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Abstract

Error-return plots show the rate of error
(misunderstanding) against the rate of non-
return (non-understanding) for Natural Lan-
guage Processing systems. They are a use-
ful visual tool for judging system performance
when other measures such as recall/precision
and detection-error tradeoff are less informa-
tive, specifically when a system is judged on
the correctness of its responses, but may elect
to not return a response.

1 Introduction

Many Natural Language Processing systems make
a distinction between misunderstanding, where the
system interprets an input incorrectly, and non-
understanding, where the system is aware that it is
not able to interpret an input (Bohus and Rudnicky,
2005). This distinction is common in dialogue sys-
tems, where it pertains to Natural Language Under-
standing components which pass their output to a
dialogue manager: a dialogue manager will act on
the contents of misunderstood input, but if it knows
that the input is not understood then it can engage in
a variety of recovery techniques, such as asking for
clarification, moving on, or changing the topic. For
this reason non-understanding is usually preferred to
misunderstanding. While common to dialogue sys-
tems, the concept of non-understanding is useful for
other tasks as well, whenever a system can bene-
fit from the knowledge that its best interpretation is
likely to be incorrect (see below for an example in
question answering).

Detecting non-understanding is a tradeoff: a sys-
tem that is prone to non-understanding will in-

evitably miss some inputs that it would have under-
stood correctly under a forced interpretation. This
is similar but not identical to the familiar trade-
offs between recall and precision (van Rijsbergen,
1979) and between detection and error (Martin et al.,
1997). Recall and precision are measures taken from
information retrieval, where there are typically mul-
tiple documents relevant to a query, and ideal per-
formance is defined as retrieving all and only the
relevant documents: recall measures the “all” part
while precision measures the “only” part, and tun-
ing a system to increase one measure typically im-
plies decreasing its counterpart. Detection and er-
ror apply to forced choice tasks: each input must be
classified as either positive or negative, and decreas-
ing false positives typically implies increasing false
negatives and vice versa. The tradeoff between mis-
understanding and non-understanding is similar to
recall-precision in that a response need not be given
to each input, and is similar to detection-error in that
when a response is given, we only care about its cor-
rectness and not about its exhaustiveness.

There is presently no accepted measure for
the tradeoff between misunderstanding and non-
understanding. A recent example illustrating the
confusion, and need for a standard measure, comes
from the QALD-1 Open Challenge (Question An-
swering over Linked Data).1 The task is defined
as giving a complete and correct answer to a nat-
ural language question, but systems are allowed to
not return an answer. The evaluation metric uses
recall and precision, but they are defined in a non-
standard way. Precision is defined as the number

1http://www.sc.cit-ec.uni-bielefeld.de/sites/www.sc.cit-ec.
uni-bielefeld.de/files/sharedtask.pdf (dated 2011-03-28)
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of correctly answered questions divided by the to-
tal number of answered questions; given that each
question receives at most one answer, this is equiv-
alent to the standard definition of correct answers
divided by the total number of answers provided by
the system – it penalizes misunderstanding and gives
credit to non-understanding. Recall is also defined
in a non-standard way.

number of correctly answered questions
number of questions

This would normally be considered the definition
of accuracy, and it penalizes misunderstanding and
non-understanding equally; the standard definition
of recall is the number of correct answers divided by
the number of available correct answers, and it does
not normally penalize incorrect answers. The reason
for the confusion between recall and accuracy is that
in a task where each question has a unique correct
answer, failure to provide a correct answer to a ques-
tion implies that an available answer has not been
retrieved. What the QALD-1 evaluation does, in
effect, is penalize non-understanding through accu-
racy, and penalize misunderstanding more, through
both accuracy and precision.

To properly evaluate the tradeoff between mis-
understanding and non-understanding we need to
look at each type of error separately. If each in-
put receives a response, then accuracy is the com-
plement of error; if some responses are not re-
turned, then accuracy is the complement of the sum
of errors (misunderstandings) and non-returns (non-
understandings). The relative severity of misunder-
standing and non-understanding will vary based on
the application: a question-answering system that
is required to provide accurate information might
have a low tolerance for misunderstanding, while a
story-driven dialogue system might have a low tol-
erance for asking clarification questions as a result
of non-understanding. The relation between misun-
derstanding and non-understanding is not fixed – a
system with lower error rates under a forced inter-
pretation may turn out to have higher error rates than
a competitor after allowing for non-understanding.
It is therefore useful to look at the entire range of
return rates when evaluating systems. The remain-
der of this paper introduces the error-return plot as
a graphical representation for comparing error rates

across different return rates, and presents examples
for its use from recent experiments.

2 Characteristics of the tradeoff

A Natural Language Processing component that is
capable of indicating non-understanding consists of
two distinct processes: figuring out the best (or most
likely) response to an input, and deciding whether
the best response is likely to be appropriate. These
two processes may be implemented as distinct soft-
ware components, as in the system used for the
experiments in section 4, NPCEditor (Leuski and
Traum, 2010) – a classification-based system for
Natural Language Understanding that chooses the
best interpretation from a fixed set. NPCEditor
first calculates the appropriateness of each avail-
able interpretation, and then compares the score of
the best interpretation to a predetermined threshold;
if the best interpretation falls below the threshold,
NPCEditor indicates non-understanding. Other im-
plementations are, of course, possible – for example,
Patel et al. (2006) describe an architecture where the
system first decides if it can understand the input,
and then tries to determine the interpretation only
if the answer is positive. The two processes may
also be linked more intimately together, but in order
to determine the tradeoff between misunderstand-
ing and non-understanding, there must be some way
to isolate the decision of whether or not the input
has been understood. By varying the sensitivity of
this decision, we can compare the rates of misunder-
standing across different rates of non-understanding.

Decomposing Natural Language Understand-
ing into two distinct processes helps illustrate
the inapplicability of the popular measures of
ROC curves (relative operating characteristic,
Swets, 1973) and DET curves (detection error trade-
off, Martin et al., 1997). These measures only look
at the decision of whether an interpretation is good
enough, while abstracting away the decision about
the actual interpretation. ROC and DET curves were
developed for detection and verification tasks, where
performance is determined by the rate of errors –
misses and false alarms – irrespective of the com-
position of the input. They plot the false alarm rate
against the hit rate (ROC) or miss rate (DET) – that
is, the returned errors as a proportion of all errors
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against the returned (ROC) or missed (DET) correct
responses as a proportion of all correct responses.
Consequently, ROC and DET curves say nothing
about the actual error rate. A system with an er-
ror rate of 10%, where errors are uniformly spread
among correct responses when ranked by the sys-
tem’s confidence, will have identical ROC and DET
curves to a system with an error rate of 40%, 50% or
90% with the errors spread uniformly.

For investigating the tradeoff between misunder-
standing and non-understanding, we want to look
not only at the system’s decision about whether or
not to return an interpretation, but also at the correct-
ness of the chosen interpretation. We therefore need
a plot that reflects the actual error rate as a function
of the return rate.

3 Definition

An error-return plot is a graphical representation of
the tradeoff between errors (misunderstandings) and
failures to return a response (non-understandings).
It applies to systems that react to each input in one
of three possible ways – a correct response, an in-
correct response, or a failure to respond to the input.
The error rate and non-return rate are defined as fol-
lows.

Error rate =
incorrect responses
number of inputs

Non-return rate =
failures to respond
number of inputs

In order to plot the entire range of the tradeoff, the
system is set to make a forced-choice response to
each input. The responses are then ranked according
to the system’s confidence (or whatever other mea-
sure is used to decide when to issue a non-return),
and at each possible cutoff, the non-return rate is
plotted on the horizontal axis against the error rate
on the vertical axis. As the number of non-returns
grows, the number of errors can only go down, so
the plot is monotonically decreasing; at the extreme
right, where no responses are returned, error rates
are necessarily zero, while at the extreme left, the
error rate is equivalent to accuracy under a forced
choice. Lower curves indicate better performance.

Figure 1: Comparing tokenizers, SGT Star data
(Wang et al., 2011, black = baseline)

4 Examples

An example error-return plot is shown in Figure 1.
The plot is taken from Wang et al. (2011), an experi-
ment which tested the effect of using phonetic infor-
mation in a Natural Language Understanding com-
ponent in order to recover from speech recognition
errors. The base system is NPCEditor (Leuski and
Traum, 2010), trained for SGT Star, a virtual charac-
ter who provides information about the U.S. Army to
potential recruits (Artstein et al., 2009). For each in-
put utterance, NPCEditor selects one output out of a
fixed set, based on a learned mapping between input
and output training examples; it also has the capabil-
ity of not returning a response if the classifier’s con-
fidence in the appropriateness of the best choice falls
below a certain threshold. The specific experiment
in Figure 1 tested alternative methods to tokenize the
input: the base tokenizer is represented by the thick
black curve, and uses words as tokens; alternative
tokenizers are shown in thinner lines or in shades of
gray, and they use tokens with various mixtures of
phonetic and word information (phone unigrams, bi-
grams etc.). The test data consisted of utterances for
which the correct interpretation is known, but which
NPCEditor would occasionally fail to classify due to
speech recognition errors.

Figure 1 shows several properties at a glance. The
base tokenizer has a fairly high error rate (over 30%)
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Figure 2: Comparing tokenizers, Twins data
(Wang et al., 2011, black = baseline)

under forced choice, but the error rate decreases
rapidly when non-understanding is allowed (on the
left-hand side of the plot the slope is close to −1,
which is the steepest possible decline). When tol-
erance for non-understanding is low, all the alter-
native tokenizers produce lower error rates than the
baseline; however, increasing the non-understanding
does not affect all tokenizers equally, and the er-
ror rate of the baseline tokenizer improves more
rapidly than others, so that at 30% non-return rate it
is better than most of the alternative tokenizers. Fi-
nally, one alternative tokenizer – the thin black line –
shows best or almost-best performance at all return
rates, supporting the hypothesis of the original ex-
periment, that adding phonetic information to a Nat-
ural Language Understanding component can help
in recovery from speech recognition errors.

Figure 2 is from the same experiment but using
a different data set – the one developed for the the
twins Ada and Grace, two virtual guides at the Mu-
seum of Science in Boston who answer questions
about their neighboring exhibits and about science
in general (Swartout et al., 2010). The overall error
rate is much lower than in Figure 1. Otherwise, the
pattern is similar, though we see that the thin gray to-
kenizer has shifted from a close second-best to being
the worst performer. Once again, the thin black tok-
enizer beats all the others across most return rates.

Figure 3: Augmented classifiers (black = baseline)

Figure 3 shows a different experiment, also using
NPCEditor. This experiment tested the effect of tak-
ing an existing virtual character – the twins Ada and
Grace – and expanding the character’s understand-
ing by adding training input-output pairs extracted
automatically from text (the method for extracting
training data is described in Chen et al., 2011; the
present experiment is currently under review for
publication). The baseline classifier is the thick
black line, trained on the Twins’ original question-
answer links; the alternative classifiers add automat-
ically extracted questions-answer training links from
successive orthogonal domains. All classifiers were
evaluated using the same test set of questions from
the original domain, in order to test how the addition
of orthogonal training data affects performance on
inputs from the original domain. The plot shows that
the effect is quite noticeable: the original classifier
has a 10% absolute error rate, which drops to virtu-
ally zero at a non-return rate of 20% and above; the
augmented classifiers display a higher initial error
rate, and moreover this higher error rate is not easily
mitigated by accepting higher non-return rates. The
augmented classifiers have the advantage of being
able to understand inputs from the added domains,
but the cost is some confusion on the original do-
main, both in terms of understanding the input, and
in the ability to identify non-understanding.
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5 Discussion

The error-return plot is a graphical representation
for looking at the tradeoff between misunderstand-
ing and non-understanding. Evaluating systems ca-
pable of indicating non-understanding is somewhat
tricky, and error-return plots can show information
that is useful when comparing such systems. If
the curve of one system completely dominates the
other, then we can say with confidence that the first
system has better performance. If the curves in-
tersect, then we need to compare the parts of the
curve where we expect actual system performance
to fall, and this will vary by application. The sys-
tems described above all use the same strategy for
dealing with non-understanding: they issue an “off-
topic” response which asks for clarification, stalls,
or changes the conversation topic. The systems are
intended for fairly short question-answer dialogues,
for which an off-topic response rate of about 1 in 5
is usually acceptable, so the critical region is around
20% non-understanding. In applications where it is
possible to judge the relative severity of misunder-
standing and non-understanding, a weighted aver-
age could identify the optimal setting for the non-
understanding threshold. Such an average should
give non-understanding a lower weight than misun-
derstanding, since treating them as equal would ob-
viate the need for identifying non-understanding.

A counterpart to the error rate would be the
“missed chance rate” – the proportion of responses
that would have been correct under forced choice
but were not returned. Curves for missed chances
start at zero (when all responses are returned) and in-
crease with the non-return rate to a maximum of one
minus the absolute error rate. The relation between
the missed chance curve and the error return plot
is straightforward: wherever the error return curve
goes down, the missed chance curve stays level,
and wherever the error return plot stays level, the
missed chance curve goes up. The curves intersect
at the point where the number of misunderstandings
is identical to the number of non-understandings that
would have been correct under forced choice; it is
not clear, however, whether this point has any prac-
tical significance.

Error-return plots suffer from the usual problem
of evaluating single components in a dialogue sys-

tem: since subsequent input is to a certain extent
contingent on system actions, it is conceivable that
a system prone to misunderstanding would trigger
different user utterances than a system prone to non-
understanding. Determining the full consequences
of non-understanding would require running a full
dialogue system with real users under varying set-
tings; error-return plots show the performance of
Natural Language Understanding under the assump-
tion of fixed input.

Overall, error return plots provide useful in-
formation about the tradeoff between misunder-
standing and non-understanding in cases where re-
call/precision, ROC and DET curves are less infor-
mative. They have been used in several recent ex-
periments, and hopefully may gain acceptance as a
standard tool for system evaluation.
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