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Abstract

We provide a systematic study of previously
proposed features for implicit discourse re-
lation identification, identifying new feature
combinations that optimize F1-score. The re-
sulting classifiers achieve the best F1-scores
to date for the four top-level discourse rela-
tion classes of the Penn Discourse Tree Bank:
COMPARISON, CONTINGENCY, EXPAN-
SION, and TEMPORAL. We further identify
factors for feature extraction that can have a
major impact on performance and determine
that some features originally proposed for the
task no longer provide performance gains in
light of more powerful, recently discovered
features. Our results constitute a new set of
baselines for future studies of implicit dis-
course relation identification.

1 Introduction

The ability to recognize the discourse relations that
exist between arbitrary text spans is crucial for un-
derstanding a given text. Indeed, a number of natu-
ral language processing (NLP) applications rely on it
— e.g., question answering, text summarization, and
textual entailment. Fortunately, explicit discourse
relations — discourse relations marked by explicit
connectives — have been shown to be easily identi-
fied by automatic means (Pitler et al., 2008): each
such connective is generally strongly coupled with
a particular relation. The connective “because”, for
example, serves as a prominent cue for the CONTIN-
GENCY relation.

The identification of implicit discourse relations
— where such connectives are absent — is much

harder. It has been the subject of much recent re-
search since the release of the Penn Discourse Tree-
bank 2.0 (PDTB) (Prasad et al., 2008), which anno-
tates relations between adjacent text spans in Wall
Street Journal (WSJ) articles, while clearly distin-
guishing implicit from explicit discourse relations.1

Recent studies, for example, explored the utility of
various classes of features for the task, including
linguistically informed features, context, constituent
and dependency parse features, and features that en-
code entity information or rely on language mod-
els (Pitler et al., 2009; Lin et al., 2009; Louis et al.,
2010; Zhou et al., 2010).

To date, however, there has not been a systematic
study of combinations of these features for implicit
discourse relation identification. In addition, the re-
sults of existing studies are often difficult to compare
because of differences in data set creation, feature
set choice, or experimental methodology.

This paper provides a systematic study of previ-
ously proposed features for implicit discourse re-
lation identification and identifies feature combina-
tions that optimize F1-score using forward selection
(John et al., 1994). We report the performance of our
binary (one vs. rest) classifiers on the PDTB data
set for its four top-level discourse relation classes:
COMPARISON, CONTINGENCY, EXPANSION, and
TEMPORAL. In each case, the resulting classifiers
achieve the best F1-scores for the PDTB to date. We

1Research on implicit discourse relation recognition prior to
the release of the PDTB instead relied on synthetic data cre-
ated by removing explicit connectives from explicit discourse
relation instances (Marcu and Echihabi, 2002), but the trained
classifiers do not perform as well on real-world data (Blair-
Goldensohn et al., 2007).
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further identify factors for feature extraction that can
have a major impact performance, including stem-
ming and lexicon look-up. Finally, by document-
ing an easily replicable experimental methodology
and making public the code for feature extraction2,
we hope to provide a new set of baselines for future
studies of implicit discourse relation identification.

2 Data

The experiments are conducted on the PDTB
(Prasad et al., 2008), which provides discourse rela-
tion annotations between adjacent text spans in WSJ
articles. Each training and test instance represents
one such pair of text spans and is classified in the
PDTB w.r.t. its relation type and relation sense.

In the work reported here, we use the relation
type to distinguish examples of explicit vs. implicit
discourse relations. In particular, we consider all in-
stances with a relation type other than explicit as
implicit relations since they lack an explicit con-
nective between the text spans. The relation sense
determines the relation that exists between its text
span arguments as one of: COMPARISON, CONTIN-
GENCY, EXPANSION, and TEMPORAL. For exam-
ple, the following shows an explicit CONTINGENCY
relation between argument1 (arg1) and argument2
(arg2), denoted via the connective “because”:

The federal government suspended sales of
U.S. savings bonds because Congress hasn’t
listed the ceiling on government debt.

The four relation senses comprise the target classes
for our classifiers.

A notable feature of the PDTB is that the anno-
tation is done on the same corpus as Penn Tree-
bank (Marcus et al., 1993), which provides parse
trees and part-of-speech (POS) tags. This enables
the use of gold standard parse information for some
features, e.g., the production rules feature, one of
the most effective features proposed to date.

3 Features

Below are brief descriptions of features whose ef-
ficacy have been empirically determined in prior
works3, along with the rationales behind them:

2These are available from http://www.joonsuk.org.
3Word Pairs (Marcu and Echihabi, 2002). First-Last-First3

(Wellner et al., 2006). Polarity, Verbs, Inquirer Tags, Modality,
Context (Pitler et al., 2009). Production Rules (Lin et al., 2009).

Word Pairs (cross product of unigrams: arg1 ×
arg2) — A few of these word pairs may capture in-
formation revealing the discourse relation of the tar-
get spans. For instance, rain-wet can hint at CON-
TINGENCY.

First-Last-First3 (the first, last, and first three
words of each argument) — The words in this range
may be expressions that function as connectives for
certain relations.

Polarity (the count of words in arg1 and arg2, re-
spectively, that hold negated vs. non-negated posi-
tive, negative, and neutral sentiment) according to
the MPQA corpus (Wilson et al., 2005)) — The
change in sentiment from arg1 to arg2 could be a
good indication of COMPARISON.

Inquirer Tags (negated and non-negated fine-
grained semantic classification tags for the verbs in
each argument and their cross product) — The tags
are drawn from the General Inquirer Lexicon (Stone
et al., 1966)4, which provides word level relations
that might be propagated to the target spans’ dis-
course relation, e.g., rise:fall.

Verbs (count of pairs of verbs from arg1 and arg2
belonging to the same Levin English Verb Class
(Levin and Somers, 1993)5, the average lengths of
verb phrases as well as their cross product, and the
POS of the main verb from each argument) — Levin
Verb classes provide a means of clustering verbs
according to their meanings and behaviors. Also,
longer verb phrases might correlate with CONTIN-
GENCY, indicating a justification.

Modality (three features denoting the presence of
modal verbs in arg1, arg2, or both) — Modal verbs
often appear in CONTINGENCY relations.

Context (the connective and the sense of the im-
mediately preceding and following relations (if ex-
plicit), and a feature denoting if arg1 starts a para-
graph) — Certain relations co-occur.

Production Rules (three features denoting the pres-
ence of syntactic productions in arg1, arg2 or both,
based on all pairs of parent-children nodes in the ar-
gument parse trees) — The syntactic structure of an
argument can influence that of the other argument as

4http://www.wjh.harvard.edu/ inquirer/inqdict.txt
5http://www-personal.umich.edu/ jlawler/levin.html
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well as its relation type.

4 Experiments

We aim to identify the optimal subsets of the afore-
mentioned features for each of the four top-level
PDTB discourse relation senses: COMPARISON,
CONTINGENCY, EXPANSION, and TEMPORAL. In
order to provide a meaningful comparison with ex-
isting work, we carefully follow the experiment
setup of Pitler et al. (2009), the origin of the ma-
jority of the features under consideration:

First, sections 0-2 and 21-22 of the PDTB are
used as the validation and test set, respectively.
Then, we randomly down-sample sections 2-20 to
construct training sets for each of the classifiers,
where each set has the same number of positive and
negative instances with respect to the target rela-
tion. Since the composition of the corresponding
training set has a noticeable impact on the classifier
performance we select a down-sampled training set
for each classifier through cross validation. All in-
stances of non-explicit relation senses are used; the
ENTREL type is considered as having the EXPAN-
SION sense.6

Second, Naive Bayes is used not only to duplicate
the Pitler et al. (2009) setting, but also because it
equaled or outperformed other learning algorithms,
such as SVM and MaxEnt, in preliminary experi-
ments, while requiring a significantly shorter train-
ing time.7

Prior to the feature selection experiments, the best
preprocessing methods for feature extraction are de-
termined through cross validation. We consider sim-
ple lowercasing, Porter Stemming, PTB-style tok-
enization8, and hand-crafted rules for matching to-
kens to entries in the polarity and General Inquirer
lexicons.

Then, feature selection is performed via forward
selection, in which we start with the single best-
performing feature and, in each iteration, add the
feature that improves the F1-score the most, until
no significant improvement can be made. Once the

6Some prior work uses a different experimental setting. For
instance, Zhou et al. (2010) only considers two of the non-
explicit relations, namely Implicit and NoRel.

7We use classifiers from the nltk package (Bird, 2006).
8Stanford Parser (Klein and Manning, 2003).

optimal feature set for each relation sense is deter-
mined by testing on the validation set, we retrain
each classifier using the entire training set and re-
port final performance on the test set.

5 Results and Analysis

Table 5 indicates the performance achieved by em-
ploying the feature set found to be optimal for each
relation sense via forward selection, along with the
performance of the individual features that consti-
tute the ideal subset. The two bottom rows show the
results reported in two previous papers with the most
similar experiment methodology as ours. The no-
table efficacy of the production rules feature, yield-
ing the best or the second best result across all re-
lation senses w.r.t. both F1-score and accuracy, con-
firms the finding of Zhou et al. (2010). In contrast
to their work, however, combining existing features
enhances the performance. Below, we discuss the
primary observations gleaned from the experiments.

Word pairs as features. Starting with earlier works
that proposed them as features (Marcu and Echihabi,
2002), some form of word pairs has generally been
part of feature sets for implicit discourse relation
recognition. According to our research, however,
these features provide little or no additional gain,
once other features are employed. This seems sensi-
ble, since we now have a clearer idea of the types of
information important for the task and have devel-
oped a variety of feature types, each of which aims
to represent these specific aspects of the discourse
relation arguments. Thus, general features like word
pairs may no longer have a role to play for implicit
discourse relation identification.

Preprocessing. Preprocessing turned out to impact
the classifier performance immensely, especially for
features like polarity and inquirer tags that rely on
information retrieved from a lexicon. For these fea-
tures, if a match for a given word is not found in the
lexicon, no information is passed on to the classifier.

As an example, consider the General Inquirer lex-
icon. Most of its verb entries are present tense singu-
lar in form; thus, without stemming, dictionary look
up fails for a large portion of the verbs. In our case,
the F1-score increases by roughly 10% after stem-
ming.

Further tuning is possible by a few hand-written
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Feature Type
COMP. vs Rest CONT. vs Rest EXP. vs Rest TEMP. vs Rest
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

1. Polarity 16.49 46.82 28.47 61.39 64.20 56.80 13.58 50.69
2. First-Last-First3 22.54 53.05 37.64 66.71 62.27 56.40 15.24 51.81
3. Inquirer Tags 18.07 82.14 34.88 69.60 77.76 66.38 21.65 80.04
4. Verbs 18.05 55.29 23.61 78.33 68.33 58.37 18.11 58.44
5. Production Rules 30.04 75.84 47.80 71.90 77.64 69.60 20.96 63.36

Best Combination
2 & 4 & 5 2 & 4 & 5 1 & 3 & 4 & 5 1 & 3 & 5

31.32 74.66 49.82 72.09 79.22 69.14 26.57 79.32
Pitler ’09 (Best) 21.96 56.59 47.13 67.30 76.42 63.62 16.76 63.49
Zhou ’10 (Best)* 31.79 58.22 47.16 48.96 70.11 54.54 20.30 55.48

* The experiments are conducted under a slightly different setting, as described in Section 4.

Table 1: Summary of Classifier Performance. 4-way classifiers have been tested as well, but their performance is not
as good as that of the binary classifiers shown here. One major difference is that it is harder to balance the number of
instances across all the classes when training 4-way classifiers.

rules to guide lexicon lookup. The word supplied,
for instance, becomes suppli after stemming, which
still fails to match the lexicon entry supply, unless
adjusted accordingly.

Binning. An additional finding regards features
that capture numeric, rather than binary, informa-
tion, such as polarity. Since this feature encodes the
counts of each type of sentiment word (with respect
to each argument and their cross product), and Naive
Bayes can only interpret binary features, we first em-
ployed a binning mechanism with each bin covering
a single value. For instance, if arg1 consists of three
positive words, we included arg1pos1, arg1pos2 and
arg1pos3 as features instead of just arg1pos3.

The rationale behind binning is that it captures
the proximity of related instances. Imagine having
three instances each with one, two, and three pos-
itive words in arg1, respectively. Without binning,
the features added are simply arg1pos1, arg1pos2,
arg1pos3, respectively. From the perspective of the
classifier, the third instance is no more similar to the
second instance than it is to the first instance, even
though having three positive words is clearly closer
to having two positive words than having one posi-
tive word. With binning, this proximity is captured
by the fact that the first instance has just one fea-
ture in common with the third instance, whereas the
second instance has two.

Binning, however, significantly degrades perfor-
mance on most of the classification tasks. One pos-

sible explanation is that these features function as an
abstraction of certain lexical patterns, rather than di-
rectly capturing similarities among instances of the
same class.

6 Conclusion

We employ a simple greedy feature selection ap-
proach to identify subsets of known features for
implicit discourse relation identification that yield
the best performance to date w.r.t. F1-score on the
PDTB data set. We also identify aspects of feature
set extraction and representation that are crucial for
obtaining state-of-the-art performance. Possible fu-
ture work includes evaluating the performance with-
out using the gold standard parses. This will give a
better idea of how the features that rely on parser
output will perform on real-world data where no
gold standard parsing information is available. In
this way, we can ensure that findings in this area of
research bring practical gains to the community.
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