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Abstract 

We describe a novel world model frame-
work designed to support situated human-
robot communication through improved 
mutual knowledge about the physical 
world. This work focuses on enabling a  
robot to store and use semantic information 
from a human located in the same envi-
ronment as the robot and respond using 
human-understandable terminology. This 
facilitates information sharing between a 
robot and a human and subsequently pro-
motes team-based operations. Herein, we 
present motivation for our world model, an 
overview of the world model, a discussion 
of proof-of-concept simulations, and future 
work. 

1 Introduction 

As robots become more ubiquitous, their interac-
tions with humans must become more natural and 
intuitive for humans. One of the main challenges to 
natural human-robot interaction is the “language 
barrier” between humans and robots. While a con-
siderable amount of work has gone into making 
robot dialogue more human-like (Fong et al., 
2005), the content of the conversation is frequently 
highly scripted.  

An essential precondition to intuitive human-
robot dialogue is the establishment of a common 

ground of understanding between humans and ro-
bots (Kiesler, 2005). Operators expect information 
to be presented in a way such that they can connect 
it with their own world information. This implies a 
need for robots to be capable of expressing infor-
mation in human-understandable terms. By shifting 
some responsibility for establishing common 
ground to robots, interactions between humans and 
robots become considerably more natural for  
humans by reducing the need for humans to “trans-
late” the robot’s information. 

Ultimately, the robot’s world model is a key 
contributor to the “language barrier.” Because  
humans and robots view and think about the world 
differently (having different “sensors” and “pro-
cessing algorithms”), they subsequently have 
different world representations (Figure 1). Humans 
tend to think of the world as objects in space, while 
robotic representations vary based on sensors, but 
are typically coordinate-based representations of 
 

 
 
Figure 1. Humans and robots think and subse-
quently communicate about the world using 
different terminology. 
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free and occupied space. This presents a consider-
able challenge when humans want to communicate 
naturally with robots. For robots to become active 
partners for humans, they must be better able to 
share the information they have gathered about the 
world. To that end, we have begun to address the 
“language barrier” by focusing on how information 
is stored by the robot. 

We have developed a novel world model repre-
sentation that will enable a robot to merge 
information communicated by its human team-
mates with its own situational awareness data and 
use the resulting “operating picture” to drive plan-
ning and decision-making for navigation in 
unfamiliar environments. The ultimate aim of this 
research is to enable robots to communicate with 
humans and maintain an “actionable awareness” of 
the environment. This provides a number of bene-
fits: 
• Increased robot situational awareness. The robots 

will be able to learn about, store, and recall envi-
ronmental information obtained from humans (or 
other robots). This can include information the  
robot would be incapable of getting on its own,  
either because it has not visited that region of the 
environment or because it is not capable of sens-
ing that information. 

• Increased human situational awareness. Humans 
will be able to receive information from robots in 
human-understandable terms. 

• Reduced workload and training for human-robot 
interaction. Because robots will be able to com-
municate in human-understandable terms, people 
will be able to interact with robots in ways that are 
more natural to humans. As a result, people will 
need fewer specialized interfaces to interact with 
robots and subsequently less training. 

• Improved collaboration. Because people and ro-
bots will be able to share information, the team 
will be able to operate more efficiently. Each team 
member will be able to contribute to team 
knowledge, which will allow for better planning. 

2 World Model Overview 

Our world model framework was designed using 
several key principles: that information must be 
stored in both human-understandable terms and in 
a format usable by the robot; that information must 
be capable of being added, deleted, or modified 
during operations; and that the world model 
framework should be capable of integrating with a 

wide variety of external systems including pre-
existing perception and planning systems.  

To meet these principles, we have developed a 
layered framework that has internal functions for 
managing the world model and can integrate with 
external systems that use the world model, such as 
systems that populate it (perception systems) or 
use it to govern robotic actions (planning systems) 
(Figure 2).  
 

 
 
Figure 2. We have developed a two-layer world 
model that integrates with external functions via 
translation functions to support the use of a variety 
of robotic capabilities. 
 

Layered world models have shown promise for 
both robot navigation (Kuipers and Byun, 1991; 
Mataric, 1990) and for communication with  
humans (Kennedy et al., 2007; Zender et al., 
2008). Additionally, work in symbol grounding has 
supported robotic actions based on natural lan-
guage interactions (Jacobsson et al., 2008, Hsiao et 
al., 2008). We leverage this research and extend it 
with the aim of supporting human-robot infor-
mation sharing, robot navigation, and use by 
external systems. 

The bottom layer stores a spatiotemporal de-
scription of the environment expressed in metrical 
terms. While there are several different possibili-
ties for how this location-based information could 
be stored, we use a grid-based representation be-
cause it is commonly used by existing planners 
(e.g., a cost map-based planner) and it allows for 
flexibility of information storage. While our 
framework supports the inclusion of an arbitrary 
number of grids, our experimental prototype uses 
three: an occupancy grid that stores free and occu-
pied space, an “object” grid, and a “terrain” grid. 
The object grid stores the types of objects in each  
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cell in ascending order of vertical position (e.g., 
“table, plate, apple”). The terrain grid stores terrain 
type in each cell and may also have multiple  
entries per cell (e.g., “sand, boulders” or “grass”). 

The top layer stores a relational description of 
the situation in semantic terms compatible with 
typical human descriptions of the physical envi-
ronment. We use node-attribute structures in which 
objects (e.g., chairs, keys, trees, people, buildings) 
are represented as nodes that have a list of corre-
sponding attributes (e.g., type, color, GPS 
coordinates, last time sensed, source of infor-
mation, etc.). The nodes are connected by their 
relationships, which are human-understandable 
concepts (e.g., “near” or “above”). The graph form 
of the semantic layer supports the many, varied 
types of relationships between objects. There are 
many ways to express the physical relationships 
between objects, and humans often use ambiguous 
terms (Crangle et al., 1987). By establishing the 
semantic layer as a connected graph, we aim to 
support these ambiguous terms and ultimately pro-
vide a way for the robot to process their meaning. 

In the top layer of the world model, we use an 
ontological representation to model the world, and 
include both an “upper ontology” that provides a 
template for what information can be included in 
the world as well as an instantiated world built 
from experience. In addition to providing a frame-
work that stores the list of all objects that could be 
present in the world, their associated attributes, and 
the possible relationship between the objects, this 
upper layer includes other information such as the 
robot’s goals and current high level plans and addi-
tional information the robot has about itself or the 
world (e.g., domain theory or object affordances). 
An additional benefit of an ontology-based repre-
sentation is that it supports the inclusion of objects 
despite uncertainty. If a perception algorithm can-
not confidently identify an object but can classify 
it, this class of object can be stored in the semantic 
layer of the world model and refined as more  
information is made available. 

To support a consistent, complete view of the 
world, translation functions translate the infor-
mation between the layers and assimilation 
functions merge information within layers. These 
translation functions support symbol grounding 
and enable the robot to use both semantically-
described information along with sensed data. The 
translation functions are a set of functions, each of 

which translates an attribute, for example, a color 
translation function that translates between RGB 
values and a semantic label. More interesting are 
the location-based translation functions, for exam-
ple “near A” translates to “within 2 meters of A’s 
position.” This introduces uncertainty into the po-
sition of the object and so we use a probabilistic 
approach for placing any unsensed (but described) 
object in the bottom layer. The location of the  
object is updated once the object is sensed by the 
robot. 

The assimilation algorithms, which are also still 
in development, are built upon data fusion ideas 
because they merge data from multiple sources. 
Because a considerable amount of existing work 
has been done on integrating (assimilating) infor-
mation at the sensor level, to date we have focused 
on assimilation in the semantic layer of our world 
model. We have developed heuristic-based algo-
rithms that compare information stored in the 
world model with actively sensed information  
(essentially creating a temporary world model of 
the area currently being sensed by the robot). Dur-
ing operation, the robot’s sensor detects an object 
and outputs a vector of possible object classifica-
tions. Each object classification has an associated 
confidence along with attributes of the object  
including size, color, etc. The assimilation compo-
nent pulls all objects within a prescribed radius of 
the newly sensed object’s location from the world 
model to compare them with the newly sensed  
object. The assimilation algorithm starts with the 
object closest in position to the newly sensed ob-
ject and stops comparing objects if an object is 
determined to be “same as” the newly sensed  
object or if all objects with the prescribed radius 
are compared and none match.  

To compare our newly sensed object with one 
of the objects already in the world model, the  
assimilation algorithm compares the object vectors, 
which contain the list and confidence in each ob-
ject type and object attributes such as color, size, 
and location. Some attributes (like source of  
information) are ignored in this calculation. To 
compare two objects, we compute the distance  
between the object vectors. This distance is com-
puted through a pairwise comparison of attributes 
in the vector lists. These distances are then 
weighted according to “importance” in assimila-
tion process, for example objects with similar type 
should be more likely to be merged than objects 
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that only have similar color. We then sum the 
weighted distances; if sum is less than a prescribed 
threshold, we assume the objects are the same and 
then merge them. If not the same, the algorithm 
checks this object against the other objects within 
the radius and if none are found, adds the object as 
a new object. To merge objects, the algorithm 
merges the attribute vectors of the temporary ob-
ject and the original object. Some parts of the 
vectors are averaged (e.g., color), some amalga-
mated (e.g., data source), and some pick one of the 
values (e.g., pick most recent time). Additionally, 
because it is stored in the world model, we can  
incorporate logic about the world to facilitate  
assimilation (e.g., “this object is immovable so it 
must not have changed position”). While this algo-
rithm has served as an initial assimilation 
algorithm, we will continue researching and  
designing assimilation algorithms to better support 
the uncertainty present in the sensing outputs (e.g., 
false positives). 

One of the key requirements of our world mod-
el is that it be able to integrate with external 
robotic systems. To accomplish this, the world 
model layers integrate with external functions that 
serve as translators to existing (or future) func-
tions. These external translation functions pull 
relevant information from the world model and 
present it in a form usable by a planner. For exam-
ple, we have created a planning translator that 
takes the grids from the physical layer and produc-
es a cost map for a ground robot (with set 
parameters), which can then be used by any cost 
map-based planner. 

3 Proof-of-Concept Simulations 

To evaluate the feasibility of our world model 
framework, we performed several proof-of-concept 
simulations designed to both demonstrate and test 
the capabilities of our world model and subse-
quently to help the design process. We created 
different environments using Player/Stage and ran 
the robot through two scenarios. In both scenarios, 
humans needed robotic assistance to escape from a 
burning building and communicated with the robot 
using natural language. In the first scenario, a  
mobile robot was asked by a group of trapped peo-
ple to unlock a door and alert them when the door 
was open. In the second scenario, two mobile  
robots were tasked with searching for trapped  

people and coordinating with first responders. Be-
cause the focus of the simulations was on 
evaluating the world model itself, we made the  
assumption that the robot had both camera and 
LIDAR sensors and had processing algorithms  
capable of outputting an object classification and a 
confusion matrix. We assumed the robot had both 
a speech processing and synthesis mechanism with 
which it could communicate verbally with people 
in the environment. We assumed the robot had a 
common A* planner that used a cost map represen-
tation for planning.  

The first scenario highlighted the ability for the 
robot to understand and use human-communicated 
information by adding a human-described object to 
its world model and planning based on this assimi-
lated information. At the beginning of the scenario, 
a human described the location of a key (“near the 
desk in the room with one table and one desk”) and 
told the robot to open the locked east door. The 
human did not tell the robot to use the key to  
unlock the door, instead the robot used object  
affordances stored in its world model to establish a 
high-level plan of getting the key, then unlocking 
the door. When the human told the robot about the 
location of the key, the robot stored this location in 
the top layer and translated the object’s position 
down to the bottom layer using a probabilistic 
translation algorithm that placed the key in the bot-
tom layer at the most likely position within a 
certain region (whose size and position corre-
sponded to “nearness”). The robot used a simple 
cost map-based planner to plan its movements and 
so the system created a cost map from all the rele-
vant bottom layer information in a format used by 
a classic A* planner. As a result, this scenario 
showed that our world model enabled the robot to 
use information gathered by a human teammate 
and expressed in semantic terminology without a 
specially designed planner.  

The second scenario illustrated the merits of our 
world model for responding to humans. In this 
scenario, once the robot had searched the environ-
ment, it was asked a series of questions by a first 
responder including: “How many people did you 
find?” and “How do I get to the fire extinguisher?” 
The latter question was particularly interesting  
because it forced the robot to describe a path in 
semantic terminology (as opposed to a list of way-
points). The robot used information from its top 
layer to describe the path from the first responder’s 
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current position to the fire extinguisher. This sce-
nario highlighted the ability for the robot to 
produce human-understandable and useful infor-
mation despite having gathered the information 
using its low-level sensors and planner. 

In both of the scenarios, the robot was given 
both instructions and information verbally from 
one or more of the people in the robot’s environ-
ment. The robot stored this described information 
in the world model and merged it with the infor-
mation the robot had gathered with its own sensors 
to form a cohesive view of the world. The robot 
then used both the described and sensed infor-
mation to formulate a plan to accomplish its goals. 
At the end of the mission, the robot was asked 
questions about the environment and was able to 
answer using human understandable terminology.  

In these simulations we were able to show the 
robot formulating a plan based on information it 
had not sensed by itself. Because the robot had on-
ly a simple cost map-based planner, it was 
essential that the semantic information be translat-
ed to the grid representations in the bottom layer. 
This allowed the planning translator to produce a 
cost map in the form expected by the planner.  

We used these simulations to inform key design 
decisions including the need to have multiple grids 
in the bottom layer of the world model and to  
incorporate object affordances in the semantic lay-
er. Another key insight was that uncertainty must 
be included in the semantic layer and that it is an 
important element in semantic layer assimilation. 

4 Conclusions and Future Work 

We have designed and developed a world model 
framework that supports situated information shar-
ing between robots and humans. By integrating 
semantic and sensor-based terminology, we have 
enabled a robot to integrate information described 
in natural human terms with its own sensed infor-
mation. In addition, we have shown how a robot 
with a standard A* planning algorithm can thereby 
plan and respond appropriately using information 
obtained in semantic terms.  

Because this world model framework was  
designed to support a variety of robotic operations 
and capabilities, there are many areas of potential 
future work. These include facilitating robotic dia-
logue systems, developing reasoning systems that 
can use the semantic level information to predict 

certain aspects of the world model (such as how an 
event will affect the physical layout of the world or 
where an object will be in a certain amount of 
time), and enabling semantic-level planners that 
can perform high-level planning. 

To further improve the functionality supported 
by this world model framework, there are a num-
ber of areas of future work within the framework 
itself. We are exploring the design changes needed 
to support modeling of dynamic objects and the 
types of assimilation algorithms that exist or need 
to be developed to truly integrate tracks generated 
by external perception systems into our world 
model. We are also looking into how to better  
reason about spatial relationships, particularly 
those that are only true when described from a spe-
cific vantage point. Additionally, we would like to 
improve the translation algorithms by exploring 
additional scenarios and determining what mecha-
nisms are needed. In the area of multi-robot 
coordination, we want to explore physical layer as-
similation, which includes the ability to align 
reference frame for heterogeneous robots. Finally, 
we would also like to apply our world model on 
multiple real robots with speech systems and eval-
uate the world model in a series of real-world 
operations. 
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