
Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 70–73,
Seoul, South Korea, 5-6 July 2012. c©2012 Association for Computational Linguistics

Rapid Development Process of Spoken Dialogue Systems using
Collaboratively Constructed Semantic Resources

Masahiro Araki

Department of Information Science
Kyoto Institute of Technology

Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
araki@kit.ac.jp

Abstract

We herein propose a method for the rapid
development of a spoken dialogue system
based on collaboratively constructed
semantic resources and compare the
proposed method with a conventional
method that is based on a relational
database. Previous development
frameworks of spoken dialogue systems,
which presuppose a relational database
management system as a background
application, require complex data definition,
such as making entries in a task-dependent
language dictionary, templates of semantic
frames, and conversion rules from user
utterances to the query language of the
database. We demonstrate that a semantic
web oriented approach based on
collaboratively constructed semantic
resources significantly reduces troublesome
rule descriptions and complex
configurations in the rapid development
process of spoken dialogue systems.

1 Introduction

There has been continuing interest in the
development methodology of spoken dialogue
systems (SDS). In recent years, statistical methods,
such as Williams et al. (2007) and Hori et al.
(2009), have attracted a great deal of attention as a
data-driven (i.e., corpus-driven) approach, which
can reduce the troublesome manual coding of
dialogue management rules. Statistical methods

can also be applied to other components of SDS,
such as semi-automatic construction of semantic
interpreters and response generators. However the
overall SDS development process still requires
some hand coding, for example to establish the
connection to the underlying application.

Another data-driven approach was designed to
provide all of the SDS components with the goal of
rapidly constructing the entire system (Kogure et
al., 2001; Heinroth et al., 2009). This approach
starts from a data model definition (and so can be
regarded as a data-modeling driven approach) and
adds rules and templates, which are used as task-
dependent knowledge in an SDS. As a data model
definition, Kogure et al. (2001) used a relational
database (RDB) schema and Heinroth et al. (2009)
used OWL, which is an ontology definition
language in semantic web applications. Although
these data-modeling schemata are familiar to
developers of web applications, additional
definition of rules and templates needed for an
SDS is troublesome for ordinary web developers
because such SDS-related rules require specialized
knowledge of linguistics and speech application
development.

We herein propose a new data-modeling driven
approach for rapid development of SDS that is
based on collaboratively constructed semantic
resources (CSRs). We present an automatic
generation mechanism of code and data for a
simple SDS. In addition, we compare the proposed
approach with an ordinary data-modeling driven
approach that is based on a RDB. By using CSRs
and the Rails framework of web application
development, the troublesome definitions of rules
and templates for SDS can be reduced significantly.

70

The remainder of the present paper is organized
as follows. Section 2 describes the proposed
approach to a data-modeling driven development
process for SDS based on CSRs. Section 3
compares the proposed approach with the previous
RDB-based approach. In Section 4, the paper
concludes with a discussion of future research.

2 Data-modeling driven approach based
on CSRs

In this section, we explain our previous data-
modeling driven approach and describe additional
new functionality based on CSRs.

2.1 Object-oriented SDS development
framework

We previously proposed a data-modeling driven
framework for rapid prototyping of SDS (Araki et
al., 2011). This includes a class library that is
based on the class hierarchy and the attribute
definitions of an existing semantic web ontology,
i.e., Schema.org1. This class library is used as a
base class of an application-specific class
definition. An example class definition is shown in
Figure 1.

Figure 1: Example of class definition extending

existing class library.

In this example, the MyBook class inherits all of
the attributes of the Book class of Schema.org in
the same manner as object-oriented programming
languages. The developer can limit the attributes
that are used in the target application by listing
them in the constraints section. On the other hand,
the developer can add additional attributes (in this
class, ranking attributes as the type of integer) in
the definition of the class.

1 http://schema.org/

The task type and dialogue initiative type are
indicated as annotations at the beginning of the
class definition. In this example, the task type is
DB search and the initiative type is user initiative.
This information is used in generating the
controller code and view code of the target SDS.

Using Grails2, which is a Rails web application
framework, the proposed framework generates the
dialogue controller code of the indicated task type
and the view code, which have speech interaction
capability on the HTML5 code from this class
definition. The overall concept of the object-
oriented framework is shown in Figure 2.

Data model
definition

Mix‐in of
traits

embed
application
logic

State
definition

generate

convert

Grails

Data model
definition

Groovy

generate

HTML5
code

Model

Controller

View

Figure 2: Overview of the object-oriented SDS

development framework.

2.2 Usage of CSRs

The disadvantage of our previous framework,
described in the previous subsection, is the high
dependence on the dictation performance of the
speech recognition component. The automatically
generated HTML5 code invokes dictation API,
irrespective of the state of the dialogue and
initiative type. In order to improve speech
recognition accuracy, grammar rules (in system
initiative dialogue) and/or the use of a
task/domain-dependent language model (LM) (in
mixed/user initiative dialogue) are necessary. In
our previous framework, the developer had to
prepare these ASR-related components using
language resources, which are beyond the
proposed data-driven framework.

In order to overcome this defect, we add the
Freebase3 class library, which is based on large-
scale CSRs, because Freebase already includes the

2 http://grails.org/
3 http://www.freebase.com/

@DBSearch

@SystemInitiative

class MyBook extends Book {

 int ranking

 static constraints = {

 name(onsearch:"like")

 author(onsearch:"like")

 publisher()

 ranking(number:true)

 }

}

71

contents of the data. These contents and a large-
scale web corpus facilitate the construction of
grammar rules and a LM that is specific to the
target task/domain. For example, the Film class of
Freebase has more than 191 thousand entries (as of
May 2012). These real data can be used as
resources to improve SDS accuracy.

In system initiative type dialogue, the contents
of each attribute can construct word entries of the
grammar rule for each attribute slot. For example,
the grammar rule for the user's response to "Which
genre of movie are you searching for?" can be
constructed from the contents of the genres
attribute of the Film class. We implemented a
generator of the set of content words specified in
the data model definition from the data of Freebase.
The generator is embedded as one component of
the proposed rapid prototyping system.

In the mixed/user initiative type tasks, since
content words and functional words make up the
user's utterance, we need a LM for speech
recognition and a semantic frame extractor for the
construction of semantic data storage queries. We
designed and implemented a LM generator and a
semantic frame extractor using a functional
expression dictionary that corresponds to the
attributes of Freebase (Araki, submitted). An
example entry of the function expression
dictionary is shown in Figure 3 and the flow of the
LM generation is shown in Figure 4.

item value

property fb:film.performance.actor
phrase pattern X "ga de te iru" Y
constraints X rdf:type "/film/actor"
partial graph Y fb:film.performance.actor X

Figure 3: An entry of function expression
dictionary.

Freebase
data

Web
corpus

Data model
definition

content
words

in‐domain
entries

domain
dependent

LM

example
sentences

Figure 4: Construction process of LM.

3 Comparison with the RDB-based
approach

3.1 Overview of the RDB-based method

As an example of the RDB-based SDS prototyping
method, we review the method described in
Kogure et al. (2001) (see Figure 5).

ASR NLU Search NLG TTS

AM

LM

dictionary

functional

noun.

grammar

general

query DB

rule format

pronounce

input output

domain
indep.

dep. task
indep.

dep.

Figure 5: Modules and knowledge of the RDB-

based method.

They examined the domain dependency and task
dependency of the knowledge that drives SDS.
Domain/task-independent knowledge, such as an
acoustic model, a general function word dictionary,
and a pronunciation dictionary, are prepared in
advance for all of the systems. Both domain-
dependent/task-independent knowledge, such as
the language model, the noun/verb dictionary, and
the database schema, and domain/task-dependent
knowledge, such as the rule of query generation
obtained from the results of semantic analysis and
format for output, must be specified by the
developer. If the developer wants to change a task
within the same domain, the developer can reuse
domain-dependent/task-independent knowledge
(everything above the dotted line in Figure 4) and
must specify task-dependent knowledge
(everything below the dotted line in Figure 4).

3.2 Comparison of the data-modeling stage

In the data modeling of the RDB-based method,
the developer must specify field names (e.g., title,
year), their corresponding data types (e.g., string,
integer), and the labels of the fields (i.e., the labels
for the language used in the SDS), as in the usual
web application with RDB. Since the data model
definitions differ from one another, it is difficult to
integrate similar systems even if these systems deal
with the same domain.

In the CSRs-based approach, the data-modeling
process involves selecting necessary attributes of
the inherited class and, if needed, adding fields for

72

additional domain/task-specific information. The
data type has already been set in the existing data
schema, and language-dependent label information
can be acquired by the value of rdfs:label, where
the value of the lang attribute is the target language.

3.3 Comparison of code generation stage

In the RDB-based method, the developer must
specify the noun and verb dictionary, grammar for
parsing, and rules for query generation. In addition,
the RDB-based approach must either stick to a
fixed dialogue pattern for DB search or make the
developer write dialogue management rules.

By combining the CSRs-based approach with
the Rails framework, the task dependent dictionary
is automatically generated from the data and
grammar rules are easily constructed with the
functional expression entries of properties. Also in
this approach, typical dialogue management
patterns are already prepared and can be specified
as annotations. For the sake of this setting, all of
the basic codes for SDS are automatically
generated from the data model definition.

3.4 Comparison of functionality

In the RDB-based method, the developer must
make a domain/task dependent LM using language
resources outside of the development process.
However, in general, it is difficult to acquire a
domain/task-dependent corpus. In addition,
although the RDB-based method is designed to be
robust with respect to the task modification, this
method is not robust with respect to porting to
different languages. Language specific code tends
to be embedded in every component of an SDS.

In the CSRs-based approach, the domain/task-
dependent LM is automatically generated, as
described in Subsection 2.2. For the sake of this
data-modeling driven method and native
multilinguality of CSRs, the developer can easily
implement multilingual SDS (Araki et al., 2012).
Multilingual contents are already prepared in
Freebase (although English resources are
dominant) and a multilingual web speech API is
already implemented, e.g., in the Google Chrome
browser, the developer can implement a prototype
of other language SDS by dictation. If the
developer wants to use domain/task-dependent
LMs, he/she must prepare example sentences for
the target domain/task in the target language.

4 Conclusions and future research

We have proposed a method for rapid development
of a spoken dialogue system based on CSRs and
have compared the proposed method with the
conventional method, which is based on RDB.

In the current implementation, our system cannot
handle the problem of the variation of the named
entity which is dealt with by e.g. Hillard et al.
(2011). We are planning to examine the
extensibility of the proposed framework by
combining such refinement methods.

Acknowledgments

The present research was supported in part by the
Ministry of Education, Science, Sports, and
Culture through a Grant-in-Aid for Scientific
Research (C), 22500153, 2010.

References

Masahiro Araki and Yuko Mizukami. 2011.
Development of a Data-driven Framework for
Multimodal Interactive Systems. In Proc. of IWSDS
2011, 91-101.

Masahiro Araki. submitted. An Automatic Construction
Method of Spoken Query Understanding Component
from Data Model Definition.

Masahiro Araki and Daisuke Takegoshi. 2012. A Rapid
Development Framework for Multilingual Spoken
Dialogue Systems. In Proc. of COMPSAC 2012.

Tobias Heinroth, Dan Denich and Gregor Bertrand.
2009. Ontology-based Spoken Dialogue Modeling. In
Proc. of the IWSDS 2009.

Dustin Hillard, Asli Çelikyilmaz, Dilek Z. Hakkani-Tür,
and Gökhan Tür. 2011. Learning Weighted Entity
Lists from Web Click Logs for Spoken Language
Understanding. In Proc. of Interspeech 2011, 705-
708.

Chiori Hori, Kiyonori Ohtake, Teruhisa Misu,. Hideki
Kashioka and Satoshi Nakamura. 2009. Statistical
Dialog Management Applied to WFST-based Dialog
Systems. In Proc. of ICASSP 2009, 4793-4796.

Satoru Kogure and Seiichi Nakagawa. 2001. A
Development Tool for Spoken Dialogue Systems and
Its Evaluation. In Proc. of TSD2001, 373-380.

Jason D. Williams and Steve Young. 2007. Partially
Observable Markov Decision Processes for Spoken
Dialog Systems. Computer Speech and Language,
21(2), 393-422.

73

