
Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 113–117,
Seoul, South Korea, 5-6 July 2012. c©2012 Association for Computational Linguistics

A Temporal Simulator for Developing Turn-Taking Methods for
Spoken Dialogue Systems

Ethan O. Selfridge and Peter A. Heeman
Center for Spoken Language Understanding

Oregon Health & Science University
20000 NW Walker Rd., Beaverton, OR, 97006

selfridg@ohsu.edu, heemanp@ohsu.edu

Abstract

Developing sophisticated turn-taking behavior
is necessary for next-generation dialogue sys-
tems. However, incorporating real users into
the development cycle is expensive and cur-
rent simulation techniques are inadequate. As
a foundation for advancing turn-taking behav-
ior, we present a temporal simulator that mod-
els the interaction between the user and the
system, including speech, voice activity de-
tection, and incremental speech recognition.
We describe the details of the simulator and
demonstrate it on a sample domain.

1 Introduction and Background

Effective turn-taking is critical for successful
human-computer interaction. Recently, approaches
have been proposed to improve system turn-taking
behavior that use reinforcement learning (Jonsdot-
tir et al., 2008; Selfridge and Heeman, 2010), de-
cision theory (e.g., Raux and Eskenazi, 2009), and
hard-coded policies (e.g., Skantze and Schlangen ,
2009). Some of these methods model turn-taking
as content-free decisions (Jonsdottir et al., 2008;
Skantze and Schlangen, 2009), while others primar-
ily rely on dialogue context (Selfridge and Heeman,
2010) and lexical cues (e.g., Raux and Eskenazi,
2009). Turn-taking continues to be an area of ac-
tive research and its development is vital for next-
generation dialogue systems, especially as they al-
low for more mixed initiative interaction.

Researchers have turned to simulation since de-
veloping a dialogue system with real users is ex-
pensive, time consuming, and sometimes impossi-

ble. Some turn-taking simulations have been highly
stylized and only model utterance content, failing to
give a realistic model of timing (Selfridge and Hee-
man, 2010). Others have modeled a content-free
form of turn-taking and only attend to timing and
prosodic information (Jonsdottir et al., 2008; Bau-
mann, 2008; Padilha and Carletta, 2002). The for-
mer is insufficient for the training of deployable real-
time systems, and the latter neglect an important as-
pect of turn-taking: semantic information (Gravano
and Hirschberg, 2011).

The overall goal is to develop a simulation en-
vironment to train behavior policies that can be
transferred with minimal modifications to produc-
tion systems. This paper presents some first steps
towards this goal. We describe a temporal simula-
tor that models the timing and content of both user
and system speech, as well as that of incremental
speech recognition (ISR) and voice activity detec-
tion (VAD). We detail the overall temporal simulator
architecture, the design of the individual agents that
simulate dialogue, and an instantiation of a simple
domain. To demonstrate the utility of the simulator,
we implement multiple turn-taking polices and use it
to compare these policies under conditions of vary-
ing reaction time and speech recognition accuracy.

2 Temporal Simulation Framework

We now describe the details of the temporal sim-
ulator. Inspired by the Open Agent Architecture
(Martin et al., 1999), it is composed of a number
of agents, each running as a separate computer pro-
cess. We first describe the time keeping procedure
and then the overall agent communication structure.

113



Time Keeping: To provide a useful training envi-
ronment, the simulator must realistically model, and
run much faster than, ‘real-time’. To do this, the
simulator keeps an internal clock that advances to
the next time slice when all agents have been run
for the current time slice. This structure allows the
simulator to run far faster than ‘real-time’ while sup-
porting realistic communication. This framework is
similar to the clock cycle described by Padilha et al
(2002).

Agent Communication: Agents use messages to
communicate. Messages have three components:
the addressee, the content and a time stamp. Time
stamps dictate when the content is to be processed
and must always be for a future, not the current, time
slice, as the alternative would imply instantaneous
communication and overly complicate the software
architecture. A central hub receives all messages
and passes them to the intended recipient agent at
the appropriate time. At every slice, each agent runs
two procedures: one that retrieves messages and one
that can send messages. If there are multiple mes-
sages intended for the same time slice, the agent
completely processes one before moving to the next.

3 Dialogue Simulator

We use the above temporal simulator to simulate di-
alogue. At present, we focus on dyadic interaction
and have three agents that are run in a strict order at
every time slice: User, ISR, and System. Time slices
are modeled as 10 millisecond (ms) increments, as
this is the time scale that speech recognizers run at.

In general, the User agent sends messages to the
ISR agent that sends messages to the System agent.
The System agent generally sends messages to both
the User agent and the ISR agent. The behavior of
all three agents rely on parameters (Table 1) that
may either be set by hand or estimated from data.
The User and System agents have near identical con-
struction, the primary difference being that the Sys-
tem can misunderstand User speech.

User and System Design: Agent speech is gov-
erned by a number of timing parameters. The Take-
Turn parameter specifies when the agent will begin
speaking the selected utterance. The agent gets the
first word of the utterance, sets the Word Length pa-

rameter, and “begins” to speak by sending a speech
event message. The agent outputs the word after
the specified Word Length, and sets the Inter-Word
Pause parameter that governs when the next word
will begin. When the agent completes the utter-
ance, it waits until a future time slice to start an-
other (as governed by the Inter-Utterance Pause pa-
rameter). However, if the listening agent interrupts
mid-utterance, the speaking agent stops speaking
and will not complete the utterance. Any dialogue
agent architecture can be used, providing the input
and output fit with the above specifications.

ISR Design: The ISR agent works as both an In-
cremental Speech Recognizer and a VAD. We cur-
rently model uncertainty in recognition but not in
the VAD, though this is certainly a plausible and
worthwhile addition. When the ISR agent receives
the speech event from the User, it sets the VAD
Speech Start parameter that models lag in speech
detection, and the Speech End (no word) parameter
that models situations where the user starts speaking
but stops mid-word and produces an unrecognizable
sound. When the word is received from the User,
the Speech End (word) parameter is set and a par-
tial phrase result is generated based on the probabil-
ity that the word will be correctly recognized. This
probability is then used as the basis for a confidence
score that is packaged with the partial phrase result.
A Recognition Lag parameter governs the time be-
tween User speech and the output of partial phrase
results to the System. The form of ISR we model
recognizes words cumulatively (see Figure 1 for an
example) though the confidence score, at present, is
only for the newly recognized word. The recognizer
will continue to output partials from User words un-
til the User stops speaking or the System sends a
message to stop recognizing. One critical aspect of
ISR which we are not modeling is partial instability,
where partials are revised as recognition progresses.
Partial instability is an area of active research (e.g.
Baumann et al. 2009) and, while revisions may cer-
tainly be modeled in the future, we chose not to for
simplicity’s sake. We feel that, at present, the Recog-
nition Lag parameter is sufficient to model the time
for a partial to become stable.

114



Table 1: Parameters and demonstration values (ms)

Conversant Agents
Inter-Word pause (Usr) µ = 200, σ = 100
Inter-Word pause (Sys) 100

Inter-Utt. pause µ = 1000, σ = 500
Word Length 400

Take-Turn (Usr) 500/200
Take-Turn (Sys) 750/100

ISR Agent
Recog. Acc. variable
Recog. Lag 300

VAD
Speech Start 100

Speech End (word) 200
Speech End (no word) 600

4 Simulation demonstration

We now demonstrate the utility of the temporal sim-
ulator by showing that it can be used to evaluate
different turn-taking strategies under conditions of
varying ASR accuracy. This is the first step before
using it to train policies for use in a live dialogue
system.

For this demonstration the conversant agents, the
System and User, are built according to the Infor-
mation State Update approach (Larsson and Traum,
2000), and perform an update for every message as-
sociated with the current time slice. The conver-
sant agents are identical except for individual rule
sets. Four types of rule sets are common across
conversant agents: UNDERSTANDING rules, that up-
date the IS using raw message content; DELIBERA-
TION rules, that update the IS by comparing new in-
formation to old; UTTERANCE rules, that select the
next utterance based on dialogue context; and TURN

Figure 1: Sample dialogue with timing information

rules, that select the time to begin the new utterance
by modifying the Take Turn parameter. Rule sets are
executed in this order with one exception. After the
UNDERSTANDING rules, the System agent has AC-
CEPTANCE rules that use confidence scores to decide
whether to understand the recognition or not.

Temporal Simulation Example: We constructed
a simple credit card domain, similar to Skantze and
Schlangen (2009), where the User says four utter-
ances of four digits each. The System must implic-
itly confirm every number and if it is correct, the
User continues.1 It can theoretically do this at any
time, immediately after the word is recognized, af-
ter an utterance, or after multiple utterances. If the
system says a wrong number the User interrupts the
System with a “no” and begins the utterance again.
The System has a Non-Understanding (NU) confi-
dence score threshold set at 0.5. After an NU, the
System will not understand any more words and will
either confirm any digits recognized before the NU
or, if there are no words to confirm, will say an NU
utterance (“pardon?”). The User says “yes” to the
final, correct confirmation. To maintain simplicity,
“yes” and “no” are always accurate. If this were not
the case, there would be a number of dialogues that
were not successful. The User takes the turn in two
ways. It either waits 500 ms after a System utterance
to speak or interrupts 200 ms after the System con-
firms an misrecognized word, which is in line with
human reaction time (Fry, 1975).

We implemented three different turn-taking
strategies: two Fixed and one Context-based. Us-
ing the Fixed strategy the System either uses a Slow
policy, waiting 750 ms after no user speech is de-
tected, or a Fast policy, waiting only 100 ms. The
Fast reaction time results in the System interrupt-
ing the User during an utterance when the inter-word
pause becomes longer than 200 ms. This is because
the VAD Speech End parameter is 100 ms and the
System is waiting for 100 ms of silence after Speech
End. The Slow reaction time results in far less in-
terruptions. The Context-based turn-taking strategy
uses the recognition score to choose its turn-taking
behavior. The motivation is that one would want

1Unlike an explicit confirmation (“I heard five. Is that
right?”), an implicit confirm (“Ok, five”) does not necessitate
a strict “yes” or “no” response.

115



Figure 2: Mean Time and Interruption for different turn-taking polices and ASR accuracy conditions

to confirm low-confidence recognitions sooner than
those with high confidence. If any unconfirmed re-
sult has scores less than 0.8 then the System uses the
Fast reaction time to try to confirm or reject as soon
as possible. Alternatively, if the results all have high
confidences, it can wait until a longer user pause
(generally between utterances) by using the Slow re-
action time. All parameter values are shown in Table
1.

Figure 1 shows a dialogue fragment of a System
using the Context-based turn-taking policy. Num-
bers are used for the sake of brevity. The start of
a box surrounding a word corresponds to when the
Speech message was sent (from the User agent to the
ISR agent) and the end of the box to when the word
has been completed and recognition lag timer be-
gins. The point of the ISR box refers to the time slice
when the partial phrase result and score were sent to
the System. Note how after the third User word the
System interrupts to confirm the utterance, since the
confidence score of a previous word dropped below
0.8. Also note how the User interrupts the System
after it confirms a wrong number.

Comparing turn-taking policies: We evaluated
the three (two Fixed and one Context-based) turn-
taking policies in two conditions of ASR accuracy:
Low Error, where the probability of correctness was
95%; and High Error, where the probability of cor-
rectness was 75%. We compared the mean dialogue
time (left Figure 2) and the mean number of in-
terruptions per dialogue (right Figure 2). For dia-
logue time, we find that all turn-taking policies per-
form similarly in the Low Error condition. How-
ever, in the High Error condition the Slow reac-
tion time performs much worse since it cannot ad-

dress poor recognitions with the speed of the other
two. For interruption, the Fast and Context-driven
policies have far more than the Slow for the High
Error condition. However, in the Low Error con-
dition the Fast policy interrupts far more than the
Context-driven. Given that natural behavior is one
goal of turn-taking, interruption, while effective at
handling High Error rates, should be minimized.
The Context-based policy provides support for in-
terruption when it is needed (High Error Condition)
and reduces it when it is not (Low Error Condition).
The other policies are either unable to interrupt at all
(Slow), increasing the dialogue time, or due to a lack
the flexibility (Fast), interrupt constantly.

5 Conclusion

We take the first steps towards a simulation approach
that characterizes both the content of conversant
speech as well as its timing. The temporal simula-
tor models conversant utterances, ISR, and the VAD.
The simulator runs quickly (100 times faster than
real-time), and is simple and highly flexible. Us-
ing an example, we demonstrated that the simula-
tor can help understand the ramifications of differ-
ent turn-taking policies. We also highlighted both
the temporal nature of turn-taking — interruptions,
reaction time, recognition lag...etc. — and the con-
tent of utterances — speech recognition errors, con-
fidence scores, and wrong confirmations. Plans for
future work include adding realistic prosodic mod-
eling and estimating model parameters from data.

Acknowledgments

We thank to the reviewers for their thoughtful sug-
gestions and critique. We acknowledge funding
from the NSF under grant IIS-0713698.

116



References
T. Baumann, M. Atterer, and D. Schlangen. 2009.

Assessing and improving the performance of speech
recognition for incremental systems. In Proc. NAACL:
HLT, pages 380–388.

T. Baumann. 2008. Simulating spoken dialogue with
a focus on realistic turn-taking. In Proc. of ESSLLI
Student Session.

D. B. Fry. 1975. Simple reaction-times to speech and
non-speech stimuli. Cortex, 11(4):355–360.

A. Gravano and J. Hirschberg. 2011. Turn-taking cues
in task-oriented dialogue. Computer Speech & Lan-
guage, 25(3):601–634.

G.R. Jonsdottir, K.R. Thorisson, and Eric Nivel. 2008.
Learning smooth, human-like turntaking in realtime
dialogue. In Proc. of IVA, pages 162–175.

S. Larsson and D. Traum. 2000. Information state and di-
alogue managment in the trindi dialogue move engine
toolkit. Natural Language Engineering, 6:323–340.

D.L. Martin, Adam J. Cheyer, and Douglas B. Moran.
1999. The open agent architecture: A framework for
building distributed software systems. Applied Ar-
tificial Intelligence: An International Journal, 13(1-
2):91–128.

E. Padilha and J. Carletta. 2002. A simulation of small
group discussion. In Proc. of EDILOG, pages 117–
124.

A. Raux and M. Eskenazi. 2009. A finite-state turn-
taking model for spoken dialog systems. In Proc. of
HLT/NAACL, pages 629–637.

G. Skantze and D. Schlangen . 2009. Incremental di-
alogue processing in a micro-domain. In Proc. of
EACL, pages 745–753.

E.O. Selfridge and P.A. Heeman. 2010. Importance-
Driven Turn-Bidding for spoken dialogue systems. In
Proc. of ACL, pages 177–185.

117


