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Abstract

To enable effective referential grounding in
situated human robot dialogue, we have con-
ducted an empirical study to investigate how
conversation partners collaborate and medi-
ate shared basis when they have mismatched
visual perceptual capabilities. In particu-
lar, we have developed a graph-based repre-
sentation to capture linguistic discourse and
visual discourse, and applied inexact graph
matching to ground references. Our empiri-
cal results have shown that, even when com-
puter vision algorithms produce many errors
(e.g. 84.7% of the objects in the environment
are mis-recognized), our approach can still
achieve 66% accuracy in referential ground-
ing. These results demonstrate that, due to its
error-tolerance nature, inexact graph matching
provides a potential solution to mediate shared
perceptual basis for referential grounding in
situated interaction.

1 Introduction

To support natural interaction between a human and
a robot, technology enabling human robot dialogue
has become increasingly important. Human robot
dialogue often involves objects and their identities
in the environment. One critical problem is inter-
pretation and grounding of references - a process
to establish mutual understanding between conver-
sation partners about intended references (Clark and
Wilkes-Gibbs, 1986). The robot needs to identify
referents in the environment that are specified by its
human partner and the partner needs to recognize
that the intended referents are correctly understood.

It is critical for the robot and its partner to quickly
and reliably reach the mutual acceptance of refer-
ences before conversation can move forward.

Despite recent progress (Scheutz et al., 2007b;
Foster et al., 2008; Skubic et al., 2004; Kruijff et al.,
2007; Fransen et al., 2007), interpreting and ground-
ing references remains a very challenging problem.
In situated interaction, although a robot and its hu-
man partner are co-present in a shared environment,
they have significantly mismatched perceptual capa-
bilities (e.g., recognizing objects in the surround-
ings). Their knowledge and representation of the
shared world are significantly different. When a
shared perceptual basis is missing, grounding ref-
erences to the environment will be difficult (Clark,
1996). Therefore, a foremost question is to under-
stand how partners with mismatched perceptual ca-
pabilities mediate shared basis to achieve referential
grounding.

To address this problem, we have conducted an
empirical study to investigate how conversation part-
ners collaborate and mediate shared basis when they
have mismatched visual perceptual capabilities. In
particular, we have developed a graph-based rep-
resentation to capture linguistic discourse and vi-
sual discourse, and applied inexact graph matching
to ground references. Our empirical results have
shown that, even when the perception of the envi-
ronment by computer vision algorithms has a high
error rate (84.7% of the objects are mis-recognized),
our approach can still correctly ground those mis-
recognized objects with 66% accuracy. The results
demonstrate that, due to its error-tolerance nature,
inexact graph matching provides a potential solu-
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tion to mediate shared perceptual basis for referen-
tial grounding in situated interaction.

In the following sections, we first describe an em-
pirical study based on a virtual environment to ex-
amine how partners mediate their mismatched visual
perceptual basis. We then provide details about our
graph matching based approach and its evaluation.

2 Related Work

There has been an increasing number of published
works on situated language understanding(Scheutz
et al., 2007a; Foster et al., 2008; Skubic et al.,
2004; Huwel and Wrede, 2006), focusing on inter-
pretation of referents in a shared environment. Dif-
ferent approaches have been developed to resolve
visual referents. Gorniak and Roy present an ap-
proach that grounds referring expressions to visual
objects through semantic decomposition, using con-
text free grammar that connect linguistic structures
with underlying visual properties (Gorniak and Roy,
2004a). Recently, they have extended this work
by including action-affordances (Gorniak and Roy,
2007). This line of work has mainly focused on
grounding words to low-level visual properties. To
incorporate situational awareness, incremental ap-
proaches have been developed to prune interpreta-
tions which do not have corresponding visual ref-
erents in the environment (Scheutz et al., 2007a;
Scheutz et al., 2007b; Brick and Scheutz, 2007).
A recent work applies a bidirectional approach to
connect bottom-up incremental language processing
to top-down constrains on possible interpretation of
referents given situation awareness (Kruijff et al.,
2007). Most of these previous works address utter-
ance level processing. Here, we are interested in ex-
ploring how the mismatched perceptual capabilities
influences the collaborative discourse, and develop-
ing a graph-based framework for referential ground-
ing with mismatched perceptions.

3 Empirical Study

It is very difficult to study the collaborative pro-
cess between partners with mismatched perceptual
capabilities. Subjects with truly mismatched per-
ceptual capabilities are difficult to recruit, and the
discrepancy between capabilities is difficult to mea-
sure and control. The wizard-of-oz studies with

Figure 1: Our experimental system. Two partners collab-
orate on an object naming task using this system. The
director on the left side is shown an (synthesized) origi-
nal image, while the matcher on the right side is shown
an impoverished version of the original image.

physical robots (e.g., as in (Green and Severin-
son Eklundh, 2001; Shiomi et al., 2007; Kahn et al.,
2008)) are also insufficient since it is not clear what
should be the underlying principles to guide the wiz-
ard’s decisions and thus the perceived robot’s behav-
iors (Steinfeld et al., 2009). To address these prob-
lems, motivated by the Map Task (Anderson et al.,
1991) and the recent encouraging results from vir-
tual simulation in Human Robot Interaction (HRI)
studies (Carpin et al., 2007; Chernova et al., 2010),
we conducted an empirical study based on virtual
simulations of mismatched perceptual capabilities.

3.1 Experimental System and Task
The setup of our experimental system is shown in
Figure 1. In the experiment, two human partners
(a director and a matcher) collaborate on an object
naming task. The mismatched perceptual capabili-
ties between partners are simulated by different ver-
sions of an image shown to them: the director looks
at an original image, while the matcher looks at an
impoverished version of the original image.

The original image (the one on the left in Fig-
ure 1) was created by randomly selecting images of
daily-life items (office supplies, fruits, etc.) from
an image database and randomly positioning them
onto a background. To create the impoverished im-

141



age (the one on the right in Figure 1), we applied
standard Computer Vision (CV) algorithms to pro-
cess the original image and then create an abstract
representation based on the outputs from the CV al-
gorithms.

More specifically, the original image was fed
into a segmentation → feature extraction →
recognition pipeline of CV algorithms. First, the
OTSU algorithm (Otsu, 1975) was used for image
segmentation. Then visual features such as color
and shape were extracted from the segmented re-
gions (Zhang and Lu, 2002). Finally, object recogni-
tion was done by searching the nearest neighbor (in
the shape-feature vector space) from a knowledge
base of “known” objects. The impoverished image
was then created based on the CV algorithms’ out-
puts. For example, if an object in the original image
was recognized as a pear, an abstract illustration of
pear would be displayed in the impoverished image
at the same position. Other features such like color
and size of the object were also extracted from the
original image and assigned to the illustration in the
impoverished image.

In the naming task, the director’s goal is to com-
municate the “secret names” of some randomly se-
lected objects (i.e., target objects) in his/her image to
the matcher, so that the matcher would know which
object has what name. As shown in Figure 1, those
secret names are displayed only on the director’s
screen but not the matcher’s. Once the matcher be-
lieves that he/she correctly acquires the name of an
target object, he/she will record the name by mouse-
clicking on the target and repeating the name. A
task is considered complete when the matcher has
recorded the names of all the target objects.

3.2 Examples

Consistent with previous findings (Liu et al., 2011),
our empirical study shows that human partners tend
to combine object properties and spatial relations to
construct their referring expressions. In addition,
our empirical study has further demonstrated how
partners manage to mediate their perceptual basis
through collaborative discourse. Here are two ex-
amples from our data:

Example 1.

D1: the very top right hand corner, there is a red apple
M: ok
D: and then to the left of that red apple on the top of the

screen is a red or black cherry
M: ok
D: and then to the left of that is a brown kiwi fruit
M: ok
D: and the, the red cherry is called Richard
· · · · · ·
Example 2.
D: ok, um, so can we start in the top right
M: alright, um, the top right there are two rows of items,

they are all circular or apple shaped
D: ok, um, the item in the very top right corner does not

have a name
M: um, no name
M: um, to the left of that
D: yes, to the left of that is Richard
M: ok, are there only three items in that row
D: yes, there are only three
M: ok, this is Richard
· · · · · ·

As shown in Example 1, the most commonly used
object properties include object class, color, spatial
location, and others such as size, length and shape.
For the relations, the most common one is the pro-
jective spatial relations (Liu et al., 2010), such as
right, left, above, below. Besides, as illustrated by
Example 2, descriptions based on grouping of mul-
tiple objects are also commonly used. To mediate
their shared basis, both the director and the matcher
make extra effort to collaborate with each other. For
instance, in Example 1, the director applies install-
ment (Clark and Wilkes-Gibbs, 1986) where he ut-
ters noun phrases in episodes and the matcher ex-
plicitly accepts each installment before the director
moves forward. In Example 2, the matcher intends
to assist the grounding process by proactively pro-
viding what he perceives about the environment.

The data collected from our empirical study have
indicated that, to mediate a shared perceptual basis
and ground references, a successful method should
consider the following issues: (1) It needs to capture
the dynamics of the linguistic discourse and iden-
tify various relations among different referring ex-
pressions throughout discourse. (2) it needs to rep-
resent the perceived visual features and topological
relations between visual objects in the visual dis-
course. (3) Because the perceived visual world by

1D stands for Director and M for Matcher.
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the matcher (who represents the lower-calibre arti-
ficial agent) very often differs from the perceived
visual world by the director (who represents the
higher-calibre human partner), reference resolution
will need some approximation without enforcing a
complete satisfaction of constraints. Based on these
considerations, we have developed a graph-based
approach for referential grounding. Next we give
a detailed account on this approach.

4 A Graph-based Approach to Referential
Grounding

In the field of image analysis and pattern recogni-
tion, Attributed Relational Graph (ARG) is a very
useful data structure to represent an image (Tsai and
Fu, 1979; Sanfeliu and Fu, 1983). In an ARG, the
underlying unlabeled graph represents the topologi-
cal structure of the scene. Then each node and edge
are labeled with a vector of attributes that represents
local features of a single node or the topological fea-
tures between two nodes. Based on the ARG rep-
resentations, an inexact graph matching is to find
a graph or a subgraph whose error-transformation
cost with the already given graph is minimum (Es-
hera and Fu, 1984).

Motivated by the representation power of ARG
and the error-correcting capability of inexact graph
matching, we developed a graph-based approach to
address the referential grounding problem. ARG
and probabilistic graph matching have been pre-
viously applied in multimodal reference resolu-
tion (Chai et al., 2004a; Chai et al., 2004b) by in-
tegrating speech and gestures. Here, although we
use similar ARG representations, our algorithm is
based on inexact graph matching and our focus is on
mediating shared perceptual basis.

4.1 Graph Representations

Figure 2 illustrates the key elements and the process
of our graph-based method. The key elements of our
method are two ARG representations, one of which
is called the discourse graph and the other called the
vision graph.

The discourse graph captures the information ex-
tracted from the linguistic discourse.2 To create the
discourse graph, the linguistic discourse first needs

2Currently we only focus on the utterances from the director.

Figure 2: An illustration of graph representations in our
method. The discourse graph is created from formal se-
mantic representations of the linguistic discourse; The vi-
sion graph is created by applying CV algorithms on the
corresponding scene. Given the two graphs, referential
grounding is to construct a node-to-node mapping from
the discourse graph to the vision graph.

to be processed by NLP components, such as the se-
mantic composition and discourse coreference res-
olution components. The output of the NLP com-
ponents are usually in the form of some formal se-
mantic representations, e.g. in the form of first-order
logic representations. The discourse graph is then
created based on the formal semantics, i.e. each
new discourse entity corresponds to a node in the
graph, one-arity predicates correspond to node at-
tributes and two-arity predicates correspond to edge
attributes. The vision graph, on the other hand, is a
representation of the visual features extracted from
the scene. Each object detected by CV algorithms
is represented as a node in the vision graph, and the
attributes of the node correspond to visual features,
such as the color, size and position of the object. The
edges between nodes represent their relations in the
physical space.

Given the discourse graph and the vision graph,
now we can formulate referential grounding as con-
structing a node-to-node mapping from the dis-
course graph to the vision graph, or in other words,
a matching between the two graphs. Note that, the
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matching we encounter here is different from the
original graph matching problem that is often used
in the image analysis field. The original version only
considers matching between two graphs that have
the same type of values for each attribute. But in
the case of referential grounding, all the attributes in
the discourse graph possess symbolic values since
they come from formal semantic representations,
whereas the attributes in the vision graph are often
numeric values produced by CV algorithms. Our so-
lution is to introduce a set of symbol grounding func-
tions, which bridges the heterogeneous attributes of
the two graphs and makes general graph matching
algorithms applicable to referential grounding.

4.2 Inexact Graph Matching
We formulate referential grounding as a graph
matching problem, which has extended the origi-
nal graph matching approach used in image process-
ing and pattern recognition filed (Tsai and Fu, 1979;
Tsai and Fu, 1983; Eshera and Fu, 1984).

First, we give the formal definition of an ARG,
which is a doublet of the form

G = (N,E)

where
N The set of attributed-nodes of graph G,

defined as

N = {(i, a) |1 ≤ i ≤ |N | } .
E The set of directed attributed-edges of

graph G, defined as

E = {(i, j, e) |1 ≤ i, j ≤ |N | } .
(i, a) ∈ N Node i with a as its attribute vector,

where a = [v1, v2, · · · , vK ] is a vector
of K attributes. To simplify the nota-
tion, We will denote a node as ai.

(i, j, e) ∈ E The directed edge from node i to node
j with e as its attribute vector, where
e = [u1, u2, · · · , uL] is a vector of L
attributes. We will denote an edge as
eij .

In an ARG, the value of a node/edge attribute
vk/ul can be symbolic, numeric, or as a vector of
numeric values. For example, if v1 is used to rep-
resent the color feature of an object, then a possible
assignment could be v1 = [255, 0, 0], which is the
rgb color vector.

Suppose we represent referring expressions from
the linguistic discourse as a discourse graph G and

objects perceived from the environment as a vi-
sion graph G′, referential grounding then becomes
a graph matching problem: given G = (N,E) and
G′ = (N ′, E′), in which

N = {ai |1 ≤ i ≤ I } , E = {ei1i2 |1 ≤ i1, i2 ≤ I }

N ′ = {aj ′ |1 ≤ j ≤ J } , E′ = {e′j1j2 |1 ≤ j1, j2 ≤ J }
A matching between G and G′ is to find a one-to-
one mapping between the nodes in N and the nodes
in N ′.

Note that it is not necessary for every node in
N or N ′ to be mapped to a corresponding node in
the other graph. If a node is not to be mapped to
any node in the other graph, we describe it as be-
ing mapped to Λ, which denotes an abstract “null”
node. To represent the matching result, we re-order
N and N ′ such that the first I ′/J ′ nodes in N /N ′ are
those which have been mapped to their correspond-
ing nodes in the other graph, and the nodes after
them are the unmatched nodes, i.e. those matched
with Λ. Then the matching result is

M = M1 ∪M2 ∪M3

= {(i, j) |1 ≤ i ≤ I ′, 1 ≤ j ≤ J ′ }
∪ {i |I ′ < i ≤ I }
∪ {j |J ′ < j ≤ J }

Here M1 is a set of I ′ pairs of indices of matched
nodes. M2 and M3 are the sets of indices of all the
unmatched nodes in N and N ′, respectively. Then
M is what we call a matching between G and G′.
It is an inexact matching in the sense that we allow
bothG andG′ to have a subset of nodes, i.e. M2 and
M3, that are not matched with any node in the other
graph (Conte et al., 2004). The cost of a matching
M is then defined as

C (M) = C (M1) + C (M2) + C (M3)

To complete the definition of C (M), we use M11

to denote the set of all the first indices of the matched
pairs in M1, i.e. M11 = {i |1 ≤ i ≤ I ′ }, and H =(
NH , EH

)
is the subgraph of G that is induced by

the subset of nodes NH = {ai |i ∈M11 }, then we
have

C (M1) =
∑

ai∈NH

CN (ai, a
′
j) +

∑
ei1i2

∈EH

CE (ei1i2 , e
′
j1j2)

C (M2) =
∑

ai∈(N−NH)

CN (ai,Λ) +

∑
ei1i2

∈(E−EH)

CE (ei1i2 ,Λ)
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in which CN (ai, a
′
j) is the cost of mapping ai

to a′j , CE (ei1i2 , e
′
j1j2) is the cost of mapping

ei1i2 to e′j1j2 , and CN (ai,Λ)/CE (ei1i2 ,Λ) is the
cost of mapping ai/ei1i2 to the null node/edge.
They are also called node/edge substitution cost and
node/edge insertion cost, respectively (Eshera and
Fu, 1984). Note that, in our case we let C (M3) = 0
since we have assumed that the size of G′ is bigger
than the size of G.

Finally, the optimal matching between G and G′
is the one with the minimum matching cost

M∗ = arg min
M

C (M)

which gives us the most feasible result of grounding
the entities in the discourse graph with the objects in
the vision graph.

Given our formulation of referential grounding as
a graph matching problem, the next question is how
to find the optimal matching between two graphs.
Unfortunately, such a problem belongs to the class
of NP-complete (Conte et al., 2004). In practice,
techniques such as A∗ search are commonly used to
improve the efficiency, e.g. in (Tsai and Fu, 1979;
Tsai and Fu, 1983). But the memory requirement
can still be considerably large if the heuristic does
not provide a close estimate of the future matching
cost (Conte et al., 2004). In our current approach, we
use a simple beam search algorithm (Zhang, 1999)
to retain the tractability. Following the assumption
in (Eshera and Fu, 1984), we set the beam size as
hJ2, where h is the current level of the search tree
and J is the size of the bigger graph (in our caseG′).

4.3 Symbol Grounding Functions

As mentioned in Section 4.1, in referential ground-
ing the discourse graph and the vision graph pos-
sess different types of attribute values, therefore we
introduce a set of “symbol grounding functions”,
based on which node/edge substitution and insertion
costs can be formally defined.

We start with node substitution cost to give a for-
mal definition of symbol grounding functions. As
defined in the previous section, the node substitu-
tion cost of mapping (substituting) node a with node
a′ is3

CN (a, a′)

3For the ease of notation we have dropped the subscript of a
node.

Recall that in our definition of ARG, each node
is represented by a vector of attributes, i.e. a =
[v1, v2, · · · , vK ] and a′ = [v′1, v′2, · · · , v′K ]. Thus,
we define the node substitution cost as

CN (a, a′) =

K∑

k=1

− ln fk (vk, v
′
k)

in which fk (vk, v
′
k) = p (p ∈ [0, 1]) is what we call

the symbol grounding function for the k-th attribute.
More specifically, a symbol grounding function

for the k-th attribute takes two input arguments,
namely vk and v′k, which are the values of the k-th
attribute from node a and a′ respectively. The out-
put of the function is a real number p in the range
of [0, 1], which can be interpreted as a measurement
of the compatibility between a symbol (or word) vk
and a visual feature value v′k.

Let L = {w1, w2, · · · , wZ ,UNK} be the set of all
possible symbolic values of vk, then fk (vk, v

′
k) can

be further decomposed as

fk (vk, v
′
k) =





fk1 (v′k) if vk = w1;
fk2 (v′k) if vk = w2;

...
...

fkZ (v′k) if vk = wZ ;
λk if vk = UNK.

Here the idea is that each value of vk may specify an
unique function that determines the compatibility of
a visual feature value v′k. For example, suppose that
we are defining a symbol grounding function for the
attribute of “spatial location”, i.e. where is an ob-
ject located in the environment. The symbolic value
v can be in the set of {Top,Bottom, · · · ,UNK}, and
the visual feature value v′ is the x and y coordinates
(in pixels) of the object’s center of mass in the im-
age. A grounding function for the symbol Top can
be defined as4

fTop (v′) = fTop (x, y) =

{
1− y

800 if y < 400;
0 otherwise.

Note that we have added a special symbol UNK
to represent the “unknown” (or “unspecified”) value
of vk. When the value of an attribute in the dis-
course graph is unknown, i.e. the speaker did not
mention anything about a particular property, the
grounding function will simply return a predefined

4Assume that the size of the image is 800× 800 pixels and
the left-top corner is the origin (0, 0)
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Type of Error Number
of Objects

No Error 9 (5.1%)
Recognition Error 150 (84.7%)

Segmentation Error 18 (10.2%)
Total 177

Table 1: Types of errors among all the target (named)
objects. Recognition error: an object is incorrectly rec-
ognized as another type of object, or an unknown type.
Segmentation error: an object is missing, or merged with
another object.

constant, which we denote as λ. The node insertion
cost CN (a,Λ) is now defined as5

CN (a,Λ) =

K∑

k=1

− ln λk

Currently we set all the symbol grounding func-
tions’ outputs for the unknown value (i.e. the λs) to
ε, which is an arbitrarily small real number (ε > 0).

5 Empirical Results

Three pairs of subjects participated in our experi-
ment. Each pair (one acted as the director and the
other as the matcher) completed the naming task on
8 randomly created images. In total we collected 24
dialogues with 177 target objects to be named. Table
1 summarizes the errors made by the CV algorithms
when the 177 named objects from the original im-
ages were processed and represented in the impover-
ished images, as described in Section 3.1. As shown
in the table, only 5% of the objects were correctly
represented in the impoverished images. The other
95% of objects were either mis-recognized (about
85%) or mis-segmented (10%).

The evaluation of our approach is based on
whether the target objects are correctly grounded
by the graph matching method. To focus our cur-
rent effort on the referential grounding aspect, we
ignored all the matchers’ contributions to the dia-
logues. Thus the discourse graphs were built based
on only the director’s utterances. The formal se-
mantics of each of the director’s valid utterances
was manually annotated using the DRS (Discourse
Representation Structure) representation (Bird et al.,
2009). The discourse graphs were then generated

5The edge substitution/insertion cost is defined in the same
way as the node substitution/insertion cost.

Accuracy/Detection Rate
Type of Error Object-properties Object-properties

Only and Relations
No Error 66.7% (6/9) 77.8% (7/9)

Recognition Error 38.7% (58/150) 66% (99/150)
Segmentation Error 33.3% (6/18) 44.4% (8/18)

Overall 39.5% (70/177) 64.4% (114/177)

Table 2: Referential grounding performance of our
method. The accuracy/detection rates in the table were
obtained by comparing the results with annotated ground
truths.

from the annotated formal semantics. The vision
graphs were generated from the outputs of the CV
algorithms. The graph matching method was then
applied to return a (sub-) optimal matching between
the two graphs.

Table 2 shows the referential grounding perfor-
mance of our method. To better understand the ad-
vantages of the graph-based approach, we have com-
pared two settings. In the first setting, only the
object-specific properties are considered for com-
puting the comparability between a linguistic ex-
pression and a visual object, and the relations be-
tween objects are ignored. This setting is similar
to the baseline approach used in (Prasov and Chai,
2008; Prasov and Chai, 2010). In the second set-
ting, the complete graph-based approach is applied,
i.e. both the object’s properties and the relations be-
tween objects are considered. As shown in Table 2,
although the improvements of performance for the
no-error objects and mis-segmented objects are not
significant due to the small sample sizes, the perfor-
mance for the mis-recognized objects is significantly
improved by 27.3% (p < .001). The improvement
for the overall performance is also significant (by
24.9%, p < .001). The comparison between two
settings have demonstrated the importance of rep-
resenting and reasoning on relations between ob-
jects in referential grounding, and the graph-based
approach provides an ideal solution to capture rela-
tions.

In particular, even CV error rate is high (due to the
simple CV algorithms we used), our method is still
able to achieve 66% accuracy of grounding the mis-
recognized objects. Furthermore, when a referred
object is completely “missing” in the vision graph

146



due to segmentation error6, our method is capable
to detect such discrepancy between linguistic input
and visual perception. The results have shown that
44.4% of those cases have been correctly detected.
This is also a very important aspect since informa-
tion about failures of grounding will allow the di-
alogue manager and/or the vision system to adapt
better strategies.

6 Discussions

The work presented here only represents an initial
step in our on-going investigation towards mediat-
ing shared perceptual basis in situated dialogue. It
consists of several simplifications which will be ad-
dressed in our future work.

First, the discourse graph is created only based
on contributions from the director, using manual an-
notations of formal semantics of the discourse. As
shown in the examples (Section 3.2), the collabora-
tive discourse has rich dynamics reflecting partici-
pants’ collaborative behaviors. So our future work
is to model these different discourse dynamics and
take them into account in the creation of the dis-
course graph. The discourse graph will be created
after each contribution as the conversation unfolds.
When utterances are automatically processed, se-
mantics of these utterances often will not be ex-
tracted correctly or completely as in their manual
annotations. Therefore, our future work will also
explore how to efficiently match hypothesized dis-
course graphs (from automated semantic process-
ing) with vision graphs.

Second, our current symbol grounding functions
are very simple and intuitive. Our future work will
explore more sophisticated models that have theoret-
ical motivations (e.g., grounding spatial terms based
on the Attentional Vector Sum (AVS) model (Regier
and Carlson, 2001)) and enable automated acquisi-
tion of these functions (Roy, 2002; Gorniak and Roy,
2004b). In addition, we will explore context-based
symbol grounding functions where context will be
explicitly modeled. Grounding a linguistic term to a
visual feature will be influenced by contextual fac-
tors such as surroundings of the environment, the

6For example, if the director refers to “a white ball” but
CV algorithm fails to detect that object from the environment,
then the node in the discourse graph representing “a white ball”
should not be mapped to anything in the vision graph.

discourse history, the speaker’s individual prefer-
ence, and so on.

Lastly, as shown in our examples, the matcher
also contributes significantly to ground references.
This appears to suggest that, in situated dialogue,
lower-calibre partners (i.e., robot, and here the
matcher) also make extra effort to ground refer-
ences. The underlying motivation could be their
urge to match what they perceive from the environ-
ment to what they are told by their higher-calibre
partners (i.e., human). This motivation can be poten-
tially modeled as graph-matching and can be used
to guide the design of system responses. We will
explore this idea in the future.

7 Conclusion

In situated human robot dialogue, a robot and its
human partners have significantly mismatched capa-
bilities in perceiving the environment, which makes
grounding of references in the environment espe-
cially difficult. To address this challenge, this paper
describes an empirical study investigating how hu-
man partners mediate the mismatched perceptual ba-
sis. Based on this data, we developed a graph-based
approach and formulate referential grounding as in-
exact graph matching. Although our current investi-
gation has several simplifications, our initial empiri-
cal results have shown the potential of this approach
in mediating shared perceptual basis in situated dia-
logue.
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