

language learning is to provide learners with an 

immersive environment that facilitates acquiring 

communicative competence. According to Second 

Language Acquisition (SLA) theories, there are 

some essential factors for improving learners’ con-

versational skills: 1) comprehensible inputs and 

outputs, 2) corrective feedback, and 3) motivation 

and attitude. SLA theories imply that providing 

learners with the opportunity to have free conver-

sations with someone who can correct their errors 

is very important for successful acquisition of for-

eign languages. Moreover, motivation is another 

crucial factor; therefore a good CALL system 

should have elements which can interest learners 

[1]. 

Considering these requirements, we have devel-

oped a conversational English education frame-

work, POMY (POstech iMmersive English studY). 

The program allows users to exercise their visual 

and aural senses to receive a full immersion expe-

rience to develop into independent English as a 

Foreign Language (EFL) learners and increase 

their memory and concentration abilities to a 

greatest extent [2].  

 
 

Figure 1: Example screenshots of POMY: path-finding, post office, and market 
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2 Demonstrated System 

In order to provide learners with immersive world, 

we have developed a virtual reality environment 

using the Unity 3D game engine
1
. For the domains 

that learners are exposed to, we select such do-

mains as path-finding, market, post office, library, 

and movie theater (Figure 1) to ensure having 

learners practice conversations in everyday life 

setting. To keep learners motivated and interested 

during learning sessions, learners are encouraged 

to accomplish several missions. For example, the 

first mission in the post office is to send a camera 

to one’s uncle in England. The package must be 

insured and delivered by the next week. In order to 

send the package, a learner must talk to Non-

Player Characters (NPCs) to fill in the zip-code 

properly.  

All NPCs can perceive the utterances of learners, 

especially Korean learners of English. Korean 

learners’ production of the sound is different from 

those of native speakers, resulting in numerous 

pronunciation errors. Therefore, we have collected 

a Korean-English corpus to train acoustic models. 

In addition, since language learners commit nu-

merous grammatical errors, we should consider 

this to understand their utterances. Thus, we statis-

tically infer the actual learners' intention by taking 

not only the utterance itself but also the dialog con-

text into consideration, as human tutors do [1]. 

While free conversation is invaluable to the 

acquisition process, it is not sufficient for learners 

to fully develop their L2 proficiency. Corrective 

feedback to learners’ grammatical errors is 

necessary for improving accuracy in their 

interlanguage. For this purpose, we designed a 

                                                           
1 http://unity3d.com/ 

special character, Ghost Tutor, which plays the 

role of English tutor and helps learners to use more 

appropriate words and expressions during the game. 

When a learner produces ungrammatical utterances, 

the Ghost Tutor provides both implicit and explicit 

negative and positive feedback in a form of 

elicitation or recast, which was manifested as 

effective ways in the second language acquisition 

processes [3].  To provide corrective feedback on 

grammatical errors, we use a method which con-

sists of two sub-models: the grammaticality check-

ing model and the error type classification model 

[4]. Firstly, we automatically generate grammatical 

errors that learners usually commit [5-6], and con-

struct error patterns based on the articulated errors. 

Then the grammaticality checking model classifies 

the recognized user speech based on the similarity 

between the error patterns and the recognition re-

sult using confidence scores. After that, the error 

type classification model chooses the error type 

based on the most similar error pattern and the er-

ror frequency extracted from a learner corpus. 

Finally, the human perception of NPC’s emo-

tional expressions plays a crucial role in human 

computer interaction. Thus, all NPCs are provided 

with a number of communicative animations such 

as talking, laughing, waving, crying, thinking, and 

getting angry (Figure 2).The total number of ani-

mations is over thirty from which the system can  

select one based on the response of a learner. The 

system generates positive expressions such as 

clapping and laughing when the learner answers 

correctly, and negative expressions such as crying 

and getting angry for incorrect answers.  
 

 

 

 

 

Figure 2: Various character animations 

345



Acknowledgments 

This work was supported by the Industrial Strate-

gic technology development program, 10035252, 

development of dialog-based spontaneous speech 

interface technology on mobile platform, funded 

by the Ministry of Knowledge Economy (MKE, 

Korea), and by Basic Science Research Program 

through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Education, 

Science and Technology (2010-0019523). 

References  

Lee, S., Noh, H., Lee, J., Lee, K., Lee, G. G., Sagong, S., 

Kim, M. 2011. On the Effectiveness of Robot-

Assisted Language Learning, ReCALL Journal, 

Vol.23(1). 

Lee, S., Noh, H., Lee, J., Lee, K., Lee, G. G. 2010. 

POSTECH Approaches for Dialog-based English 

Conversation Tutoring. Proceedings of the APSIPA 

annual summit and conference, Singapore. 

Long, M. H., Inagaki, S., Ortega, L. 1998. The Role of 

Input and Interaction in Second Language Acquisi-

tion. The Modern Language Journal, 82, 357-371.  

Lee, S., Noh, H., Lee, K., Lee, G. G. 2011. Grammatical 

error detection for corrective feedback provision in 

oral conversations. Proceedings of the 25th AAAI 

conference on artificial intelligence (AAAI-11), San 

Francisco. 

Lee, S., Lee J., Noh, H., Lee, K., Lee, G. G, 2011. 

Grammatical Error Simulation for Computer-

Assisted Language Learning, Knowledge-Based Sys-

tems (to be published). 

Lee, S. and Lee, G. G. 2009. Realistic grammar error 

simulation using markov logic. Proceedings of the 

ACL, Singapore. 

 

346



Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 347–349,
Portland, Oregon, June 17-18, 2011. c©2011 Association for Computational Linguistics

Rapid Development of Advanced Question-Answering Characters
by Non-experts

Sudeep Gandhe and Alysa Taylor and Jillian Gerten and David Traum
USC Institute for Creative Technologies

12015 Waterfront Drive, Playa Vista, CA 90094, USA
<lastname>@ict.usc.edu

Abstract

We demonstrate a dialogue system and the ac-
companying authoring tools that are designed
to allow authors with little or no experience
in building dialogue systems to rapidly build
advanced question-answering characters. To
date seven such virtual characters have been
built by non-experts using this architecture
and tools. Here we demonstrate one such char-
acter, PFC Sean Avery, which was developed
by a non-expert in 3 months.

1 Introduction

Our goal is to allow non-experts to build advanced
question-answering Virtual Human characters. By
non-experts, we mean that scenario authors need not
have any background in computational linguistics
or any experience in building dialogue systems; al-
though they can be an expert in the specific domain
of interaction. The advanced question-answering
characters we want to build should have the abil-
ity to decide whether to answer a specific question
truthfully or to lie about it or to simply refuse to an-
swer depending on the dialogue context and scenario
design. Interviewers can practice their questioning
skills by interacting with virtual characters that can
engage in simple bargaining behavior. In order to
reveal certain information marked as sensitive, inter-
viewers may have to employ several different tactics
like building rapport, offering to provide what the
virtual character wants or threatening the character
with consequences for not cooperating. The Amani
character (Artstein et al., 2009) is an example ad-
vanced question-answering character.

Several different architectures have been used for
building Virtual Human dialogue systems (Traum,
2008). Leuski et al. (2006; 2010) describe one
such architecture that can be used to build simple
question-answering characters. In this architecture,
scenario designers author a list of questions, a list
of answers and all possible links between these. Al-
though this approach allows non-experts to develop
virtual characters, it falls short of maintaining coher-
ence over sequence of utterances greater in length
than two. Traum et al. (2008) describe an archi-
tecture that models such dependencies by using an
information-state based dialogue model (Traum and
Larsson, 2003), but this architecture is not currently
accessible to non-experts for authoring, due to ex-
pertise needed in designing task model plans and
thematic-role based framebanks.

We choose an intermediate approach, using a sim-
ple information-state dialogue manager, making au-
thoring accessible to non-experts through use of
the accompanying integrated authoring tool, Do-
mainEditor (Gandhe et al., 2009).

2 PFC Sean Avery

Private First Class (PFC) Sean Avery is a virtual
character who has witnessed a fellow soldier and
his accomplice smuggling something suspicious on
a U.S. Army base. Avery can be questioned about
what he saw, who the soldier and the accomplice
were. But the soldier involved in the smuggling is
from Avery’s platoon and Avery wants to cover up
the incident. He may choose to lie and will need
more persuasion in the form of threats & offers (see
figure 1).
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Player ynq Are you Sean Avery?

Avery yes Yes

Avery assert My name is PFC Sean Avery.

Player whq Tell me what you saw.

Avery assert The soldier got out of the car and took a
package from the back seat.

Player whq Do you know who the soldier was?

Avery assert-
lie

I have no clue what the soldier’s name is.

Player threat If you don’t tell me your privileges will be
revoked.

Avery response-
threat

I don’t want to be on restriction

Player whq Who was the soldier?

Avery assert The soldier’s name is Ryan Benton.

Player whq Tell me more about the soldier.

Avery assert The PFC is in my platoon and one of my
closest friends.

Player whq What was inside the package?

Avery assert He was carrying a puppy.

Player whq What was inside the package?

Avery self-
repeat

As I said earlier,

Avery assert The suspicious package contained a
puppy.

Player whq Whose idea was it to smuggle the puppy
on the base.

Avery elicit-
offer

Will you give the soldier a less severe pun-
ishment if I talk?

Player accept yes

Avery response-
offer

That’s comforting, I wouldn’t want him to
get thrown off base or anything.

Avery assert I think the soldier told his girlfriend it
wouldn’t be a big deal to sneak a puppy
on base.

Figure 1: A sample dialogue with PFC Sean Avery char-
acter. Player refers to the human trainee.

3 Authoring Process

The authoring process for such characters has two
phases. The first phase is a top-down process which
begins with defining the character’s domain knowl-
edge using the authoring tool, DomainEditor (See
Figure 2). The basic unit of domain knowledge is
an <object, attribute, value> triple. DomainEditor
automatically generates all relevant Dialogue Acts
(DAs) following a dialogue act schema. The de-
fault schema was authored by experts specifically

Figure 2: DomainEditor: An Integrated Authoring tool
for designing the conversational domain, and specifying
the utterances that map to various dialogue acts.

for tactical questioning, but can be easily tailored
to add different types of DAs for other scenarios.
Each DA has a detailed XML representation and a
pseudo-natural language gloss generated using tem-
plates. E.g. a template like “Attribute of Object is
Value” for an assert dialogue act type. The growth
in number of DAs represents the growth in charac-
ter’s domain knowledge (See figure 3). Our experi-
ence with several non-expert authors is that the do-
main reaches a stable level relatively early. Most of
the domain authoring occurs during this phase. Sce-
nario designers author one or two utterances for each
of the character’s DAs and substantially more exam-
ples for player’s DAs in order to ensure robust NLU
performance. These utterances are used as training
data for NLU and NLG.

The second phase is a bottom-up phase which in-
volves collecting a dialogue corpus by having vol-
unteers interview the virtual character that has been
built. The utterances from this corpus can then be
annotated with the most appropriate DA. This sec-
ond phase is responsible for a rapid growth in player
utterances. It can also lead to minor domain expan-
sion and small increase in character utterances, as
needed to cover gaps found in the domain knowl-
edge.

4 System Architecture

Figure 4 depicts the architecture for our dialogue
system. CMU pocketsphinx1 is used for speech

1http://cmusphinx.sourceforge.net/
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Figure 3: Amount of resources collected across time for
the character, PFC Sean Avery

Figure 4: Architecture for the Advanced Question-
Answering Conversational Dialogue System

recognition and CereVoice (Aylett et al., 2006) for
speech synthesis. The information-state based dia-
logue manager (DM) communicates with NLU and
NLG using dialogue acts (DAs). NLU maps rec-
ognized speech to one of the DAs from the set that
is automatically generated by the DomainEditor. If
the confidence for the best candidate DA is below
a certain threshold, NLU generates a special non-
understanding DA – unknown. The information-
state is in part based on conversational game the-
ory (Lewin, 2000). The main responsibilities of the
DM are to update the information state of the dia-
logue based on the incoming DA and to select the
response DAs. The information state update rules
describe grammars for conversational game struc-
ture and are written as state charts using SCXML2.
These state charts model various subdialogues like
question-answering, offer, threat, greetings, clos-
ings, etc. The DM also implements advanced fea-
tures like topic-tracking and grounding (Roque and
Traum, 2009). The virtual human character de-

2State Chart XML – http://www.w3.org/TR/scxml/
Apache commons SCXML – http://commons.apache.org/scxml

livers synthesized speech and corresponding non-
verbal behavior, based on additional components of
the ICT Virtual Human Toolkit3.
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Abstract

The Automatic Content Linking Device is a
just-in-time document retrieval system that
monitors an ongoing dialogue or monologue
and enriches it with potentially related docu-
ments from local repositories or from the Web.
The documents are found using queries that
are built from the dialogue words, obtained
through automatic speech recognition. Re-
sults are displayed in real time to the dialogue
participants, or to people watching a recorded
dialogue or a talk. The system can be demon-
strated in both settings.

1 Introduction

The Automatic Content Linking Device (ACLD) is
a system that analyzes speech input from one or
more speakers using automatic speech recognition
(ASR), in order to retrieve related content, in real
time, from a variety of repositories. This paper de-
scribes the main components of the system and sum-
marizes evaluation results. The remainder of this
section introduces scenarios of use and previous sys-
tems with similar goals.

The first scenario of use involves people taking
part in meetings, who often mention documents con-
taining facts that are relevant to the current discus-
sion, but cannot search for them without interrupt-
ing the discussion flow. Our goal is to perform such
searches automatically. In a second scenario, search
is performed for live or recorded lectures, for in-
stance in a computer-assisted learning environment.
The ACLD enriches the lectures with related course
material, receiving real-time feedback from the user.

The ACLD improves over past systems by using
speech, by giving access to multimedia documents,
and by using semantic search. Its first precursors
were the Fixit query-free search system (Hart and
Graham, 1997), the Remembrance Agent for just-
in-time retrieval (Rhodes and Maes, 2000), and the
Implicit Queries system (Dumais et al., 2004). A
version of the Remembrance Agent called Jimminy
was conceived as a wearable assistant for taking
notes, but ASR was only simulated (Rhodes, 1997).
Watson monitored the user’s operations in a text
editor, and selected terms for web search (Budzik
and Hammond, 2000). Another authoring assistant
was developed in the A-Propos project (Puerta Mel-
guizo and al., 2008). Recently, several speech-
based search engines have been proposed, as well as
systems for searching spoken documents. For hu-
man dialogues in meetings, the FAME interactive
space (Metze and al., 2006) provided multi-modal
access to recordings of lectures via a table top in-
terface, but required specific voice commands from
one user only, and did not spontaneously follow a
conversation as the ACLD does.

2 Description of the ACLD

The architecture of the ACLD comprises modules
for: (1) document preparation and indexing; (2) in-
put sensing and query construction; (3) search and
integration of results; (4) user interaction.

2.1 Document Preparation and Indexing

The preparation of the local database of documents
available for search requires text extraction from
various file formats (like MS Office or PDF), and
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document indexing, here using Apache Lucene. Past
meetings, when available, are automatically tran-
scribed, then chunked into smaller units, and in-
dexed along with the other documents. For search-
ing the Web, the system does not build indexes but
uses the Google Search API.

2.2 Sensing the User’s Information Needs

The ACLD uses the AMI real-time ASR system for
English (Garner and al., 2009), which has an ac-
ceptable accuracy for use with conversational speech
in the ACLD. When processing past recordings, the
ASR system can run slower than real-time to maxi-
mize its accuracy. If one or more pre-specified key-
words (based on domain knowledge) are detected in
the ASR output, then their importance is increased
for searching. Otherwise, all the words from the
ASR (except stopwords) are used for constructing
the query.

2.3 Querying the Document Database

The Query Aggregator component uses the ASR
words in order to retrieve the most relevant docu-
ments from a given database. The latest version
of the ACLD makes use of semantic search (see
below), but earlier versions used keyword-based
search from Apache Lucene for local documents.
Queries are formulated and launched at regular time
intervals, typically every 15-30 seconds, or on de-
mand. The search results are integrated with previ-
ous ones, using a persistence model that smoothes
variations in time by keeping track of the salience of
each result. Salience is initialized from the ranking
of search results, then decreases in time, or increases
if the document appears again among results. A his-
tory of all results is also accessible.

2.4 Semantic Search over Wikipedia

The goal of semantic search is to improve the rel-
evance of results with respect to the spoken words,
and to make search more robust to noise from ASR.
The method used here is adapted from a graph-based
measure of semantic relatedness between text frag-
ments (Yazdani and Popescu-Belis, 2010). Related-
ness is computed using random walk in a large net-
work of documents, here about 1.2 milion Wikipedia
articles from the WEX data set (Metaweb Technolo-
gies, 2010). These are linked by directional hy-

Figure 1: Unobtrusive UI of the ACLD displaying docu-
ment results. The pop-up window shows more details for
the first results.

perlinks, and also by lexical similarity links that
we construct upon initialization. The random walk
model allows the computation of the visiting proba-
bility (VP) from one document to another, and then
of the VP between sets of documents. This functions
as a measure of semantic relatedness, and has been
applied to several NLP problems by projecting the
text fragments to be compared onto the documents
in the network (Yazdani and Popescu-Belis, 2010).

For the ACLD, the use of semantic relatedness for
document retrieval amounts to searching, in a very
large collection, the documents that are the most
closely related to the words obtained from the ASR
in a given time frame. Here, we set the document
collection to Wikipedia (WEX). As the search is
hard to perform in real time, we made a series of
justified approximations to make it tractable.

2.5 The User Interface

The goal of the UI is to make ACLD information
available in a configurable way, allowing users to
see more or less information according to their own
needs. The UI displays up to four widgets, which
can be arranged at will, and contain: (1) ASR words
with highlighted keywords; (2) tag-cloud of key-
words, coding for recency and frequency; (3) links
to the current results from the local repository; (4)
links to the current Web search results.

Two main arrangements are intended: an infor-
mative full-screen UI (not shown here from lack of
space) and an unobtrusive UI, with superposed tabs,
shown in Figure 1 with the document result widget.
When hovering over a document name, a pop-up
window displays metadata and document excerpts
that match words from the query, as an explanation
for why the document was retrieved.
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3 Evaluation of the ACLD

Four types of evidence for the relevance and util-
ity of the ACLD are summarized here. Firstly, the
ACLD was demonstrated to about 50 potential users
(industrial partners, focus groups, etc.), who found
the concept useful, and offered positive verbal eval-
uation, along with suggestions for smaller and larger
improvements.

Secondly, a pilot experiment was conducted with
a group using an earlier version of the UI. Two pilot
runs have shown that the ACLD was consulted about
five times per meeting, but many more runs are (still)
needed for statistical significance of observations.

Thirdly, the UI was tested in a usability evaluation
experiment with nine non-technical subjects, who
rated it as ‘acceptable’ (68%) on the System Usabil-
ity Scale, following a series of tasks they had to per-
form using it. Additional suggestions for changes
were received.

Finally, we compared offline the results of seman-
tic search with the keyword-based ones. We asked
eight subjects to read a series of nine meeting frag-
ments, and to decide which of the two results was
the most useful one (they could also answer ‘none’).
Of a total of 36 snippets, each seen by two subjects,
there was agreement on 23 (64%) snippets and dis-
agreement on 13 (36%). In fact, if ‘none’ is ex-
cluded, there were only 7 true disagreements. Over
the 23 snippets on which the subjects agreed, the
result of semantic search was judged more relevant
than that of keyword search for 19 (53% of the to-
tal), and the reverse for 4 only (11%). Alternatively,
if one counts the votes cast by subjects in favor of
each system, regardless of agreement, then semantic
search received 72% of the votes and keyword-based
only 28%. Hence, semantic search already outper-
forms keyword based one.

4 Conclusion

The ACLD is, to the best of our knowledge, the
first just-in-time retrieval system to use spontaneous
speech and to support access to multimedia doc-
uments and to websites, using a robust semantic
search method. Future work should aim at improv-
ing the relevance of semantic search, at modeling
context to improve the timing of results, and at in-
ferring relevance feedback from users. The ACLD

should also be applied to specific use cases, and an
experiment with group discussions in a learning en-
vironment is under way.
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