
Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 68–77,
Portland, Oregon, June 17-18, 2011. c©2011 Association for Computational Linguistics

Giving instructions in virtual environments by corpus based selection

Luciana Benotti
PLN Group, FAMAF

National University of Córdoba
Córdoba, Argentina

luciana.benotti@gmail.com

Alexandre Denis
TALARIS team, LORIA/CNRS

Lorraine. Campus scientifique, BP 239
Vandoeuvre-lès-Nancy, France

alexandre.denis@loria.fr

Abstract

Instruction giving can be used in several
applications, ranging from trainers in sim-
ulated worlds to non player characters for
virtual games. In this paper we present a
novel algorithm for rapidly prototyping virtual
instruction-giving agents from human-human
corpora without manual annotation. Automat-
ically prototyping full-fledged dialogue sys-
tems from corpora is far from being a reality
nowadays. Our approach is restricted in that
only the virtual instructor can perform speech
acts while the user responses are limited to
physical actions in the virtual worlds.

We have defined an algorithm that, given a
task-based corpus situated in a virtual world,
which contains human instructor’s speech acts
and the user’s responses as physical actions,
generates a virtual instructor that robustly
helps a user achieve a given task in the vir-
tual world. We explain how this algorithm
can be used for generating a virtual instructor
for a game-like, task-oriented virtual world.
We evaluate the virtual instructor with human
users using task-oriented as well as user satis-
faction metrics. We compare our results with
both human and rule-based virtual instructors
hand-coded for the same task.

1 Introduction

Virtual human characters constitute a promising
contribution to many fields, including simulation,
training and interactive games (Kenny et al., 2007;
Jan et al., 2009). The ability to communicate using
natural language is important for believable and ef-
fective virtual humans. Such ability has to be good

enough to engage the trainee or the gamer in the ac-
tivity. Nowadays, most conversational systems oper-
ate on a dialogue-act level and require extensive an-
notation efforts in order to be fit for their task (Rieser
and Lemon, 2010). Semantic annotation and rule
authoring have long been known as bottlenecks for
developing conversational systems for new domains.

In this paper, we present a novel algorithm for
generating virtual instructors from automatically an-
notated human-human corpora. Our algorithm,
when given a task-based corpus situated in a virtual
world, generates an instructor that robustly helps a
user achieve a given task in the virtual world of the
corpus. There are two main approaches toward au-
tomatically producing dialogue utterances. One is
the selection approach, in which the task is to pick
the appropriate output from a corpus of possible out-
puts. The other is the generation approach, in which
the output is dynamically assembled using some
composition procedure, e.g. grammar rules. The se-
lection approach to generation has only been used
in conversational systems that are not task-oriented
such as negotiating agents (Gandhe and Traum,
2007a), question answering characters (Kenny et al.,
2007), and virtual patients (Leuski et al., 2006). To
the best of our knowledge, our algorithm is the first
one proposed for doing corpus based generation and
interaction management for task-oriented systems.

The advantages of corpus based generation are
many. To start with, it affords the use of complex
and human-like sentences without detailed analysis.
Moreover, the system may easily use recorded au-
dio clips rather than speech synthesis and recorded
video for animating virtual humans. Finally, no

68



rule writing by a dialogue expert or manual an-
notations is needed. The disadvantage of corpus
based generation is that the resulting dialogue may
not be fully coherent. For non-task oriented sys-
tems, dialogue management through corpus based
methods has shown coherence related problems.
Shawar and Atwell (2003; 2005) present a method
for learning pattern matching rules from corpora in
order to obtain the dialogue manager for a chat-
bot. Gandhe and Traum (2007b) investigate several
dialogue models for negotiating virtual agents that
are trained on an unannotated human-human corpus.
Both approaches report that the dialogues obtained
by these methods are still to be improved because
the lack of dialogue history management results in
incoherences. Since in task-based systems, the di-
alogue history is restricted by the structure of the
task, the absence of dialogue history management is
alleviated by tracking the current state of the task.

In the next section we introduce the corpora used
in this paper. Section 3 presents the two phases of
our algorithm, namely automatic annotation and di-
alogue management through selection. In Section 4
we present a fragment of an interaction with a virtual
instructor generated using the corpus and the algo-
rithm introduced in the previous sections. We evalu-
ate the virtual instructor in interactions with human
subjects using objective as well as subjective met-
rics. We present the results of the evaluation in Sec-
tion 5. We compare our results with both human
and rule-based virtual instructors hand-coded for the
same task. Finally, Section 7 discusses the weak-
nesses of the approach for developing instruction
giving agents, as well as its advantages and draw-
backs with respect to hand-coded systems. In this
last section we also discuss improvements on our al-
gorithms designed as a result of our error analysis.

2 The GIVE corpus

The Challenge on Generating Instructions in Vir-
tual Environments (GIVE; Koller et al. (2010)) is
a shared task in which Natural Language Gener-
ation systems must generate real-time instructions
that guide a user in a virtual world. In this paper,
we use the GIVE-2 Corpus (Gargett et al., 2010), a
freely available corpus of human instruction giving
in virtual environments. We use the English part of

the corpus which consists of 63 American English
written discourses in which one subject guided an-
other in a treasure hunting task in 3 different 3D
worlds.

The task setup involved pairs of human partners,
each of whom played one of two different roles. The
“direction follower” (DF) moved about in the vir-
tual world with the goal of completing a treasure
hunting task, but had no knowledge of the map of
the world or the specific behavior of objects within
that world (such as, which buttons to press to open
doors). The other partner acted as the “direction
giver” (DG), who was given complete knowledge of
the world and had to give instructions to the DF to
guide him/her to accomplish the task.

The GIVE-2 corpus is a multi-modal corpus
which consists of all the instructions uttered by the
DG, and all the object manipulations done by the DF
with the corresponding timestamp. Furthermore, the
DF’s position and orientation is logged every 200
milliseconds, making it possible to extract informa-
tion about his/her movements.

3 The unsupervised conversational model

Our algorithm consists of two phases: an annotation
phase and a selection phase. The annotation phase
is performed only once and consists of automatically
associating the DG instruction to the DF reaction.
The selection phase is performed every time the vir-
tual instructor generates an instruction and consists
of picking out from the annotated corpus the most
appropriate instruction at a given point.

3.1 The automatic annotation

The basic idea of the annotation is straightforward:
associate each utterance with its corresponding re-
action. We assume that a reaction captures the se-
mantics of its associated instruction. Defining re-
action involves two subtle issues, namely boundary
determination and discretization. We discuss these
issues in turn and then give a formal definition of
reaction.

We define the boundaries of a reaction as follows.
A reaction Rk to an instruction Uk begins right af-
ter the instruction Uk is uttered and ends right before
the next instruction Uk+1 is uttered. In the follow-
ing example, instruction 1 corresponds to the reac-

69



tion 〈2, 3, 4〉, instruction 5 corresponds to 〈6〉, and
instruction 7 to 〈8〉.

DG(1): hit the red you see in the far room
DF(2): [enters the far room]
DF(3): [pushes the red button]
DF(4): [turns right]
DG(5): hit far side green
DF(6): [moves next to the wrong green]
DG(7): no
DF(8): [moves to the right green and pushes it]

As the example shows, our definition of bound-
aries is not always semantically correct. For in-
stance, it can be argued that it includes too much
because 4 is not strictly part of the semantics of 1.
Furthermore, misinterpreted instructions (as 5) and
corrections (e.g., 7) result in clearly inappropriate
instruction-reaction associations. Since we want to
avoid any manual annotation, we decided to use this
naive definition of boundaries anyway. We discuss
in Section 5 the impact that inappropriate associa-
tions have on the performance of a virtual instructor.

The second issue that we address here is dis-
cretization of the reaction. It is well known that there
is not a unique way to discretize an action into sub-
actions. For example, we could decompose action 2
into ‘enter the room’ or into ‘get close to the door
and pass the door’. Our algorithm is not dependent
on a particular discretization. However, the same
discretization mechanism used for annotation has to
be used during selection, for the dialogue manager
to work properly. For selection (i.e., in order to de-
cide what to say next) any virtual instructor needs
to have a planner and a planning problem: i.e., a
specification of how the virtual world works (i.e.,
the actions), a way to represent the states of the vir-
tual world (i.e., the state representation) and a way
to represent the objective of the task (i.e., the goal).
Therefore, we decided to use them in order to dis-
cretize the reaction.

For the virtual instructor we present in Section 4
we used the planner LazyFF and the planning prob-
lem provided with the GIVE Framework. The
planner LazyFF is a reimplementation (in Java) of
the classical artificial intelligence planner FF (Hoff-
mann and Nebel, 2001). The GIVE framework (Gar-
gett et al., 2010) provides a standard PDDL (Hsu et
al., 2006) planning problem which formalizes how

the GIVE virtual worlds work. Both the LazzyFF
planner and the GIVE planning problem are freely
available on the web1.

Now we are ready to define reaction formally. Let
Sk be the state of the virtual world when uttering in-
struction Uk, Sk+1 be the state of the world when ut-
tering the next utterance Uk+1 and Acts be the rep-
resentation of the virtual world actions. The reaction
to Uk is defined as the sequence of actions returned
by the planner with Sk as the initial state, Sk+1 as
the goal state and Acts as the actions.

Given this reaction definition, the annotation of
the corpus then consists of automatically associat-
ing each utterance to its (discretized) reaction. The
simple algorithm that implements this annotation is
shown in Figure 1. Moreover, we provide a fragment
of the resulting annotated corpus in Appendix A.

1: Acts← world possible actions
2: for all utterance Uk in the corpus do
3: Sk ← world state at Uk

4: Sk+1 ← world state at Uk+1

5: Uk.Reaction← plan(Sk, Sk+1, Acts)
6: end for

Figure 1: Annotation algorithm

3.2 Selecting what to say next
In this section we describe how the selection phase is
performed every time the virtual instructor generates
an instruction.

The instruction selection algorithm, displayed in
Figure 2, consists in finding in the corpus the set of
candidate utterances C for the current task plan P
(P is the sequence of actions that needs to be exe-
cuted in the current state of the virtual world in or-
der to complete the task). We define C = {U ∈
Corpus | P starts with U.Reaction}. In other words,
an utterance U belongs to C if the first actions of the
current plan P exactly match the reaction associated
to the utterance U . All the utterances that pass this
test are considered paraphrases and hence suitable in
the current context.

Whenever the plan P changes, as a result of the
actions of the DF, we call the selection algorithm in
order to regenerate the set of candidate utterances C.

1http://www.give-challenge.org/

70



1: C ← ∅
2: Plan← current task plan
3: for all utterance U in the corpus do
4: if Plan starts with U.Reaction then
5: C ← C ∪ {U}
6: end if
7: end for
8: return C

Figure 2: Selection algorithm

While the plan P doesn’t change, because the
DF is staying still, the virtual instructor offers al-
ternative paraphrases of the intended instruction.
Each paraphrase is selected by picking an utterance
from C and verbalizing it, at fixed time intervals
(every 3 seconds). The order in which utterances
are selected depends on the length of the utterance
reaction (in terms of number of actions), starting
from the longest ones. Hence, in general, instruc-
tions such as “go back again to the room with the
lamp” are uttered before instructions such as “go
straight”, because the reaction of the former utter-
ance is longer than the reaction of the later.

It is important to notice that the discretization
used for annotation and selection directly impacts
the behavior of the virtual instructor. It is crucial
then to find an appropriate granularity of the dis-
cretization. If the granularity is too coarse, many
instructions in the corpus will have an empty reac-
tion. For instance, in the absence of the representa-
tion of the user orientation in the planning domain
(as is the case for the virtual instructor we evaluate
in Section 5), instructions like “turn left” and “turn
right” will have empty reactions making them indis-
tinguishable during selection. However, if the gran-
ularity is too fine the user may get into situations
that do not occur in the corpus, causing the selec-
tion algorithm to return an empty set of candidate
utterances. It is the responsibility of the virtual in-
structor developer to find a granularity sufficient to
capture the diversity of the instructions he wants to
distinguish during selection.

4 A virtual instructor for a virtual world

We implemented an English virtual instructor for
one of the worlds used in the corpus collection we

presented in Section 2. The English fragment of the
corpus that we used has 21 interactions and a total
of 1136 instructions. Games consisted on average
of 54.2 instructions from the human DG, and took
about 543 seconds on average for the human DF to
complete the task.

On Figures 4 to 7 we show an excerpt of an in-
teraction between the system and a user. The fig-
ures show a 2D map from top view and the 3D in-
game view. In Figure 4, the user, represented by a
blue character, has just entered the upper left room.
He has to push the button close to the chair. The
first candidate utterance selected is “red closest to
the chair in front of you”. Notice that the referring
expression uniquely identifies the target object us-
ing the spatial proximity of the target to the chair.
This referring expression is generated without any
reasoning on the target distractors, just by consid-
ering the current state of the task plan and the user
position.

Figure 4: “red closest to the chair in front of you”

After receiving the instruction the user gets closer
to the button as shown in Figure 5. As a result of the
new user position, a new task plan exists, the set of
candidate utterances is recalculated and the system
selects a new utterance, namely “the closet one”.

The generation of the ellipsis of the button or the
chair is a direct consequence of the utterances nor-
mally said in the corpus at this stage of the task plan
(that is, when the user is about to manipulate this ob-
ject). From the point of view of referring expression
algorithms, the referring expression may not be op-
timal because it is over-specified (a pronoun would

71



L go
yes left
straight now go back
go back out now go back out
closest the door down the passage
go back to the hallway nowin to the shade room
go back out of the room out the way you came in
exit the way you entered ok now go out the same door
back to the room with the lamp go back to the door you came in
Go through the opening on the left okay now go back to the original room
okay now go back to where you came from ok go back again to the room with the lamp
now i ned u to go back to the original room Go through the opening on the left with the yellow wall paper

Figure 3: All candidate selected utterances when exiting the room in Figure 7

Figure 5: “the closet one”

Figure 6: “good”

be preferred as in “click it”), Furthermore, the in-
struction contains a spelling error (‘closet’ instead

Figure 7: “go back to the room with the lamp”

of ‘closest’). In spite of this non optimality, the in-
struction led our user to execute the intended reac-
tion, namely pushing the button.

Right after the user clicks on the button (Figure 6),
the system selects an utterance corresponding to the
new task plan. The player position stayed the same
so the only change in the plan is that the button no
longer needs to be pushed. In this task state, DGs
usually give acknowledgements and this is then what
our selection algorithm selects: “good”.

After receiving the acknowledgement, the user
turns around and walks forward, and the next ac-
tion in the plan is to leave the room (Figure 7). The
system selects the utterance “go back to the room
with the lamp” which refers to the previous interac-
tion. Again, the system keeps no representation of
the past actions of the user, but such utterances are
the ones that are found at this stage of the task plan.

72



We show in Figure 3 all candidate utterances se-
lected when exiting the room in Figure 7. That is,
for our system purposes, all the utterances in the fig-
ure are paraphrases of the one that is actually uttered
in Figure 7. As we explained in Section 3.2, the
utterance with the longest reaction is selected first
(“go back to the room with the lamp”), the second
utterance with the longest reaction is selected sec-
ond (“ok go back again to the room with the lamp”),
and so on. As you can observe in Figure 3 the ut-
terances in the candidate set can range from tele-
graphic style like “L” to complex sentences like “Go
through the opening on the left with the yellow wall
paper”. Several kinds of instructions are displayed,
acknowledgements such as “yes”, pure moving in-
structions like “left” or “straight”, instructions that
refer to the local previous history such as “go back
out the room” or “ok now go out the same door” and
instructions that refer back to the global history such
as “okay now go back to the original room”.

Due to the lack of orientation consideration in our
system, some orientation dependent utterances are
inappropriate in this particular context. For instance,
“left” is incorrect given that the player does not have
to turn left but go straight in order to go through
the correct door. However, most of the instructions,
even if quite different among themselves, could have
been successfully used in the context of Figure 7.

5 Evaluation and error analysis

In this section we present the results of the evalu-
ation we carried out on the virtual instructor pre-
sented in Section 4 which was generated using the
dialogue model algorithm introduced in Section 3.

We collected data from 13 subjects. The partici-
pants were mostly graduate students; 7 female and
6 male. They were not English native speakers but
rated their English skills as near-native or very good.

The evaluation contains both objective measures
which we discuss in Section 5.1 and subjective mea-
sures which we discuss in Section 5.2.

5.1 Objective metrics

The objective metrics we extracted from the logs of
interaction are summarized in Table 1. The table
compares our results with both human instructors
and the three rule-based virtual instructors that were

top rated in the GIVE-2 Challenge. Their results cor-
respond to those published in (Koller et al., 2010)
which were collected not in a laboratory but con-
necting the systems to users over the Internet. These
hand-coded systems are called NA, NM and Saar.
We refer to our system as OUR.

Human NA Saar NM OUR
Task success 100% 47% 40% 30% 70%
Canceled 0% 24% n/a 35% 7%
Lost 0% 29% n/a 35% 23%
Time (sec) 543 344 467 435 692
Mouse actions 12 17 17 18 14
Utterances 53 224 244 244 194

Table 1: Results for the objective metrics

In the table we show the percentage of games that
users completed successfully with the different in-
structors. Unsuccessful games can be either can-
celed or lost. We also measured the average time
until task completion, and the average number of ut-
terances users received from each system. To ensure
comparability, we only counted successfully com-
pleted games.

In terms of task success, our system performs bet-
ter than all hand-coded systems. We duly notice that,
for the GIVE Challenge in particular (and proba-
bly for human evaluations in general) the success
rates in the laboratory tend to be higher than the suc-
cess rate online (this is also the case for completion
times) (Koller et al., 2009). Koller et al. justify this
difference by stating that the laboratory subject is
being discouraged from canceling a frustrating task
while the online user is not. However, it is also pos-
sible that people canceled less because they found
the interaction more natural and engaging as sug-
gested by the results of the subjective metrics (see
next section).

In any case, our results are preliminary given the
amount of subjects that we tested, but they are in-
deed encouraging. In particular, our system helped
users to identify better the objects that they needed
to manipulate in the virtual world, as shown by the
low number of mouse actions required to complete
the task (a high number indicates that the user must
have manipulated wrong objects). This correlates
with the subjective evaluation of referring expres-
sion quality (see next section).

73



We performed a detailed analysis of the instruc-
tions uttered by our system that were unsuccessful,
that is, all the instructions that did not cause the in-
tended reaction as annotated in the corpus. From the
2081 instructions uttered in total (adding all the ut-
terances of the 13 interactions), 1304 (63%) of them
were successful and 777 (37%) were unsuccessful.

Given the limitations of the annotation discussed
in Section 3.1 (wrong annotation of correction utter-
ances and no representation of user orientation) we
classified the unsuccessful utterances using lexical
cues into 1) correction like “no” or “wrong”, 2) ori-
entation instruction such as “left” or “straight”, and
3) other. We found that 25% of the unsuccessful ut-
terances are of type 1, 40% are type 2, 34% are type
3 (1% corresponds to the default utterance “go” that
our system utters when the set of candidate utter-
ances is empty). In Section 7 we propose an im-
proved virtual instructor designed as a result of this
error analysis.

5.2 Subjective metrics

The subjective measures were obtained from re-
sponses to the GIVE-2 questionnaire that was pre-
sented to users after each game. It asked users to rate
different statements about the system using a contin-
uous slider. The slider position was translated to a
number between -100 and 100. As done in GIVE-
2, for negative statements, we report the reversed
scores, so that in Tables 2 and 3 greater numbers
indicates that the system is better (for example, Q14
shows that OUR system is less robotic than the rest).
In this section we compare our results with the sys-
tems NA, Saar and NM as we did in Section 5.1, we
cannot compare against human instructors because
these subjective metrics were not collected in (Gar-
gett et al., 2010).

The GIVE-2 Challenge questionnaire includes
twenty-two subjective metrics. Metrics Q1 to Q13
and Q22 assess the effectiveness and reliability of
instructions. For almost all of these metrics we got
similar or slightly lower results than those obtained
by the three hand-coded systems, except for three
metrics which we show in Table 2. We suspect that
the low results obtained for Q5 and Q22 relate to
the unsuccessful utterances identified and discussed
in Section 5.1 (for instance, corrections were some-
times contradictory causing confusion and resulting

in subjects ignoring them as they advanced in the in-
teraction). The high unexpected result in Q6, that
is indirectly assessing the quality of referring ex-
pressions, demonstrates the efficiency of the refer-
ring process despite the fact that nothing in the algo-
rithms is dedicated to reference. This good result is
probably correlated with the low number of mouse
actions mentioned in Section 5.1.

NA Saar NM OUR
Q5: I was confused about which direction to go in

29 5 9 -12
Q6: I had no difficulty with identifying the objects the
system described for me

18 20 13 40
Q22: I felt I could trust the system’s instructions

37 21 23 0

Table 2: Results for the significantly different subjective
measures assessing the effectiveness of the instructions
(the greater the number, the better the system)

Metrics Q14 to Q20 are intended to assess the nat-
uralness of the instructions, as well as the immer-
sion and engagement of the interaction. As Table 3
shows, in spite of the unsuccessful utterances, our
system is rated as more natural and more engaging
(in general) than the best systems that competed in
the GIVE-2 Challenge.

NA Saar NM OUR
Q14: The system’s instructions sounded robotic

-4 5 -1 28
Q15: The system’s instructions were repetitive

-31 -26 -28 -8
Q16: I really wanted to find that trophy

-11 -7 -8 7
Q17: I lost track of time while solving the task

-16 -11 -18 16
Q18: I enjoyed solving the task

-8 -5 -4 4
Q19: Interacting with the system was really annoying

8 -2 -2 4
Q20: I would recommend this game to a friend

-30 -25 -24 -28

Table 3: Results for the subjective measures assessing
the naturalness and engagement of the instructions (the
greater the number, the better the system)

74



6 Portability to other virtual environments

The hand-coded systems, which we compared to, do
not need a corpus in a particular GIVE virtual world
in order to generate instructions for any GIVE vir-
tual world, while our system cannot do without such
corpus. These hand-coded systems are designed to
work on different GIVE virtual worlds without the
need of training data, hence their algorithms are
more complex (e.g. they include domain indepen-
dent algorithms for generation of referring expres-
sions) and take a longer time to develop.

Our algorithm is independent of any particular
virtual world. In fact, it can be ported to any other
instruction giving task (where the DF has to per-
form a physical task) with the same effort than re-
quired to port it to a new GIVE world. This is not
true for the hand-coded GIVE systems. The inputs
of our algorithm are an off-the-shelf planner, a for-
mal planning problem representation of the task and
a human-human corpus collected on the very same
task the system aims to instruct. It is important to
notice that any virtual instructor, in order to give in-
structions that are both causally appropriate at the
point of the task and relevant for the goal cannot do
without such planning problem representation. Fur-
thermore, it is quite a normal practice nowadays to
collect a human-human corpus on the target task do-
main. It is reasonable, then, to assume that all the
inputs of our algorithm are already available when
developing the virtual instructor, which was indeed
the case for the GIVE framework.

Another advantage of our approach is that vir-
tual instructor can be generated by developers with-
out any knowledge of generation of natural language
techniques. Furthermore, the actual implementation
of our algorithms is extremely simple as shown in
Figures 1 and 2. This makes our approach promising
for application areas such as games and simulation
training.

7 Future work and conclusions

In this paper we presented a novel algorithm for
automatically prototyping virtual instructors from
human-human corpora without manual annotation.
Using our algorithms and the GIVE corpus we have
generated a virtual instructor for a game-like vir-
tual environment. A video of our virtual instruc-

tor is available in http://cs.famaf.unc.edu.ar/

˜luciana/give-OUR. We obtained encouraging re-
sults in the evaluation with human users that we did
on the virtual instructor. In our evaluation, our sys-
tem outperforms rule-based virtual instructors hand-
coded for the same task both in terms of objective
and subjective metrics. We plan to participate in the
GIVE Challenge 20112 in order to get more evalua-
tion data from online users and to evaluate our algo-
rithms on multiple worlds.

The algorithms we presented solely rely on the
plan to define what constitutes the context of utter-
ing. It may be interesting though to make use of
other kinds of features. For instance, in order to inte-
grate spatial orientation and differentiate “turn left”
and “turn right”, the orientation can be either added
to the planning domain or treated as a context fea-
ture. While it may be possible to add orientation
in the planning domain of GIVE, it is not straight-
forward to include the diversity of possible features
in the same formalization, like modeling the global
discourse history or corrections. Thus we plan to in-
vestigate the possibility of considering the context of
an utterance as a set of features, including plan, ori-
entation, discourse history and so forth, in order to
extend the algorithms presented in terms of context
building and feature matching operations.

In the near future we plan to build a new version
of the system that improves based on the error anal-
ysis that we did. For instance, we plan to take ori-
entation into account during selection. As a result
of these extensions however we may need to enlarge
the corpus we used so as not to increase the number
of situations in which the system does not find any-
thing to say. Finally, if we could identify corrections
automatically, as suggested in (Raux and Nakano,
2010), we could get an increase in performance, be-
cause we would be able to treat them as corrections
and not as instructions as we do now.

In sum, this paper presents the first existing al-
gorithm for fully-automatically prototyping task-
oriented virtual agents from corpora. The generated
agents are able to effectively and naturally help a
user complete a task in a virtual world by giving
her/him instructions.

2http://www.give-challenge.org/research

75



References

Sudeep Gandhe and David Traum. 2007a. Creating spo-
ken dialogue characters from corpora without annota-
tions. In Proceedings of 8th Conference in the Annual
Series of Interspeech Events, pages 2201–2204, Bel-
gium.

Sudeep Gandhe and David Traum. 2007b. First
steps toward dialogue modelling from an un-annotated
human-human corpus. In IJCAI Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems,
Hyderabad, India.

Andrew Gargett, Konstantina Garoufi, Alexander Koller,
and Kristina Striegnitz. 2010. The GIVE-2 corpus
of giving instructions in virtual environments. In Pro-
ceedings of the 7th International Conference on Lan-
guage Resources and Evaluation (LREC), Malta.

Jörg Hoffmann and Bernhard Nebel. 2001. The FF plan-
ning system: Fast plan generation through heuristic
search. JAIR, 14:253–302.

Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang,
and Yixin Chen. 2006. New features in SGPlan
for handling soft constraints and goal preferences in
PDDL3.0. In Proceedings of ICAPS.

Dusan Jan, Antonio Roque, Anton Leuski, Jacki Morie,
and David Traum. 2009. A virtual tour guide for vir-
tual worlds. In Proceedings of the 9th International
Conference on Intelligent Virtual Agents, IVA ’09,
pages 372–378, Berlin, Heidelberg. Springer-Verlag.

Patrick Kenny, Thomas D. Parsons, Jonathan Gratch, An-
ton Leuski, and Albert A. Rizzo. 2007. Virtual pa-
tients for clinical therapist skills training. In Proceed-
ings of the 7th international conference on Intelligent
Virtual Agents, IVA ’07, pages 197–210, Berlin, Hei-
delberg. Springer-Verlag.

Alexander Koller, Kristina Striegnitz, Donna Byron, Jus-
tine Cassell, Robert Dale, Sara Dalzel-Job, Johanna
Moore, and Jon Oberlander. 2009. Validating the
web-based evaluation of nlg systems. In Proceedings
of ACL-IJCNLP 2009 (Short Papers), Singapore.

Alexander Koller, Kristina Striegnitz, Andrew Gargett,
Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. Report on the sec-
ond NLG challenge on generating instructions in vir-
tual environments (GIVE-2). In Proceedings of the In-
ternational Natural Language Generation Conference
(INLG), Dublin.

Anton Leuski, Ronakkumar Patel, David Traum, and
Brandon Kennedy. 2006. Building effective question
answering characters. In Proceedings of the 7th SIG-
dial Workshop on Discourse and Dialogue, SigDIAL
’06, pages 18–27, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Antoine Raux and Mikio Nakano. 2010. The dynam-
ics of action corrections in situated interaction. In
Proceedings of the SIGDIAL 2010 Conference, pages
165–174, Tokyo, Japan, September. Association for
Computational Linguistics.

Verena Rieser and Oliver Lemon. 2010. Learning hu-
man multimodal dialogue strategies. Natural Lan-
guage Engineering, 16:3–23.

Bayan Abu Shawar and Eric Atwell. 2003. Using di-
alogue corpora to retrain a chatbot system. In Pro-
ceedings of the Corpus Linguistics Conference, pages
681–690, United Kingdom.

Bayan Abu Shawar and Eric Atwell. 2005. Using cor-
pora in machine-learning chatbot systems. volume 10,
pages 489–516.

76



A Automatically annotated fragment of the GIVE corpus

Utterance: make a left and exit the room
Reaction: 〈move(b2-room-1-9,room-1-9), move(room-1-9,room-1-8), move(room-1-8,room-1-7),

move(room-1-7,room-1-6), move(room-1-6,room-1-3), move(room-1-3,room-1-4),
move(room-1-4,room-1-5), move(room-1-5,d3-room-1-5)〉

Utterance: go forward and turn 90 degrees
Reaction: 〈move(d3-room-1-5,d3-room-2), move(d3-room-2,room-2)〉

Utterance: go into the room on the right
Reaction: 〈move(room-2,d6-room-2), move(d6-room-2,a2-d6-room-3), move(a2-d6-room-3,room-3)〉

Utterance: push the green button to the left of the red button
Reaction: 〈move(room-3,b6-room-3), manipulate-stateless(b6), move(b6-room-3,room-3)〉

Utterance: go into the room on your right
Reaction: 〈move(room-3,d11-room-3), move(d11-room-3,d11-room-7), move(d11-room-7,room-7)〉

Utterance: turn 90 degrees right and push the red button
Reaction: 〈move(room-7,b11-room-7), manipulate(b11), move(b11-room-7,room-7)〉

Utterance: on your right, push the yellow button
Reaction: 〈move(room-7,b10-room-7), manipulate-stateless(b10), move(b10-room-7,room-7)〉

Utterance: turn 180 degrees and push the red button next to the plant
Reaction: 〈move(room-7,b12-room-7), manipulate-stateless(b12), move(b12-room-7,room-7)〉

Utterance: turn 180 degrees and push the blue button in the middle of the yellow and blue button
Reaction: 〈move(room-7,b8-b9-room-7), manipulate-stateless(b9), move(b8-b9-room-7,room-7)〉

Utterance: turn 90 degrees left
Reaction: 〈〉

Utterance: go into the room on the right
Reaction: 〈move(room-7,d10-room-7), move(d10-room-7,d10-room-6), move(d10-room-6,room-6)〉

Utterance: turn right and proceed down the room
Reaction: 〈〉

Utterance: push the red button next to the blue button on your right
Reaction: 〈move(room-6,b13-b14-room-6), manipulate(b14), move(b13-b14-room-6,room-6)〉

Utterance: turn left 120 degrees left
Reaction: 〈〉

Utterance: and walk through the hall
Reaction: 〈move(room-6,d9-room-6), move(d9-room-6,d9-room-5), move(d9-room-5,room-5)〉

77


