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Introduction

We are excited to welcome you to this year’s SIGDIAL Conference, the 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue. We are pleased to hold the conference this year
in Los Angeles, USA, on September 13-15th, in close proximity to both INTERSPEECH 2016 and
YRRSDS 2016, the Young Researchers’ Roundtable on Spoken Dialog Systems.

The SIGDIAL conference remains positioned as a premier publication venue for research under the broad
umbrella of discourse and dialogue. This year, the program includes oral presentations, poster sessions,
and one demo session. SIGDIAL 2016 also hosts a special session entitled “The Future Directions
of Dialogue-Based Intelligent Personal Assistants”, organized by Yoichi Matsuyama and Alexandros
Papangelis.

We received 100 complete submissions this year, which included 65 long papers, 30 short papers and
5 demo descriptions—from a broad, international set of authors. Additionally, 5 papers were submitted
and then withdrawn. All papers received at least 3 reviews. We carefully considered both the numeric
ratings and the tenor of the comments, both as written in the reviews, and as submitted in the discussion
period, in making our selection for the program. Overall, the members of the Program Committee did an
excellent job in reviewing the submitted papers. We thank them for the important role their reviews have
played in selecting the accepted papers and for helping to maintain the high quality of the program. In
line with the SIGDIAL tradition, our aim has been to create a balanced program that accommodates as
many favorably rated papers as possible.

This year’s SIGDIAL conference runs 2.5 days as it did in 2015, with the special session being held on the
first day. Of the 65 long paper submissions: 19 were accepted as oral presentations and 15 were accepted
for poster presentations. Of the 30 short paper submissions, 7 were accepted for poster presentation, for
a total of 22 accepted posters. All 5 demonstration papers were accepted.

We enthusiastically thank the two keynote speakers, Susan Brennan (NSF/Stony Brook, USA) and Louis-
Philippe Morency (CMU, USA), for their inspiring talks on cognitive science and human communication
dynamics.

We offer our thanks to Pierre Lison, Mentoring Chair for SIGDIAL 2016, for his dedicated work on
coordinating the mentoring process. The goal of mentoring is to assist authors of papers that contain
important ideas but lack clarity. Mentors work with the authors to improve English language usage or
paper organization. This year, 3 of the accepted papers were mentored. We thank the Program Committee
members who served as mentors: Kristina Striegnitz, Helena Moniz and Stefan Ultes.

We extend special thanks to our Local co-Chairs, Ron Artstein and Alesia Gainer, and their team of
student volunteers. We know SIGDIAL 2016 would not have been possible without Ron and Alesia, who
invested so much effort in arranging the conference venue and accommodations, handling registration,
making banquet arrangements, and handling numerous other preparations for the conference. The student
volunteers for on-site assistance also deserve our appreciation.

Ethan Selfridge, Sponsorships Chair, has earned our appreciation for recruiting and liaising with our
conference sponsors, many of whom continue to contribute year after year. Sponsorships support
valuable aspects of the program, such as the invited speakers and conference banquet. In recognition of
this, we gratefully acknowledge the support of our sponsors: (Platinum level) Microsoft Research, Xerox
and PARC, Intel, (Gold level) Facebook, (Silver level) Amazon Alexa, Interactions, Educational Testing
Service, Honda Research Institute, and Yahoo!. At the same time, we thank Priscilla Rasmussen at the
ACL for tirelessly handling the financial aspects of sponsorship for SIGDIAL 2016, and for securing our
ISBN.
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We also thank the SIGdial board, especially officers Amanda Stent, Jason Williams and Kristiina Jokinen
for their advice and support from beginning to end.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this stimulating event a valuable opportunity for growth in the research areas of discourse and
dialogue.

Raquel Fernández and Wolfgang Minker
General Co-Chairs

Giuseppe Carenini and Ryuichiro Higashinaka
Program Co-Chairs
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Abstract

This paper presents an end-to-end frame-
work for task-oriented dialog systems
using a variant of Deep Recurrent Q-
Networks (DRQN). The model is able
to interface with a relational database
and jointly learn policies for both lan-
guage understanding and dialog strategy.
Moreover, we propose a hybrid algorithm
that combines the strength of reinforce-
ment learning and supervised learning to
achieve faster learning speed. We evalu-
ated the proposed model on a 20 Question
Game conversational game simulator. Re-
sults show that the proposed method out-
performs the modular-based baseline and
learns a distributed representation of the
latent dialog state.

1 Introduction

Task-oriented dialog systems have been an im-
portant branch of spoken dialog system (SDS)
research (Raux et al., 2005; Young, 2006; Bo-
hus and Rudnicky, 2003). The SDS agent has
to achieve some predefined targets (e.g. book-
ing a flight) through natural language interac-
tion with the users. The typical structure of a
task-oriented dialog system is outlined in Fig-
ure 1 (Young, 2006). This pipeline consists of
several independently-developed modules: natural
language understanding (the NLU) maps the user
utterances to some semantic representation. This
information is further processed by the dialog state
tracker (DST), which accumulates the input of the
turn along with the dialog history. The DST out-
puts the current dialog state and the dialog policy
selects the next system action based on the dia-
log state. Then natural language generation (NLG)
maps the selected action to its surface form which

is sent to the TTS (Text-to-Speech). This process
repeats until the agent’s goal is satisfied.

Figure 1: Conventional pipeline of an SDS.
The proposed model replaces the modules in the
dotted-line box with one end-to-end model.

The conventional SDS pipeline has limitations.
The first issue is the credit assignment problem.
Developers usually only get feedback from the end
users, who inform them about system performance
quality. Determining the source of the error re-
quires tedious error analysis in each module be-
cause errors from upstream modules can propa-
gate to the rest of the pipeline. The second lim-
itation is process interdependence, which makes
online adaptation challenging. For example, when
one module (e.g. NLU) is retrained with new data,
all the others (e.g DM) that depend on it become
sub-optimal due to the fact that they were trained
on the output distributions of the older version of
the module. Although the ideal solution is to re-
train the entire pipeline to ensure global optimal-
ity, this requires significant human effort.

Due to these limitations, the goal of this study
is to develop an end-to-end framework for task-
oriented SDS that replaces 3 important modules:
the NLU, the DST and the dialog policy with a sin-
gle module that can be jointly optimized. Devel-
oping such a model for task-oriented dialog sys-
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tems faces several challenges. The foremost chal-
lenge is that a task-oriented system must learn a
strategic dialog policy that can achieve the goal of
a given task which is beyond the ability of standard
supervised learning (Li et al., 2014). The second
challenge is that often a task-oriented agent needs
to interface with structured external databases,
which have symbolic query formats (e.g. SQL
query). In order to find answers to the users’ re-
quests from the databases, the agent must formu-
late a valid database query. This is difficult for
conventional neural network models which do not
provide intermediate symbolic representations.

This paper describes a deep reinforcement
learning based end-to-end framework for both dia-
log state tracking and dialog policy that addresses
the above-mentioned issues. We evaluated the pro-
posed approach on a conversational game sim-
ulator that requires both language understanding
and strategic planning. Our studies yield promis-
ing results 1) in jointly learning policies for state
tracking and dialog strategies that are superior to
a modular-based baseline, 2) in efficiently incor-
porating various types of labelled data and 3) in
learning dialog state representations.

Section 2 of the paper discusses related work;
Section 3 reviews the basics of deep reinforce-
ment learning; Section 4 describes the proposed
framework; Section 5 gives experimental results
and model analysis; and Section 6 concludes.

2 Related Work

Dialog State Tracking: The process of constantly
representing the state of the dialog is called di-
alog state tracking (DST). Most industrial sys-
tems use rule-based heuristics to update the di-
alog state by selecting a high-confidence output
from the NLU (Williams et al., 2013). Numerous
advanced statistical methods have been proposed
to exploit the correlation between turns to make
the system more robust given the uncertainty of
the automatic speech recognition (ASR) and the
NLU (Bohus and Rudnicky, 2006; Thomson and
Young, 2010). The Dialog State Tracking Chal-
lenge (DSTC) (Williams et al., 2013) formalizes
the problem as a supervised sequential labelling
task where the state tracker estimates the true slot
values based on a sequence of NLU outputs. In
practice the output of the state tracker is used by
a different dialog policy, so that the distribution
in the training data and in the live data are mis-

matched (Williams et al., 2013). Therefore one
of the basic assumptions of DSTC is that the state
tracker’s performance will translate to better dia-
log policy performance. Lee (2014) showed posi-
tive results following this assumption by showing
a positive correlation between end-to-end dialog
performance and state tracking performance.

Reinforcement Learning (RL): RL has been
a popular approach for learning the optimal dia-
log policy of a task-oriented dialog system (Singh
et al., 2002; Williams and Young, 2007; Georgila
and Traum, 2011; Lee and Eskenazi, 2012). A
dialog policy is formulated as a Partially Observ-
able Markov Decision Process (POMDP) which
models the uncertainty existing in both the users’
goals and the outputs of the ASR and the NLU.
Williams (2007) showed that POMDP-based sys-
tems perform significantly better than rule-based
systems especially when the ASR word error
rate (WER) is high. Other work has explored
methods that improve the amount of training
data needed for a POMDP-based dialog manager.
Gašić (2010) utilized Gaussian Process RL algo-
rithms and greatly reduced the data needed for
training. Existing applications of RL to dialog
management assume a given dialog state represen-
tation. Instead, our approach learns its own dia-
log state representation from the raw dialogs along
with a dialog policy in an end-to-end fashion.

End-to-End SDSs: There have been many at-
tempts to develop end-to-end chat-oriented dialog
systems that can directly map from the history of a
conversation to the next system response (Vinyals
and Le, 2015; Serban et al., 2015; Shang et al.,
2015). These methods train sequence-to-sequence
models (Sutskever et al., 2014) on large human-
human conversation corpora. The resulting mod-
els are able to do basic chatting with users. The
work in this paper differs from them by focusing
on building a task-oriented system that can inter-
face with structured databases and provide real in-
formation to users.

Recently, Wen el al. (2016) introduced a
network-based end-to-end trainable tasked-
oriented dialog system. Their approach treated
a dialog system as a mapping problem between
the dialog history and the system response. They
learned this mapping via a novel variant of the
encoder-decoder model. The main differences
between our models and theirs are that ours has
the advantage of learning a strategic plan using
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RL and jointly optimizing state tracking beyond
standard supervised learning.

3 Deep Reinforcement Learning

Before describing the proposed algorithms, we
briefly review deep reinforcement learning (RL).
RL models are based on the Markov Decision Pro-
cess (MDP). An MDP is a tuple (S,A, P, γ,R),
where S is a set of states; A is a set of actions; P
defines the transition probability P (s′|s, a); R de-
fines the expected immediate reward R(s, a); and
γ ∈ [0, 1) is the discounting factor. The goal of
reinforcement learning is to find the optimal pol-
icy π∗, such that the expected cumulative return is
maximized (Sutton and Barto, 1998). MDPs as-
sume full observability of the internal states of the
world, which is rarely true for real-world appli-
cations. The Partially Observable Markov Deci-
sion Process (POMDP) takes the uncertainty in the
state variable into account. A POMDP is defined
by a tuple (S,A, P, γ,R,O,Z). O is a set of ob-
servations and Z defines an observation probabil-
ity P (o|s, a). The other variables are the same as
the ones in MDPs. Solving a POMDP usually re-
quires computing the belief state b(s), which is the
probability distribution of all possible states, such
that

∑
s b(s) = 1. It has been shown that the belief

state is sufficient for optimal control (Monahan,
1982), so that the objective is to find π∗ : b → a
that maximizes the expected future return.

3.1 Deep Q-Network
The deep Q-Network (DQN) introduced by
Mnih (2015) uses a deep neural network (DNN)
to parametrize the Q-value function Q(s, a; θ)
and achieves human-level performance in playing
many Atari games. DQN keeps two separate mod-
els: a target network θ−i and a behavior network
θi. For every K new samples, DQN uses θ−i to
compute the target values yDQN and updates the
parameters in θi. Only after every C updates, the
new weights of θi are copied over to θ−i . Further-
more, DQN utilizes experience replay to store all
previous experience tuples (s, a, r, s′). Before a
new model update, the algorithm samples a mini-
batch of experiences of size M from the memory
and computes the gradient of the following loss
function:

L(θi) = E(s,a,r,s′)[(y
DQN −Q(s, a; θi))2] (1)

yDQN = r + γmax
a′ Q(s′, a′; θ−i ) (2)

Recently, Hasselt et al. (2015) leveraged the over-
estimation problem of standard Q-Learning by in-
troducing double DQN and Schaul et al. (2015)
improves the convergence speed of DQN via pri-
oritized experience replay. We found both modifi-
cations useful and included them in our studies.

3.2 Deep Recurrent Q-Network

An extension to DQN is a Deep Recurrent Q-
Network (DRQN) which introduces a Long Short-
Term Memory (LSTM) layer (Hochreiter and
Schmidhuber, 1997) on top of the convolutional
layer of the original DQN model (Hausknecht
and Stone, 2015) which allows DRQN to solve
POMDPs. The recurrent neural network can thus
be viewed as an approximation of the belief state
that can aggregate information from a sequence
of observations. Hausknecht (2015) shows that
DRQN performs significantly better than DQN
when an agent only observes partial states. A
similar model was proposed by Narasimhan and
Kulkarni (2015) and learns to play Multi-User
Dungeon (MUD) games (Curtis, 1992) with game
states hidden in natural language paragraphs.

4 Proposed Model

4.1 Overview

End-to-end learning refers to models that can
back-propagate error signals from the end output
to the raw inputs. Prior work in end-to-end state
tracking (Henderson et al., 2014) learns a sequen-
tial classifier that estimates the dialog state based
on ASR output without the need of an NLU. In-
stead of treating state tracking as a standard su-
pervised learning task, we propose to unify dialog
state tracking with the dialog policy so that both
are treated as actions available to a reinforcement
learning agent. Specifically, we learn an optimal
policy that either generates a verbal response or
modifies the current estimated dialog state based
on the new observations. This formulation makes
it possible to obtain a state tracker even without
the labelled data required for DSTC, as long as
the rewards from the users and the databases are
available. Furthermore, in cases where dialog state
tracking labels are available, the proposed model
can incorporate them with minimum modification
and greatly accelerate its learning speed. Thus, the
following sections describe two models: RL and
Hybrid-RL, corresponding to two labelling scenar-
ios: 1) only dialog success labels and 2) dialog
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Figure 2: An overview of the proposed end-to-end
task-oriented dialog management framework.

success labels with state tracking labels.

4.2 Learning from the Users and Databases

Figure 2 shows an overview of the framework. We
consider a task-oriented dialog task, in which there
are S slots, each with cardinality Ci, i ∈ [0, S).
The environment consists of a user, Eu and a
database Edb. The agent can send verbal actions,
av ∈ Av to the user and the user will reply with
natural language responses ou and rewards ru. In
order to interface with the database environment
Edb, the agent can apply special actions ah ∈ Ah
that can modify a query hypothesis h. The hy-
pothesis is a slot-filling form that represents the
most likely slot values given the observed evi-
dence. Given this hypothesis, h, the database can
perform a normal query and give the results as ob-
servations, odb and rewards rdb.

At each turn t, the agent applies its selected ac-
tion at ∈ {Av, Ah} and receives the observations
from either the user or the database. We can then
define the observation ot of turn t as,

ot =

 atout
odbt

 (3)

We then use the LSTM network as the dialog state
tracker that is capable of aggregating information
over turns and generating a dialog state represen-
tation, bt = LSTM(ot, bt−1), where bt is an ap-
proximation of the belief state at turn t. Finally,
the dialog state representation from the LSTM net-
work is the input to S + 1 policy networks imple-
mented as Multilayer Perceptrons (MLP). The first
policy network approximates the Q-value function
for all verbal actions Q(bt, av) while the rest esti-
mate the Q-value function for each slot, Q(bt, ah),
as shown in Figure 3.

Figure 3: The network takes the observation ot at
turn t. The recurrent unit updates its hidden state
based on both the history and the current turn em-
bedding. Then the model outputs the Q-values for
all actions. The policy network in grey is masked
by the action mask

4.3 Incorporating State Tracking Labels
The pure RL approach described in the previous
section could suffer from slow convergence when
the cardinality of slots is large. This is due to the
nature of reinforcement learning: that it has to try
different actions (possible values of a slot) in order
to estimate the expected long-term payoff. On the
other hand, a supervised classifier can learn much
more efficiently. A typical multi-class classifica-
tion loss function (e.g. categorical cross entropy)
assumes that there is a single correct label such
that it encourages the probability of the correct la-
bel and suppresses the probabilities of the all the
wrong ones. Modeling dialog state tracking as a
Q-value function has advantages over a local clas-
sifier. For instance, take the situation where a user
wants to send an email and the state tracker needs
to estimate the user’s goal from among three pos-
sible values: send, edit and delete. In a classifi-
cation task, all the incorrect labels (edit, delete)
are treated as equally undesirable. However, the
cost of mistakenly recognizing the user goal as
delete is much larger than edit, which can only
be learned from the future rewards. In order to
train the slot-filling policy with both short-term
and long-term supervision signals, we decompose
the reward function for Ah into two parts:

Qπ(b, ah) = R̄(b, a) + γ
∑
b′
P (b′|b, ah)V π(b′)

(4)

R̄(b, a, b′) = R(b, ah) + P (ah|b) (5)

where P (ah|b) is the conditional probability that
the correct label of the slots is ah given the cur-
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rent belief state. In practice, instead of training
a separate model estimating P (ah|b), we can re-
place P (ah|b) by 1(y = ah) as the sample re-
ward r, where y is the label. Furthermore, a key
observation is that although it is expensive to col-
lect data from the user Eu, one can easily sample
trajectories of interaction with the database since
P (b′|b, ah) is known. Therefore, we can acceler-
ate learning by generating synthetic experiences,
i.e. tuple (b, ah, r, b′)∀ah ∈ Ah and add them
to the experience replay buffer. This approach is
closely related to the Dyna Q-Learning proposed
in (Sutton, 1990). The difference is that Dyna Q-
learning uses the estimated environment dynamics
to generating experiences, while our method only
uses the known transition function (i.e. the dy-
namics of the database) to generate synthetic sam-
ples.

4.4 Implementation Details

We can optimize the network architecture in sev-
eral ways to improve its efficiency:

Shared State Tracking Policies: it is more ef-
ficient to tie the weights of the policy networks
for similar slots and use the index of slot as an in-
put. This can reduce the number of parameters that
needs to be learned and encourage shared struc-
tures. The studies in Section 5 illustrate one ex-
ample.

Constrained Action Mask: We can constrain
the available actions at each turn to force the
agent to alternate between verbal response and
slot-filling. We define Amask as a function that
takes state s and outputs a set of available actions
for:

Amask(s) = Ah new inputs from the user (6)

= Av otherwise (7)

Reward Shaping based on the Database: the
reward signals from the users are usually sparse
(at the end of a dialog), the database, however,
can provide frequent rewards to the agent. Reward
shaping is a technique used to speed up learning.
Ng et al. (1999) showed that potential-based re-
ward shaping does not alter the optimal solution;
it only impacts the learning speed. The pseudo re-
ward function F (s, a, s′) is defined as:

R̄(s, a, s′) = R(s, a, s′) + F (s, a, s′) (8)

F (s, a, s′) = γφ(s′)− φ(s) (9)

Let the total number of entities in the database
be D and Pmax be the max potential, the potential
φ(s) is:

φ(st) = Pmax(1− dt
D

) if dt > 0 (10)

φ(st) = 0 if dt = 0 (11)

The intuition of this potential function is to
encourage the agent to narrow down the possi-
ble range of valid entities as quickly as possible.
Meanwhile, if no entities are consistent with the
current hypothesis, this implies that there are mis-
takes in previous slot filling, which gives a poten-
tial of 0.

5 Experiments

5.1 20Q Game as Task-oriented Dialog

In order to test the proposed framework, we chose
the 20 Question Game (20Q). The game rules are
as follows: at the beginning of each game, the
user thinks of a famous person. Then the agent
asks the user a series of Yes/No questions. The
user honestly answers, using one of three answers:
yes, no or I don’t know. In order to have this
resemble a dialog, our user can answer with any
natural utterance representing one of the three in-
tents. The agent can make guesses at any turn, but
a wrong guess results in a negative reward. The
goal is to guess the correct person within a max-
imum number of turns with the least number of
wrong guesses. An example game conversation is
as follows:

Sys: Is this person male?
User: Yes I think so.
Sys: Is this person an artist?
User: He is not an artist.
...
Sys: I guess this person is Bill Gates.
User: Correct.
We can formulate the game as a slot-filling di-

alog. Assume the system has |Q| available ques-
tions to select from at each turn. The answer to
each question becomes a slot and each slot has
three possible values: yes/no/unknown. Due to the
length limit and wrong guess penalty, the optimal
policy does not allow the agent to ask all of the
questions regardless of the context or guess every
person in the database one by one.
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5.2 Simulator Construction

We constructed a simulator for 20Q. The simulator
has two parts: a database of 100 famous people
and a user simulator.

We selected 100 people from Freebase (Bol-
lacker et al., 2008), each of them has 6 attributes:
birthplace, degree, gender, profession and birth-
day. We manually designed several Yes/No ques-
tions for each attribute that is available to the
agent. Each question covers a different set of pos-
sible values for a given attribute and thus carries
a different discriminative power to pinpoint the
person that the user is thinking of. As a result,
the agent needs to judiciously select the question,
given the context of the game, in order to narrow
down the range of valid people. There are 31 ques-
tions. Table 1 shows a summary.

Attribute Qa Example Question
Birthday 3 Was he/she born before 1950?
Birthplace 9 Was he/she born in USA?
Degree 4 Does he/she have a PhD?
Gender 2 Is this person male?
Profession 8 Is he/she an artist?
Nationality 5 Is he/she a citizen of an Asian

country?

Table 1: Summary of the available questions. Qa
is the number of questions for attribute a.

At the beginning of each game, the simula-
tor will first uniformly sample a person from the
database as the person it is thinking of. Also there
is a 5% chance that the simulator will consider
unknown as an attribute and thus it will answer
with unknown intent for any question related to
it. After the game begins, when the agent asks
a question, the simulator first determines the an-
swer (yes, no or unknown) and replies using natu-
ral language. In order to generate realistic natural
language with the yes/no/unknown intent, we col-
lected utterances from the Switchboard Dialog Act
(SWDA) Corpus (Jurafsky et al., 1997). Table 2
presents the mapping from the SWDA dialog acts
to yes/no/unknown. We further post-processed re-
sults and removed irrelevant utterances, which led
to 508, 445 and 251 unique utterances with intent
respectively yes/no/unknown. We keep the fre-
quency counts for each unique expression. Thus
at run time, the simulator can sample a response
according to the original distribution in the SWDA

Corpus.

Intent SWDA tags
Yes Agree, Yes answers, Affirma-

tive non-yes answers
No No answers, Reject, Negative

non-no answers
Unknown Maybe, Other Answer

Table 2: Dialog act mapping from SWDA to
yes/no/unknown

A game is terminated when one of the four con-
ditions is fulfilled: 1) the agent guesses the cor-
rect answer, 2) there are no people in the database
consistent with the current hypothesis, 3) the max
game length (100 steps) is reached and 4) the max
number of guesses is reached (10 guesses). Only
if the agent guesses the correct answer (condition
1) treated as a game victory. The win and loss re-
wards are 30 and −30 and a wrong guess leads to
a −5 penalty.

5.3 Training Details

The user environmentEu is the simulator that only
accepts verbal actions, either a Yes/No question or
a guess, and replies with a natural language utter-
ance. Therefore Av contains |Q| + 1 actions, in
which the first |Q| actions are questions and the
last action makes a guess, given the results from
the database.

The database environment reads in a query hy-
pothesis h and returns a list of people that satisfy
the constraints in the query. h has a size of |Q|
and each dimension can be one of the three values:
yes/no/unknown. Since the cardinality for all slots
is the same, we only need 1 slot-filling policy net-
work with 3 Q-value outputs for yes/no/unknown,
to modify the value of the latest asked question,
which is the shared policy approach mentioned in
Section 4. Thus Ah = {yes, no, unknown}. For
example, considering Q = 3 and the hypothesis h
is: [unknown, unknown, unknown]. If the lat-
est asked question is Q1 (1-based), then applying
action ah = yes will result in the new hypothesis:
[yes, unknown, unknown].

To represent the observation ot in vectorial
form, we use a bag-of-bigrams feature vector to
represent a user utterance; a one-hot vector to rep-
resent a system action and a single discrete num-
ber to represent the number of people satisfying
the current hypothesis.
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The hyper-parameters of the neural network
model are as follows: the size of turn embedding is
30; the size of LSTMs is 256; each policy network
has a hidden layer of 128 with tanh activation.
We also add a dropout rate of 0.3 for both LSTMs
and tanh layer outputs. The network has a total
of 470,005 parameters. The network was trained
throughRMSProp (Tieleman and Hinton, 2012).
For hyper-parameters of DRQN, the behavior net-
work was updated every 4 steps and the interval
between each target network update C is 1000. ε-
greedy exploration is used for training, where ε is
linearly decreased from 1 to 0.1. The reward shap-
ing constant Pmax is 2 and the discounting factor
γ is 0.99. The resulting network was evaluated
every 5000 steps and the model was trained up to
120,000 steps. Each evaluation records the agent’s
performance with a greedy policy for 200 indepen-
dent episodes.

5.4 Dialog Policy Analysis

We compare the performance of three models: a
strong modular baseline, RL and Hybrid-RL. The
baseline has an independently trained state tracker
and dialog policy. The state tracker is also an
LSTM-based classifier that inputs a dialog history
and predicts the slot-value of the latest question.
The dialog policy is a DRQN that assumes per-
fect slot-filling during training and simply con-
trols the next verbal action. Thus the essential
difference between the baseline and the proposed
models is that the state tracker and dialog policy
are not trained jointly. Also, since hybrid-RL ef-
fectively changes the reward function, the typical
average cumulative reward metric is not applica-
ble for performance comparison. Therefore, we
directly compare the win rate and average game
length in later discussions.

Win Rate (%) Avg Turn
Baseline 68.5 12.2
RL 85.6 21.6
Hybrid-RL 90.5 19.22

Table 3: Performance of the three systems

Table 3 shows that both proposed models
achieve significantly higher win rate than the base-
line by asking more questions before making
guesses. Figure 4 illustrates the learning process
of the three models. The horizontal axis is the total
number of interaction between the agent and either

the user or the database. The baseline model has
the fastest learning speed but its performance sat-
urated quickly because the dialog policy was not
trained together with the state tracker. So the dia-
log policy is not aware of the uncertainty in slot-
filling and the slot-filler does not distinguish be-
tween the consequences of different wrong labels
(e.g classify yes to no versus to unknown). On the
other hand, although RL reaches high performance
at the end of the training, it struggles in the early
stages and suffers from slow convergence. This
is due to that fact that correct slot-filling is a pre-
requisite for winning 20Q, while the reward signal
has a long delayed horizon in the RL approach. Fi-
nally, the hybrid-RL approach is able to converge
to the optimal solution much faster than RL due to
the fact that it efficiently exploits the information
in the state tracking label.

Figure 4: Graphs showing the evolution of the win
rate during training.

5.5 State Tracking Analysis
One of the hypotheses is that the RL approach can
learn a good state tracker using only dialog success
reward signals. We ran the best trained models
using a greedy policy and collected 10,000 sam-
ples. Table 4 reports the precision and recall of
slot filling in these trajectories. The results indi-

Unknown Yes No
Baseline 0.99/0.60 0.96/0.97 0.94/0.95
RL 0.21/0.77 1.00/0.93 0.95/0.51
Hybrid-RL 0.54/0.60 0.98/0.92 0.94/0.93

Table 4: State tracking performance of the three
systems. The results are in the format of preci-
sion/recall

cate that the RL model learns a completely dif-
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ferent strategy compared to the baseline. The RL
model aims for high precision so that it predicts
unknown when the input is ambiguous, which is a
safer option than predicting yes/no, because con-
fusing between yes and no may potentially lead to
a contradiction and a game failure. This is very
different from the baseline which does not dis-
tinguish between incorrect labels. Therefore, al-
though the baseline achieves better classification
metrics, it does not take into account the long-
term payoff and performs sub-optimally in terms
of overall performance.

5.6 Dialog State Representation Analysis

Tracking the state over multiple turns is crucial be-
cause the agent’s optimal action depends on the
history, e.g. the question it has already asked,
the number of guesses it has spent. Furthermore,
one of the assumptions is that the output of the
LSTM network is an approximation of the belief
state in the POMDP. We conducted two studies to
test these hypotheses. For both studies, we ran the
Hybrid-RL models saved at 20K, 50K and 100K
steps against the simulator with a greedy policy
and recorded 10,000 samples for each model.

The first study checks whether we can recon-
struct an important state feature: the number of
guesses the agent has made from the dialog state
embedding. We divide the collected 10,000 sam-
ples into 80% for training and 20% for testing. We
used the LSTM output as input features to a lin-
ear regression model with l2 regularization. Ta-
ble 5 shows the correlation of determination r2 in-
creases for the model that was trained with more
data.

Model 20K 50K 100K
r2 0.05 0.51 0.77

Table 5: r2 of the linear regression for predicting
the number of guesses in the test dataset.

The second study is a retrieval task. The la-
tent state of the 20Q game is the true intent of the
users’ answers to all the questions that have been
asked so far. Therefore, the true state vector, s has
a size of 31 and each slot, s[k], k ∈ [0, 31) is one
of the four values: not yet asked, yes, no, unknown.
Therefore, if the LSTM output b is in fact implic-
itly learning the distribution over this latent state s,
they must be highly correlated for a well-trained
model. Therefore, for each bi, i ∈ [0, 10, 000),

we find its nearest 5 neighbors based on cosine
distance measuring and record their latent states,
N(bi) : B → [S]. Then we compute the empirical
probability that each slot of the true state s differs
from the retrieved neighbors:

pdiff(s[k]) = Esi

[∑4
n=0 1(N(bi)[n][k] 6= si[k])

5

]
(12)

where 1 is the indicator function, k is the slot in-
dex and n is the neighbor index.

Figure 5: Performance of retrieving similar true
dialog states using learned dialog state embedding.

Figure 5 shows that the retrieval error contin-
ues to decrease for the model that was trained bet-
ter, which confirms our assumption that the LSTM
output is an approximation of the belief state.

6 Conclusion

This paper identifies the limitations of the conven-
tional SDS pipeline and describes a novel end-to-
end framework for a task-oriented dialog system
using deep reinforcement learning. We have as-
sessed the model on the 20Q game. The proposed
models show superior performance for both nat-
ural language understanding and dialog strategy.
Furthermore, our analysis confirms our hypothe-
ses that the proposed models implicitly capture es-
sential information in the latent dialog states.

One limitation of the proposed approach is poor
scalability due to the large number of samples
needed for convergence. So future studies will in-
clude developing full-fledged task-orientated dia-
log systems and exploring methods to improve the
sample efficiency. Also, investigating techniques
that allow easy integration of domain knowledge
so that the system can be more easily debugged
and corrected is another important direction.
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Abstract

We consider the gap between user demands
for seamless handling of complex interac-
tions, and recent advances in dialog state
tracking technologies. We propose a new
statistical approach, Task Lineage-based
Dialog State Tracking (TL-DST), aimed
at seamlessly orchestrating multiple tasks
with complex goals across multiple do-
mains in continuous interaction. TL-DST
consists of three components: (1) task
frame parsing, (2) context fetching and (3)
task state update (for which TL-DST takes
advantage of previous work in dialog state
tracking). There is at present very little
publicly available multi-task, complex goal
dialog data; however, as a proof of concept,
we applied TL-DST to the Dialog State
Tracking Challenge (DSTC) 2 data, result-
ing in state-of-the-art performance. TL-
DST also outperforms the DSTC baseline
tracker on a set of pseudo-real datasets in-
volving multiple tasks with complex goals
which were synthesized using DSTC3 data.

1 Introduction

The conversational agent era has arrived: every
major mobile operating system now comes with a
conversational agent, and with the announcements
over the past year of messaging-based conversa-
tional agent platforms from Microsoft, Google,
Facebook and Kik (among others), technology now
supports the rapid development and interconnec-
tion of all kinds of dialog bots. Despite this
progress, most conversational agents can only han-
dle a single task with a simple user goal at any par-
ticular moment. There are three significant hurdles
to efficient, natural task-oriented interaction with
these agents. First, they lack the ability to share
slot values across tasks. Due to the independent
execution of domain-specific task scripts, informa-
tion sharing across tasks is minimally supported –
the user typically has to provide common slot val-
ues separately for each task. Second, these agents

lack the ability to express complex constraints
on user goals – the user can rarely communi-
cate in a single utterance goals related to multiple
tasks, and can typically not provide multiple pref-
erential constraints such as a boolean expression
over slot values (Crook and Lemon, 2010). Third,
current conversational agents lack the ability to in-
terleave discussion of multiple related tasks.
For instance, an agent can help a user find a restau-
rant, and then a hotel, but the user can’t interleave
these tasks to manage shared constraints.

The dialog state tracker (DST) is the most cru-
cial component for addressing these hurdles. A
DST constructs a succinct representation of the
current conversation state, based on the previ-
ous interaction history, so that the conversational
agent may choose the best next action. Re-
cently, researchers have developed numerous DST
approaches ranging from handcrafted rule-based
methods to data-driven models. In particular, the
series of Dialog State Tracking Challenges (DSTC)
has served as a common testbed, allowing for a cy-
cle of rigorous comparative analysis and rapid ad-
vancement (Williams et al., 2016). A consistent
finding across the DSTC series is that the best
performing systems are statistical DSTs based on
discriminative models. The main focus of recent
advances, however, has been largely confined to
developing more robust approaches to other con-
versational agent technologies, such as automated
speech recognition (ASR) and spoken language un-
derstanding (SLU), in a session-based dialog pro-
cessing a single task with a relatively simple goal.
Session-based, single task, simple goal dialog is eas-
ier for dialog system engineers and consistent with
25 years of commercial dialog system development,
but does not match users’ real-world task needs
as communicated with human conversational as-
sistants or recognized in the dialog literature (e.g.
(Grosz and Sidner, 1988; Lochbaum, 1998)), and
is inconsistent with the mobile-centric, always-on,
conversational assistant commercial vision that has
emerged over the past few years.

This gap between how humans most effectively
converse about complex tasks and what conversa-
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tional agent technology (including DST) permits
clearly shows the direction for future research –
statistical DST approaches that can seamlessly or-
chestrate multiple tasks with complex goals across
multiple domains in continuous interaction. In this
paper, we describe a new approach, Task Lineage-
based Dialog State Tracking (TL-DST), centered
around the concept of a task lineage, to lay a
framework for incremental developments toward
this vision. TL-DST consists of three components:
(1) task frame parsing, (2) context fetching and (3)
task state update (for which TL-DST takes advan-
tage of previous work in dialog state tracking). As
a proof of concept, we conducted a set of experi-
ments using the DSTC2 and DSTC3 data. First,
we applied TL-DST to the DSTC2 data which has
a great deal of user goal changes, and obtained
state-of-the-art performance. Second, in order to
test TL-DST on more challenging data, we applied
TL-DST to a set of pseudo-real datasets involving
multiple interleaved tasks and complex constraints
on user goals. To generate the datasets, we fed
the DSTC3 data, which includes three different
types of tasks in addition to goal changes, to sim-
ulation techniques which have been often adopted
for the development and evaluation of dialog sys-
tems (Schatzmann et al., 2006; Pietquin and Du-
toit, 2006; Lee and Eskenazi, 2012). The results
of these experiments show that TL-DST can suc-
cessfully handle complex multi-task interactions,
largely outperforming the DSTC baseline tracker.

The rest of this paper is organized as follows.
In Section 2 we describe TL-DST. In Section 3 we
discuss our experiments. In Section 4 we present
a brief summary of related work. We finish with
conclusions and future work in Section 5.

2 Task Lineage-based Dialog State
Tracking

We start by defining some essential concepts. Fol-
lowing the convention of the DSTC, we represent
each utterance produced by the user or agent as
a set of dialog act items (DAIs) of the form
dialog-act-type(slot = value). A DAI is produced
by a SLU; TL-DST may receive input from multi-
ple (domain-specific or general-purpose) SLUs.

Task Schema A task schema is a manually iden-
tified set of slots for which values must or may be
specified in order to complete the task. For exam-
ple, the task schema for a restaurant booking task
will contain the required slots date/time, location,
and restaurant ID, with optional slots cuisine-type,
ratings, cost-rating, etc. A task schema governs
the configuration of related structures such as task
frame and task state.

Task Frame A task frame is a set of DAIs with
associated confidence scores and time/sequence

information. An augmented DAI has the form
(confidence score, DAIstart timeend time ). Usually task
frames come in a collection, called a task frame
parse, as a result of task frame parsing when
there are multiple tasks involved in the user in-
put (see Section 2.1). The following collection of
task frames shows an example task frame parse for
the user input “Connection to Manhattan and find
me a Thai restaurant, not Italian”:


[

Task Transit
DAIs (0.8, inform(dest=MH)0.10.7)

]
 Task Restaurant

DAIs (0.7, inform(food=thai)0.91.2)
(0.6, deny(food=italian)1.41.7)




Task State A task state includes essential pieces
of information to represent the current state of a
task under discussion, e.g., the task name, a set
of belief estimates for user provided preferential
constraints, DB query results, timestamps and a
turn index. The following state shows an example
restaurant finding task state corresponding to the
user input “Thai restaurant, not Italian”:

Task Restaurant
Constraints (0.7, food = thai)

(0.6, food 6= italian)
DB [“Thai To Go”, “Pa de Thai”]
Timestamps 01/01/2016 : 12-00-00
. . . . . .


A task state is analogous to a dialog state in typical
dialog systems. However, unlike in conventional
dialog state tracking, we don’t assume a unique
value for each slot. Instead, we adopt binary dis-
tributions for each constraint. This allows us to
circumvent the exponential complexity in the num-
ber of values which otherwise would be caused by
taking a power set of slot values to handle complex
constraints (Crook and Lemon, 2010).
Task Lineage A task lineage is a chronologically
ordered list of task states, representing the agent’s
hypotheses about what tasks were involved at each
time point in a conversation. A task lineage can
be consulted to provide crucial pieces of informa-
tion for conversation structure. For instance, the
most recent task frames in a lineage can indicate
the current focus of conversation. In addition,
when the user switches back to a previous task,
the agent can trace back the lineage in reverse or-
der to take recency into account. However, con-
versational agents often cannot determine exactly
what the user’s task is. For example, there may be
ASR or SLU errors, or genuine ambiguities (“want
Thai” - food=Thai and a restaurant finding task
or dest=Thai and an air travel task?). Thus we
maintain a N -best list of possible task lineages.
Figure 1 illustrates how task lineages are extended
for new user inputs.
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Figure 1: An example illustrating how task lin-
eages are extended as new user inputs come in;
this conversation involves multiple tasks (at turn
0) and task ambiguity (at turn 1).

Overall TL-DST Procedure Algorithm 1 de-
scribes how the overall TL-DST procedure works.
At turn t, given ũ, a set of DAI sets from one or
more SLUs, we perform task frame parsing (see
Section 2.1) to generate H, a K-best list of task
frame parses with associated belief scores, sk 1.
Then, in order to generate a set of new task states,
T , we consider all possible combinations of the task
lineages, ln0:t−1, in the current N -best list of task
lineages, L0:t−1, and the parses, Ak, in the K-best
list of task frame parses, H. In a task frame parse,
there may be multiple task frames, hence the ith
frame in the kth parse is denoted by fk,i. The main
operation in new task state generation is task state
update (see Section 2.3) which forms a new task
state, τn,k,i, per task frame, fk,i, by applying be-
lief update to the task frame, relevant information
in the lineage ln0:t−1 and the agent’s output mt.
Task state update is very similar to what is done
in typical dialog state tracking except that we need
to additionally identify relevant information in the
task lineage since a task lineage could be a mix of
different tasks. This is the role of context fetch-
ing (see Section 2.2). Given a task frame fk,i, a
task lineage ln0:t−1 and the agent’s output mt, the
context fetcher returns a set of relevant informa-
tion pieces, cn,k,i ∈ C. Finally we construct a new
set of task lineages, L0:t, by extending each cur-
rent task lineage ln0:t−1 with the newly formed task
states, ∀i, τn,k,i. The belief estimate of a new task
lineage is set to the product of that of the source
task lineage, snl , and that of the task frame parse,
skh. Since the extension process grows the number
of task lineages by a factor of K, we perform prun-
ing and belief normalization at the end. Based on a
N -best list of task lineages, we can then compute
useful quantities for the agent’s action selection,
such as marginal task beliefs (by adding the be-

1M sets the maximum number of samples to draw
in the stochastic inference in Section 2.1.

Algorithm 1: Overall TL-DST Procedure
Input: N > 0, K > 0, M > 0, δ >= 0
. Let L0:t = [(l10:t, s

1), . . . , (lN0:t, s
N )] be a N -best

list of task lineages with scores at turn t
. See task frame parsing in Section 2.1
. See context fetch in Section 2.2
. See task state update in Section 2.3
L0:0 ← ∅;
t← 1;
while True do

mt ← agent output();
ũt ← user input();
H ← task frame parsing(ũt, K, M);

C ← {cn,k,i :=
context fetch(ln0:t−1, f

k,i,mt, δ) |
ln0:t−1 ∈ L0:t−1,Ak ∈ H, fk,i ∈ Ak};

T ← {τn,k,i :=
task state update(cn,k,i, fk,i,mt) |
cn,k,i ∈ C,Ak ∈ H, fk,i ∈ Ak};

L̂0:t ← [(ln0:t−1 :: τn,k,i, snl × skh) |
(ln0:t−1, s

n
l ) ∈ L0:t−1, τ

n,k,i ∈ T ,
skh ∈ H];

L0:t ← prune(L̂0:t, N);
t← t+ 1;

end

liefs of each task across the lineages) or marginal
constraint beliefs (by weighted averaging of the be-
liefs of each constraint across task states with the
task lineage beliefs carrying the weights).

There are a few noteworthy aspects of our TL-
DST approach that depart from conventional dia-
log state tracking approaches. Unlike most meth-
ods where the DST keeps on overriding the content
of the dialog state (hence losing past states) TL-
DST adopts a dynamically growing structure, pro-
viding a richer view to later processing. This is par-
ticularly important for continuous interaction in-
volving multiple tasks. Interestingly, this is a cru-
cial reason behind advances in deep neural network
models using the attention mechanism (Bahdanau
et al., 2014). Also unlike some approaches that
use stack-like data structures for focus manage-
ment (Larsson and Traum, 2000; Ramachandran
and Ratnaparkhi, 2015) where the tracker pops out
the tasks above the focused task, losing valuable in-
formation such as temporal ordering and partially
filled constraints, TL-DST preserves all of the past
task states by viewing the focus change as a side
effect of generating a new updated task state each
time. This allows for flexible task switching among
a set of partially fulfilled tasks.

2.1 Task Frame Parsing

In this section we formalize task frame parsing as a
structure prediction problem. We use a probabilis-
tic framework that employs a beam search tech-
nique using Monte Carlo Markov Chain (MCMC)
with simulated annealing (SA) and permits a clean
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integration of hard constraints to generate legiti-
mate parses with probabilistic reasoning.

Let d ∈ D be a domain and ũd denote the SLU
results from a parser for domain d for observation
o, which is a set of confidence score and time infor-
mation annotated DAIs ũidd , id ∈ Id = {1 . . . Nd}.
Let F = {f id,tdd |d ∈ D, id ∈ Id, td ∈ Td} be a col-
lection of the sets of all possible task frames for
each ũd, where Td is a set of task schemas defined
in domain d. We add a special frame finactive to F
to which some DAIs may be assigned in order to
generate legitimate task frame parses when those
DAIs are created by either SLU errors or irrele-
vant pieces of information (e.g. greetings), or they
have conflicting interpretations from different do-
mains. Now we define a task frame parse Aũ to
be a functional assignment of every ũ ∈ ũ =

⋃
d ũd

to F observing the following constraints: 1) one of
any two DAIs overlapped in time must be assigned
to the inactive frame; 2) ũidd cannot be assigned
to any of task frame parses arising from another
DAI ũi

′
d

d′ (i.e. f i
′
d,td
d′ , ∀td) if the start time of ũi

′
d

d′ is
later than that of ũidd (this constraint is necessary
to get rid of spurious assignment ambiguities due
to symmetry).

At a particular turn, given ũ, the aim of task
frame parsing is to return a K-best list of assign-
ments Akũ, k ∈ {1, . . . ,K} according to the follow-
ing conditional log-linear model:

pθ(Aũ|ũ) =
expθTg(Aũ, ũ)∑
A′

ũ
expθTg(A′ũ, ũ)

(1)

where θ are the model weights, and g is a vector-
valued feature function. The exact computation of
Eq. 1 can become very costly for a complicated
user input due to the normalization term. To
avoid the exponential time complexity, we adopt a
beam search technique (presented below) to yield
a K-best list of parses which are used to approxi-
mate the sum in the normalization term. Figure 2
presents an example of how the variables in the
model are related for different parses.
Parsing Independent assignment of DAIs to task
frames may result in parses that violate the rules
above. To generate a K-best list of legitimate
parses, we adopt a beam search technique using
MCMC inference with SA as listed in Algorithm 2.
After starting with a heuristically initialized parse,
the algorithm draws a sample by randomly moving
a single DAI from one task frame to another so as
not to produce an illegal parse, until the maximum
number of samples M has been reached.

Model Training Having training data consisting
of SLU results-parse pairs (ũ(i), A(i)

ũ ), we maximize
the log-likelihood of the correct parse. Formally,

Figure 2: An example illustrating task frame pars-
ing. Here we assume that there are two related do-
mains, Local and AirTravel, pertinent to the user
input “want to go to Thai or Korean”. Time infor-
mation is annotated as word positions in the input.

Algorithm 2: MCMC-SA Beam Parsing
Input: K > 0, M > 0, ũ, pθ from Eq. 1

Result: H = [(Â1
ũ, s

1), . . . , (ÂKũ , sK)], a K-best
list of assignments with scores

Aũ ← initialize(ũ), s← pθ(Aũ|ũ);
insert and sort(H, Aũ, s);
c ← 0, acc rate ← 1;
while c < M do

Âũ, ŝ← random choice(H);

Aũ ← sample(Âũ), s← pθ(Aũ|ũ);
if s > ŝ or random(0,1) < acc rate then

insert and sort(H, Aũ, s);
end

c ←c +1, acc rate ← acc rate − 1
M

;
end
return H

our training objective is:

O(θ) =
∑
i

log pθ(A(i)
ũ |ũ(i)) (2)

We optimize the objective by initializing θ to 0
and applying AdaGrad (Duchi et al., 2011) with
the following per-feature stochastic gradient:

∂O(θ,A(i)
ũ , ũ(i),H(i))
∂θj

=

gj(A(i)
ũ , ũ(i))pθ(A(i)

ũ |ũ(i))

−
∑

Âk
ũ
∈H(i):Âk

ũ
6=A(i)

ũ

gj(Âkũ, ũ(i))pθ(Âkũ|ũ(i))

In our experiments we use the features in Table 1,
which are all sparse binary features except those
marked by †.
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• The number of task frames in the parse
• The number of task frames in the parse conjoined with the agent’s DA type
• The number of DAIs in the inactive task frame
• The pair of the total number of DAIs and the number of DAIs in the inactive task frame
• All possible pairs of delexicalized agent DAIs and delexicalized user DAIs in the inactive task frame
• All possible pairs of delexicalized user DAIs for each task frame
• The average confidence score of all DAIs assigned to active task frames†
• The average number of DAIs per active task frame†
• The conjunction of the number of DAIs assigned to active task frames and the number of active task frames
• The fraction of the number of gaps to the number of DAIs assigned to active task frames (a gap happens
when two DAIs in the same task frame instance have an intermediate DAI in a different task frame instance)
• The entropy of DAI distribution across active task frames †
• The number of active task frames with only one DAI
• An indicator testing if the parse is the same as a heuristically initialized parse
• The degree of deviation of the parse from a heuristically initialized parse in terms of the number of gaps †

Table 1: Features used in model for task frame parsing

2.2 Context Fetching

There are a variety of phenomena in conversation
in which context-dependent analysis plays a cru-
cial role, such as ellipsis resolution, reference res-
olution, cross-task information sharing and task
resumption. In order to successfully handle such
phenomena, TL-DST must fetch relevant pieces of
information from the conversation history. In this
section, we mainly focus on modeling the context
fetching process for belief update, ellipsis resolu-
tion and task resumption, but a similar technique
can be used for handling other phenomena. We
first formally define the context fetching model and
then introduce a set of feature functions that allow
the model to capture general patterns of different
context-dependent phenomena.

Context Sets At turn t, given a task lineage l0:t−1

and context window δ, the context fetcher con-
structs three context sets:

• B(l0:t−1): A set of δ-latest belief estimates for each
constraint that appears in lt. The δ-latest belief
estimate means the latest belief estimate before
t− δ.

• U(l0:t−1): A set of all previous SLU results within
δ, {ũt−δ, . . . , ũt−1}.

• M(l0:t−1): A set of all previous agent DAIs within
δ, {mt−δ, . . . ,mt−1}.

By varying δ, the context fetcher controls the ratio
of summarized estimates to raw observations it will
use to generate new estimates for the current turn.

Context Fetching Conditioned on the task lin-
eage l0:t−1 and the new pieces of information at the
current turn such as the task frame f and the agent
output mt, the context fetcher determines which
elements from the context sets will be used. We
cast the decision problem as a set of binary classi-
fications for each element using logistic regression.
For the sake of simplicity, in this work, we focus
on the case where δ is 0 which in effect makes the
context fetcher use only the latest belief estimates

for each constraint, B(l0:t−1):

pψ(R(bτ,c) | l0:t−1, f,mt) =
1

1 + exp−ψTh(bτ,c, l0:t−1, f,mt)

where bτ,c ∈ B(l0:t−1) denotes the belief estimate
for constraint c at turn τ , R is a binary indicator
of fetching decision, ψ are the model weights, and
h is a vector-valued feature function.

Model Training As before, we optimize the log-
likelihood of the training data using AdaGrad. To
construct training data, we construct an oracle
task lineage based on dialog state labels, SLU la-
bels and SLU results, which allows us to build cor-
responding context sets and label each element in
them by checking if the element appears in the or-
acle task state. In our experiments we use the fea-
tures listed in Table 2, which are all sparse binary
features except those marked by †.
2.3 Task State Update

In this section, we describe the last component of
TL-DST, task state update. A nice property of
TL-DST is its ability to exploit alternative meth-
ods for dialog state tracking. For instance, by
setting a large value to δ for the context fetcher,
one can adopt various discriminative models that
take advantage of expressive feature functions ex-
tracted from a collection of raw observations (Lee,
2013; Henderson et al., 2014c; Williams, 2014). On
the other hand, with δ being 0, one can employ a
method from a library of generative models which
only requires to know the immediately prior belief
estimates (Wang and Lemon, 2013; Zilka et al.,
2013). Unlike in previous work, instead of predict-
ing a unique goal value for a slot, we perform belief
tracking for each individual slot-value constraint
to allow complex goals. For the experiments pre-
sented here, we chose to use the rule-based algo-
rithm from Zilka et al. (2013) for constraint-level
belief tracking. The use of a rule-based algorithm
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• A continuation bias feature. This feature indicates if constraint c is present in any of the task states at
the previous turn. This feature allows to model the general tendency to continue.
• Adjacency pair features. These features indicate if c comes from the previous turn when the second half
of an adjacency pair (e.g. request/inform and confirm/affirm) is present at the current turn.
• Deletion features based on explicit cues. For example, the user informs alternative constraints after the
agent’s unfulfilment notice (e.g. canthelp in the DSTC) or the user chooses an alternative to c at the agent’s
selection prompt.
• Deletion features based on implicit cues. For instance, the user informs alternative constraints for a slot
which is unlikely to admit multiple constraints or after the agent’s explicit or implicit confirmation request.
For these features we use the confidence score of the user’s DAI. †
• Task switching features based on agent-initiative cues. Upon the completion of a task, the agent is likely
to resume a previous task, thus the context fetcher needs to retrieve the state of the resumed task. Since
our experiments are corpus-based, there is no direct internal signal from the agent action selection module,
so these features indirectly capture the agent’s initiative on task switching based on which task the agent’s
action is related to, and indicate if c is present in the agent’s action or belongs to the agent’s addressed task.
• Task switching features based on user-initiative cues. These features test if c is present in the user’s input
or belongs to the user’s addressed task.

Table 2: Features used in model for context fetching

allows us to focus our analysis only on the new
aspects of TL-DST.

We present the formal description of the dialog
state tracking algorithm. Let Σ+

t,c (Σ−t,c) denote
the sum of all the confidence scores associated with
inform or affirm (deny or negate) for constraint c
at turn t. Then the belief estimate of constraint c
at turn t, bt,c, is defined as follows:

• For informing or affirming,

bt,c = bτ,c(1− Σ+
t,c) + Σ+

t,c

• For denying or negating,

bt,c = bτ,c(1− Σ−t,c)

where bτ,c is the latest available belief estimate for
constraint c fetched from a task state at turn τ .

3 Experiments

In order to validate TL-DST, we conducted a set
of corpus-based experiments using the DSTC2 and
DSTC3 data. The use of DSTC data makes it
possible to compare TL-DST with numerous pre-
viously developed methods. We first applied TL-
DST on the DSTC2 data. DSTC2 was designed
to broaden the scope of dialog state tracking to in-
clude user goal changes. TL-DST should be able
to process user goal changes without any special
handling – it should fetch unchanged goals from
the previous task state and incorporate new goals
from the user’s input to construct a new task state.

However, due to the lack of multi-task conversa-
tions in the DSTC2 data, we could not evaluate the
performance of task frame parsing. There are also
many other aspects of our proposed approach that
are hard to investigate without appropriate dialog
data. We address this problem by applying sim-
ulation techniques to the DSTC3 data. Although
there are no DSTC3 dialogs handling multiple task

instances in a single conversation, the DSTC3 ex-
tended the DSTC2 to include multiple task types,
i.e, restaurant, pub and coffee shop finding tasks.
This property of the DSTC3 data allows us to gen-
erate a set of pseudo-real dialogs involving multi-
ple tasks with complex goals in longer interactions.
The generated corpus helped us evaluate additional
aspects of TL-DST.

3.1 DSTC2

In the DSTC2, the user is asked to find a restau-
rant that satisfies a number of constraints such as
food type or area. The data was collected from
Amazon Mechanical Turkers using dialog systems
developed at Cambridge University. The corpus
contains 1612 training dialogs, 506 development di-
alogs and 1117 test dialogs.

Per DSTC2, the dialog state includes three el-
ements – the user’s goal (slot values the user has
supplied), requested slots (those the user has asked
for) and search method. In this work, we focus on
tracking the user’s goal. Since TL-DST estimates
belief for each constraint rather than assigning a
distribution over all of the values per slot, we ag-
gregated the constraint-level beliefs for each slot
and took the value with the largest belief. We
trained the context fetcher on the training data
and saved models whenever the performance on
the development data was improved. We set the
learning rate to 0.1 and used L2 regularization with
regularization term 10−4, though the system’s per-
formance was largely insensitive to these settings.

Table 3 shows the performance of TL-DST on
the test data in accuracy and L2 along with that
of other top performing systems in the literature2.
The result clearly demonstrates the effectiveness
of TL-DST, showing higher accuracy and lower L2
than other state-of-the-art systems. This result is

2In order to make evaluation results comparable,
we considered only those systems that used only the
provided SLU output, not also ASR information.
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particularly interesting in that all of the other sys-
tems achieved their best performance through a
system combination of various non-linear models
such as neural nets, decision trees, or statistical
models combined with rules, whereas our system
used a lightweight linear model. With the struc-
ture among the components of the TL-DST ap-
proach, it suffices to use a single linear model to
handle sophisticated phenomena such as user goal
changes. TL-DST achieved this result without any
preprocessing steps such as SLU result correction
or the use of lexical features to compensate for rel-
atively poor SLU performance (Kadlec et al., 2014;
Zhu et al., 2014). Lastly, we used a generative rule-
based model for task state update which is known
to be suboptimal for the DSTC2 task. Though it is
not the focus of this paper, we expect that one can
employ a discriminative model to get further im-
provements. In particular, there is plenty of room
to improve the L2 metric through machine-learned
discriminative models.

Entry Acc. L2
1-best baseline 0.619 0.738
Sun et al. (2014) 0.735 0.433
Williams (2014) 0.739 0.721
Henderson et al. (2014c) 0.742 0.387
Vodolan et al. (2015)† 0.745 0.433
TL-DST† 0.747 0.451

Table 3: DSTC2 joint goal tracking results. The
post DSTC2 systems are marked by †.

3.2 Complex Interactions

In order to evaluate TL-DST on more challeng-
ing data, we generated a set of pseudo-real di-
alogs from the DSTC3 data that contain multi-
ple tasks with complex user goals (Schatzmann et
al., 2006; Pietquin and Dutoit, 2006). First, we
constructed a repository of user goals (basically, a
dictionary mapping mined goals from DSTC3 to
their associated turns in the source dialog logs and
labels). Then, we simulated dialogs with complex
user goals by merging additional goals and the as-
sociated turns to a backbone dialog which was ran-
domly drawn from the original DSTC3 dialogs. We
randomly sampled additional goals from the goal
repository according to a set of per-slot binary dis-
tributions, P addslot . For negative constraint genera-
tion, we flipped the polarity of an additional goal
according to another set of per-slot binary distri-
butions, Pnegslot , and correspondingly altered the di-
alog act type of the relevant DAIs, e.g, inform to
deny. We iterated the goal addition process up to
a configured number of iterations, N iter, to cover
cases where more than two constraints exist for a
slot. The merge process employs a set of heuristic
rules so as to preserve natural discourse segments

(e.g., a subdialog for confirming a value) in the
backbone dialog. One can simulate dialogs with
different complexities by varying the binary distri-
butions and the number of iterations. After this
step, the value for each slot is no longer a single
value but a set of constraints.

Finally, to construct a multi-task dialog, we ran-
domly drew a backbone dialog from the corpus and
decided whether to sample an additional dialog ac-
cording to a binary distribution, P task. Then we
merged the first turns of each selected dialog to en-
sure the existence of multiple tasks in a single turn.
We arranged the remainder of the selected dialogs
in order, so as to simulate task resumption. After
this process, the label of a dialog state consists of
a list of task state labels. An example pseudo-real
dialog might contain: A user searches for an Italian
or French restaurant in the north area. (S)he also
looks for a coffee shop to go to after lunch that is
in a cheap price range and provides internet (See
Appendix A for example dialogs).

When two turns from different dialogs have to
be merged during the dialog synthesis process, we
produce a list of new SLU hypotheses by taking the
Cartesian product of the two source SLU hypothe-
ses - confidence scores are also multiplied together.
For time information annotation, we use the po-
sition of the DAI in the SLU hypothesis instead
of the real start and end times detected by the
ASR component since the DSTC3 data does not
have time information. Due to space limitations,
we present evaluation results only for the follow-
ing dialog corpora generated with three different
representative settings:

1. No complex user goals and no multiple tasks:
P addfood = 0.0, P addarea = 0.0, P addpricerange =
0.0, Pnegfood = 0.0, Pnegarea = 0.0, Pnegpricerange =
0.0, N iter = 0, P task = 0.0

2. Complex user goals and no multiple tasks:
P addfood = 0.5, P addarea = 0.2, P addpricerange =
0.2, Pnegfood = 0.2, Pnegarea = 0.2, Pnegpricerange =
0.2, N iter = 2, P task = 0.0

3. Complex user goals and multiple tasks:
P addfood = 0.5, P addarea = 0.2, P addpricerange =
0.2, Pnegfood = 0.2, Pnegarea = 0.2, Pnegpricerange =
0.2, N iter = 2, P task = 1.0

Corpora 2 and 3 were divided into 1, 000 training
dialogs, 500 development dialogs and 1, 000 test di-
alogs. For corpus 1, since we do not generate any
new dialogs, we just partitioned the 2, 264 DSTC3
dialogs into 846 training dialogs, 418 development
dialogs and 1, 000 test dialogs. We trained the task
frame parser and the context fetcher and saved
models whenever the performance on the develop-
ment data was improved. We set the learning rate
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Parameters System Avg. Acc. Joint Acc. L2

No complex user goals and no multiple tasks baseline 0.837 0.575 0.864
TL-DST 0.850 0.594 0.737

Complex user goals and no multiple tasks baseline 0.720 0.315 1.324
TL-DST 0.819 0.455 0.972

Complex user goals and multiple tasks

baseline 0.411 0.029 1.893
TL-DST 0.784 0.338 1.208

TL-DST-OP 0.833 0.466 0.984
TL-DST-O 0.928 0.607 0.752

Table 4: Evaluation on complex dialogs with simulated data. The exact parameter settings for each
simulation condition can be found in the text.

to 0.1 and used L2 regularization with regulariza-
tion term 10−4.

Table 4 shows how performance varies on dif-
ferent simulation settings. As expected, the per-
formance of the baseline tracker, which is the
DSTC3’s default tracker, drops sharply as the di-
alogs get more complicated. On the contrary,
the performance of TL-DST decreases more gently.
Note that joint goal prediction gets exponentially
harder as multiple tasks are involved, since we can
get each task wrong if we have any of one task’s
constraints in another’s state. Thus this gentle per-
formance reduction is in fact a significant win.

As noted before, there is an upper bound to
achievable performance due to the limitation of
the provided SLU results. Thus we also present
the performance of the system with different ora-
cles: 1) TL-DST-OP uses oracle task frame parses;
2) TL-DST-O additionally uses an oracle context
fetcher. The comparative results suggest that there
is much room for improvement in both the task
frame parser and the context fetcher. Given the
good performance on Avg. Accuracy, despite im-
perfect joint prediction, a TL-DST based agent
should be able to successfully complete the con-
versation with extra exchanges. This also matches
our empirical analysis of the tracker’s output; the
tracker missed only a couple of constraints in its
incorrect joint prediction.

4 Related Work

TL-DST aims to extend conventional approaches
for dialog state tracking. A variety of approaches
have been proposed, for instance, generative mod-
els (Thomson et al., 2010; Wang and Lemon, 2013;
Zilka et al., 2013; Sun et al., 2014; Kadlec et
al., 2014) and discriminative models (Lee and Es-
kenazi, 2013; Henderson et al., 2014c; Williams,
2014). The series of DSTCs have played a cru-
cial role in supplying essential resources to the
research community such as labeled dialog cor-
pora, baseline systems and a common evaluation
framework (Williams et al., 2013; Henderson et al.,
2014a; Henderson et al., 2014b). For more infor-
mation about this line of research, we refer to the

recent survey by Williams et al. (2016).
The closest work to our task frame parsing is

frame semantic parsing task in NLP (Das, 2014).
Differences include that the input here is a collec-
tion of potentially conflicting semantic hypotheses
from different domain-specific SLUs. Also we are
more interested in obtaining a N -best list of parses
with well calibrated confidence scores than in get-
ting only a top hypothesis.

Recently there has been growing interest in
multidomain and multitask dialog (Crook et al.,
2016; Sun et al., 2016; Ramachandran and Ratna-
parkhi, 2015; Gašic et al., 2015; Wang et al., 2014;
Hakkani-Tür et al., 2012; Nakano et al., 2011).
To our knowledge, however, there is no previous
work that provides a holistic statistical approach
for complex dialog state tracking that can cover
the wide range of problems discussed in this pa-
per.

5 Conclusions

In this paper, we have proposed the TL-DST ap-
proach toward the goal of seamlessly orchestrating
multiple tasks with complex goals across multiple
domains in continuous interaction. The proposed
method’s state-of-the-art performance on common
benchmark datasets and purposefully simulated
dialog corpora demonstrates the potential capac-
ity of TL-DST. In the future, we want to apply
TL-DST to conversational agent platforms for fur-
ther evaluation with real world multi-domain di-
alog. There are many opportunities for technical
improvements, including: 1) scheduled sampling
for context fetcher training to avoid the mismatch
between oracles and runtime conditions (Bengio
et al., 2015); 2) using discriminative (sequential)
models instead of generative rule-based models for
task state update; and 3) learning with weak su-
pervision from real time interactions. Future re-
search can include the extension of TL-DST for
other conversational phenomena such as reference
resolution. It would also be interesting to study the
potential impact on other dialog system compo-
nents of providing more comprehensive state rep-
resentations to SLU and action selection.
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A Example Simulated Dialogs

The following dialogs show the surface form of
simulated complex interactions. The dialog state
tracker uses the corresponding SLU results and di-
alog state annotations to the parts in the labeled
DSTC3 logs of which the dialog is composed.

A.1 Dialog 1

System: Thank you for calling the Cambridge In-
formation system. Your call will be recorded for
research purposes. You may ask for information
about a place to eat, such as a restaurant, a pub,
or a cafe. How may I help you?
User: Yes. I’m looking for a seafood or north eu-
ropean restaurant. And I’m looking for a moder-
ately priced coffee shop or in expensive price range.
System: Are you looking for somewhere near a
particular venue? For example, Cambridge Con-
temporary Art, Holy Trinity Church, or Trinity
College.
User: In the expensive price range.
System: Loch Fyne, which serves seafood, is an
outstanding restaurant. It’s in the expensive price
range.
User: What’s the address?

System: Loch Fyne is located on 37 Trumpington
Street. The price for main courses ranges from 9
pounds to 20 pounds.
User: Ah what’s the phone number?
System: The phone number of Loch Fyne is
01223902103.
User: And what’s the price range?
System: Loch Fyne is in the expensive price
range. The price for main courses ranges from 9
pounds to 20 pounds.
User: Ok thanks.
System: For a coffee shop, what kind of price
range are you looking for? For example, free, or
moderate.
User: Expensive price range.
System: Are you looking for somewhere near a
particular venue? For example, Cambridge Con-
temporary Art, Great Saint Mary’s Church, or Pri-
mavera.
User: No I’m not.
System: Cafe Eleven, which is in the moderate
price range, is an outstanding cafe.
User: Can I get the phone number and the post-
code?
System: The phone number of Cafe Eleven is
01223369157. It’s in the area with the postcode
CB1 1DG.
User: Thank you goodbye.

A.2 Dialog 2

System: Thank you for calling the Cambridge In-
formation system. Your call will be recorded for
research purposes. You may ask for information
about a place to eat, such as a restaurant, a pub,
or a cafe. How may I help you?
User: I’m looking for a cheap Chinese restaurant
or a Turkish restaurant. But I don’t want a French
restaurant. And it should be in the Riverside area.
And I would like a cafe.
System: What part of town do you have in mind?
For example, something in the Barnwell, Chester-
ton, or King’s Hedges area.
User: Chesterton.
System: There is no restaurant in the Chesterton
area in the cheap price range.
User: Cheap Chinese take away restaurant.
System: Would you like a Chesterton area, or you
don’t care?
User: I don’t care.
System: HK Fusion is an outstanding restaurant,
it serves chinese food and it’s in the cheap price
range.
User: Phone number?
System: The phone number of HK Fusion is
01223355909.
User: Address?
System: HK Fusion is on 21 Burleigh Street.
User: Thank you.
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System: What type of food would you like? For
example, Chinese take away, American, or English.
User: Cafe.
System: What type of food would you like? For
example, Greek, Mediterranean, or Middleeastern.
User: I don’t care.
System: What kind of price range are you looking
for? For example, cheap, or moderate.
User: I don’t care.
System: The Cambridge Blue is a great cafe.
User: What is the address and phone number?
System: The Cambridge Blue is on 24 Regent
Street and its phone number is 01223369222.
User: Thank you goodbye.
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Abstract

Speaker intent detection and semantic slot
filling are two critical tasks in spoken lan-
guage understanding (SLU) for dialogue
systems. In this paper, we describe a re-
current neural network (RNN) model that
jointly performs intent detection, slot fill-
ing, and language modeling. The neural
network model keeps updating the intent
prediction as word in the transcribed ut-
terance arrives and uses it as contextual
features in the joint model. Evaluation of
the language model and online SLU model
is made on the ATIS benchmarking data
set. On language modeling task, our joint
model achieves 11.8% relative reduction
on perplexity comparing to the indepen-
dent training language model. On SLU
tasks, our joint model outperforms the in-
dependent task training model by 22.3%
on intent detection error rate, with slight
degradation on slot filling F1 score. The
joint model also shows advantageous per-
formance in the realistic ASR settings with
noisy speech input.

1 Introduction

As a critical component in spoken dialogue sys-
tems, spoken language understanding (SLU) sys-
tem interprets the semantic meanings conveyed
by speech signals. Major components in SLU
systems include identifying speaker’s intent and
extracting semantic constituents from the natural
language query, two tasks that are often referred
to as intent detection and slot filling.

Intent detection can be treated as a seman-
tic utterance classification problem, and slot fill-
ing can be treated as a sequence labeling task.
These two tasks are usually processed separately

by different models. For intent detection, a
number of standard classifiers can be applied,
such as support vector machines (SVMs) (Haffner
et al., 2003) and convolutional neural networks
(CNNs) (Xu and Sarikaya, 2013). For slot fill-
ing, popular approaches include using sequence
models such as maximum entropy Markov models
(MEMMs) (McCallum et al., 2000), conditional
random fields (CRFs) (Raymond and Riccardi,
2007), and recurrent neural networks (RNNs) (Yao
et al., 2014; Mesnil et al., 2015).

Recently, neural network based models that
jointly perform intent detection and slot filling
have been reported. Xu (2013) proposed using
CNN based triangular CRF for joint intent detec-
tion and slot filling. Guo (2014) proposed using a
recursive neural network (RecNN) that learns hi-
erarchical representations of the input text for the
joint task. Such joint models simplify SLU sys-
tems, as only one model needs to be trained and
deployed.

The previously proposed joint SLU models,
however, are unsuitable for online tasks where it
is desired to produce outputs as the input sequence
arrives. In speech recognition, instead of receiving
the transcribed text at the end of the speech, users
typically prefer to see the ongoing transcription
while speaking. In spoken language understand-
ing, with real time intent identification and seman-
tic constituents extraction, the downstream sys-
tems will be able to perform corresponding search
or query while the user dictates. The joint SLU
models proposed in previous work typically re-
quire intent and slot label predictions to be con-
ditioned on the entire transcribed word sequence.
This limits the usage of these models in the online
setting.

In this paper, we propose an RNN-based on-
line joint SLU model that performs intent detec-
tion and slot filling as the input word arrives. In
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addition, we suggest that the generated intent class
and slot labels are useful for next word prediction
in online automatic speech recognition (ASR).
Therefore, we propose to perform intent detec-
tion, slot filling, and language modeling jointly
in a conditional RNN model. The proposed joint
model can be further extended for belief track-
ing in dialogue systems when considering the dia-
logue history beyond the current utterance. More-
over, it can be used as the RNN decoder in an
end-to-end trainable sequence-to-sequence speech
recognition model (Jaitly et al., 2015).

The remainder of the paper is organized as fol-
lows. In section 2, we introduce the background
on using RNNs for intent detection, slot filling,
and language modeling. In section 3, we describe
the proposed joint online SLU-LM model and its
variations. Section 4 discusses the experiment
setup and results on ATIS benchmarking task, us-
ing both text and noisy speech inputs. Section 5
gives the conclusion.

2 Background

2.1 Intent Detection

Intent detection can be treated as a semantic ut-
terance classification problem, where the input to
the classification model is a sequence of words
and the output is the speaker intent class. Given
an utterance with a sequence of words w =
(w1, w2, ..., wT ), the goal of intent detection is to
assign an intent class c from a pre-defined finite
set of intent classes, such that:

ĉ = arg max
c
P (c|w) (1)

Recent neural network based intent classifica-
tion models involve using neural bag-of-words
(NBoW) or bag-of-n-grams, where words or n-
grams are mapped to high dimensional vector
space and then combined component-wise by
summation or average before being sent to the
classifier. More structured neural network ap-
proaches for utterance classification include us-
ing recursive neural network (RecNN) (Guo et
al., 2014), recurrent neural network (Ravuri and
Stolcke, 2015), and convolutional neural network
models (Collobert and Weston, 2008; Kim, 2014).
Comparing to basic NBoW methods, these mod-
els can better capture the structural patterns in the
word sequence.

2.2 Slot Filling
A major task in spoken language understand-
ing (SLU) is to extract semantic constituents by
searching input text to fill in values for prede-
fined slots in a semantic frame (Mesnil et al.,
2015), which is often referred to as slot filling.
The slot filling task can also be viewed as assign-
ing an appropriate semantic label to each word in
the given input text. In the below example from
ATIS (Hemphill et al., 1990) corpus following
the popular in/out/begin (IOB) annotation method,
Seattle and San Diego are the from and to loca-
tions respectively according to the slot labels, and
tomorrow is the departure date. Other words in the
example utterance that carry no semantic meaning
are assigned “O” label.

Figure 1: ATIS corpus sample with intent and slot
annotation (IOB format).

Given an utterance consisting of a sequence of
words w = (w1, w2, ..., wT ), the goal of slot fill-
ing is to find a sequence of semantic labels s =
(s1, s2, ..., sT ), one for each word in the utterance,
such that:

ŝ = arg max
s
P (s|w) (2)

Slot filling is typically treated as a sequence la-
beling problem. Sequence models including con-
ditional random fields (Raymond and Riccardi,
2007) and RNN models (Yao et al., 2014; Mes-
nil et al., 2015; Liu and Lane, 2015) are among
the most popular methods for sequence labeling
tasks.

2.3 RNN Language Model
A language model assigns a probability to a se-
quence of words w = (w1, w2, ..., wT ) following
probability distribution. In language modeling, w0

and wT+1 are added to the word sequence repre-
senting the beginning-of-sentence token and end-
of-sentence token. Using the chain rule, the likeli-
hood of a word sequence can be factorized as:

P (w) =
T+1∏
t=1

P (wt|w0, w1, ..., wt−1) (3)

RNN-based language models (Mikolov et al.,
2011), and the variant (Sundermeyer et al., 2012)
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Figure 2: (a) RNN language model. (b) RNN in-
tent detection model. The RNN output at last step
is used to predict the intent class. (c) RNN slot
filling model. Slot label dependencies are mod-
eled by feeding the output label of the previous
time step to the current step hidden state.

using long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) have shown supe-
rior performance comparing to traditional n-gram
based models. In this work, we use an LSTM cell
as the basic RNN unit for its stronger capability
in capturing long-range dependencies in word se-
quence.

2.4 RNN for Intent Detection and Slot Filling

As illustrated in Figure 2(b), RNN intent detection
model uses the last RNN output to predict the ut-
terance intent class. This last RNN output can be
seen as a representation or embedding of the entire
utterance. Alternatively, the utterance embedding
can be obtained by taking mean of the RNN out-
puts over the sequence. This utterance embedding
is then used as input to the multinomial logistic
regression for the intent class prediction.

RNN slot filling model takes word as input and
the corresponding slot label as output at each time
step. The posterior probability for each slot label
is calculated using the softmax function over the
RNN output. Slot label dependencies can be mod-
eled by feeding the output label from the previ-
ous time step to the current step hidden state (Fig-
ure 2(c)). During model training, true label from
previous time step can be fed to current hidden

state. During inference, only the predicted label
can be used. To bridge the gap between training
and inference, scheduled sampling method (Ben-
gio et al., 2015) can be applied. Instead of only
using previous true label, using sample from pre-
vious predicted label distribution in model train-
ing makes the model more robust by forcing it to
learn to handle its own prediction mistakes (Liu
and Lane, 2015).

3 Method

In this section we describe the joint SLU-LM
model in detail. Figure 3 gives an overview of the
proposed architecture.

3.1 Model

Let w = (w0, w1, w2, ..., wT+1) represent
the input word sequence, with w0 and wT+1

being the beginning-of-sentence (〈bos〉) and
end-of-sentence (〈eos〉) tokens. Let c =
(c0, c1, c2, ..., cT ) be the sequence of intent class
outputs at each time step. Similarly, let s =
(s0, s1, s2, ..., sT ) be the slot label sequence,
where s0 is a padded slot label that maps to the
beginning-of-sentence token 〈bos〉.

Referring to the joint SLU-LM model shown in
Figure 3, for the intent model, instead of predict-
ing the intent only after seeing the entire utterance
as in the independent training intent model (Figure
2(b)), in the joint model we output intent at each
time step as input word sequence arrives. The in-
tent generated at the last step is used as the final
utterance intent prediction. The intent output from
each time step is fed back to the RNN state, and
thus the entire intent output history are modeled
and can be used as context to other tasks. It is
not hard to see that during inference, intent classes
that are predicted during the first few time steps
are of lower confidence due to the limited infor-
mation available. We describe the techniques that
can be used to ameliorate this effect in section 3.3
below. For the intent model, with both intent and
slot label connections to the RNN state, we have:

P (cT |w) = P (cT |w≤T , c<T , s<T ) (4)

For the slot filling model, at each step t along the
input word sequence, we want to model the slot
label output st as a conditional distribution over
the previous intents c<t, previous slot labels s<t,
and the input word sequence up to step t. Using
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Figure 3: Proposed joint online RNN model for intent detection, slot filling, and next word prediction.
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Figure 4: Joint online SLU-LM model variations. (a) Basic joint model with no conditional dependencies
on emitted intent classes and slot labels. (b) Joint model with local intent context. Next word prediction
is conditioned on the current step intent class. (c) Joint model with recurrent intent context. The entire
intent prediction history and variations are captured in the RNN state. (d) Joint model with both local
and recurrent intent context.

the chain rule, we have:

P (s|w) = P (s0|w0)
T∏
t=1

P (st|w≤t, c<t, s<t)
(5)

For the language model, the next word is mod-
eled as a conditional distribution over the word se-
quence together with intent and slot label sequence
up to current time step. The intent and slot label
outputs at current step, together with the intent and
slot label history that is encoded in the RNN state,
serve as context to the language model.

P (w) =
T∏
t=0

P (wt+1|w≤t, c≤t, s≤t) (6)

3.2 Next Step Prediction
Following the model architecture in Figure 3, at
time step t, input to the system is the word at in-

dex t of the utterance, and outputs are the intent
class, the slot label, and the next word prediction.
The RNN state ht encodes the information of all
the words, intents, and slot labels seen previously.
The neural network model computes the outputs
through the following sequence of steps:

ht = LSTM(ht−1, [wt, ct−1, st−1]) (7)

P (ct|w≤t, c<t, s<t) = IntentDist(ht) (8)

P (st|w≤t, c<t, s<t) = SlotLabelDist(ht) (9)

P (wt+1|w≤t, c≤t, s≤t) = WordDist(ht, ct, st)
(10)

where LSTM is the recurrent neural network func-
tion that computes the hidden state ht at a step
using the previous hidden state ht−1, the em-
beddings of the previous intent output ct−1 and
slot label output st−1, and the embedding of cur-
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rent input word wt. IntentDist, SlotLabelDist,
and WordDist are multilayer perceptrons (MLPs)
with softmax outputs over intents, slot labels, and
words respectively. Each of these three MLPs has
its own set of parameters. The intent and slot label
distributions are generated by the MLPs with input
being the RNN cell output. The next word distri-
bution is produced by conditioning on current step
RNN cell output together with the embeddings of
the sampled intent and sampled slot label.

3.3 Training

The network is trained to find the parameters θ
that minimise the cross-entropy of the predicted
and true distributions for intent class, slot label,
and next word jointly. The objective function also
includes an L2 regularization term R(θ) over the
weights and biases of the three MLPs. This equal-
izes to finding the parameters θ that maximize the
below objective function:

max
θ

T∑
t=0

[
αc logP (c∗|w≤t, c<t, s<t; θ)

+αs logP (s∗t |w≤t, c<t, s<t; θ)
+αw logP (wt+1|w≤t, c≤t, s≤t; θ)

]
−λR(θ)

(11)

where c∗ is the true intent class and and s∗t is the
true slot label at time step t. αc, αs, and αw are the
linear interpolation weights for the true intent, slot
label, and next word probabilities. During model
training, ct can either be the true intent or mix-
ture of true and predicted intent. During inference,
however, only predicted intent can be used. Con-
fidence of the predicted intent during the first few
time steps is likely to be low due to the limited
information available, and the confidence level is
likely to increase with the newly arriving words.
Conditioning on incorrect intent for next word pre-
diction is not desirable. To mitigate this effect,
we propose to use a schedule to increase the in-
tent contribution to the context vector along the
growing input word sequence. Specifically, during
the first k time steps, we disable the intent con-
text completely by setting the values in the intent
vector to zeros. From step k + 1 till the last step
of the input word sequence, we gradually increase
the intent context by applying a linearly growing
scaling factor η from 0 to 1 to the intent vector.

This scheduled approach is illustrated in Figure 5.

Figure 5: Schedule of increasing intent contribu-
tion to the context vector along with the growing
input sequence.

3.4 Inference

For online inference, we simply take the greedy
path of our conditional model without doing
search. The model emits best intent class and slot
label at each time step conditioning on all previous
emitted symbols:

ĉt = arg max
ct

P (ct|w≤t, ĉ<t, ŝ<t) (12)

ŝt = arg max
st

P (st|w≤t, ĉ<t, ŝ<t) (13)

Many applications can benefit from this greedy in-
ference approach comparing to search based infer-
ence methods, especially those running on embed-
ded platforms that without GPUs and with limited
computational capacity. Alternatively, one can do
left-to-right beam search (Sutskever et al., 2014;
Chan et al., 2015) by maintaining a set of β best
partial hypotheses at each step. Efficient beam
search method for the joint conditional model is
left to explore in our future work.

3.5 Model Variations

In additional to the joint RNN model (Figure 3)
described above, we also investigate several joint
model variations for a fine-grained study of vari-
ous impacting factors on the joint SLU-LM model
performance. Designs of these model variations
are illustrated in Figure 4.

Figure 4(a) shows the design of a basic joint
SLU-LM model. At each step t, the predictions of
intent class, slot label, and next word are based on
a shared representation from the LSTM cell out-
put ht, and there is no conditional dependencies
on previous intent class and slot label outputs. The
single hidden layer MLP for each task introduces
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additional discriminative power for different tasks
that take common shared representation as input.
We use this model as the baseline joint model.

The models in Figure 4(b) to 4(d) extend the
basic joint model by introducing conditional de-
pendencies on intent class outputs. Note that the
same type of extensions can be made on slot la-
bels as well. For brevity and space concern, these
designs are not added in the figure, but we report
their performance in the experiment section.

The model in Figure 4(b) extends the basic joint
model by conditioning the prediction of next word
wt+1 on the current step intent class ct. The intent
class serves as context to the language model task.
We refer to this design as model with local intent
context.

The model in Figure 4(c) extends the basic joint
model by feeding the intent class back to the RNN
state. The history and variations of the predicted
intent class from each previous step are monitored
by the mode with such class output connections to
RNN state. The intent, slot label, and next word
predictions in the following step are all dependent
on this history of intents. We refer to this design
as model with recurrent intent context.

The model in Figure 4(d) combines the two
types of connections shown in Figure 4(b) and
4(c). At step t, in addition to the recurrent intent
context (c<t), the prediction of word wt+1 is also
conditioned on the local intent context from cur-
rent step intent class ct. We refer to this design as
model with local and recurrent intent context.

4 Experiments

4.1 Data

We used the Airline Travel Information Systems
(ATIS) dataset (Hemphill et al., 1990) in our ex-
periment. The ATIS dataset contains audio record-
ings of people making flight reservations, and it is
widely used in spoken language understanding re-
search. We followed the same ATIS corpus1 setup
used in (Mesnil et al., 2015; Xu and Sarikaya,
2013; Tur et al., 2010). The training set contains
4978 utterances from ATIS-2 and ATIS-3 corpora,
and test set contains 893 utterances from ATIS-3
NOV93 and DEC94 datasets. We evaluated the
system performance on slot filling (127 distinct
slot labels) using F1 score, and the performance on

1We thank Gokhan Tur and Puyang Xu for sharing the
ATIS dataset.

intent detection (18 different intents) using classi-
fication error rate.

In order to show the robustness of the proposed
joint SLU-LM model, we also performed experi-
ments using automatic speech recognition (ASR)
outputs. We managed to retrieve 518 (out of
the 893 test utterances) utterance audio files from
ATIS-3 NOV93 and DEC94 data sets, and use
them as the test set in the ASR settings. To provide
a more challenging and realistic evaluation, we
used the simulated noisy utterances that were gen-
erated by artificially mixing clean speech data with
noisy backgrounds following the simulation meth-
ods described in the third CHiME Speech Sepa-
ration and Recognition Challenge (Barker et al.,
2015). The average signal-to-noise ratio for the
simulated noisy utterances is 9.8dB.

4.2 Training Procedure

We used LSTM cell as the basic RNN unit, follow-
ing the LSTM design in (Zaremba et al., 2014).
The default forget gate bias was set to 1. We
used single layer uni-directional LSTM in the pro-
posed joint online SLU-LM model. Deeper mod-
els by stacking the LSTM layers are to be explored
in future work. Word embeddings of size 300
were randomly initialized and fine-tuned during
model training. We conducted mini-batch train-
ing (with batch size 16) using Adam optimization
method following the suggested parameter setup
in (Kingma and Ba, 2014). Maximum norm for
gradient clipping was set to 5. During model train-
ing, we applied dropout (dropout rate 0.5) to the
non-recurrent connections (Zaremba et al., 2014)
of RNN and the hidden layers of MLPs, and ap-
plied L2 regularization (λ = 10−4) on the param-
eters of MLPs.

For the evaluation in ASR settings, we
used the acoustic model trained on LibriSpeech
dataset (Panayotov et al., 2015), and the language
model trained on ATIS training corpus. A 2-gram
language model was used during decoding. Dif-
ferent N-best rescoring methods were explored by
using a 5-gram language model, the independent
training RNN language model, and the joint train-
ing RNN language model. The ASR outputs were
then sent to the joint SLU-LM model for intent de-
tection and slot filling.
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Model Intent Error F1 Score LM PPL
1 RecNN (Guo et al., 2014) 4.60 93.22 -
2 RecNN+Viterbi (Guo et al., 2014) 4.60 93.96 -
3 Independent training RNN intent model 2.13 - -
4 Independent training RNN slot filling model - 94.91 -
5 Independent training RNN language model - - 11.55
6 Basic joint training model 2.02 94.15 11.33
7 Joint model with local intent context 1.90 94.22 11.27
8 Joint model with recurrent intent context 1.90 94.16 10.21
9 Joint model with local & recurrent intent context 1.79 94.18 10.22

10 Joint model with local slot label context 1.79 94.14 11.14
11 Joint model with recurrent slot label context 1.79 94.64 11.19
12 Joint model with local & recurrent slot label context 1.68 94.52 11.17
13 Joint model with local intent + slot label context 1.90 94.13 11.22
14 Joint model with recurrent intent + slot label context 1.57 94.47 10.19
15 Joint model with local & recurrent intent + slot label context 1.68 94.45 10.28

Table 1: ATIS Test set results on intent detection error, slot filling F1 score, and language modeling
perplexity. Related joint models: RecNN: Joint intent detection and slot filling model using recursive
neural network (Guo et al., 2014). RecNN+Viterbi: Joint intent detection and slot filling model using
recursive neural network with Viterbi sequence optimization for slot filling (Guo et al., 2014).

4.3 Results and Discussions

4.3.1 Results with True Text Input

Table 1 summarizes the experiment results of the
joint SLU-LM model and its variations using ATIS
text corpus as input. Row 3 to row 5 are the inde-
pendent training model results on intent detection,
slot filling, and language modeling. Row 6 gives
the results of the basic joint SLU-LM model (Fig-
ure 4(a)). The basic joint model uses a shared rep-
resentation for all the three tasks. It gives slightly
better performance on intent detection and next
word prediction, with some degradation on slot
filling F1 score. If the RNN output ht is con-
nected to each task output directly via linear pro-
jection without using MLP, performance drops for
intent classification and slot filling. Thus, we be-
lieve the extra discriminative power introduced by
the additional model parameters and non-linearity
from MLP is useful for the joint model. Row 7
to row 9 of Table 1 illustrate the performance of
the joint models with local, recurrent, and local
plus recurrent intent context, which correspond to
model structures described in Figure 4(b) to 4(d).
It is evident that the recurrent intent context helps
the next word prediction, reducing the language
model perplexity by 9.4% from 11.27 to 10.21.
The contribution of local intent context to next
word prediction is limited. We believe the advan-

tageous performance of using recurrent context is
a result of modeling predicted intent history and
intent variations along with the growing word se-
quence. For intent classification and slot filling,
performance of these models with intent context
is similar to that of the basic joint model.

Row 10 to row 12 of Table 1 illustrate the per-
formance of the joint model with local, recurrent,
and local plus recurrent slot label context. Com-
paring to the basic joint model, the introduced slot
label context (both local and recurrent) leads to
a better language modeling performance, but the
contribution is not as significant as that from the
recurrent intent context. Moreover, the slot la-
bel context reduces the intent classification error
from 2.02 to 1.68, a 16.8% relative error reduc-
tion. From the slot filling F1 scores in row 10 and
row 11, it is clear that modeling the slot label de-
pendencies by connecting slot label output to the
recurrent state is very useful.

Row 13 to row 15 of Table 1 give the perfor-
mance of the joint model with both intent and slot
label context. Row 15 refers to the model de-
scribed in Figure 3. As can be seen from the re-
sults, the joint model that utilizes two types of
recurrent context maintains the benefits of both,
namely, the benefit of applying recurrent intent
context to language modeling, and the benefit of

28



ASR Model (with LibriSpeech AM) WER Intent Error F1 Score
2-gram LM decoding 14.51 4.63 84.46
2-gram LM decoding + 5-gram LM rescoring 13.66 5.02 85.08
2-gram LM decoding + Independent training RNN LM rescoring 12.95 4.63 85.43
2-gram LM decoding + Joint training RNN LM rescoring 12.59 4.44 86.87

Table 2: ATIS test set results on ASR word error rate, intent detection error, and slot filling F1 score with
noisy speech input.

applying recurrent slot label context to slot filling.
Another observation is that once recurrent context
is applied, the benefit of adding local context for
next word prediction is limited. It might hint that
the most useful information for the next word pre-
diction can be well captured in the RNN state, and
thus adding explicit dependencies on local intent
class and slot label is not very helpful.

Figure 6: LM perplexity of the joint SLU-LM
models with different schedules in adjusting the
intent contribution to the context vector.

During the joint model training and inference,
we used a schedule to adjust the intent contribu-
tion to the context vector by linearly scaling the in-
tent vector with the growing input word sequence
after step k. We found this technique to be criti-
cal in achieving advantageous language modeling
performance. Figure 6 shows test set perplexities
along the training epochs for models using differ-
ent k values, comparing to the model with uniform
(η = 1) intent contribution. With uniform intent
contribution across time, the context vector does
not bring benefit to the next word prediction, and
the language modeling perplexity is similar to that
of the basic joint model. By applying the adjusted
intent scale (k = 2), the perplexity drops from
11.26 (with uniform intent contribution) to 10.29,
an 8.6% relative reduction.

4.3.2 Results in ASR Settings
To further evaluate the robustness of the proposed
joint SLU-LM model, we experimented with noisy
speech input and performed SLU on the rescored
ASR outputs. Model performance is evaluated in
terms of ASR word error rate (WER), intent clas-
sification error, and slot filling F1 score. As shown
in Table 2, the model with joint training RNN LM
rescoring outperforms the models using 5-gram
LM rescoring and independent training RNN LM
rescoring on all the three evaluation metrics. Us-
ing the rescored ASR outputs (12.59% WER) as
input to the joint training SLU model, the intent
classification error increased by 2.87%, and slot
filling F1 score dropped by 7.77% comparing to
the setup using true text input. The performance
degradation is expected as we used a more chal-
lenging and realistic setup with noisy speech in-
put. These results in Table 2 show that our joint
training model outperforms the independent train-
ing model consistently on ASR and SLU tasks.

5 Conclusion

In this paper, we propose a conditional RNN
model that can be used to jointly perform on-
line spoken language understanding and language
modeling. We show that by continuously mod-
eling intent variation and slot label dependencies
along with the arrival of new words, the joint train-
ing model achieves advantageous performance in
intent detection and language modeling with slight
degradation on slot filling comparing to the in-
dependent training models. On the ATIS bench-
marking data set, our joint model produces 11.8%
relative reduction on LM perplexity, and 22.3%
relative reduction on intent detection error when
using true text as input. The joint model also
shows consistent performance gain over the in-
dependent training models in the more challeng-
ing and realistic setup using noisy speech input.
Code to reproduce our experiments is available at:
http://speech.sv.cmu.edu/software.html
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Abstract
The use of irony and sarcasm in social
media allows us to study them at scale for
the first time. However, their diversity has
made it difficult to construct a high-quality
corpus of sarcasm in dialogue. Here, we
describe the process of creating a large-
scale, highly-diverse corpus of online
debate forums dialogue, and our novel
methods for operationalizing classes of
sarcasm in the form of rhetorical questions
and hyperbole. We show that we can use
lexico-syntactic cues to reliably retrieve
sarcastic utterances with high accuracy.
To demonstrate the properties and quality
of our corpus, we conduct supervised
learning experiments with simple features,
and show that we achieve both higher
precision and F than previous work on
sarcasm in debate forums dialogue. We
apply a weakly-supervised linguistic
pattern learner and qualitatively analyze
the linguistic differences in each class.

1 Introduction

Irony and sarcasm in dialogue constitute a highly
creative use of language signaled by a large range
of situational, semantic, pragmatic and lexical
cues. Previous work draws attention to the use
of both hyperbole and rhetorical questions in con-
versation as distinct types of lexico-syntactic cues
defining diverse classes of sarcasm (Gibbs, 2000).

Theoretical models posit that a single seman-
tic basis underlies sarcasm’s diversity of form,
namely “a contrast” between expected and expe-
rienced events, giving rise to a contrast between
what is said and a literal description of the ac-
tual situation (Colston and O’Brien, 2000; Part-
ington, 2007). This semantic characterization has
not been straightforward to operationalize compu-
tationally for sarcasm in dialogue. Riloff et al.

(2013) operationalize this notion for sarcasm in
tweets, achieving good results. Joshi et al. (2015)
develop several incongruity features to capture it,
but although they improve performance on tweets,
their features do not yield improvements for dia-
logue.

Previous work on the Internet Argument Cor-
pus (IAC) 1.0 dataset aimed to develop a high-
precision classifier for sarcasm in order to boot-
strap a much larger corpus (Lukin and Walker,
2013), but was only able to obtain a precision of
just 0.62, with a best F of 0.57, not high enough
for bootstrapping (Riloff and Wiebe, 2003; Thelen
and Riloff, 2002). Justo et al. (2014) experimented
with the same corpus, using supervised learning,
and achieved a best precision of 0.66 and a best
F of 0.70. Joshi et al. (2015)’s explicit congruity
features achieve precision around 0.70 and best F
of 0.64 on a subset of IAC 1.0.

We decided that we need a larger and more di-
verse corpus of sarcasm in dialogue. It is difficult
to efficiently gather sarcastic data, because only
about 12% of the utterances in written online de-
bate forums dialogue are sarcastic (Walker et al.,
2012a), and it is difficult to achieve high reliability
for sarcasm annotation (Filatova, 2012; Swanson
et al., 2014; González-Ibáñez et al., 2011; Wallace
et al., 2014). Thus, our contributions are:

• We develop a new larger corpus, using sev-
eral methods that filter non-sarcastic utter-
ances to skew the distribution toward/in favor
of sarcastic utterances. We put filtered data
out for annotation, and are able to achieve
high annotation reliability.

• We present a novel operationalization of both
rhetorical questions and hyperbole to develop
subcorpora to explore the differences be-
tween them and general sarcasm.

• We show that our new corpus is of high qual-
ity by applying supervised machine learning
with simple features to explore how different
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corpus properties affect classification results.
We achieve a highest precision of 0.73 and a
highest F of 0.74 on the new corpus with ba-
sic n-gram and Word2Vec features, showcas-
ing the quality of the corpus, and improving
on previous work.

• We apply a weakly-supervised learner to
characterize linguistic patterns in each cor-
pus, and describe the differences across
generic sarcasm, rhetorical questions and hy-
perbole in terms of the patterns learned.

• We show for the first time that it is straight-
forward to develop very high precision clas-
sifiers for NOT-SARCASTIC utterances across
our rhetorical questions and hyperbole sub-
types, due to the nature of these utterances in
debate forum dialogue.

2 Creating a Diverse Sarcasm Corpus

There has been relatively little theoretical work on
sarcasm in dialogue that has had access to a large
corpus of naturally occurring examples. Gibbs
(2000) analyzes a corpus of 62 conversations be-
tween friends and argues that a robust theory of
verbal irony must account for the large diversity
in form. He defines several subtypes, including
rhetorical questions and hyperbole:

• Rhetorical Questions: asking a question
that implies a humorous or critical assertion
• Hyperbole: expressing a non-literal meaning

by exaggerating the reality of a situation

Other categories of irony defined by Gibbs
(2000) include understatements, jocularity, and
sarcasm (which he defines as a critical/mocking
form of irony). Other work has also tackled joc-
ularity and humor, using different approaches for
data aggregation, including filtering by Twitter
hashtags, or analyzing laugh-tracks from record-
ings (Reyes et al., 2012; Bertero and Fung, 2016).

Previous work has not, however, attempted
to operationalize these subtypes in any concrete
way. Here we describe our methods for creat-
ing a corpus for generic sarcasm (Gen) (Sec. 2.1),
rhetorical questions (RQ), and hyperbole (Hyp)
(Sec. 2.2) using data from the Internet Argument
Corpus (IAC 2.0).1 Table 1 provides examples of
SARCASTIC and NOT-SARCASTIC posts from the
corpus we create. Table 2 summarizes the final
composition of our sarcasm corpus.

1The IAC 2.0 is available at https://nlds.soe.ucsc.edu/iac2,
and our sarcasm corpus will be released at
https://nlds.soe.ucsc.edu/sarcasm2.

Generic Data

1 S I love it when you bash people for stating opinions and no facts
when you turn around and do the same thing [...] give me a break

2 NS The attacker is usually armed in spite of gun control laws. All
they do is disarm the law abiding. Not to mention the lack of
enforcement on criminals.

Rhetorical Questions

3 S Then why do you call a politician who ran such measures lib-
eral? OH yes, it’s because you’re a republican and you’re not
conservative at all.

4 NS And what would that prove? It would certainly show that an an-
imal adapted to survival above the Arctic circle was not adapted
to the Arizona desert.

Hyperbole

5 S Thank you for making my point better than I could ever do!!
It’s all about you, right honey? I am woman hear me roar right?
LMAO

6 NS Again i am astounded by the fact that you think i will endanger
children. it is a topic sunset, so why are you calling me demented
and sick.

Table 1: Examples of different types of SARCAS-
TIC (S) and NOT-SARCASTIC (NS) Posts

Dataset Total Size Posts Per Class

Generic (Gen) 6,520 3,260

Rhetorical Questions (RQ) 1,702 851

Hyperbole (Hyp) 1,164 582

Table 2: Total number of posts in each subcorpus
(each with a 50% split of SARCASTIC and NOT-
SARCASTIC posts)

2.1 Generic Dataset (Gen)

We first replicated the pattern-extraction experi-
ments of Lukin and Walker (2013) on their dataset
using AutoSlog-TS (Riloff, 1996), a weakly-
supervised pattern learner that extracts lexico-
syntactic patterns associated with the input data.
We set up the learner to extract patterns for both
SARCASTIC and NOT-SARCASTIC utterances. Our
first discovery is that we can classify NOT-
SARCASTIC posts with very high precision, rang-
ing between 80-90%.2

Because our main goal is to build a larger,
more diverse corpus of sarcasm, we use the high-
precision NOT-SARCASTIC patterns extracted by
AutoSlog-TS to create a “not-sarcastic” filter. We
did this by randomly selecting a new set of 30K
posts (restricting to posts with between 10 and
150 words) from IAC 2.0 (Abbott et al., 2016),
and applying the high-precision NOT-SARCASTIC

2We delay a detailed discussion of the characteristics
of this NOT-SARCASTIC classifier, and the patterns that we
learn, until Sec. 4 where we describe AutoSlog-TS and the
linguistic characteristics of the whole corpus.
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patterns from AutoSlog-TS to filter out any posts
that contain at least one NOT-SARCASTIC cue. We
end up filtering out two-thirds of the pool, only
keeping posts that did not contain any of our high-
precision NOT-SARCASTIC cues. We acknowl-
edge that this may also filter out sarcastic posts,
but we expect it to increase the ratio of sarcastic
posts in the remaining pool.

We put out the remaining 11,040 posts on Me-
chanical Turk. As in Lukin and Walker (2013), we
present the posts in “quote-response” pairs, where
the response post to be annotated is presented in
the context of its “dialogic parent”, another post
earlier in the thread, or a quote from another post
earlier in the thread (Walker et al., 2012b). In the
task instructions, annotators are presented with a
definition of sarcasm, followed by one example
of a quote-response pair that clearly contains sar-
casm, and one pair that clearly does not. Each task
consists of 20 quote-response pairs that follow the
instructions. Figure 1 shows the instructions and
layout of a single quote-response pair presented to
annotators. As in Lukin and Walker (2013) and
Walker et al. (2012b), annotators are asked a bi-
nary question: Is any part of the response to this
quote sarcastic?.

To help filter out unreliable annotators, we cre-
ate a qualifier consisting of a set of 20 manually-
selected quote-response pairs (10 that should re-
ceive a SARCASTIC label and 10 that should re-
ceive a NOT-SARCASTIC label). A Turker must
pass the qualifier with a score above 70% to par-
ticipate in our sarcasm annotations tasks.

Our baseline ratio of sarcasm in online debate
forums dialogue is the estimated 12% sarcastic
posts in the IAC, which was found previously by
Walker et al. by gathering annotations for sarcasm,
agreement, emotional language, attacks, and nas-
tiness from a subset of around 20K posts from the
IAC across various topics (Walker et al., 2012a).
Similarly, in his study of recorded conversation
among friends, Gibbs cites 8% sarcastic utterances
among all conversational turns (Gibbs, 2000).

We choose a conservative threshold: a post is
only added to the sarcastic set if at least 6 out of
9 annotators labeled it sarcastic. Of the 11,040
posts we put out for annotation, we thus obtain
2,220 new posts, giving us a ratio of about 20%
sarcasm – significantly higher than our baseline
of 12%. We choose this conservative threshold
to ensure the quality of our annotations, and we
leave aside posts that 5 out of 9 annotators label as
sarcastic for future work – noting that we can get
even higher ratios of sarcasm by including them
(up to 31%). The percentage agreement between

Figure 1: Mechanical Turk Task Layout

each annotator and the majority vote is 80%.
We then expand this set, using only 3 highly-

reliable Turkers (based on our first round of anno-
tations), giving them an exclusive sarcasm quali-
fication to do additional HITs. We gain an addi-
tional 1,040 posts for each class when using ma-
jority agreement (at least 2 out of 3 sarcasm labels)
for the additional set (to add to the 2,220 original
posts). The average percent agreement with the
majority vote is 89% for these three annotators.
We supplement our sarcastic data with 2,360 not-
sarcastic posts from the original data by (Lukin
and Walker, 2013) that follow our 150-word length
restriction, and complete the set with 900 posts
that were filtered out by our NOT-SARCASTIC fil-
ter3 – resulting in a total of 3,260 posts per class
(6,520 total posts).

Rows 1 and 2 of Table 1 show examples of posts
that are labeled sarcastic in our final generic sar-
casm set. Using our filtering method, we are able
to reduce the number of posts annotated from our
original 30K to around 11K, achieving a percent-
age of 20% sarcastic posts, even though we choose

3We use these unbiased not-sarcastic data sources to avoid
using posts coming from the sarcasm-skewed distribution.
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to use a conservative threshold of at least 6 out of
9 sarcasm labels. Since the number of posts being
annotated is only a third of the original set size,
this method reduces annotation effort, time, and
cost, and helps us shift the distribution of sarcasm
to more efficiently expand our dataset than would
otherwise be possible.

2.2 Rhetorical Questions and Hyperbole
The goal of collecting additional corpora for
rhetorical questions and hyperbole is to increase
the diversity of the corpus, and to allow us to ex-
plore the semantic differences between SARCAS-
TIC and NOT-SARCASTIC utterances when partic-
ular lexico-syntactic cues are held constant. We
hypothesize that identifying surface-level cues that
are instantiated in both sarcastic and not sarcastic
posts will force learning models to find deeper se-
mantic cues to distinguish between the classes.

Using a combination of findings in the theoreti-
cal literature, and observations of sarcasm patterns
in our generic set, we developed a regex pattern
matcher that runs against the 400K unannotated
posts in the IAC 2.0 database and retrieves match-
ing posts, only pulling posts that have parent posts
and a maximum of 150 words. Table 3 only shows
a small subset of the “more successful” regex pat-
terns we defined for each class.

Cue # Found # Annot % Sarc
Hyperbole

let’s all 27 21 62%
i love it when 158 25 56%
oh yeah 397 104 50%
wow 977 153 44%
i’m *
shocked|amazed|impressed

120 33 42%

fantastic 257 47 36%
hun/dear*/darling 661 249 32%
you’re kidding/joking 132 43 28%
eureka 21 12 17%

Rhetorical Questions and Self-Answering
oh wait 136 121 87%
oh right 19 11 81%
oh really 62 50 50%
really? 326 151 30%
interesting. 48 27 15%

Table 3: Annotation Counts for a Subset of Cues

Cue annotation experiments. After running a
large number of retrieval experiments with our
regex pattern matcher, we select batches of the re-
sulting posts that mix different cue classes to put
out for annotation, in such a way as to not allow
the annotators to determine what regex cues were
used. We then successively put out various batches
for annotation by 5 of our highly-qualified anno-
tators, in order to determine what percentage of

posts with these cues are sarcastic.
Table 3 summarizes the results for a sample set

of cues, showing the number of posts found con-
taining the cue, the subset that we put out for an-
notation, and the percentage of posts labeled sar-
castic in the annotation experiments. For exam-
ple, for the hyperbolic cue “wow”, 977 utterances
with the cue were found, 153 were annotated, and
44% of those were found to be sarcastic (i.e. 56%
were found to be not-sarcastic). Posts with the cue
“oh wait” had the highest sarcasm ratio, at 87%.
It is the distinction between the sarcastic and not-
sarcastic instances that we are specifically inter-
ested in. We describe the corpus collection process
for each subclass below.

It is important to note that using particular cues
(regex) to retrieve sarcastic posts does not result
in posts whose only cue is the regex pattern. We
demonstrate this quantitatively in Sec. 4. Sar-
casm is characterized by multiple lexical and mor-
phosyntactic cues: these include the use of in-
tensifiers, elongated words, quotations, false po-
liteness, negative evaluations, emoticons, and tag
questions inter alia. Table 4 shows how sarcastic
utterances often contain combinations of multiple
indicators, each playing a role in the overall sar-
castic tone of the post.

Sarcastic Utterance
Forgive me if I doubt your sincerity, but you seem like a troll to me. I
suspect that you aren’t interested in learning about evolution at all. Your
questions, while they do support your claim to know almost nothing, are
pretty typical of creationist “prove it to me“ questions.
Wrong again! You obviously can’t recognize refutation when its printed
before you. I haven’t made the tag “you liberals“ derogatory. You liber-
als have done that to yourselves! I suppose you’d rather be called a social
reformist! Actually, socialist is closer to a true description.

Table 4: Utterances with Multiple Sarcastic Cues

Rhetorical Questions. There is no previous work
on distinguishing sarcastic from non-sarcastic uses
of rhetorical questions (RQs). RQs are syntac-
tically formulated as a question, but function as
an indirect assertion (Frank, 1990). The polarity
of the question implies an assertion of the oppo-
site polarity, e.g. Can you read? implies You
can’t read. RQs are prevalent in persuasive dis-
course, and are frequently used ironically (Schaf-
fer, 2005; Ilie, 1994; Gibbs, 2000). Previous work
focuses on their formal semantic properties (Han,
1997), or distinguishing RQs from standard ques-
tions (Bhattasali et al., 2015).

We hypothesized that we could find RQs in
abundance by searching for questions in the mid-
dle of a post, that are followed by a statement, us-
ing the assumption that questions followed by a
statement are unlikely to be standard information-
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seeking questions. We test this assumption by ran-
domly extracting 100 potential RQs as per our def-
inition and putting them out on Mechanical Turk
to 3 annotators, asking them whether or not the
questions (displayed with their following state-
ment) were rhetorical. According to majority vote,
75% of the posts were rhetorical.

We thus use this “middle of post” heuristic to
obviate the need to gather manual annotations for
RQs, and developed regex patterns to find RQs
that were more likely to be sarcastic. A sample of
the patterns, number of matches in the corpus, the
numbers we had annotated, and the percent that
are sarcastic after annotation are summarized in
Table 3.

Rhetorical Questions and Self-Answering
So you do not wish to have a logical debate? Alrighty then. god bless you
anyway, brother.
Prove that? You can’t prove that i’ve given nothing but insults. i’m defend-
ing myself, to mackindale, that’s all. do you have a problem with how i am
defending myself against mackindale? Apparently.

Table 5: Examples of Rhetorical Questions and
Self-Answering

We extract 357 posts following the intermediate
question-answer pairs heuristic from our generic
(Gen) corpus. We then supplement these with
posts containing RQ cues from our cue-annotation
experiments: posts that received 3 out of 5 sar-
castic labels in the experiments were considered
sarcastic, and posts that received 2 or fewer sar-
castic labels were considered not-sarcastic. Our
final rhetorical questions corpus consists of 851
posts per class (1,702 total posts). Table 5 shows
some examples of rhetorical questions and self-
answering from our corpus.
Hyperbole. Hyperbole (Hyp) has been studied
as an independent form of figurative language,
that can coincide with ironic intent (McCarthy
and Carter, 2004; Cano Mora, 2009), and previ-
ous computational work on sarcasm typically in-
cludes features to capture hyperbole (Reyes et al.,
2013). Kreuz and Roberts (1995) describe a stan-
dard frame for hyperbole in English where an ad-
verb modifies an extreme, positive adjective, e.g.
“That was absolutely amazing!” or “That was
simply the most incredible dining experience in
my entire life.”

Colston and O’Brien (2000) provide a theoret-
ical framework that explains why hyperbole is so
strongly associated with sarcasm. Hyperbole ex-
aggerates the literal situation, introducing a dis-
crepancy between the “truth” and what is said, as
a matter of degree. A key observation is that this is

a type of contrast (Colston and Keller, 1998; Col-
ston and O’Brien, 2000). In their framework:

• An event or situation evokes a scale;
• An event can be placed on that scale;
• The utterance about the event contrasts with

actual scale placement.

Figure 2: Hyperbole shifts the strength of what
is said from literal to extreme negative or positive
(Colston and O’Brien, 2000)

Fig. 2 illustrates that the scales that can be
evoked range from negative to positive, undesir-
able to desirable, unexpected to expected and cer-
tain to uncertain. Hyperbole moves the strength
of an assertion further up or down the scale from
the literal meaning, the degree of movement cor-
responds to the degree of contrast. Depending on
what they modify, adverbial intensifiers like to-
tally, absolutely, incredibly shift the strength of the
assertion to extreme negative or positive.

Hyperbole with Intensifiers

Wow! I am soooooooo amazed by your come back skills... another epic
fail!
My goodness...i’m utterly amazed at the number of men out there that are
so willing to decide how a woman should use her own body!

Oh do go on. I am so impressed by your ’intellectuall’ argument. pfft.
I am very impressed with your ability to copy and paste links now what this
proves about what you know about it is still unproven.

Table 6: Examples of Hyperbole and the Effects
of Intensifiers

Table 6 shows examples of hyperbole from our
corpus, showcasing the effect that intensifiers have
in terms of strengthening the emotional evaluation
of the response. To construct a balanced corpus of
sarcastic and not-sarcastic utterances with hyper-
bole, we developed a number of patterns based on
the literature and our observations of the generic
corpus. The patterns, number matches on the
whole corpus, the numbers we had annotated and
the percent that are sarcastic after annotation are
summarized in Table 3. Again, we extract a small
subset of examples from our Gen corpus (30 per
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class), and supplement them with posts that con-
tain our hyperbole cues (considering them sarcas-
tic if they received at least 3/5 sarcastic labels, not-
sarcastic otherwise). The final hyperbole dataset
consists of 582 posts per class (1,164 posts in to-
tal).

To recap, Table 2 summarizes the total number
of posts for each subset of our final corpus.

3 Learning Experiments

Our primary goal is not to optimize classifi-
cation results, but to explore how results vary
across different subcorpora and corpus proper-
ties. We also aim to demonstrate that the qual-
ity of our corpus makes it more straightfor-
ward to achieve high classification performance.
We apply both supervised learning using SVM
(from Scikit-Learn (Pedregosa et al., 2011)) and
weakly-supervised linguistic pattern learning us-
ing AutoSlog-TS (Riloff, 1996). These reveal dif-
ferent aspects of the corpus.

Supervised Learning. We restrict our supervised
experiments to a default linear SVM learner with
Stochastic Gradient Descent (SGD) training and
L2 regularization, available in the SciKit-Learn
toolkit (Pedregosa et al., 2011). We use 10-fold
cross-validation, and only two types of features:
n-grams and Word2Vec word embeddings. We
expect Word2Vec to be able to capture semantic
generalizations that n-grams do not (Socher et al.,
2013; Li et al., 2016). The n-gram features in-
clude unigrams, bigrams, and trigrams, including
sequences of punctuation (for example, ellipses
or “!!!”), and emoticons. We use GoogleNews
Word2Vec features (Mikolov et al., 2013).4

Table 7 summarizes the results of our super-
vised learning experiments on our datasets us-
ing 10-fold cross validation. The data is bal-
anced evenly between the SARCASTIC and NOT-
SARCASTIC classes, and the best F-Measures for
each class are shown in bold. The default W2V
model, (trained on Google News), gives the best
overall F-measure of 0.74 on the Gen corpus for
the SARCASTIC class, while n-grams give the best
NOT-SARCASTIC F-measure of 0.73. Both of
these results are higher F than previously reported
for classifying sarcasm in dialogue, and we might
expect that feature engineering could yield even
greater performance.

4We test our own custom 300-dimensional embeddings
created for the dialogic domain using the Gensim li-
brary (Řehůřek and Sojka, 2010), and a very large corpus
of user-generated dialogue. While this custom model works
well for other tasks on IAC 2.0, it did not work well for sar-
casm classification, so we do not discuss it further.

Form Features Class P R F

Gen N-Grams S 0.73 0.70 0.72
NS 0.71 0.75 0.73

W2V S 0.71 0.77 0.74
NS 0.75 0.69 0.72

RQ N-Grams S 0.71 0.68 0.70
NS 0.70 0.73 0.71

W2V S 0.67 0.72 0.69
NS 0.70 0.64 0.67

Hyp N-Grams S 0.68 0.63 0.65
NS 0.66 0.71 0.68

W2V S 0.57 0.56 0.57
NS 0.57 0.59 0.58

Table 7: Supervised Learning Results for Generic
(Gen: 3,260 posts per class), Rhetorical Questions
(RQ: 851 posts per class) and Hyperbole (Hyp:
582 posts per class)

Figure 3: Plot of Dataset size (x-axis) vs Sarc. F-
Measure (y-axis) for the three subcorpora, with n-
gram features

On the RQ corpus, n-grams provide the best
F-measure for SARCASTIC at 0.70 and NOT-
SARCASTIC at 0.71. Although W2V performs
well, the n-gram model includes features involv-
ing repeated punctuation and emoticons, which
the W2V model excludes. Punctuation and emoti-
cons are often used as distinctive feature of sar-
casm (i.e. “Oh, really?!?!”, [emoticon-rolleyes]).

For the Hyp corpus, the best F-measure for
both the SARCASTIC and NOT-SARCASTIC classes
again comes from n-grams, with F-measures of
0.65 and 0.68 respectively. It is interesting to note
that the overall results of the Hyp data are lower
than those for Gen and RQs, likely due to the
smaller size of the Hyp dataset.

To examine the effect of dataset size, we com-
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pare F-measure (using the same 10-fold cross-
validation setup) for each dataset while holding
the number of posts per class constant. Figure 3
shows the performance of each of the Gen, RQ,
and Hyp datasets at intervals of 100 posts per class
(up to the maximum size of 582 posts per class
for Hyp, and 851 posts per class for RQ). From
the graph, we can see that as a general trend, the
datasets benefit from larger dataset sizes. Interest-
ingly, the results for the RQ dataset are very com-
parable to those of Gen. The Gen dataset eventu-
ally gets the highest sarcastic F-measure (0.74) at
its full dataset size of 3,260 posts per class.

Weakly-Supervised Learning. AutoSlog-TS is
a weakly supervised pattern learner that only re-
quires training documents labeled broadly as SAR-
CASTIC or NOT-SARCASTIC. AutoSlog-TS uses
a set of syntactic templates to define different
types of linguistic expressions. The left-hand
side of Table 8 lists each pattern template and
the right-hand side illustrates a specific lexico-
syntactic pattern (in bold) that represents an in-
stantiation of each general pattern template for
learning sarcastic patterns in our data.5 In addi-
tion to these 17 templates, we added patterns to
AutoSlog for adjective-noun, adverb-adjective and
adjective-adjective, because these patterns are fre-
quent in hyperbolic sarcastic utterances.

The examples in Table 8 show that Colston’s
notion of contrast shows up in many learned pat-
terns, and that the source of the contrast is highly
variable. For example, Row 1 implies a contrast
with a set of people who are not your mother.
Row 5 contrasts what you were asked with what
you’ve (just) done. Row 10 contrasts chapter 12
and chapter 13 (Hirschberg, 1985). Row 11 con-
trasts what I am allowed vs. what you have to do.

AutoSlog-TS computes statistics on the strength
of association of each pattern with each class, i.e.
P(SARCASTIC | p) and P(NOT-SARCASTIC | p),
along with the pattern’s overall frequency. We
define two tuning parameters for each class: θf ,
the frequency with which a pattern occurs, θp, the
probability with which a pattern is associated with
the given class. We do a grid-search, testing the
performance of our patterns thresholds from θf =
{2-6} in intervals of 1, θp={0.60-0.85} in inter-
vals of 0.05. Once we extract the subset of pat-
terns passing our thresholds, we search for these
patterns in the posts in our development set, clas-
sifying a post as a given class if it contains θn={1,

5The examples are shown as general expressions for read-
ability, but the actual patterns must match the syntactic con-
straints associated with the pattern template.

Pattern Template Example Instantiations

1 <subj> PassVP Go tell your mother, <she> might be inter-
ested in your fulminations.

2 <subj> ActVP Oh my goodness. This is a trick called se-
mantics. <I> guess you got sucked in.

3 <subj> ActVP Dobj yet <I> do nothing to prevent the situation

4 <subj> ActInfVP I guess <I> need to check what website I
am in

5 <subj> PassInfVP <You> were asked to give us your expla-
nation of evolution. So far you’ve just ...

6 <subj> AuxVP Dobj Fortunately <you> have the ability to ...

7 <subj> AuxVP Adj Or do you think that <nothing> is capable
of undermining the institution of marriage?

8 ActVP <dobj> Oh yes, I know <everything> that [...]

9 InfVP <dobj> Good idea except we do not have to elect
<him> to any post... just send him over
there.

10 ActInfVP <dobj> Try to read <chptr 13> before chptr 12, it
will help you out.

11 PassInfVP <dobj> i love it when people do this. ’you have to
prove everything you say, but i am allowed
to simply make <assertions> and it’s your
job to show i’m wrong.’

12 Subj AuxVP <dobj> So your answer [then] is <nothing>...

13 NP Prep <np> There are MILLIONS of <people> saying
all sorts of stupid things about the president.

14 ActVP Prep <np> My pyramidal tinfoil hat is an antenna for
knowledge and truth. It reflects idiocy and
dumbness into deep space. You still have not
admitted to <your error>

15 PassVP Prep <np> Likelihood is that they will have to be left
alone for <a few months> [...] Sigh, I won-
der if ignorance really is blissful.

16 InfVP Prep <np> I masquerade as an atheist and a 6-day cre-
ationist at the same time to try to appeal to
<a wider audience>.

17 <possessive> NP O.K. let’s play <your> game.

Table 8: AutoSlog-TS Templates and Example In-
stantiations

2, 3} of the thresholded patterns. For more detail,
see (Riloff, 1996; Oraby et al., 2015).

An advantage of AutoSlog-TS is that it sup-
ports systematic exploration of recall and preci-
sion tradeoffs, by selecting pattern sets using dif-
ferent parameters. The parameters have to be
tuned on a training set, so we divide each dataset
into 80% training and 20% test. Figure 4 shows
the precision (x-axis) vs. recall (y-axis) tradeoffs
on the test set, when optimizing our three parame-
ters for precision. Interestingly, the subcorpora for
RQ and Hyp can get higher precision than is pos-
sible for Gen. When precision is fixed at 0.75, the
recall for RQ is 0.07 and the recall for Hyp is 0.08.
This recall is low, but given that each retrieved
post provides multiple cues, and that datasets on
the web are huge, these P values make it possible
to bootstrap these two classes in future.
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Prob. Freq. Pattern and Text Match Sample Post
Sarcastic Example Patterns

1.00 8 Adv Adv (AH YES) Ah yes, your diversionary tactics.
0.91 11 Adv Adv (THEN AGAIN) But then again, you become what you hate [...]
0.83 36 ActVP Prep <NP> (THANKS FOR) Thanks for missing the point.
0.80 20 ActVP <dobj> (TEACH) Teach the science in class and if that presents a problem [...]
0.80 10 InfVP <dobj> (ANSWER) I think you need to answer the same question [...]
0.79 114 <subj>ActVp (GUESS) So then I guess you could also debate that algebra serves no purpose
0.78 18 ActVP <dobj> (IGNORE) Excellent ignore the issue at hand and give no suggestion
0.74 27 Adv Adv (ONCE AGAIN) you attempt to once again change the subject
0.71 35 Adj Noun (GOOD IDEA) ...especially since you think everything is a good idea

Not-Sarcastic Example Patterns
0.92 25 Adj Noun (SECOND AMENDMENT) the nature of the Second Amendment
0.90 10 Np Prep <NP> (PROBABILITY OF) the probability of [...] in some organism
0.88 42 ActVP <dobj> (SUPPORT) I really do not support rule by the very, very few
0.84 32 Np Prep <NP> (EVIDENCE FOR) We have no more evidence for one than the other.
0.79 44 Np Prep (THEORY OF) [...] supports the theory of evolution [...]
0.78 64 Np Prep <NP> (NUMBER OF) minor differences in a limited number of primative organisms
0.76 46 Adj Noun (NO EVIDENCE) And there is no evidence of anything other than material processes
0.75 41 Np Prep <NP> (MAJORITY OF) The majority of criminals don’t want to deal with trouble.
0.72 25 ActVP <dobj> (EXPLAIN) [...] it does not explain the away the whole shift in the numbers [..]

Table 9: Examples of Characteristic Patterns for Gen using AutoSlog-TS Templates

Figure 4: Plot of Precision (x-axis) vs Recall (y-
axis) for three subcorpora with AutoSlog-TS pa-
rameters, aimed at optimizing precision

4 Linguistic Analysis

Here we aim to provide a linguistic characteriza-
tion of the differences between the sarcastic and
the not-sarcastic classes. We use the AutoSlog-TS
pattern learner to generate patterns automatically,
and the Stanford dependency parser to examine
relationships between arguments (Riloff, 1996;
Manning et al., 2014). Table 10 shows the number
of sarcastic patterns we extract with AutoSlog-TS,
with a frequency of at least 2 and a probability
of at least 0.75 for each corpus. We learn many
novel lexico-syntactic cue patterns that are not
the regex that we search for. We discuss specific
novel learned patterns for each class below.

Generic Sarcasm. We first examine the different
patterns learned on the Gen dataset. Table 9 show
examples of extracted patterns for each class. We

observe that the NOT-SARCASTIC patterns appear
to capture technical and scientific language, while
the SARCASTIC patterns tend to capture subjec-
tive language that is not topic-specific. We ob-
serve an abundance of adjective and adverb pat-
terns for the sarcastic class, although we do not
use adjective and adverb patterns in our regex re-
trieval method. Instead, such cues co-occur with
the cues we search for, expanding our pattern in-
ventory as we show in Table 10.

Dataset # Sarc
Patterns

# NotSarc
Patterns

Generic (Gen) 1,316 3,556

Rhetorical Questions (RQ) 671 1,000

Hyperbole (Hyp) 411 527

Table 10: Total number of patterns passing
threshold of Freq ≥ 2, Prob ≥ 0.75

Rhetorical Questions. We notice that while the
NOT-SARCASTIC patterns generated for RQs are
similar to the topic-specific NOT-SARCASTIC pat-
terns we find in the general dataset, there are
some interesting features of the SARCASTIC pat-
terns that are more unique to the RQs.

Many of our sarcastic questions focus specifi-
cally on attacks on the mental abilities of the ad-
dressee. This generalization is made clear when
we extract and analyze the verb, subject, and
object arguments using the Stanford dependency
parser (Manning et al., 2014) for the questions in
the RQ dataset. Table 11 shows a few examples of
the relations we extract.
Hyperbole. One common pattern for hyperbole
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Relation Rhetorical Question

realize(you,
human)

Uhm, you do realize that humans and
chimps are not the same things as dogs, cats,

horses, and sharks ... right?

recognize(you) Do you recognize that babies grow and live
inside women?

not read(you) Are you blind, or can’t you read?

get(information) Have you ever considered getting scientific
information from a scientific source?

have(education) And you claim to have an education?

not have(dummy,
problem)

If these dummies don’t have a problem
with information increasing, but do have a

problem with beneficial information
increasing, don’t you think there is a

problem?

Table 11: Attacks on Mental Ability in RQs

involves adverbs and adjectives, as noted above.
We did not use this pattern to retrieve hyperbole,
but because each hyperbolic sarcastic utterance
contains multiple cues, we learn an expanded class
of patterns for hyperbole. Table 12 illustrates
some of the new adverb adjective patterns that are
frequent, high-precision indicators of sarcasm.

We learn a number of verbal patterns that we
had not previously associated with hyperbole, as
shown in Table 13. Interestingly, many of these
instantiate the observations of Cano Mora (2009)
on hyperbole and its related semantic fields: creat-
ing contrast by exclusion, e.g. no limit and no way,
or by expanding a predicated class, e.g. everyone
knows. Many of them are also contrastive. Ta-
ble 12 shows just a few examples, such as though
it in no way and so much knowledge.

Pattern Freq Example
no way 4 that is a pretty impresive education you

are working on (though it in no way
makes you a shoe in for any political

position).
so much 17 but nooooooo we are launching missiles

on libia thats solves alot .... because we
gained so much knowledge and learned

from our mistakes
oh dear 12 oh dear, he already added to the gene

pool
how much 8 you have no idea how much of a

hippocrit you are, do you
exactly what 5 simone, exactly what is a gun-loving

fool anyway, other than something you...

Table 12: Adverb Adjective Cues in Hyperbole

5 Conclusion and Future Work

We have developed a large scale, highly diverse
corpus of sarcasm using a combination of linguis-
tic analysis and crowd-sourced annotation. We use
filtering methods to skew the distribution of sar-
casm in posts to be annotated to 20-31%, much
higher than the estimated 12% distribution of sar-
casm in online debate forums. We note that when

Pattern Freq Example
i bet 9 i bet there is a university thesis in there

somewhere
you don’t see 7 you don’t see us driving in a horse and

carriage, do you
everyone
knows

9 everyone knows blacks commit more
crime than other races

I wonder 5 hmm i wonder ware the hot bed for
violent christian extremists is

you trying 7 if you are seriously trying to prove
your god by comparing real life things

with fictional things, then yes, you have
proved your god is fictional

Table 13: Verb Patterns in Hyperbole

using Mechanical Turk for sarcasm annotation, it
is possible that the level of agreement signals how
lexically-signaled the sarcasm is, so we settle on a
conservative threshold (at least 6 out of 9 annota-
tors agreeing that a post is sarcastic) to ensure the
quality of our annotations.

We operationalize lexico-syntactic cues preva-
lent in sarcasm, finding cues that are highly in-
dicative of sarcasm, with ratios up to 87%. Our
final corpus consists of data representing generic
sarcasm, rhetorical questions, and hyperbole.

We conduct supervised learning experiments to
highlight the quality of our corpus, achieving a
best F of 0.74 using very simple feature sets. We
use weakly-supervised learning to show that we
can also achieve high precision (albeit with a low
recall) for our rhetorical questions and hyperbole
datasets; much higher than the best precision that
is possible for the Generic dataset. These high pre-
cision values may be used for bootstrapping these
two classes in the future.

We also present qualitative analysis of the dif-
ferent characteristics of rhetorical questions and
hyperbole in sarcastic acts, and of the distinctions
between sarcastic/not-sarcastic cues in generic
sarcasm data. Our analysis shows that the forms
of sarcasm and its underlying semantic contrast in
dialogue are highly diverse.

In future work, we will focus on feature engi-
neering to improve results on the task of sarcasm
classification for both our generic data and sub-
classes. We will also begin to explore evaluation
on real-world data distributions, where the ratio
of sarcastic/not-sarcastic posts is inherently unbal-
anced. As we continue our analysis of the generic
and fine-grained categories of sarcasm, we aim to
better characterize and model the great diversity of
sarcasm in dialogue.
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Abstract

Researchers are beginning to explore how
to generate summaries of extended argu-
mentative conversations in social media,
such as those found in reader comments in
on-line news. To date, however, there has
been little discussion of what these sum-
maries should be like and a lack of human-
authored exemplars, quite likely because
writing summaries of this kind of inter-
change is so difficult. In this paper we
propose one type of reader comment sum-
mary – the conversation overview sum-
mary – that aims to capture the key ar-
gumentative content of a reader comment
conversation. We describe a method we
have developed to support humans in au-
thoring conversation overview summaries
and present a publicly available corpus –
the first of its kind – of news articles plus
comment sets, each multiply annotated,
according to our method, with conversa-
tion overview summaries.

1 Introduction

In the past fifteen years there has been a tremen-
dous growth in on-line news and, associated with
it, the new social media phenomenon of on-line
reader comments. Virtually all major newspa-
pers and news broadcasters now support a reader
comment facility, which allows readers to partic-
ipate in multi-party conversations in which they
exchange views and opinion on issues in the news.

One problem with such conversations is that
they can rapidly grow to hundreds or even thou-
sands of comments. Few readers have the patience
to wade through this much content. One poten-
tial solution is to develop methods to summarize

comment automatically, allowing readers to gain
an overview of the conversation.

In recent years researchers have begun to ad-
dress the problem of summarising reader com-
ment. Broadly speaking, two main approaches to
the problem have been pursued. In the first ap-
proach, which might be described as technology-
driven, researchers have proposed methods to au-
tomatically generate summaries of reader com-
ment based on combining existing technologies
(Khabiri et al., 2011; Ma et al., 2012; Llewellyn
et al., 2014). These authors adopt broadly sim-
ilar approaches: first reader comments are topi-
cally clustered, then comments within clusters are
ranked and finally one or more top-ranked com-
ments are selected from each cluster, yielding an
extractive summary. A significant weakness of
such summaries is that they fail to capture the es-
sential argument-oriented nature of these multi-
way conversations, since single comments taken
from topically distinct clusters do not reflect the
argumentative structure of the conversation.

In the second approach, which might be char-
acterised as argument-theory-driven, researchers
working on argument mining from social media
have articulated various schemes defining argu-
ment elements and relations in argumentative dis-
course and in some cases begun work on compu-
tational methods to identify them in text (Ghosh
et al., 2014; Habernal et al., 2014; Swanson et al.,
2015; Misra et al., 2015). If such elements and
relations can be automatically extracted then they
could serve as the basis for generating a summary
that better reflects the argumentative content of
reader comment. Indeed, several of these authors
have cited summarization as a motivating applica-
tion for their work. To the best of our knowledge,
however, none have proposed how, given an anal-
ysis in terms of their theory, one might produce a
summary of a full reader comment set.
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Id Poster Reply Comment
1 A I can’t see how it won’t attract rats and other vermin. I know some difficult decisions have to be made

with cuts to funding, but this seems like a very poorly thought out idea.
2 B 2→ 1 Plenty of people use compost bins and have no trouble with rats or foxes.
3 C 3→ 2 If they are well-designed and well-managed- which is very easily accomplished.

If 75% of this borough composted their waste at home then they could have their bins collected every
six-weeks. It’s amazing what doesn’t need to be put into landfill.

4 D 4→1 It won’t attract vermin if the rubbish is all in the bins. Is Bury going to provide larger bins for families
or provide bins for kitchen and garden waste to cut down the amount that goes to landfill? Many people
won’t fill the bins in 3 weeks - even when there was 5 of us here, we would have just about managed.

5 E 5→ 1 Expect Bury to be knee deep in rubbish by Christmas it’s a lame brained Labour idea and before long
it’ll be once a month collections. I’m not sure what the rubbish collectors will be doing if there are
any. We are moving back to the Middle Ages, expect plague and pestilence.

6 F Are they completely crazy? What do they want a new Plague?
7 G 7→6 Interesting how you suggest that someone else is completely crazy, and then talk about a new plague.
8 H 8→7 Do you think this is a good idea? We struggle with fortnightly collection. This is tantamount to a

dereliction of duty. What are taxpayers paying for? I doubt anyone knew of this before casting their
vote.

9 I 9→8 I think it is an excellent idea. We have fortnightly collection, and the bin is usually half full or
less[family of 5].. Since 38 of the 51 council seats are held by Labour, it seems that people did vote
for this. Does any party offer weekly collections?

10 G 10→8 I don’t think it’s a good idea. But..it won’t cause a plague epidemic.

Figure 1: Comments responding to a news article announcing reduced bin collection in Bury. Full article
and comments at: http://gu.com/p/4v2pb/sbl.

In our view, what has been lacking so far is
a discussion of and proposed answer to the fun-
damental question of what a summary of reader
comments should be like and human-generated ex-
emplars of such summaries for real sets of reader
comments. A better idea of the target for summari-
sation and a resource exemplifying it would put
the community in a better position to choose meth-
ods for summarisation of reader comment and to
develop and evaluate their systems.

In this paper we make three principal contribu-
tions. First, after a brief discussion of the nature
of reader comment we make a proposal about one
type of informative reader comment summary that
we believe would have wide utility. Second, we
present a three stage method for manually creating
reference summaries of the sort we propose. This
method is significant since the absence to date of
human-authored reader comment summaries is no
doubt due to the very serious challenge of produc-
ing them, something our method alleviates to no
small degree. Third, we report the construction
and analysis of a corpus of human-authored ref-
erence summaries, built using our method – the
first publicly available corpus of human-authored
reader comment summaries.

2 Summaries of Reader Comments

What should a summary of reader comment con-
tain? As Spärck-Jones (2007) has observed, what
a summary should contain is primarily dependent
on the nature of the content to be summarised and

the use to which the summary is to be put. In this
section we first make a number of observations
about the character of reader comments and offer
a specification for a general informative summary.

2.1 The Character of Reader Comments

Figure 1 shows a fragment of a typical comment
stream, taken from reader comment responses to a
Guardian article announcing the decision by Bury
town council to reduce bin collection to once every
three weeks. While not illustrating all aspects of
reader comment interchanges, it serves as a good
example of many of their core features.

Comment sets are typically organised into
threads. Every comment is in exactly one thread
and either initiates a new thread or replies to ex-
actly one comment earlier in a thread. This gives
the conversations the formal character of a set of
trees, with each thread-initial comment being the
root node of a separate tree and all other comments
being either intermediate or leaf nodes, whose par-
ent is the comment to which they reply. While
threads may be topically cohesive, in practice they
rarely are, with the same topic appearing in mul-
tiple threads and threads drifting from one topic
onto another (see, e.g. comments 5 and 6 in Fig-
ure 1 both of which cite plague as a likely outcome
of the new policy but are in different threads).

Our view, based on an analysis of scores of
comment sets, is that reader comments are primar-
ily argumentative in nature, with readers making
assertions that either (1) express a viewpoint (or
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stance) on an issue raised in the original article
or by an earlier commenter, or (2) provide evi-
dence or grounds for believing a viewpoint or as-
sertion already expressed. Issues are questions on
which multiple viewpoints are possible; e.g., the
issue of whether reducing bin collection to once
every three weeks is a good idea, or whether re-
ducing bin collection will lead to an increase in
vermin. Issues are very often implicit, i.e not di-
rectly expressed in the comments (e.g., the issue of
whether reducing bin collection will lead to an in-
crease in vermin is never explicitly mentioned yet
this is clearly what comments 1-4 are addressing).
A fuller account of this issue-based framework for
analysing reader comment is given in Barker and
Gaizauskas (2016).

Aside from argumentative content, reader com-
ments exhibit other features as well. For exam-
ple, commenters may seek clarification about facts
(e.g. comment 4 where the commenter asks Is
Bury going to provide larger bins for families
. . . ?). But these clarifications are typically car-
ried out in the broader context of making an argu-
ment, i.e. advancing evidence to support a view-
point. Comments may also express jokes or emo-
tion, though these too are often in the service of
advancing some viewpoint (e.g. sarcasm or as
in comments 4 and 6 emotive terms like lame-
brained and crazy clearly indicating the com-
menters’ stances, as well as their emotional atti-
tude).

2.2 A Conversation Overview Summary

Given the fundamentally argumentative nature of
reader comments as sketched above, one type of
summary of wide potential use is a generic infor-
mative summary that aims to provide an overview
of the argument in the comments. Ideally, such a
summary should:

1. Identify and articulate the main issues in
the comments. Main issues are those receiv-
ing proportionally the most comments. They
should be prioritized for inclusion in a space-
limited summary.

2. Characterise opinion on the main issues. To
characterise opinion on an issue typically in-
volves: identifying alternative viewpoints; indi-
cating the grounds given to support viewpoints;
aggregating – indicating how opinion was dis-
tributed across different issues, viewpoints and

grounds, using quantifiers or qualitative expres-
sions e.g. “the majority discussed x”; indicat-
ing where there was consensus or agreement
among the comment; indicating where there
was disagreement among the comment.

We presented this proposed summary type to
a range of reader comment users, including com-
ment readers, posters, journalists and news editors
and received very positive feedback via a question-
naire1. Based on this, we developed a set of guide-
lines to inform the process of summary authoring.
Whilst clear about what the general nature of the
target summary should be, the guidelines avoid be-
ing too prescriptive, leaving authors some freedom
to include what feels intuitively correct to include
in the summary for any given conversation.

3 A Method for Human Authoring of
Reader Comment Summaries

To help people write overview summaries of
reader comments, we have developed a 4-stage
method, which is described below2. Summary
writers are provided with an interface, which
guides annotators through the 4-stage process,
presenting texts in a form convenient for annota-
tion, and collecting the annotations. The inter-
face has been designed to be easily configurable
for different languages, with versions for English,
French and Italian already in issue. Key details of
the methodology, guidelines and example annota-
tions follow. Screenshots of the interfaces support-
ing stages 1 and 3 can be found in the Appendix.

Stage 1: Comment Labeling In this stage, an-
notators are shown an article in the interface, plus
its comments (including the online name of the

1Further details on the summary specification and the
end-user survey on it can be found in SENSEI deliver-
able D1.2 “Report on Use Case Design and User Require-
ments” at: http://www.sensei-conversation.
eu/deliverables/.

2The method described here is not unlike the general
method of thematic coding widely used in qualitative re-
search, where a researcher manually assigns codes (either
pre-specified and/or “discovered” as the coding process un-
folds) to textual units, then groups the units by code and fi-
nally seeks to gain insights from the data so organised (Sal-
dana, 2015). Our method differs in that: (1) our “codes” are
propositional paraphrases of viewpoints expressed in com-
ments rather than the broad thematic codes, commonly used
in social science research, and (2) we aim to support an an-
notator in writing a summary that captures the main things
people are saying as opposed to a researcher developing a
thesis, though both rely on an understanding of the data that
the coding and grouping process promotes.
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1. Comment: “Smart machines now collect our
highway tolls, check us out at stores, take our
blood pressure . . . ” And yet unemployment re-
mains low.
Label: smart machines now carry out many jobs
for us (collect tolls; checkout shopping; take
blood pressure), but unemployment stays low.

2. Comment: Not compared to the 70s, only relative
to the 80s/90s.
Label: disagrees with 1; unemployment is not
low compared to the 70’s; is low relative to the
80’s/90’s

Figure 2: Two comments with labels (source:
www.theguardian.com/commentisfree/2016/
apr/07/robots-replacing-jobs-luddites-
economics-labor).

poster, and reply-to information). Annotators are
asked to write a ‘label’ for each comment, which
is a short, free text annotation, capturing its es-
sential content. A label should record the main
“points, arguments or propositions” expressed in
a comment, in effect providing a mini-summary.
Two example labels are shown in Figure 2.

We do not insist on a precise notation for labels,
but we advise annotators to:

1. record when a comment agrees or disagrees
with something/someone

2. note grounds given in support of a position
3. note jokes, strong feeling, emotional content
4. use common keywords/abbreviations to de-

scribe similar content in different comments
5. return regularly to review/revise previous la-

bels, when proceeding through the comments
6. make explicit any implicit content that is im-

portant to the meaning, e.g. “unemployment”
in the second label of the figure (note: this
process can yield labels that are longer than
the original comment).

The label annotation process helps annotators to
gain a good understanding of key content of the
comments, whilst the labels themselves facilitate
the grouping task of the next stage.

Stage 2: Label Grouping In stage 2, we ask an-
notators to sort through the Stage 1 labels, and to
group together those which are similar or related.
Annotators then provide a “Group Label” to de-
scribe the common theme of the group in terms of
e.g. topic, propositions, contradicting viewpoints,
humour, etc. Annotators may also split the labels
in a group into “Sub-Groups” and assign a “Sub-
Group Label”. This exercise helps annotators to

make better sense of the broad content of the com-
ments, before writing a summary.

The annotation interface re-displays the labels
created in Stage 1 in an edit window, so the anno-
tator can cut/paste the labels (each with its com-
ment id and poster name) into their groups, add
Group Labels, and so on. Here, annotators work
mainly with the label text, but can refer to the
source comment text (shown in context in the
comment stream) if they so wish. When the anno-
tator feels they have sorted and characterised the
data sufficiently, they can proceed to stage 3.

Stage 3: Summary Generation Annotators
write summaries based on their Label-Grouping
analysis. The interface (Figure 5) displays the
Grouping annotation from Stage 2, alongside a
text box where the summary is written in two
phases. Annotators first write an ‘unconstrained
summary’, with no word-length requirement, and
then (with the first summary still visible) write a
‘constrained-length summary’ of 150–250 words.

Further analysis may take place as a person de-
cides on what sentences to include in the summary.
For example, an annotator may:

• develop a group label, e.g. producing a pol-
ished or complete sentence;
• carry out further abstraction over the groups,

e.g. using a new high-level statement to sum-
marise content from two separate groups;
• exemplify, clarify or provide grounds for a

summary sentence, using details from labels
or comments within a group, etc.

We encourage the use of phrases such as “many/
several/few comments said. . . ”, “opinion was di-
vided on. . . ”, “the consensus was. . . ”, etc, to
quantify the proportion of comments/posters ad-
dressing various topics/issues, and the strength/
polarisation of opinion/feeling on different issues.

Stage 4: Back-Linking In this stage, annotators
link sentences of the constrained-length summary
back to the groups (or sub-groups) that informed
their creation. Such links imply that at least some
of the labels in a group (or sub-group) played a
part supporting the sentence. The interface dis-
plays the summary sentences alongside the Label
Grouping from Stage 2, allowing the annotator to
select a sentence and a group (or sub-group — the
more specific correct option is preferred) to as-
sert a link between them, until all links have been
added. Note that while back-links are to groups
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of labels, the labels have associated comment ids,
so indirectly summary sentences are linked back
to the source comments that support them. This
last stage goes beyond the summary creation pro-
cess, but captures information valuable for system
development and evaluation.

4 Corpus Creation

4.1 Annotators and training
We recruited 15 annotators to carry out the sum-
mary writing task. They included: final year jour-
nalism students, graduates with expertise in lan-
guage and writing, and academics. The majority
of annotators were native English speakers; all had
excellent skills in written English. We provided a
training session taking 1.5-2 hours for all annota-
tors. This included an introduction to our guide-
lines for writing summaries.

4.2 Source Data
From an initial collection of 3,362 Guardian news
articles published in June-July 2014 and asso-
ciated comment sets, we selected a small sub-
set for use in the summary corpus. Articles
were drawn from the Guardian-designated topic-
domains: politics, sport, health, environment,
business, Scotland-news and science. Table 1
shows the summary statistics for the 18 selected
sets of source texts (articles and comments). The
average article length is 772 words. The com-
ment sets ranged in size from 100 to 1,076 com-
ments. For the annotation task, we selected a
subset of each full comment set, by first order-
ing threads into chronological order (i.e. oldest
first), and then selecting the first 100 comments.
If the thread containing the 100th comment had
further comments, we continued including com-
ments until the last comment in that thread. This
produced a collection of reduced comment sets to-
talling 87,559 words in 1,845 comments. Reduced
summary comment sets vary in length from 2,384
words to 8,663 words.

5 Results and Analysis

The SENSEI Social Media Corpus, comprising
the full text of the original Guardian articles and
reader comments as well as all annotations gen-
erated in the four stage summary writing method
described in Section 3 above – comment labels,
groups, summaries and backlinks – is freely avail-
able at: nlp.shef.ac.uk/sensei/.

5.1 Overview of Corpus Annotations

There were 18 articles and comment sets, of which
15 were double annotated and 3 were triple anno-
tated, giving a total of 39 sets of complete annota-
tions. Annotators took 3.5-6 hours to complete the
task for an article and comment set.

Table 2 shows a summary of corpus annota-
tions counts. The corpus includes 3,879 com-
ment labels, an average of 99.46 per annotation
set (av. 99.46/AS). There are, in total, 329 group
annotations (av. 8.44/AS) and 218 subgroups (av.
5.59/AS). Each of the 547 groups/subgroups has a
short group label to characterise its content. Such
labels range from keywords (“midges”, “UK cli-
mate”, “fining directors”, “Air conditioning/fans”)
to full propositions/questions (“Not fair that SE
gets the investment”, “Why use the fine on wifi?”).
Each of the 39 annotation sets has two summaries,
of which the unconstrained summaries have aver-
age length 321.41 words, and the constrained sum-
maries, 237.74 (a 26% decrease). Each summary
sentence is back-linked to one or more groups
comment labels that informed it.

5.2 Observations

Variation in Grouping There is considerable
variation between annotators in use of the option
to group/sub-group comment labels. Whilst the
average of groups per annotation set was 9.0, for
the annotator who grouped the least this was 4.0,
and the maximum average 14.5. For sub-groups,
the average per annotation set was 5.0. 14 of 15
annotators used the sub-group option in at least
one annotation set, and only 5 of the 39 sets in-
cluded no sub-groups. A closer look shows a di-
vide between annotators who use sub-groups quite
frequently (7 having an average of ≥6.5/AS) and
those who do not (with av. ≤2/AS).

Other variations in annotator style include the
fact that around a third of them did most of their
grouping at the sub-group level (4 of the 6 who fre-
quently used subgroups were amongst those hav-
ing the lowest average number of groups). Also,
whilst a fifth of annotators preferred to use mainly
a single level of grouping (i.e. had a high average
of groups, and a low average of sub-groups, per
annotation set), another fifth of annotators liked to
create both a high number of groups and of sub-
groups, i.e. used a more fine-grained analysis.

We also investigated whether the word-length
of a comment set influenced the number of
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Total Min Max Mean
Article and Comment Sets(number) 18 - - -
Article, word length 13,898 415 2,021 772.11
Full Comment Set, total word length 318,618 4,918 37,543 17,701
Full Comment Set, total comments 6,968 100 1,076 387.11
Reduced Comment Set (number) 18 - - -
Reduced Comment Set, total comments 1,845 100 109 102.5
Reduced Comment Set, total word length 87,559 2,384 8,663 4,864.39
Reduced Comment Set, single comment word length - 1 547 47.46

Table 1: Summary Statistics for Corpus Source Texts

Total Min Max Mean
Annotated Comment Set (number) 18 - - -
Completed Annotation Sets (number) 39 - - -
Stage 1 Labels (number) 3,879 69 109 99.46
Length of Unconstrained Summaries (words) 12,535 131 664 321.41
Length of Constrained Summaries (words) 9,272 152 249 237.74
Number of Groups / Group Labels 329 4 17 8.44
Number of Sub-Groups / Sub-Group Labels 218 0 15 5.59
Number of Labels in Groups 4,050 1 84 12.31
Number of Labels in Sub-groups 1,435 1 27 6.58
Note: Total count, min, max and mean are drawn from across the full set of corpus annotations

Table 2: Annotation Statistics

groups/subgroups created by the annotators, but
surprisingly, there was no obvious correlation.

Reader Comment Summaries We carried out
a preliminary qualitative analysis to establish
the character of the summaries produced, which
shows that they are in general all coherent and
grammatical, and that the majority of summary
sentences characterise views on issues. Some ob-
servations on summary content follow:

1. All summaries contain sentences reporting
different views on issues. Figure 2 shows two typi-
cal summaries, which describe a range of views on
two main issues: “whether or not citizens can cope
with reductions in bin collection” (Summary 1),
and “whether or not new taxes on the rich should
be introduced to pay for the NHS” (Summary 2).

2. Summaries frequently indicate points of con-
tention or counter arguments, e.g. sentences (S2)
and (S5) of Summary 2.

3. Summaries often provide examples of the rea-
sons people gave in support of a viewpoint: e.g.
(S2) of Summary 1 explains that people thought
a reduced bin collection would attract vermin be-
cause the bins will overflow with rubbish.

4. Annotators often indicate the propor-
tion/amount of comment addressing a particular
topic/issue or supporting a particular viewpoint,
e.g. see (S6) of Summary 2; (S3) of Summary 1.
5. While the majority of annotators abstracted
across groups of comments to describe views on
issues, there were a few outliers who did not.
For example, for an article about a heatwave in
the UK, the two annotators grouped the same 8
comments, but summarised the content very dif-
ferently. Annotator 1 generalised over the com-
ments: “A small group of comments discussed
how the heat brings about the nuisance of midges
and how to deal with them”. Annotator 2 listed
the points made in successive comments: “One
person said how midges were a problem in this
weather, another said they should shut the win-
dows or get a screen. One person told an anecdote
about the use of a citronella candle . . . another said
they were surprised the candle worked as they had
been severely bitten after using citronella oil”.
6. Very few summary sentences describe a dis-
cussion topic without indicating views on it (e.g.
“Many comments discuss the disposal of fat”).

Analysis revealed that summaries also include
examples of: Background about, e.g., an event,
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Summary 1
(S1) Opinions throughout the comments were divided
regarding whether residents could cope with Bury’s de-
cision to collect grey household bins every three weeks
rather than every two, and the impact this could have
on households and the environment. (S2) Some ar-
gued how the reduction in bin collection would at-
tract vermin as bins overflow with rubbish, while oth-
ers gave suggestions of how waste could be reduced.
(S3) The largest group of commenters reflected on how
successful (or not) their specific bin collection scheme
was at reducing waste and increasing recycling. (S4)
Throughout the comments there appeared to be some
confusion on what waste could be recycled in the grey
household bin in Bury. (S5) It also appeared unclear if
Bury currently provides a food waste bin and if not one
commenter suggested that the borough should provide
one in the effort to reduce grey bin waste. (S6) A large
number of comments suggested how residents could
reduce the amount of waste going into the grey house-
hold bin by improving their recycling behaviour. (S7)
This led to a deeper discussion regarding the pros and
cons of reusable and disposable nappies...

Summary 2
(S1) The majority of people agreed that businesses and the rich
should pay more tax to fund the NHS, rather than those on low in-
comes. (S2) Some said income tax should be raised for the highest
earners and others suggested a ’mansion tax’. (S3) Some com-
menters suggested that the top one percent of earners should pay
up to 95 in income tax. (S4) Although, there was a debate as to
how ’rich’ can be defined fairly. (S5) Other commenters pointed
out that raising taxes would damage the economy and drive the
most talented minds and business to different countries with lower
taxes. (S6) A large proportion of commenters said the government
should do more to tackle tax evasion and avoidance by big busi-
nesses and the rich. (S7) But some said the extent of tax evasion
was exaggerated by the press. (S8) A strong number of people
criticised the coalition for cutting taxes for the rich and placing
the burden on lower-paid workers. (S9) They said that income tax
has been cut for the very rich, while benefits have been slashed and
VAT has increased, making life for low-paid workers more diffi-
cult. (S10) Many criticised the Liberal Democrats for going into
a coalition with the Conservatives and failing to keep promises.
(S11) Many said they had failed to curb Tory excesses and had
abandoned their core principles and pledges. (S12) A small mi-
nority said that the NHS is too expensive and needs reform.

Figure 3: Two human authored summaries of comment sets. These summaries and the source articles
and comments are in the SENSEI Corpus available at: nlp.shef.ac.uk/sensei.

practice or person, to clarify an aspect of the
debate, e.g. see (S5) of Summary 1, Humour;
Feelings and Complaints, about e.g. commenters
and reporters.

5.3 Similarity of Summary Content

We investigated the extent to which summaries of
the same set of comments by different annotators
have the same summary content, by performing
a content comparison assessment on 10 randomly
selected summary pairs, using a method similar to
the manual evaluation method of DUC 2001 (Lin
and Hovy, 2002).

Given summaries A and B, for each sentence
s in A, a subject judges the extent to which the
meaning of s is evidenced (anywhere) in B, as-
signing a score on a 5-point scale (5=all meaning
evidenced; 1=none is). Any score above 1 requires
evidence of common propositional content (i.e., a
common entity reference alone would not suffice).
After A is compared to B, B is compared to A.

Comparison of the 10 random summary pairs
required 300 sentence judgements, which were
each done twice by two judges and averaged. In
these results, 17% of summary sentences received
a score of 5 (indicating all meaning evidenced) and
40% a score between 3 and 4.5 (suggesting some
or most of their meaning was evidenced). Only
15% of sentences received a score of 1.

Looking at the content overlap per individual
summary pair (by averaging the sentence overlap

scores for that pair), we find values for the 10 pairs
that range from 2.56 up to 3.65 (with overall aver-
age 3.06). Scores may be affected by the length of
comment sets (as longer sets give more scope for
variation and complexity), and we observe that the
two lowest scores are for long comment sets.

We assessed the agreement between judges on
this task, by comparing their scores for each sen-
tence. Scores differ by 0 in 46% of cases, and by 1
in 33%, giving a combined 79% with ‘near agree-
ment’. Scores differ by >2 in only 6% of cases.
These results suggest that average sentence simi-
larity is a reliable measure of summary overlap.

6 Related Work

Creating abstractive reference summaries of ex-
tended dialogues is hard. A more common ap-
proach involves humans assessing source units
(e.g., comments in comment streams, turns in
email exchanges) based on their perceived im-
portance (aka “salience”) for inclusion in an end
summary. See, e.g., Khabiri et al.’s (2011) work
on comments on YouTube videos; Murray and
Carenini’s (2008) work on summarizing email dis-
cussions. The result is a “gold standard” set of
units, each with a value based on multiple human
annotations. A system generated extractive sum-
mary is then scored against this gold standard. The
underlying assumption is that a good summary of
length n is one that has a high score when com-
pared against the top-ranked n gold standard units.
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Such an approach is straightforward and pro-
vides useful feedback for extractive summariza-
tion systems. While the gold standard is extrac-
tive, the selected content may have an abstrac-
tive flavour if annotators are instructed to favour
“meta-level” source units that contain overview
content. But the comment domain has few obvious
examples of meta-level sentences; explicit refer-
ences to the issues under discussion are few, as are
reflective comments that sum up a preceding series
of comments. Moreover, extractive approaches to
writing comment summaries will almost certainly
fall short of indicating aggregation over views and
opinion. In sum, this is not an ideal approach to
creating reference summaries from comment.

A more abstractive approach to writing sum-
maries of multi-party conversations was used in
the creation of the AMI corpus annotations, based
on 100 hours of recorded meetings dialogues (Car-
letta et al., 2006). There are some similarities and
differences between the AMI approach and our
own. First, AMI summary writers first completed
a topic segmentation task to prepare them for
the task of writing a summary. While segmenta-
tion might appear to resemble our grouping stage,
these are very different tasks. Key differences are
that segmentation was carried on AMI dialogues
using a pre-specified list of topic descriptions.
This would be difficult to provide for comment
summary writers, since we cannot predict every-
thing the comments will talk about. Secondly, the
AMI abstractive summaries are linked to dialogue
acts (DAs) in their manual extractive summaries
(a link is made if a DA is judged to “support” a
sentence in the abstractive summary). Similar to
our back-links, their links provide indices from the
abstractive summary to source text units. How-
ever, our back-links are from a summary sentence
to groups of comment labels that the summary au-
thor has judged to have informed his sentence. Fi-
nally, the AMI abstractive summaries comprise an
overview summary of the meeting, and list “de-
cisions”, “problems/issues” and “actions”. How-
ever, while a very small number of non-scenario
corpus summaries included reports of alternative
views in a meeting (e.g. on which film to choose
for a film club), the AMI scenario summaries in-
clude very few examples of differences in opinion.

Misra et al. (2015) have created manual sum-
maries of short dialogue sequences, extracted from
different conversations on similar issues on debat-

ing websites. They then collected summaries to-
gether, and applied the Pyramid method (Nenkova
et al., 2007) to identify common, central propo-
sitions, which, they describe as “abstract objects”
that represent facets of an argument on an issue,
e.g. gay marriage. Indeed the task of identify-
ing central propositions across multiple conversa-
tions is a key aim in their work and one they point
out is central to others working in argumentation
mining. They use the Pyramid annotations to pro-
vide indices from the central proposition to the
summary and underlying comment, with a view to
learning how to recognize similar argument facets
automatically. Note their task differs from ours
in that we aim to generate a summary of a single
reader comment conversation, while they aim to
identify (and then possibly summarize) all facets
of a single argument, gleaned from multiple dis-
tinct conversations.

Barker and Gaizauskas (2016) elaborate the
issue-viewpoint-evidence framework introduced
in Section 2.1 above and show how an argument
graph representing an analysis in this framework
may be created for a set of comments. They
show how the content in a single reference sum-
mary, created using the informal label and group
method described above, corresponds closely to a
subgraph in the more formally specified argument
graph for the article and comment set.

7 Concluding Remarks and Future Work

We have presented a proposal for a form of in-
formative summary that aims to capture the key
content of multi-party, argument-oriented conver-
sations, such as those found in reader comment.
We have developed a method to help humans au-
thor such summaries, and used it to build a cor-
pus of reader comment multiply annotated with
summaries and other information. We believe the
method of labeling and grouping has wide applica-
tion, i.e. in creating reference summaries of com-
plex, multi-party dialogues in other domains.

The summaries produced correspond closely to
the target specification given in Sec. 2.2, and ex-
hibit a high degree of consistency, as shown by
the content similarity assessment of Sec. 5.3. In-
formal feedback from media professionals (at the
Guardian and elsewhere) suggests that the sum-
maries are viewed very positively as a summary of
comments in themselves, and as a target for what
an automated system might deliver online.
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Our summary corpus has already proved use-
ful in providing insights for system development,
and for training and evaluation. We have used
group annotations to evaluate a clustering algo-
rithm (Aker et al., 2016a); used back-links to in-
form the training of a cluster labeling algorithm
(Aker et al., 2016b); used the summaries as refer-
ences in evaluating system outputs (with ROUGE
as metric), and to inform human assessors in a
task-based system evaluation (Barker et al., 2016).

Even so, there are limitations to the work done
which give pointers to further work. The current
corpus is limited in size, and would ideally contain
annotations for more comment sets, with more an-
notations per set. One possibility is to break the
summary creation method into smaller tasks suit-
able for crowd-sourcing. Another issue is scala-
bility: annotators can write summaries for ∼100
comments, but this is time-consuming and tax-
ing, casting doubt on whether the method could
scale to 1000 comments. Results from a pilot sug-
gest annotators find it much easier to work on sets
of 30–50 comments, so we are investigating how
annotations for smaller subsets of a comment set
might be merged into a single annotation.

Many of our annotators found the option to have
groups and sub-groups useful, but this feature
presents problems for some practical uses of the
annotations, such as evaluation of some clustering
methods. Hence, we have investigated methods to
flatten the group-subgroup structure into one level,
including the following two methods: (1) simple
flattening, where all sub-groups merge into their
parent groups (but this loses much of the analysis
of some annotators), and (2) promoting subgroups
to full group status (which has proved useful for
generating useful group labels). More research is
needed to establish the most effective flattening to
best capture the consensus between annotators.

Finally, there is the open question of how to au-
tomatically evaluate system-generated summaries
against the reference summaries proposed here.
In particular, is ROUGE (Lin, 2004), the most
widely used metric for automatic summary eval-
uation, an appropriate metric for use in this con-
text? ROUGE, which calculates n-gram overlap
between system and reference summaries, may not
deal well with the abstractive nature of our sum-
maries, and in particular with statements quanti-
fying the distribution of support for various view-
points. Its utility needs to be established by cor-

relating it with human judgements on system out-
put quality. If it cannot be validated, the challenge
arises to develop a metric better suited to this eval-
uation need.
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Appendix

Figure 4: Stage 1 interface. The first 4 columns are created automatically from the source reader com-
ments. The last column is a label supplied by the annotator.

Figure 5: Stage 3 interface. Grouping annotations collected in Stage 2 are shown in the left frame. The
summary is authored in the right frame.
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Abstract : Today is the era of intelligent personal assistants. All the major tech giants have 
introduced personal assistants as the front end of their services, including Apple’s Siri, 
Microsoft’s Cortana, Facebook’s M, and Amazon’s Alexa. Several of these companies have also 
released bot toolkits so that other smaller companies can join the fray. However, while the 
quality of conversational interactions with intelligent personal assistants is crucial for their 
success in both business and personal applications, fundamental problems, such as discourse 
processing, computational pragmatics, user modeling, and collecting and annotating adequate 
real data, remain unsolved. Furthermore, the intelligent personal assistants of tomorrow raise a 
whole set of new technical problems.  
The special SIGDIAL session "The Future of Dialogue-Based Intelligent Personal Assistants" 
holds a panel discussion with notable academic and industry players, leading to insights on 
future directions.  
 

Time Table 
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○ Introduction of the panels 
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 More than meets the ear: Processes that shape dialogue 

Susan E. Brennan 
Stony Brook University 

Departments of Psychology, Computer Science, and Linguistics 
Stony Brook, NY, United States 

susan.brennan@stonybrook.edu 
 

Abstract: What is dialogue, anyway—language produced in alternating turns by two or more 
speakers?  A way to collaboratively accomplish a task or transaction with an agent, whether 
human or computer?  An interactive process by which two people entrain and coordinate their 
behaviors and mental states?  A corpus that can be analyzed to answer a research question?  The 
ways in which researchers conceptualize dialogue affect the assumptions and decisions they 
make about how to design an experiment, collect or code a corpus, or build a system.  Often such 
assumptions are not explicit.  Researchers may decide to characterize, stage, control, or entirely 
ignore such potentially key factors as the task two people are charged with, their identities, their 
common ground, or the medium in which dialogue is conducted. 
Such decisions, especially when left implicit, can affect the products and processes of dialogue in 
substantial but unanticipated ways; in fact, they can change the results of an experiment.  As one 
example, spoken dialogue experiments often use a simulated partner or confederate in the role of 
speaker or addressee; just how the confederate is deployed reflects the researcher's explicit 
theory and implicit assumptions about the nature of dialogue.  As another example, sometimes 
experiments place people in infelicitous situations; this can change the kind of language game 
people think they're playing.  I will cover some implicit assumptions about the nature of dialogue 
that affect the risks researchers take, and highlight pairs of studies that have found different 
results, perhaps due to these assumptions. 
 
Speaker's Bio: Susan Brennan is Professor of Psychology in the Cognitive Science Program at 
Stony Brook University (State University of New York), with joint appointments in the 
Departments of Linguistics and Computer Science. She received her Ph.D. in Cognitive 
Psychology from Stanford University with a focus on psycholinguistics; her M.S. is from the 
MIT Media Lab, where she worked on computer-generated caricature and teleconferencing 
interfaces; and her B.A. is in cultural anthropology from Cornell University. She has worked in 
industry at Atari Research, Hewlett-Packard Labs, and Apple Computer. Her research interests 
span language processing in conversation, joint attention, partner-specific adaptation during 
interactive dialogue, the production and comprehension of referring expressions, lexical 
entrainment, discourse functions of prosody and intonation, speech disfluencies, multimodal 
communication, social/ cognitive neuroscience, natural language and speech interfaces to 
computers, spoken dialogue systems, and repair in human and human-computer dialogue. She 
has used eye-tracking both as a method for studying the incremental comprehension and 
production of spontaneous speech and as a channel in computer-mediated communication. A 
currently funded project is "Communication in the Global University: A Longitudinal Study of 
Language Adaptation at Multiple Timescales in Native- and Non-Native Speakers." She is 
temporarily on leave from Stony Brook University in order to serve as Program Director for 
NSF's oldest program, the Graduate Research Fellowship Program in the Division of Graduate 
Education. 
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Abstract

In this paper, we describe a system that re-
acts to both possible system breakdowns
and low user engagement with a set of
conversational strategies. These general
strategies reduce the number of inappro-
priate responses and produce better user
engagement. We also found that a system
that reacts to both possible system break-
downs and low user engagement is rated
by both experts and non-experts as hav-
ing better overall user engagement com-
pared to a system that only reacts to pos-
sible system breakdowns. We argue that
for non-task-oriented systems we should
optimize on both system response appro-
priateness and user engagement. We also
found that apart from making the system
response appropriate, funny and provoca-
tive responses can also lead to better user
engagement. On the other hand, short ap-
propriate responses, such as “Yes” or “No”
can lead to decreased user engagement.
We will use these findings to further im-
prove our system.

1 Introduction

Non-task-oriented conversational systems do not
have a stated goal to work towards. Nevertheless,
they are useful for many purposes, such as keep-
ing elderly people company and helping second
language learners improve conversation and com-
munication skills. More importantly, they can be
combined with task-oriented systems to act as a
transition smoother or a rapport builder for com-
plex tasks that require user cooperation. They have
potential wide use in education, medical and ser-
vice domains.

There are a variety of existing methods to
generate responses for non-task-oriented systems,

such as machine translation (Ritter et al., 2011),
retrieval-based response selection (Banchs and Li,
2012), and sequence-to-sequence recurrent neural
network (Vinyals and Le, 2015). All aim to im-
prove system coherence, but none of them focus
on the experience of the user. Conversation is an
interaction that involves two parties, so only im-
proving the system side of the conversation is in-
sufficient. In an extreme case, if the system is al-
ways appropriate, but is a boring and passive con-
versational partner, users would not stay interested
in the conversation or come back a second time.
Thus we argue that user engagement should be
considered a critical part of a functional system.
Previous researchers found that users who com-
pleted a task with a system but disliked the expe-
rience would not come back to use the system a
second time. In a non-task-oriented system, the
user experience is even more crucial, because the
ultimate goal is to keep users in the interaction as
long as possible, or have them come back as fre-
quently as possible. Previously systems have not
tried to improve user experience, mostly because
these systems are text-based, and do not have ac-
cess to the user’s behaviors aside from typed text.
In this paper, we define user engagement as the
interest to continue the conversation in each turn.
We study the construct using a multimodal dialog
system that is able to process and produce audio-
visual behaviors. Making the system aware of user
engagement is considered crucial in creating user
stickiness in interaction designs. Better user en-
gagement leads to a better experience, and in turn
attracts repeat users. We argue that a good system
should not only be coherent and appropriate but
should also be engaging.

We describe a multimodal non-task-oriented
conversational system that optimizes its perfor-
mance on both system coherence and user engage-
ment. The system reacts to both user engagement
and system generation confidence in real time us-
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ing a set of active conversational strategies. Sys-
tem generation confidence is defined as the con-
fidence that the generated response is considered
appropriate with respect to the previous user ut-
terance. Although the user engagement metric is
produced by an expert in a Wizard-of-Oz setting,
it is the first step towards a fully automated en-
gagement reactive system. Previously very little
research addressed reactive systems due to the dif-
ficulty of modeling the users and the lack of audio-
visual data. We also make the audiovisual data
along with the annotations available.

2 Related Work

Many experiments have shown that an agent re-
acting to a user’s behavior or internal state leads
to better user experience. In an in-car navigation
setting, a system that reacts to the user’s cogni-
tive load was shown to have better user experience
(Kousidis et al., 2014). In a direction giving set-
ting, a system that reacts to user’s attention was
shown to be preferred (Yu et al., 2015a). In a tutor-
ing setting, a system that reacts to the user’s disen-
gagement resulted in better learning gain (Forbes-
Riley and Litman, 2012). In task-oriented systems
users have a concrete reason to interact with the
system. However, in a non-task-oriented setting,
user engagement is the sole reason for the user to
stay in the conversation, making it an ideal situa-
tion for engagement study. In this paper, we focus
on making the system reactive to user engagement
in real time in an everyday chatting setting.

In human-human conversations, engagement
has been studied extensively. Engagement is con-
sidered important in designing interactive systems.
Some believe engagement is correlated with im-
mersiveness (Lombard and Ditton, 1997). For ex-
ample, how immersed a user is in the interaction
plays a key role in measuring the interaction qual-
ity. Some believe engagement is related to the
level of psychological presence (i.e. focus) dur-
ing a certain task (Abadi et al., 2013), for example
how long the user is focused on the robot (Moshk-
ina et al., 2014). Some define engagement as “the
value a participant in an interaction attributes to
the goal of being together with the other partici-
pant(s) and of continuing the interaction” (Peters
et al., 2005). In this paper, we define engagement
as the interest to continue the conversation. Be-
cause the goal of a non-task-oriented system is to
keep the user interacting with the system voluntar-

ily, making users have the interest to continue is
critical.

A lot of conversational strategies have been pro-
posed in previous work to avoid generating in-
coherent utterances in non-task-oriented conver-
sations, such as introducing topics, (e.g. “Let’s
talk about favorite foods!” in (Higashinaka et al.,
2014)) and asking the user to explain missing
words. (Schmidt et al., 2015). In this paper, we
propose a set of strategies that actively deal with
both user engagement and system response appro-
priateness.

3 System Design and User Experiment
Setting

The base system used is Multimodal TickTock,
which generates system responses by retriev-
ing the most similar utterance in a conversation
database using a key word matching method (Yu
et al., 2015b). It takes spoken utterances from the
user as input and produces synthesized speech as
output. A cartoon face signals whether it is speak-
ing or not, and can present some basic expressions.
This clearly artificial design aims to avoid the un-
canny valley dilemma, so that the users do not ex-
pect realistic human-like behaviors from the sys-
tem. It has the capability to collect and extract
audio-visual features, such as head and face move-
ment (Baltrusaitis et al., 2012), in real time. These
features are not used in this experiment, but will
be incorporated as part of automatic engagement
recognition in the future.

We designed six strategies based on previous lit-
erature to deal with possible system breakdowns
and to improve user engagement.

1. Switch Topics (switch): propose a new topic
other than the current topic, such as “Let’s
talk about sports.”

2. Initiate activities (initiation): propose an ac-
tivity to do together, such as “Do you want to
see the latest Star Wars movie together?”.

3. End topics with an open question (end):
close the current topic using an open ques-
tion, such as “Could you tell me something
interesting?”.

4. Tell A Joke (joke): tell a joke such as:
“Politicians and diapers have one thing in
common. They should both be changed reg-
ularly, and for the same reason.”.
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5. Refer Back to A Previously Engaged Topic
(refer back): refer back to the previous en-
gaging topic. We keep a list of utterances that
have resulted in high user engagement. This
strategy will refer the user back to the most
recently engaged turn. For example: “Previ-
ously, you said ‘I like music’, do you want to
talk more about that?”

Each strategy has a set of surface forms to choose
from in order to avoid repetition. For example, the
switch strategy has several forms, such as, “How
about we talk about sports?” and “Let’s talk about
sports.”

We designed two versions of Multimodal Tick-
Tock: REL and REL+ENG. The REL system uses
the strategies above to deal with low system gen-
eration confidence (system breakdown). The gen-
eration confidence is the weighted score of match-
ing key words between the user input and the cho-
sen utterance from the database. The REL+ENG
system uses the strategies to deal with low sys-
tem generation confidence, and in addition reacts
to low user engagement. One caveat is that the re-
fer back strategy is not available for the REL sys-
tem. In the REL+ENG system, a trained expert
annotates the user’s engagement as soon as the
user finishes the utterance. A randomly selected
strategy triggers whenever the user engagement is
‘Strongly Disengaged’ or ‘Disengaged’. Any non-
task-oriented system can adopt the above policy
and strategies with minor system adjustments.

For systems that use other response generation
methods, the confidence score can be computed
using other metrics. For example, a neural net-
work generation system (Vinyals and Le, 2015)
can use the posterior probability for the confidence
score.

In order to avoid culture and language profi-
ciency confound, all participants in the study are
originally from North America. Gender was bal-
anced as well. We had 10 people (6 males) interact
with REL and 12 people (7 males) interact with
REL+ENG. Participants were all university stu-
dents and none of them had interacted with a mul-
timodal dialog system before. There are no repeat
users in the two groups. We also collected how
frequently they use spoken dialog systems, such as
Apple Siri, in the after-experiment user survey in
the REL+ENG study, and found that 25% of them
have used dialog systems frequently. In the future,
we hope to collect a more balanced dataset to test

this factor’s influence.
An example dialog of a user interacting with

REL is shown in Table 1. In Turn 5, the system
used the switch strategy to deal with the fact that
it was unable to retrieve a response with similar
content to the user’s utterance. An example dia-
log from REL+ENG is shown in Table 2. In Turn
3, the system used the initiation strategy to deal
with the fact that the user was not engaged in the
previous turn. Figure 1 is a snapshot of an exam-
ple video recording of one of the interactions. The
blue box represents the head-tracking results, and
the red dots represent face-tracking. Together with
the audio-visual recordings, we have also made all
the annotations and manual transcriptions avail-
able 1.

Figure 1: Screen shot of an example conversation
recording

4 Annotations

We annotated each conversational exchange with
user engagement and system response appropri-
ateness. One conversational exchange includes
one speech segment from the system and the fol-
lowing speech segment from the user. The engage-
ment is a rating based on the user’s performance
during the entire turn, while the system’s appro-
priateness is a rating with respect to the user’s ut-
terance in the previous turn. User engagement is
defined as “user’s interest to continue the conver-
sation”, and the system appropriateness as “the co-
herence and appropriateness of the system utter-
ance given the context”. Table 3 and 4 describe
the user engagement annotation scheme and the
system appropriateness annotation scheme respec-
tively. For turns when users failed to respond, we
label the engagement as 0. We labeled the turns
that the system failed to understand the user and
asked the user to repeat to be 0 in appropriate-
ness. We exclude all these turns in the analysis

1www.cmuticktock.org
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Turn Participant TickTock
1 Your noise is a question mark, I think that’s interesting. Of course, what’s your idea?
2 I think it fits you perfectly. Let me see, his nose is still broke.
3 Do you want me to make your nose broken? Ah, yes, why did you ask me for this?
4 Because I thought you might mind. Well, I am not getting into specifics about what doctor treated

him, how he was treated.
5 You have not been treated yet. That is in the future. Let me see, by the way, are you interested in movies?
6 Yes, I watch movies sometimes. Great.

Table 1: An example conversation in REL

Turn Participant TickTock
1 How are you I think so, any thoughts?
2 How are you doing? I am fine, how are you, any thought?
3 Any thought? Let me see, do you want to go to my friends’ party tonight?
4 No I have a lot of work to do. I can’t go. Everyday?

Table 2: An example conversation in REL+ENG

in order to avoid adding system failure in the anal-
ysis. The inter-annotator agreement between the
two experts is high (kappa = 0.73) in appropri-
ateness, but the agreement between the two ex-
perts in annotating engagement is relatively lower
(kappa =0.43). However, if we collapse the rat-
ing for “strongly disengaged” with “disengaged”
and “very engaged” with “engaged”, our agree-
ment improves (kappa = 0.67).

5 Evaluation

To evaluate the efficacy of the strategies, we also
conducted an Amazon Mechanical Turk study to
test if a non-expert would agree with the experts
about which system elicits better user engagement.
We selected video recordings with participants
who are not familiar with dialog systems. There
are only five participants in the REL dataset and
nine participants in the REL+ENG dataset who
meet this requirement. In order to balance the two
sets, we randomly selected five participants from
the nine in the REL+ENG. We picked one video
from each dataset to form a A/B comparison study.
In total there are 25 pairs, and we recruited three
raters for each pair. Nobody rated the same pair
twice. We ask them to watch the two videos and
then compare them through a set of questions in-
cluding “Which system resulted in a better user
experience?”, “Which system would you rather in-
teract with?” and “Which person seemed more en-
thusiastic about talking to the system”. In addi-
tion, we also included some factual question re-
lated to the video content in order to test if the
rater had watched the video, which all of them had.
Raters are allowed to watch the two videos multi-
ple times. The limitations of such a comparison

is that some system failures, such as ASR failure,
may affect the quality of the conversation, which
may be a confound. In the task, we specifically
asked the users to overlook these system defects,
but they still commented on these issues in their
feedback. We will collect more examples in the
future to balance the influence of system defects.

6 Quantitative Analysis and Results

In this section, we first discuss whether the de-
signed strategies are useful in avoiding system in-
appropriateness and improving user engagement.
Then, we discuss whether both experts and non-
experts who watched the video recordings of the
interactions prefer a system that reacts to both
low user engagement and system inappropriate-
ness over a system that only reacts to low system
appropriateness. In addition, we discuss the rela-
tionship between system appropriateness and user
engagement. In the end, we discuss the relation-
ship and methods to elicit user engagement and
user experience.

6.1 Strategies and System Appropriateness

We found that designed conversational strategies
are useful in avoiding system breakdowns. The
system randomly selects one of the strategies de-
scribed in Section 4 whenever its confidence in
generating an appropriate answer is extremely low.
In Table 5, we show for both REL and REL+ENG,
how many times each strategy is triggered to react
to low confidence in generating system responses
and the distribution of the produced utterances be-
ing rated as “Inappropriate”, “Interpretable” and
“Appropriate”. Among them, 63% and 73% of the
turns are rated as “Interpretable” or “Appropriate”
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Label Definition Description

1 Strongly Disengaged Shows no interest in the conversation, not responding or engaged in other things.

2 Disengaged Shows little interest to continue the conversation, passively
interacts with his conversational partner.

3 Neither Disengaged
nor Engaged

Interacts with the conversational partner, showing neither
interest nor lack of interest to continue the conversation.

4 Engaged Shows mild interest to continue the conversation.

5 Strongly Engaged Shows a lot of interest to continue the conversation and
actively contributes to the conversation.

Table 3: Engagement annotation scale and definition.

Label Definition Example

Inappropriate (1) Not coherent with the user utterance Participant: How old are you?
TickTock: Apple. .

Interpretable (2) Related and can be interpreted Participant: How old are you?
TickTock: That’s too big a question for me to answer.

Appropriate (3) Coherent with the user utterance Participant: How is the weather today?
TickTock: Very good.

Table 4: Appropriateness rating scheme.

in REL and REL+ENG respectively. The percent-
age is higher in REL+ENG than REL mostly due
to the introduction of refer back strategy, which
the REL system could not use because it does not
track the user’s engagement. Compared to REL,
which doesn’t react to low system response gen-
eration confidence, REL+ENG successfully made
69% of inappropriate turns to be “Interpretable” or
“Appropriate”.

Each strategy has a different effect on improv-
ing the system’s appropriateness. Among them,
the refer back strategy leads to more appropri-
ate responses in general, but happens infrequently,
due to its strict trigger condition. It can only be
triggered if the user previously had a high engage-
ment utterance. The initiation strategy leads to
more interpretable responses overall, because ut-
terances like “Do you want to go to my friend’s
party?” actively seek user consent. Even though it
may seem abrupt in some contexts, the transition
will usually be considered to be interpretable. The
joke strategy has a high probability of being inap-
propriate. However, if the joke fits the context, it
may be appropriate. For example,

TickTock: “Let’s talk about politics.”

User: “I don’t know too much about politics.”

TickTock: “Let me tell you something, politicians
and diapers have one thing in common, they
both need to be changed regularly.”

However, if the joke is out of the context, it will
leave the participant with an impression that Tick-
Tock is saying random things.

In the future, we intend to track the topic of the
conversation, and design specific jokes with re-
spect to conversation topic. We intend to design
additional strategies, such as performing ground-
ing requests on out-of-vocabulary words (Schmidt
et al., 2015), to address possible system break-
downs, and we will also implement a policy to
control when to use which strategy.

6.2 Strategies and User Engagement

We found that designed conversational strategies
are useful in improving user engagement. We cre-
ated an engagement change metric that measures
the difference between the current turn engage-
ment and the previous turn engagement. In Ta-
ble 6, we list the user engagement change for when
each strategy triggered in the REL+ENG dataset.
In total, 72% of the time when the system reacts
to low user engagement, it leads to positive en-
gagement change. We believe this is because the
strategies we designed have an active tone, which
can reduce the cognitive load required to actively
come up with something to say. In addition, since
these strategies are triggered when the user en-
gagement is low, the random chance of them im-
proving user engagement is already high, so the
percentage of improving user engagement is even
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REL REL+ENG
Strategy Total InApp Inter App Total InApp Inter App
switch 46 13(28%) 27(59%) 6(13%) 32 6(19%) 18(56%) 8(25%)
initiation 10 2(20%) 6(60%) 2(20%) 18 0(0%) 8(44%) 10(56%)
end 29 14(48%) 13(45%) 2(17%) 16 6(38%) 8(50%) 2(13%)
joke 10 5(50%) 2(20%) 3(30%) 20 14(70%) 0(0%) 6(30%)
refer back - - - - 12 0(0%) 6(50%) 6(50%)
Total 95 34(35%) 48(51%) 13(14%) 98 26(27%) 40(41%) 32(33%)

Table 5: System appropriateness distribution when two systems react to possible system breakdowns.

higher.
For each strategy, the chance of improving the

user’s engagement is different. The refer back
strategy is the most effective strategy: 75% of the
time, it leads to better user engagement. We be-
lieve this is because once the system refers back
to what the user said before, the user feels that
the agent is somewhat intelligent and in turn in-
creases his/her interest to continue the conversa-
tion, to find what else the system can do. For the
switch and end strategies, there are examples of
them both reducing and increasing user engage-
ment. When we looked at the specific cases where
the user engagement decreased, we found that
those utterances are rated as inappropriate given
the context. This leads us to believe that during the
selection of what strategies we should use to re-
act to user’s low engagement, we should also con-
sider whether the system utterance would be ap-
propriate. We also examined the turns that did not
improve or decreased user engagement and found
that they are towards the end of the conversation,
when the user lost interest and ended the conver-
sation regardless of what the system said.

Strategy Total ∆ < 0 ∆ = 0 ∆ > 0
switch 10 1(10%) 3(30%) 6(60%)
initiation 5 0(0%) 2(40%) 3(60%)
end 3 1(33%) 1(33%) 1(33%)
joke 4 0(0%) 2(50%) 2(50%)
refer back 4 0(0%) 1(25%) 3(75%)
Total 26 2 (6%) 9(22%) 15(72%)

Table 6: User engagement change distribution
when system reacts to low user engagement.

6.3 Third-person Preference

In our study, we found that a system that reacts to
low user engagement and possible system break-
downs is rated as having better user engagement
and experience compared to a system that only

reacts to possible system breakdowns. This rat-
ing held true for both experts and non-experts.
We performed an unbalanced Student’s t-test on
expert-rated user engagement of turns in REL and
REL+ENG and found the engagement ratings are
statistically different (p < 0.05). REL+ENG has
more user engagement (REL: Mean = 3.09 (SD =
0.62); REL+ENG: Mean = 3.51 (SD = 0.78). A
t-test on utterances that are not produced by de-
signed strategies shows the two systems are not
statistically different in terms of user engagement
(p = 0.13). This suggests that the difference in
user engagement is mostly due to the utterances
that are produced by strategies. Experts also rated
the interaction for overall user experience and we
found that REL+ENG interactions are rated sig-
nificantly higher than REL system overall (p <
0.05).

In REL+ENG, 37% of the strategies were trig-
gered to react to low user engagement and 63%
were used to deal with low generation confidence.
Among the strategies that were triggered to react
to low user engagement, 72% of them lead to user
engagement improvement. We believe the abil-
ity to react to low user engagement is the reason
that REL+ENG has more user engagement than
REL. Another reason is that REL+ENG has an ex-
tra strategy, refer back, which in general performs
best in improving user engagement. In the user
survey, one of the participants also mentioned that
he likes the REL+ENG system because it actively
proposes engaging topics.

For non-expert ratings, there are 25 A/B com-
parison tasks. Each task had three raters, and we
used the majority vote of the three raters as the
final result. People rate REL+ENG as more en-
gaging in 12 tasks, and REL more engaging in
3 tasks. Ten tasks were rated the same for both
systems. For non-experts who watched the videos
of the interactions, the REL+ENG system elicited
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significantly more user engagement than the REL
system. This conclusion is also true when the sys-
tems are judged on which leads to a better user ex-
perience. We examined the three tasks on which
the REL system is rated higher than REL+ENG
and found that two of them involved the same in-
teraction produced by REL. In that interaction, the
user is very actively interpreting the system’s ut-
terance and responding with interesting questions.
Table 1 shows a part of that interaction.

6.4 System Appropriateness and User
Engagement

In the conversations produced using REL, an un-
balanced Student’s t-test of engagement change
between turns that are appropriate and ones that
are inappropriate shows that turns that are ap-
propriate (Mean =−0.01, (SD=0.84)) have sig-
nificantly (p = 0.03) better engagement change
than turns that are inappropriate (Mean = 0.33,
(SD=0.92)). Figure 2 shows a box plot of the re-
sulting engagement change from appropriate and
inappropriate responses. The figure suggests that
having appropriate responses leads to better en-
gagement change overall. However some inap-
propriate responses lead to positive engagement
change as well. The same trend is found in con-
versations produced by REL+ENG.

We tested the hypothesis with respect to each
strategy via an unbalanced Student’s t-test. The
hypothesis holds for the switch, initiation and joke
strategies. It did not hold for the end strategy, but
this is probably because there were very few ex-
amples of end being triggered and rated appropri-
ate, making it hard to yield any statistical signif-
icance. In addition, across all responses, we find
some outliers, where even though the system’s re-
sponse is appropriate the user’s engagement de-
creased. This may happen when the system pro-
vides a simple ‘yes’ or ‘no’ answer, when the sys-
tem interrupts the user, or when the user misun-
derstands the system. Some users are not famil-
iar with synthetic voices and misheard the system,
and thus thought the system was inappropriate.

We believe that in the future we can improve our
system’s turn-taking mechanism and try to tune
the system retrieval method to prefer longer re-
sponses. This will help to overcome the issue that
even appropriate answers can lead to a decrease
in user engagement. Since appropriate system re-
sponses make users more engaged, are all the pos-

Figure 2: User engagement change with respect to
system appropriateness in REL.

itive engagement changes the result of appropri-
ate responses? We performed an unbalanced t-test
of the appropriateness values between turns that
have positive engagement change (Mean = 1.79
(SD = 0.82)) and turns that have negative engage-
ment change (Mean = 1.53 (SD = 0.67)) and found
that they are statistically significant (p < 0.05).
We examined the recordings of conversations and
found that there are other factors that contribute to
the engagement change other than the system’s ap-
propriateness. For example, funny comments and
provocative utterances on the part of the system
can also increase user engagement. In Table 1, the
system response in Turn 4 is only rated as “Inter-
pretable,” and yet it leads to an increase in user en-
gagement. The speaker even smiled when replying
to the system. In another interaction, “Don’t talk
to an idiot, because they will drag you down to
the same level and beat you with experience.” is
rated as “Inappropriate” with respect to the previ-
ous user utterance. However the user reacted to
it with increased engagement and asked the sys-
tem: “Are you calling me an idiot, TickTock?”.
We conclude that being appropriate is important
to achieve better user engagement, however it is
not the only way.

6.5 User Engagement and User Experience

In the survey after the REL+ENG study, we asked
three questions to test the relationships among
users’ overall interaction engagement, users’ pos-
itivity towards the agent, and users’ overall expe-
rience in interacting with the system. We used a
five-point Likert scale (1-5). The higher the score
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is, the more engaged the user is, and the more pos-
itive the user is towards the system, the better the
user experience the user has. We designed the sur-
vey carefully so these three questions are not next
to each another, in order to avoid people’s ten-
dency to equate these questions. Exact matches
between users’ rating on their overall engagement
(Mean = 2.75 (SD = 0.75)) and their positivity to-
wards the system are found. This is surprising
yet possible, since normal users may not differ-
entiate between the two questions: “How engaged
you felt during the interaction?” and “How posi-
tive you felt towards TickTock during the interac-
tion?”. They may internalize that being positive to
your partner is the same as being engaged in the
conversation. The overall user experience (Mean
= 2.83 (SD = 0.71)) is also highly correlated (ρ =
0.92) with both user engagement and user positiv-
ity towards the system. Our finding suggests that
improving user engagement is critical to eliciting
better user experience in an everyday chatting set-
ting. However, our sample size (12) is relatively
small, and we plan to include more users in the
study in the future.

Another question is whether users really know
what “user experience” is. In future studies, we
plan to include questions that are more specific
such as, “Would you want to interact with the sys-
tem again?”, “Would you invite your friend to in-
teract with the system?” and “Do you think the
system is easy to talk to?”.

7 Qualitative Results

After the users interacted with REL+ENG, we
asked them to fill out a survey. We asked the
users what they liked and disliked about the sys-
tem, and for their suggestions for how to improve
the system. A number of participants commented
on the visual aspects of the system, mentioning
that they liked the cartoon face and that it smiles
a lot. Two participants said they liked the system
because it actively proposes engaging topics, and
tells jokes. This supports our hypothesis that our
designed strategies are useful in increasing user
engagement. Three users disliked the system be-
cause of its incoherence. Two users could not un-
derstand the synthesizer very well, which made
them unsure whether answers were inappropriate
or whether they had simply misunderstood the sys-
tem. Two participants also complained that the
system interrupted them sometimes and one par-

ticipant mentioned that the system changes topics
too often.

One participant suggested displaying subtitles
below TickTock’s face so that people would be
able to comprehend the system’s utterances bet-
ter. Another participant proposed that TickTock
should start the conversation with a topic to dis-
cuss in order to avoid the cognitive load imposed
by the user’s coming up with topics. We will con-
sider both suggestions in our future studies.

8 Conclusion and Future Work

We designed and deployed a non-task-oriented
conversational system powered with a set of de-
signed strategies that not only reacts to possible
system breakdowns but also monitors user engage-
ment in real time in a Wizard-of-Oz implemen-
tation. The system reacts to user engagement or
system breakdown respectively by randomly se-
lecting one of the designed strategies whenever
the user’s engagement is low or the system’s re-
sponse generation confidence is low. In the study,
our designed strategies are shown to be useful in
increasing the system’s appropriateness as well as
in increasing the user’s engagement. We found
that appropriateness leads to better user engage-
ment. However not all improved user engagement
is elicited by appropriate responses. Sometimes,
provocative and funny responses also work.

In a third-person study, experts rated the system
that reacts to both low user engagement and low
generation confidence as having more overall user
engagement than the system that only reacts to low
generation confidence. In an Amazon Mechanical
Turk study, we found non-experts agreed with ex-
perts. We conclude that the improvement gained
by reacting to user’s engagement is generally rec-
ognizable.

One caveat is that due to the lack of a user sur-
vey in the REL study, we could not directly com-
pare the self-reported engagement or user experi-
ence to determine which system is better. Thus,
we plan to ask people to interact with both sys-
tems and report which system they like better and
which system they think is more engaging.

We will implement an automatic engagement
predictor in the real-time system to replace the hu-
man in the loop. In addition, a better policy to
select strategies based on both user engagement
and system response appropriateness will be de-
veloped.
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Abstract

Providing customer support through social
media channels is gaining increasing pop-
ularity. In such a context, automatic de-
tection and analysis of the emotions ex-
pressed by customers is important, as is
identification of the emotional techniques
(e.g., apology, empathy, etc.) in the re-
sponses of customer service agents. Re-
sult of such an analysis can help assess
the quality of such a service, help and
inform agents about desirable responses,
and help develop automated service agents
for social media interactions. In this pa-
per, we show that, in addition to text
based turn features, dialogue features can
significantly improve detection of emo-
tions in social media customer service di-
alogues and help predict emotional tech-
niques used by customer service agents.

1 Introduction

An interesting use case for social media is cus-
tomer support that can now take place over pub-
lic social media channels. Using this medium has
its advantages as described, for example, in (De-
Mers, 2014): Customers appreciate the simplic-
ity and immediacy of social media conversations,
the ability to reach real human beings, the trans-
parency, and the feeling that someone listens to
them. Businesses also benefit from the publicity of
giving good services almost in real-time, online,
building an online community of customers and
encouraging more brand mentions in social me-
dia. A recent study shows that one in five (23%)
customers in the U.S. say they have used social
media for customer service in2014, up from17%
in 20121. Obviously, companies hope that such

1http://about.americanexpress.com/
news/docs/2014x/2014-Global-Customer-

uses are associated with a positive experience. Yet
there are limited tools for assessing this. In this pa-
per, we analyze customer support dialogues using
the Twitter platform and show the utility of such
analyses.

The particular aspect of such dialogues that
we concentrate on isemotions. Emotions are a
cardinal aspect of inter-personal communication:
they are an implicit or explicit part of essentially
any communication, and of particular importance
in the setting of customer service, as they re-
late directly to customer satisfaction and experi-
ence (Oliver, 2014). Typical emotions expressed
by customers in the context of social media service
dialogues include anger and frustration, as well as
gratitude and more (Gelbrich, 2010). On the other
hand, customer service agents also express emo-
tions in service conversations, for example apol-
ogy or empathy. However, it is important to note
that emotions expressed by service agents are typ-
ically governed by company policies that specify
which emotions should be expressed in which sit-
uation (Rafaeli and Sutton, 1987). This is why we
talk in this paper about agent emotionaltechniques
rather than agent emotions.

Consider, for example, the real (anonymized)
Twitter dialogue depicted in Figure 1. In this di-
alogue, customer disappointment is expressed in
the first turn (’Bummer. =/’), followed by cus-
tomer support empathy (’Uh oh!’). Then in the
last two turns both customer and support express
gratitude.

The analysis of emotions being expressed in
customer support conversations can take two ap-
plications: (1) to discern and compute quality
of service indicators and (2) to provide real-time
clues to customer service agents regarding the cus-

Service-Barometer-US.pdf
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Got excited to pick up the latest bundle 

since it was on sale today, but now I can’t 

download it at all. Bummer. =/ 

Yeah, no problems there. The error is 

coming when I actually try to download 

the games. Error code: 412344

Uh oh! To check, were you able to purchase 

that title? Let’s confirm by signing in at 

http://t.co/53fsdfd real quick.

Appreciate that! Let’s power cycle and unplug 

modem/router for 2 mins then try again.

Seems to be working now. Weird. I tried 

that 3 different times earlier. Thanks.

Odd, but glad to hear that’s sorted! Happy 

gaming, and we’ll be here to help if any 

other questions or concerns arise.

Figure 1: Example of customer service dialogue
that was initiated by a customer (left side), and the
agent responses (right side).

tomer emotion expressed in a conversation. A
possible application here is recommending to cus-
tomer service agents what should be their emo-
tional response (for example, in each situation,
should they apologize, should they thank the cus-
tomer, etc.)

Another interesting trend in customer service,
in addition to the use of social media described
above, is the automation of various functions
of customer interaction. Several companies are
developing text-based chat agents, typically ac-
cessible through corporate web sites, and par-
tially automatized: In these platforms, a computer
program handles simple conversations with cus-
tomers, and more complicated dialogues are trans-
ferred to a human agent. Such partially automated
systems are also in use for social media dialogues.
The automation in such systems helps save human
resources and, with further development based on
Artificial Intelligence, more automation in cus-
tomer service chats is likely to appear. Given the
importance of emotions in service dialogues, such
systems will benefit from the ability to detect (cus-
tomer) emotions and will need to guide employees
(and machines) regarding the right emotional tech-
nique in various situations (e.g., apologizing at the
right point).

Thus, our goal, in this paper, is to show that the

functionality of guiding employees regarding ap-
propriate responses can be developed based on the
analysis of textual dialogue data. We show first
that it is possible to automatically detect emotions
being expressed and, second that it is possible to
predict the emotional technique that is likely to
be used by a human agent in a given situation.
This analysis reflects our ultimate goal: To en-
able a computer system to discern the emotions ex-
pressed by human customers, and to develop com-
puterized tools that mimic the emotional technique
used by a human customer service agent in a par-
ticular situation.

We see the main contributions of this paper as
follows: (1) To our knowledge, this is the first re-
search focusing on automatic analysis of emotions
expressed in customer service provided through
social media. (2) This is the first research us-
ing unique dialogue features (e.g., emotions ex-
pressed in previous dialogue turns by the agent
and customer, time between dialogue turns) to im-
prove emotion detection. (3) This is the first re-
search studying the prediction of the agent emo-
tional techniques to be used in the response to cus-
tomer turns.

The rest of this paper is organized as follows.
We start by reviewing the related work and a de-
scription of the data that we collected. Then we
formally define the methodology for detection and
prediction of emotion expression in dialogues. Fi-
nally, we describe our experiments, evaluate the
various models, conclude and suggest future di-
rections.

2 Related Work

2.1 Emotion Detection

Approaches to categorical emotion classification
often employ machine learning classifiers, and
SVM has typically outperformed other classifiers.
In (Mohammad, 2012; Roberts et al., 2012; Qadir
and Riloff, 2014) a series of binary SVM clas-
sifiers (one for each emotion) were trained over
datasets from different domains (news headlines,
social media). These works utilize unigrams and
bigrams among other lexical based features (e.g.,
utilizing the NRC emotion lexicon (Mohammad
and Turney, 2013)) and punctuation based fea-
tures. In our work, we also used an SVM classi-
fier, however, while these works aim at classifying
single posts (i.e., sentence, tweet, etc.) without
context, our work utilizes the context while con-
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sidering dialogues. The work in (Hasegawa et al.,
2013) showed how to predict and elicit emotions
in online dialogues. Their approach for emotion
classification is different from ours, for example
they only considered the last turn as informative
(we consider the full context of the dialogue), and
focused on eliciting emotions, while we focus on
predicting the agent emotional technique.

2.2 Emotion Expression Prediction

The works in (Skowron, 2010) and (D’Mello et
al., 2009) presented dialogue systems that sense
the user emotions, such that the system further op-
timizes its affect response. Both systems use rule-
based approaches to generate responses, however,
the authors do not discuss how they developed the
rules.

It is worth mentioning the works in (Ritter et
al., 2011; Sordoni et al., 2015) that are focused on
data-driven response generation in the context of
dialogues in social media. These works generated
general responses, while we focused on predicting
the appropriate emotional response.

2.3 Emotions in Written Customer Service
Interactions

In the domain of customer support, several pa-
pers studied emotions as part of written interac-
tions. The work in (Gupta et al., 2013), analyzed
emotions in textual email communications and the
authors focused on prioritizing customer support
emails based on detected emotions. In the setting
of online customer service (chats), in (Zhang et
al., 2011) the authors studied the impact of emo-
tional text on the customer’s perception of the ser-
vice agent. To extract the emotions, the authors
used relatively basic features such as emoticons,
exclamation marks, all caps, and some internet
acronyms (such as ’lol’ or ’imho’).

Emotion detection is also applied to the domain
of call centers (Vidrascu and Devillers, 2005; Mor-
rison et al., 2007) and this differs from our focus
since call center data are voice, and, thus, emotion
detection is mainly based on paralinguistic aspects
rather than on the text. In addition, if the textual
part is considered, then the texts are transcripts of
calls that are very different from written text (Wal-
lace Chafe, 1987), and even more different from
the social media setting where the dialogue is fully
public.

3 Data

In this section we describe the data collection pro-
cess and provide some statistics about the Twitter
dialogue dataset we have collected.

3.1 Data Collection

Companies that utilize the Twitter platform as a
channel for customer service use a dedicated Twit-
ter account which provides real-time support by
monitoring tweets that customers address to it. At
the same time corporate support agents reply to
these tweets also through the Twitter platform. A
customer and an agent, can use the Twitter re-
ply mechanism to discuss until the issue is solved
(e.g., a solution is provided, or the customer is di-
rected to another channel), or until the customer is
no longer active.

In the present work, we define a dialogue to be
a sequence of turns between a specific customer
and an agent, where the customer initiates the first
turn. Consecutive posts of the same party (cus-
tomer or agent) uninterrupted by the other party,
are considered as a single turn (even if there are
several tweets). Given the nature of customer sup-
port services, we assume the last turn in the di-
alogue is an agent turn (e.g., “You’re very wel-
come. :) Hit us back any time you need support”).
Thus, we expect an even number of turns in the
dialogue. We filtered out dialogues in which more
than one customer or one agent are involved. For-
mally, we define a dialogue to be an ordered list of
turns[t1, t2, · · · , tn] where odd turns are customer
turns, and even turns are agent turns, andn is even.

Each turnti is a tuple consisting of{turn num-
ber, timestamp, content} whereturn numberrep-
resents the sequential position of the turn in the di-
alogue,timestampcaptures the time the message
was published on Twitter, andcontentis the tex-
tual message.

3.2 Data Statistics

We gathered data for two North America based
customer support services Twitter accounts that
provide support for customers from North Amer-
ica (so tweets are in English). One service is for
general customer care (denoted asGen), and the
other is for technical customer support (denoted
asTech). We extracted this data from December
2014 until June2015. Specifically, for each cus-
tomer that posted a tweet to the customer support
accounts, we searched for the previous, if any, turn
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Figure 2: Frequency versus dialogue length for
GenandTechon a log-log scale.

# Dialogues Mean # turns AVG word count
Gen 4243 4.83 16.69
Tech 4016 6.81 14.28

Table 1: Descriptive statistics of customer service
dialogues extracted from Twitter.

to which it replied. Given this method we traced
back previous turns and reconstructed entire dia-
logues.

Table 1 summarizes some statistics about the
collected data, and Figure 2 depicts the frequen-
cies of dialogue lengths which follow a power-law
relationship. Table 1 shows differences between
the two services; the dialogues inTechtend to be
longer (i.e., typically include more turns), with an
average of6.81 turns vs. average of4.83 turns for
Gen.

As most of the dialogues include at most8 turns
(88% and76% for GenandTech, respectively), we
removed dialogues longer than8 turns. In addi-
tion, we removed dialogues that contained only2
turns as these are too short to be meaningful as the
customer never replied or provided more details
about the issue. After applying these preprocess-
ing steps, we had1189 dialogues ofGensupport,
and1224 dialogues ofTechsupport.

4 Methodology

The first objective of our work is to detect emo-
tions expressed in customer turns and the second is
to predict the emotional technique in agent turns.
We treated these two objectives as two classifi-
cation tasks. We generated a classifier for each
task, where the classification output of one clas-
sifier can be part of the input to the other clas-
sifier. While both classifiers work at the level of
turns, i.e., classify the current turn to emotions ex-

pressed in it, they are inherently different. When
detecting emotions in a customer turn, the turn’s
content is available at classification time (as well
as the history of the dialogue) - meaning, the cus-
tomer has already provided her input and the sys-
tem must now understand what is the emotion be-
ing expressed. Whereas, when predicting the emo-
tional technique for an agent turn, the turn’s con-
tent is not available during classification time, but
only the agent action and the history of the dia-
logue since the agent did not respond yet. This
difference stems from the fact that in order to train
an automated service agent to respond based on
customer input, the agent’s emotional technique
needs to be computed before the agent generates
its response sentence.

We defined a different set of relevant emotion
classes for each party in the dialogue (customer or
agent), based on our above survey of research on
customer service (e.g., (Gelbrich, 2010)). Rele-
vant customer emotions to be detected are:Con-
fusion, Frustration, Anger, Sadness, Happiness,
Hopefulness, Disappointment, Gratitude,andPo-
liteness. Relevant agent emotional techniques to
be predicted are:Empathy, Gratitude, Apology,
andCheerfulness.

We utilized the context of the dialogue to extract
informative features that we refer to asdialogue
features. Using these features for emotion classifi-
cation in written dialogues is novel, and as our ex-
perimental results show, it improves performance
compared to a model based only on features ex-
tracted from the turn’s text.

4.1 Features

We used the following features in our models.

4.1.1 Dialogue Features

Comprises three contextual feature families:inte-
gral, emotional, and temporal. A feature can be
global, namely its value is constant across an en-
tire dialogue or it can be alocal, meaning that its
value may change at each turn. In addition, a fea-
ture can behistorical (as will be discussed below).

The integral family of features includes three
sets of features:

1. Dialogue topic: a set ofglobal binary features
representing the intent of the customer who ini-
tiated the support inquiry. Multiple intents can
be assigned to a dialogue from a taxonomy of
popular topics, which are adapted to the spe-
cific service. Examples of topics includeac-
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count issues, payments, technical problemand
more2. This feature set captures the notion that
customer emotions are influenced by the event
that led the customer to contact the customer
service (Steunebrink et al., 2009).

2. Agent essence: a set of local binary features
that represent the action used by the agent to
address the last customer turn, independently
of any emotional technique expressed. We refer
to these actions as theessenceof the agent turn.
Multiple essences can be assigned to an agent
turn from a predefined taxonomy. For instance,
“asking for more information”and“offering a
solution” are possible essences3. This feature
set captures the notion that customer emotions
are influenced by actions of agents (Little et al.,
2013).

3. Turn number: a local categorical feature repre-
senting the number of the turn.

Theemotionalfamily of features includesAgent
emotionandCustomer emotion: these two sets of
local binary features represent emotions predicted
for previous turns. Our model generates predic-
tions of emotions for each customer and agent
turn, and uses these predictions as features to clas-
sify a later customer or agent turn with emotion
expression.

The temporal family of features includes the
following features extracted from the timeline of
the dialogue:

1. Customer/agent response time: two local fea-
tures that indicate the time elapsed between the
timestamp of the last customer/agent turn and
the timestamp of the subsequent turn. This is
a categorical feature with valueslow, medium
or high (using categorical values yielded better
results than using a continuous value).

2. Median customer/agent response time: two lo-
cal categorical features defined as the median
of thecustomer/agent response timespreceding
the current turn. The categories are the same as
the previous temporal features.
2Currently this feature is not supported in social media. In

other channels, for example, customer support on the phone,
the customer is requested to provide a topic before she is con-
nected to a support agent (usually using an IVR system). As
this feature is inherent in other customer support channels,
we assume that in the future it will also be supported in so-
cial media.

3We assume that if the agent is human, then this input
is known to her e.g., based on company policies. For the
automated service agent case, we assume that the dialogue
system will manage and provide this input.
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Figure 3: Example forHistorical features propa-
gation for customer turn,ti, with history = 3.
Whenhistory = 1, thehistorical features are the
agent essenceof turn ti−1 and theagent emotion
predicted for turnti−1 (purple solid line). When
history = 2, we also add thecustomer emotion
detected in turnti−2 (red dashed line). Finally, if
we sethistory = 3, then we also add theagent
essenceof turn ti−3 and theagent emotionpre-
dicted for turnti−3 (blue dotted line), so in to-
tal we have5 historical features. Notice that the
customer emotionandagent essencefeatures have
different values based on their turn number.

3. Day of week: a local categorical feature indi-
cating the day of the week when the turn was
published [Monday - Sunday]. This feature
captures the effects of weekend versus week-
day influences on emotions (Ryan et al., 2010).

When representing a turn,ti, as a feature vector,
we added some features originating in previous
turnsj < i to ti. These features, that arehistori-
cal, include theemotionalfeatures family andlo-
cal integralfeatures (namelyagent emotions, cus-
tomer emotionsandagent essence). We do not in-
clude theturn numberof previous turns, as this is
dependent on the turn number ofti. We denote
these features ashistorical features. The value
of history, that is a parameter of our models, de-
fines the number of sequential turns that precede
ti which propagatehistorical features toti.

Figure 3 shows an example of thehistorical fea-
tures in relation to the classification of customer
turn ti, for historysize between1 and3.

4.1.2 Textual Features

These features are extracted from the text of a
customer turn, without considering the context of
the dialogue. We use various state-of-the-art text
based features that have been shown to be effective
for the social media domain (Mohammad, 2012;
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Roberts et al., 2012). These features include var-
ious n-grams, punctuation and social media fea-
tures. Namely,unigrams, bigrams, NRC lexicon
features(number of terms in a post associated with
each affect label in NRC lexicon), and presence
of exclamation marks, question marks, usernames,
links, happy emoticons, andsad emoticons. We
note that these are the features we used in our base-
line model detailed below, in the description of our
experiments.

4.2 Turn Classification System

For both of the agent and customer turn classifi-
cation tasks, we implemented two different mod-
els which incorporate all of the feature sets we
have detailed above. We considered these tasks
as multi-label classification tasks. This captures
the notion that a party can express multiple emo-
tions (e.g., confusion and anger) in a turn. We
chose to use a problem transformation approach
which maps the multi-label classification task into
several binary classification tasks, one for each
emotion class which participates in the multi-label
problem (Tsoumakas and Katakis, 2006). For
each emotione, a binary classifier is created using
the one-vs.-all approach which classifies a turn as
expressinge or not. A test sample is fully classi-
fied by aggregating the classification results from
all independent binary classifiers. We next define
our two modeling approaches.

4.2.1 SVM Dialogue Model

In our first approach we trained an SVM classifier
for each emotion class as explained above. The
feature vector we used to represent a turn incor-
poratesdialogueandtextual features. Thehistory
size is also a parameter of this model. Feature ex-
traction for a training/testing feature vector repre-
senting a turnti, works as follows. Textual fea-
turesare extracted forti if it is a customer turn,
or for ti−1 if it is an agent turn (recall that the
system does not have the content of agent turn
ti at classification time). Thetemporal features
are also extracted using time lapse values between
previous turns as explained above. As discussed
above,agent essenceis assumed to be an input
to our module, whileagent emotionandcustomer
emotionfeatures are propagated from classifica-
tion results of previous turns during testing (or
from ground truth labels during training), where
the number of previous turns is determined ac-
cording to the value ofhistory. Thesehistorical

features are also appended to the feature vector
of ti, similarly to (Kim et al., 2010) where this
method was used for classifying dialogue acts.

4.2.2 SVM-HMM Dialogue Model

Our second approach to classifying dialogue turns
is to use a sequence classification method (SVM-
HMM), which classifies a sample sequence into
its most probable tag sequence. For instance (Kim
et al., 2010; Tavafi et al., 2013) used SVM-HMM
and Conditional Random Fields for dialogue act
classification. Since emotions expressed in cus-
tomer and agent turns are different, we treated
them as different classification tasks (like in our
previous approach) and trained a separate classi-
fier for each emotion. We made the following
changes when using SVM-HMM:

(1) We treated the emotion classification prob-
lem of turnti as a sequence classification problem
of the sequencet1, t3, ..., ti (i.e., only customer
turns) if ti is a customer turn andt2, t4, ..., ti (i.e.,
only agent turns) if it is an agent turn. (2) The
SVM-HMM classifier generates models that are
isomorphic to akth-order hidden Markov model.
Under this model, dependency in past classifi-
cation results is captured internally by modeling
transition probabilities between emotion states.
Thus, we removed historicalcustomer emotion
(resp.agent emotion) feature sets when represent-
ing a feature vector for a customer (resp. agent)
turn. (3) We note that in our setting we provide
classifications in real-time during the progress of
the dialogue, so at classification time we have ac-
cess only to previous turns and global information,
and we cannot change classification decisions for
past turns. Thus, we tagged a test turn,ti, by clas-
sifying the sequence which ends inti. Then, ti
was tagged with its sequence classification result.

5 Experiments

5.1 Experimental Setup

A first step in building a classification model is to
obtain ground truth data. For this, we sampled di-
alogues from our dataset, as detailed in Table 2,
based on each data source’s dialogue length dis-
tribution. This sample included1056 customer
turns and1056 agent turns in total. The sampled
dialogues were tagged using Amazon Mechanical
Turk4. Each dialogue was tagged by five differ-
ent Mechanical Turk’s master level judges. Each

4https://www.mturk.com/
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Source # 4 turn dialogues # 6 turn dialogues # 8 turn dialogues
Gen 100 66 33
Tech 100 58 38

Table 2: Number of dialogues tagged by judges
per source.

judge performed the following tagging tasks given
the full dialogue:

1. Emotion tagging: indicate the intensity of emo-
tion expressed in each turn (customer or agent)
for each emotion, on a scale of ([0...5]), such
that0 defines no emotion,1 a low emotion in-
tensity and5 a high emotion intensity. The
intraclass correlation (ICC) among the judges
was0.53 which indicates a moderate agreement
which is common in this setting (LeBreton and
Senter, 2007).

2. Dialogue topic tagging: select one or several
topic(s), to represent the customer’s intent. The
topics are based on a taxonomy of popular cus-
tomer support topics (Zeithaml et al., 2006):
Account issues, Pricing, Payments, Customer
service, Customer experience, Technical prob-
lem, Technical question, Order and delivery is-
sues, Behavior of a staff member, Company pol-
icy issuesandGeneral statement.

3. Agent essence tagging: select one or several of
the following for each agent’s turn, to describe
the agent’s action in the specific turn:Recog-
nizing the issue raised, Asking for more infor-
mation, Providing an explanation, Offering a
solution, General statementandAssurance of
efforts. The taxonomy is based on (Zomerdijk
and Voss, 2010).

We generated true binary labels from the emo-
tion tagging. For turnti, we considered it to ex-
press emotione if tag(e, ti) ≥ 2 wheretag(e, t)
is the average judges’ tag value ofe in t. This
process generated the class sizes detailed in Ta-
ble 3. Dialogue topic tagging was converted to bi-
nary features representing the top-2 selected top-
ics. Agent essencefeature set representation for
each turn was defined analogously. The tem-
poral response time values were translated to
low/medium/high categorical values according to
their relation to the33-th and66-th percentiles.

We evaluated our methods by using leave-one-
dialogue-out cross-validation (as in (Kim et al.,
2010)), over the whole dataset (for the two cus-

Customer Agent
Emotion # of instances Emotion # of instances
Happiness 66 Apology 146
Sadness 31 Gratitude 81
Anger 160 Empathy 163
Confusion 68 Cheerfulness 177
Frustration 342
Disappointment 257
Gratitude 119
Hopefulness 30
Politeness 180

Table 3: Class size per classification task

tomer service data sources together). Each test di-
alogue was classified by its order of turns, where
each turn type (customer or agent) is classified by
its corresponding classifier.

Our baseline in all experiments is an SVM clas-
sifier that uses only thetextual featuresdescribed
above, which do not utilize the dialogue context.
This was used as a state-of-the-art single sentence
emotion detection approach in many cases, e.g.,
(Mohammad, 2012; Roberts et al., 2012; Qadir
and Riloff, 2014) and more. As described above,
agent turn emotion prediction is performed before
its content is known. Thus, the baseline represen-
tation of an agent turn consisted oftextual fea-
turesextracted from its preceding customer turn.
We evaluated each emotion’s classification perfor-
mance by using precision (P ), recall (R) and F1-
score (F ). We evaluated the total performance for
all emotion classes usingmicro and macro aver-
ages. We used Liblinear5 as an SVM implementa-
tion and SVM-HMM6 for sequence classification.
Additionally, we used ClearNLP7 for textual fea-
tures extraction.

5.2 History Size Impact

Sincehistory size is a parameter of our models,
we first tested the classification results for all pos-
sible history sizes (given that that maximum dia-
logue size in our dataset is8). For each task and
for each possiblehistorysize, we generatedSVM
Dialogue and SVM-HMM Dialoguemodels and
evaluated them as detailed above. We compared
themacroandmicroaverageF1-scoreof our clas-
sifiers against the baseline classifier performance.
As depicted in Figure 4 both theSVM Dialogue
and SVM-HMM Dialoguemodels were superior

5http://liblinear.bwaldvogel.de/
6https://www.cs.cornell.edu/people/tj/

svm_light/svm_hmm.html
7https://github.com/clir/clearnlp
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Figure 4: Macro and micro average F1-score for
various history sizes for customer (a) and agent (b)
turn classifiers.

for all history ranges and for both tasks. Exam-
ining the customer turns emotion detection perfor-
mance, we can see in Figure 4(a) that it increases
until history = 3, and then remains relatively sta-
ble for largerhistory sizes. This means that in-
formation about the behavior of the customer and
agent in past turns is beneficial for detecting cus-
tomer emotions in a current turn. For assessing
the performance of our predictions of agent turns
emotion techniques, we first note that we tested
with history > 0 range, since we assume that the
minimal information needed for agent turn classi-
fication is the information extracted from the last
customer turn. Figure 4(b) shows that overall, per-
formance is highest whenhistory = 1, and does
not decline much for higherhistory values. This
indicates that for agent emotion technique predic-
tion the last customer turn is the most informative
one.

In all of our experiments, we used theWilcoxon
signed-rank testto validate the statistical signif-
icance of our models’micro and macro average
F1-scorecomparing to baseline performance. Ad-
ditionally, we usedMcNemar’s teston the contin-
gency tables aggregated over all emotions. These
tests showed that both of our models were signif-
icantly different from the baseline model, under a
value of0.001, for both classification tasks and all
historysizes.

5.3 Detailed Classification Results

Table 4 depicts the detailed classification results
for optimal history values that obtained maxi-
mal macro F1-score, namely for customer emo-
tion detectionhistory = 4 and for agent emo-
tion technique predictionhistory = 1. The table
presents performance for each emotion, formacro
andmicro average results over all dialogues, and
for each data source (Genor Tech) separately. For
both classification tasks, both of our models out-
performed baseline results for almost all emotions,
where averagemacroandmicro results are statis-
tically significant compared to the baseline, as de-
scribed above.

For customer turn emotion detection, theSVM-
HMM Dialoguemodel performed better than the
SVM Dialoguemodel, and reached amacro and
micro averageF1-scoreimprovements over all di-
alogues of17.8% and11.7%, respectively. Fur-
thermore, themacroandmicro averageF1-score
results of theSVM-HMM Dialoguemodel (0.519
and 0.6, respectively) are satisfying given the
moderate ICC score between the judges (0.53).
For predicting the agent emotional technique,
the SVM Dialoguemodel obtained slightly bet-
ter results thanSVM-HMM Dialoguemodel, and
reached amacro and micro averageF1-score
improvements over all dialogues of53.9% and
43.5%, respectively. These results emphasize
the differences between theSVM Dialogueand
SVM-HMM Dialoguemodels. Specifically, when
history size is large, as in customer emotion pre-
diction, SVM-HMM Dialoguemodel, which in-
ternally captures dependencies in past classifica-
tions, outperforms the simplisticSVM Dialogue
model. We note that an improvement is also ob-
tained when calculatingmacroandmicro average
performance for each data source separately. This
highlights our models’ superiority as well as their
general applicability and robustness for different
data sources.

5.4 Feature Set Contribution Analysis

We examined the contribution of different feature
sets in an incremental fashion, using the optimal
history value detailed above. Based on the fami-
lies of feature sets that we defined in the Method-
ology section, we tested the performance of differ-
ent feature set combinations in our models, added
in the following order:baseline(textual features),
emotional, temporalandintegral. Figure 5 depicts
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Classification
task

Emotion
Baseline SVM Dialogue Model SVM-HMM Dialogue Model

P R F P R F % P R F %

Customer
emotion
detection

Happiness .556 .379 .450 .622 .424 .505 12.0 .627 .561 .592 31.4
Sadness .412 .226 .292 .429 .194 .267 -8.6 .444 .258 .327 12.0
Anger .615 .469 .532 .669 .569 .615 15.6 .638 .606 .622 16.9
Confusion .200 .147 .169 .255 .191 .218 28.9 .254 .221 .236 39.4
Frustration .667 .608 .636 .659 .623 .641 .7 .659 .673 .666 4.7
Disappointment .529 .432 .475 .618 .572 .594 24.9 .628 .553 .588 23.7
Gratitude .786 .739 .762 .827 .765 .795 4.3 .826 .756 .789 3.6
Hopefulness .133 .067 .089 .286 .067 .108 21.6 .280 .233 .255 186.4
Politeness .607 .472 .531 .618 .494 .549 3.4 .561 .583 .572 7.7
Gen - macro .540 .405 .463 .582 .456 .511 10.3 .592 .514 .551 18.9
Gen - micro .685 .527 .596 .716 .606 .657 10.2 .691 .641 .665 11.6
Tech - macro .394 .332 .361 .478 .356 .408 13.2 .457 .419 .437 21.3
Tech - micro .450 .410 .429 .482 .417 .447 4.2 .479 .469 .474 10.5
Total - macro .500 .393 .440 .554 .433 .486 10.4 .546 .494 .519 17.8
Total - micro .597 .488 .537 .637 .543 .586 9.1 .617 .583 .600 11.7

Agent
emotional
technique
prediction

Apology .276 .264 .270 .418 .423 .420 55.6 .424 .380 .400 48.1
Gratitude .108 .049 .068 .326 .197 .245 260.3 .200 .197 .198 191.2
Empathy .287 .240 .261 .401 .390 .395 51.3 .401 .349 .373 42.9
Cheerfulness .491 .463 .477 .592 .598 .594 24.5 .546 .564 .554 16.1
Gen - macro .310 .275 .291 .488 .462 .474 62.9 .450 .433 .441 51.5
Gen - micro .342 .281 .308 .489 .468 .478 55.2 .461 .429 .444 44.2
Tech - macro .216 .201 .208 .277 .263 .269 29.3 .265 .256 .260 25.0
Tech - micro .338 .302 .319 .425 .392 .407 27.6 .379 .366 .372 16.6
Total - macro .290 .254 .271 .434 .402 .417 53.9 .393 .372 .382 41.0
Total - micro .340 .289 .313 .463 .437 .449 43.5 .427 .403 .414 32.3

Table 4: Detailed performance results for customer and agent classification tasks given optimalhistory
size. For brevity, the table presents improvement relative to baseline in percentages only forF1-score.

the results for both classification tasks. Thex-axis
represents specific combination of features sets,
and they-axis represents themacroor microaver-
ageF1-scorevalue obtained. Figure 5 shows that
adding each feature set improved performance for
all models, for both tasks, which indicates the in-
formative value of each feature set. Additionally,
the figure suggests that the most informative dia-
logue feature sets are theintegralandemotional.

6 Conclusions

In this work we studied emotions being expressed
in customer service dialogues in the social me-
dia. Specifically, we described two classification
tasks, one for detecting customer emotions and
the other for predicting the emotional technique
used by support service agent. We have pro-
posed two different models (SVM Dialogueand
SVM-HMM Dialoguemodels) for these tasks. We
studied the impact ofdialogue featuresand dia-
logue history on the quality of the classification
and showed improvement in performance for both
models and both classification tasks. We also
showed the robustness of our models across dif-
ferent data sources. As for future work we plan
to work on several aspects: (1) In this work, we
showed that it is possible to predict the emotional
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Figure 5: Macro and micro average F1-score for
various feature set combinations for customer (a)
and agent (b) turn classifiers. BL stands for base-
line.

technique. In the future, we plan to run experi-
ments in which the predicted emotional technique
is actually applied in the context of new dialogues
to measure the effect of such predictions on real
support dialogues. (2) Distinguish between dia-
logues that have positive outcomes (e.g., high cus-
tomer satisfaction) and others.
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Abstract

In this work, we investigate whether the
cultural idiosyncrasies found in human-
human interaction may be transferred to
human-computer interaction. With the
aim of designing a culture-sensitive dia-
logue system, we designed a user study
creating a dialogue in a domain that has
the potential capacity to reveal cultural dif-
ferences. The dialogue contains different
options for the system output according to
cultural differences. We conducted a sur-
vey among Germans and Japanese to in-
vestigate whether the supposed differences
may be applied in human-computer inter-
action. Our results show that there are
indeed differences, but not all results are
consistent with the cultural models.

1 Introduction

Nowadays, intelligent agents are omnipresent.
Furthermore, we live in a globally mobile soci-
ety in which people of widely different cultural
backgrounds live and work together. The number
of people who leave their ancestral cultural envi-
ronment and move to countries with different cul-
ture and language is increasing. This spurs the
need for culturally sensitive conversation agents.
Hence, our aim is to design a culture-aware di-
alogue system which allows a communication in
accordance with the user’s cultural idiosyncrasies.
By adapting the system’s behaviour to the user’s
cultural background, the conversation agent may
appear more familiar and trustworthy.

However, it is unclear whether cultural idiosyn-
crasies found in human-human interaction (HHI)
may be transferred to human-computer interac-
tion (HCI) as it has been shown that there exist
clear differences in HHI and HCI (Doran et al.,
2003). To investigate this, we designed and con-
ducted a user study with a dialogue in German and

Japanese containing cultural relevant system reac-
tions. In every dialogue turn, the study partici-
pants had to indicate their preference concerning
the system output. With the findings of the study,
we demonstrate whether there are different pref-
erences in communication style in HCI and which
concepts of HHI may be applied.

The structure of the remaining paper is as fol-
lows: In Section 2, related work is presented. Sub-
sequently, in Section 3, we present the cultural id-
iosyncrasies which we consider relevant for spo-
ken dialogue systems. In Section 4, we present
cultural differences between Germany and Japan
supposed by the cultural models for HHI. The con-
cept and the results of our study are presented in
Section 5 before concluding in Section 6.

2 Significant Related Work

Brejcha (2015) has described patterns of language
and culture in HCI and has shown why these pat-
terns matter and how to exploit them to design a
better user interface. Furthermore, Traum (2009)
has outlined how cultural aspects may be included
in the design of a visual human-like body and the
intelligent cognition driving action of the body of a
virtual human. Therefore, different cultural mod-
els have been examined and the author points out
steps for a fuller model of culture. Georgila and
Traum (2011) have presented how culture-specific
dialogue policies of virtual humans for negotiation
and in particular for argumentation and persuasion
may be built. A corpus of non-culture specific
dialogues is used to build simulated users which
are then employed to learn negotiation dialogue
policies using Reinforcement Learning. However,
only negotiation specific aspects are taken into ac-
count while we aim to create an overall culture-
sensitive dialogue system which takes into ac-
count cultural idiosyncrasies in every decision and
adapts not only what is said, but also how it is said
to the user’s cultural background.
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3 Integrating cultural idiosyncrasies

In a culturally aware intelligent conversation
agent, the Dialogue Management (DM) sitting at
the core of a dialogue system (Minker et al., 2009)
has to be aware of cultural interaction idiosyn-
crasies to generate culturally appropriate output.
Hence, the DM is not only responsible for what is
said next, but also for how it is said. This is what
makes the difference to generic DM where the two
main tasks are to track the dialogue state and to se-
lect the next system action, i.e., what is uttered by
the system (Ultes and Minker, 2014).
According to various cultural models (Hofstede,
2009; Elliott et al., 2016; Kaplan, 1966; Lewis,
2010; Qingxue, 2003), different cultures prefer
different communication styles. There are four di-
mensions which we consider relevant for DM:

Animation/Emotion The display of emotions
and the apparent involvement in a topic can be per-
ceived very differently across cultures. While in
some cultures the people are likely to express their
emotions, in other cultures this is quite unusual.

Directness/Indirectness Information provided
for the user has to be presented suitable so that
the user is more likely to accept it. It has to be de-
cided whether the intent is directly expressed (e.g.
”Drink more water.”) or if an indirect communi-
cation style is chosen (e.g. ”Drinking more water
may help with headaches.”) whereby the listener
has to deduce the intent from the context.

Identity Orientation Internalised self-
perception and certain values influence the
decisions of humans which depend on their cul-
ture. Hence, arguments addressing these values
may be constructed based on the user’s culture.
In some cultures, the people are individualis-
tically oriented which means that the peoples’
personal goals take priority over their allegiance
to groups or group goals and decisions are made
individualistically. In other cultures, the people
are collectivistically oriented which means that
there is a greater emphasis on the views, needs,
and goals for the group rather than oneself and
decisions are often made in relation to obligations
to the group (e.g. family).

Thought Patterns and Rhetorical Style Dif-
ferent cultures use different argumentation styles
(e.g. linear, parallel, circular and digressive). In
a discussion, the way arguments are presented

helps to provide necessary information to the user
in an appropriate way. Additionally, some cul-
tures have low-context communication whereas
other cultures have high-context communication.
In low-context communication, there is a low use
of non-verbal communication. Therefore, the peo-
ple need background information and expect mes-
sages to be detailed. In contrast, in high-context
communication, there is a high use of non-verbal
communication and the people do not require, nor
do they expect much in-depth background infor-
mation. Taking these facts into account means that
the DM has to make a very detailed decision about
how to present the information to the user.

4 Cultural differences

According to the aforementioned cultural models,
various cultural differences are expected to ex-
ist between Germany and Japan. However, con-
cerning Animation/Emotion, both Germans and
Japanese are not expected to be emotionally ex-
pressive. According to (Elliott et al., 2016),
both cultures avoid intensely emotional interac-
tions as they may lead to a loss of self-control.
Lewis (2010) affirms the fact that both Germans
and Japanese don’t like losing their face. Hence,
emotionally expressive communication is not a
preferred mode and the people try to preserve a
friendly appearance.

Regarding Directness/Indirectness, Elliot et
al. (2016) and Lewis (2010) indeed supposes dif-
ferences between Germany and Japan in their cul-
tural model. While Germans tend to speak very
direct about certain things, Japanese prefer an im-
plicit and indirect communication.

According to (Hofstede, 2009; Elliott et al.,
2016; Lewis, 2010; Qingxue, 2003), the Iden-
tity Orientation is also expected to be different
for Germans and Japanese. Germans are sup-
posed to be rather individualistically oriented and
the personal goals take priority over the allegiance
to groups or group goals. In contrast, Japanese
are more collectivistically oriented and often make
their decisions in relation to obligations to their
family or other groups. They tend to be people-
oriented and the self is often subordinated in the
interests of harmony.

In terms of Thought Patterns and Rhetorical
Style, the cultural models also suppose various dif-
ferences between Germans and Japanese. First of
all, Qingxue (2003) states that Germans have a
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low-context communication while Japanese have
a high-context communication. Therefore, Ger-
mans need background information and expect
messages to be detailed. In contrast, Japanese pro-
vide a lot of information through gestures, the use
of space, and even silence. Most of the informa-
tion is not explicitly transmitted in the verbal part
of the message. Furthermore, according to (El-
liott et al., 2016), the two cultures are expected to
use different argumentation styles. For Germans,
directness in stating the point, purpose, or con-
clusion of a communication is the preferred style
while for Japanese this is not considered appropri-
ate.

5 Concept and Evaluation

Based on the cultural differences in the dimen-
sions Directness/Indirectness, Identity Orientation
and Thought Patterns and Rhetorical Style which
have been presented in Section 4, we have de-
signed a study to investigate if these differences
may be transferred to HCI. We formulated four hy-
potheses:

1. Germans choose options with direct commu-
nication more often than Japanese do.

2. Japanese choose options with motivation us-
ing group oriented arguments more often than
Germans do.

3. Germans choose options with background in-
formation more often than Japanese do.

4. There are differences in the selection of argu-
mentation styles.

Experimental Setting For the study, a dialogue
in the healthcare domain has been created. This
domain has the potential capacity to reveal such
differences as very sensitive subjects are covered.
For every system output, different variations have
been formulated. Each of them has been adapted
according to the supposed cultural differences.
The participants assumed the role of a caregiver
who is caring for their father.

In the beginning of the dialogue, the agent
greets the user. The user also greets him and
tells him that their father doesn’t drink enough.
The agent asks how much he usually drinks and
the answer is that he drinks only one cup of tea
after breakfast. Afterwards, different possibili-
ties for the agent’s output are presented. The
first one doesn’t contain any background infor-
mation: ”You’re right, that’s not enough. Do

you know why your father doesn’t drink enough?”
In contrast, the other four options include some
background information why it is important for
an adult to drink at least 1.5 litres of water per
day. However, they differ in the argumentation
style (parallel, linear, circular, digressive). The
user answers that he doesn’t know why their fa-
ther doesn’t drink enough. Then, the agent has
different proposals how the water-intake may be
increased and there are four different options for
each proposal how it is presented to the user. The
first option contains background information and
expresses the content directly. The second option
is also direct but doesn’t give any background in-
formation. For the third and the fourth options an
indirect communication style is chosen, whereby
one option contains background information and
the other doesn’t. An example for the different
options can be found in Table 1.

Option Formulation

1 Offer him tea instead of water. It tastes good
and is not as bad as soft drinks.

2 Offer him tea instead of water.
3 Offering tea instead of water can help. It tastes

good and is not as bad as soft drinks.
4 Offering tea instead of water can help.

Table 1: There are four different options for each
proposal how it is presented to the user: (1) di-
rect, background information, (2) direct, no back-
ground information, (3) indirect, background in-
formation, (4) indirect, no background informa-
tion.

In the end of the dialogue, the agent tries to
motivate the user. Two different kinds of moti-
vation are formulated and presented by the agent.
The first one uses individualistically oriented ar-
guments (”You’re really doing a great job! It’s im-
pressive that you are able to handle all of this.”)
whereas the second one uses group oriented ar-
guments (”You’re really a big help for your fam-
ily!”). Afterwards, the agent and the user say
goodbye and the dialogue ends.

The survey has been conducted on-line. A video
for each possible system output has been created
using a Spoken Dialogue System with an animated
agent. For all recordings, the same system and
the same agent have been used. In each dialogue
turn, the participants had to watch videos repre-
senting the different variants of the system output
and decide which one they prefer. An example
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Figure 1: In each dialogue turn, the participants
had to watch different videos and decide which
one they prefer.

of this web page is shown in Figure 1. During
the survey, all descriptions have been provided in
English, German and Japanese. The videos have
been recorded in English and subtitled in German
and Japanese. The translations have been made by
German and Japanese native speakers who were
instructed to be aware of the linguistic features and
details of the cultural differences to assure equiva-
lence in the translations.

The survey Altogether, 65 Germans and 46
Japanese participated in the study. They have been
recruited using mailing lists and social networks.
The participants are aged between 15 and 62 years.
The average age of the Germans is 25.7 years
while the average age of the Japanese participants
is 27.9 years. The gender distribution of the par-
ticipants is shown in Table 2. It can be seen that
65 % of the German and only 17 % of the Japanese
participants are female.

German Japanese

male / female 23 / 42 38 / 8

Table 2: The participants’ gender distribution.

Evaluation results The evaluation of the survey
confirms our main hypothesis that Germans and
Japanese have different preferences in communi-
cation style in HCI.

Our first hypotheses says that Germans choose
options with direct communication more often
than Japanese do. The study contains four ques-
tions where the participants have to choose be-

German Mittelwert 1.89230769 3.03076923 3.76923077 0.66153846 0.26153846
Standardabweichung 1.08305944 1.00719306 1.27423257 0.47318635 0.43947252

Japanese Mittelwert 1.17391304 3.06521739 3.67391304 0.43478261 0.26086957
Standardabweichung 0.9161438 0.86983691 1.06432971 0.49572845 0.43910891
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(a) On average, Germans
(dark) choose options with
direct communication signif-
icantly (p < 0.001) more of-
ten than Japanese (light) do
(MGer = 1.89, MJap =
1.17).
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(b) On average, Germans
(dark) choose options
with motivation using
group oriented arguments
significantly (p < 0.05)
more often than Japanese
(light) do (MGer = 0.66,
MJap = 0.43).
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(c) On average, both Germans (dark) and Japanese (light)
prefer options with background information (MGer = 3.77,
MJap = 3.67). There is no significant difference.

Figure 2: Differences between Germans/Japanese.

tween direct and indirect options. Figure 2a shows
the mean of how often Germans (dark grey) and
Japanese (light grey) selected the direct option.
The German mean is with 1.89 significantly higher
than the Japanese mean (p < 0.001 using the T-
Test) thus confirming our hypothesis.

Our second hypotheses says that Japanese
choose options with motivation using group ori-
ented arguments more often than Germans do. The
survey includes one system action where the agent
motivates the user. Figure 2b shows the mean
of how often Germans (dark grey) and Japanese
(light grey) selected the motivation with group ori-
ented arguments. It can be seen that the opposite
of the hypothesised effect occurred. On average,
the Germans chose the option with group oriented
arguments more often than the Japanese (p < 0.05
using the T-Test). An explanation for this result
might be that motivation may be dependent on the
topic of the dialogue. In our case, the dialogue is
in the healthcare domain and caring for a family
member is inherently group oriented. Therefore,
it is most likely that motivating using group ori-
ented arguments is more preferred for individual-
istically oriented people. However, if for someone
it is natural to care for a family member because
he is group oriented, then motivation using group
oriented arguments is not needed and individualis-
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tically oriented arguments seem to be favoured.
Our third hypotheses says that Germans choose

options with background information more often
than Japanese do. The survey comprises five ques-
tions where the participants could select between
system outputs with and without background in-
formation. Figure 2c shows the mean of how of-
ten Germans (dark grey) and Japanese (light grey)
selected the option with background information.
On average, both Germans and Japanese preferred
the options with background information. This
suggests that there is no non-verbal communica-
tion in this kind of HCI which is only based on
speech and does not include other modalities (the
agent in the videos does not produce any output
but the speech). In this case, Japanese tend to miss
the non-verbal communication which they use to
have in HHI and therefore need verbal background
information.

Our last hypotheses says that there are differ-
ences in the selection of argumentation styles. The
survey contains one system output where the par-
ticipants have to choose between different argu-
mentation styles. However, no significant differ-
ence could be found.

Due to the difference in the gender distribution,
it is important to investigate whether this has an ef-
fect on the overall results. As can be seen in Fig-
ure 3, only for Thought Patterns and Rhetorical
Style, a significant difference has been found: on
average, women chose options with background
information more often than men. However, as the
majority of both genders and both cultures chose
the options with background information (Mm >
2.5, Mw > 2.5, MGer > 2.5, MJap > 2.5), the
difference between the genders is not supposed to
effect the result based on the culture.

6 Conclusion and Future Directions

In this work, we presented a study investigating
whether cultural communication idiosyncrasies
found in HHI may also be observed during HCI in
a Spoken Dialogue System context. Therefore, we
have created a dialogue with different options for
the system output according to the supposed dif-
ferences. In an on-line survey on the user’s pref-
erence concerning the different options we have
shown that there are indeed differences between
Germany and Japan. However, not all results are
consistent with the existing cultural models for
HHI. This suggests that the communication pat-

male Mittelwert 1.52459016 2.8852459 3.52459016 0.52459016 0.24590164
Standardabweichung 1.12507278 1.04172556 1.28811156 0.49939496 0.43062051

female Mittelwert 1.68 3.24 3.98 0.62 0.28
Standardabweichung 1.00876162 0.78892332 1.00975244 0.48538644 0.44899889
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(a) On average, both men
(dark) and women (light)
prefer options with indi-
rect communication (Mm =
1.52, Mw = 1.68). There is
no significant difference.
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(b) On average, both men
(dark) and women (light)
prefer options with motiva-
tion using group oriented ar-
guments (Mm = 0.52,
Mw = 0.62). There is no
significant difference.
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Standardabweichung 1.12507278 1.04172556 1.28811156 0.49939496 0.43062051

female Mittelwert 1.68 3.24 3.98 0.62 0.28
Standardabweichung 1.00876162 0.78892332 1.00975244 0.48538644 0.44899889
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(c) On average, women (light) choose options with back-
ground information significantly (p < 0.05) more often
than men (dark) do (Mm = 3.52, Mw = 3.98).

Figure 3: Differences between men/women.

terns are not only influenced by the culture, but
also by the dialogue domain and the user emotion.
Moreover, it is shown that not all cultural idiosyn-
crasies that occur in HHI may be applied for HCI.

In this work, only one specific dialogue has
been considered. To get a more general view and
exclude effects which may depend rather on the
domain than on the culture, in future work other
dialogues from different domains should be exam-
ined. Furthermore, we have to identify how the de-
fined cultural idiosyncrasies may be implemented
in the Dialogue Management to design a culture-
sensitive spoken dialogue system.
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Abstract

The generalisation of dialogue state track-
ing to unseen dialogue states can be very
challenging. In a slot-based dialogue sys-
tem, dialogue states lie in discrete space
where distances between states cannot be
computed. Therefore, the model param-
eters to track states unseen in the training
data can only be estimated from more gen-
eral statistics, under the assumption that
every dialogue state will have the same un-
derlying state tracking behaviour. How-
ever, this assumption is not valid. For ex-
ample, two values, whose associated con-
cepts have different ASR accuracy, may
have different state tracking performance.
Therefore, if the ASR performance of the
concepts related to each value can be esti-
mated, such estimates can be used as gen-
eral features. The features will help to re-
late unseen dialogue states to states seen
in the training data with similar ASR per-
formance. Furthermore, if two phoneti-
cally similar concepts have similar ASR
performance, the features extracted from
the phonetic structure of the concepts can
be used to improve generalisation. In
this paper, ASR and phonetic structure-
related features are used to improve the
dialogue state tracking generalisation to
unseen states of an environmental control
system developed for dysarthric speakers.

1 Introduction
Dialogue state tracking (DST) (Thomson and
Young, 2010) is a key component for spoken in-
terfaces for electronic devices. It maps the dia-
logue history up to the current dialogue turn (Spo-
ken language understanding (SLU) output, actions

taken by the device, etc.) to a probabilistic repre-
sentation over the set of dialogue states1 called the
belief state (Young et al., 2013). This represen-
tation is the input later used by the dialogue pol-
icy to decide the next action to take (Williams and
Young, 2007; Gašić and Young, 2014; Geist and
Pietquin, 2011). In the Dialogue State Tracking
Challenges (DSTC) (Williams et al., 2013; Hen-
derson et al., 2014), it was shown that data driven
discriminative models for DST outperform gen-
erative models in the context of a slot based dia-
logue system. However, generalisation to unseen
dialogue states (e.g. changing the dialogue do-
main or extending it) remains an issue. The 3rd
DSTC (Henderson et al., 2014b) evaluated state
trackers in extended domains, by including dia-
logue states not seen in the training data in the
evaluation data. This challenge showed the diffi-
culty for data-driven approaches to generalise to
unseen states, as several machine learned track-
ers were outperformed by the rule-based baseline.
Data driven state trackers with slot-specific mod-
els cannot handle unseen states. Therefore, gen-
eral state trackers track each value independently
using general value-specific features (Henderson
et al., 2014c; Mrksic et al., 2015). However, di-
alogue states are by definition in discrete space
where similarities cannot be computed. Thus, a
general state tracker has to include a general value-
tracking model that can combine the statistics of
all dialogue states. This strategy assumes that dif-
ferent dialogue states have the same state track-
ing behaviour, but such assumption is rarely true.
For example, two values, whose associated con-
cepts have different ASR accuracy, have differ-

1In a slot based dialogue system the dialogue states are
defined as the set of possible value combinations for each
slot. However, in this paper we use dialogue states to refer
to the set of slot-value pairs and joint dialogue states to the
actual dialogue states.
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ent state tracking performance. A general feature
able to define similarities between dialogue states
would improve state tracking generalisation to un-
seen states, as the new values could be tracked us-
ing statistics learned from the most similar states
seen in the training data.

Dialogue management was shown to improve
the performance of spoken control interfaces per-
sonalised to dysarthric speakers (Casanueva et al.,
2014; Casanueva et al., 2015). For these type of
interfaces (e.g. homeService (Christensen et al.,
2013; Christensen et al., 2015)), the user interacts
with the system using single word commands2.
Each slot-value in the system has its associated
command. It is a reasonable assumption that two
dialogue states or values associated to commands
with similar ASR accuracy will also have simi-
lar DST performance. If the ASR performance of
commands can be estimated (e.g. in a held out set
of recordings), the measure can be used as a gen-
eral feature to help the state tracker relate unseen
dialogue states to similar states seen in the training
data.

However, a held out set of recordings can be
costly to obtain. If it is assumed that phoneti-
cally similar commands will have similar recogni-
tion rates, general features extracted from the pho-
netic structure of the commands can be used. For
example, the ASR can find “problematic phones”,
i.e. phones or phone sequences that are consis-
tently misrecognised. Therefore, the state tracker
can learn to detect such problematic phones and
adapt its dialogue state inference to the presence
of these phones. If an unseen dialogue state that
contains these phone patterns is tracked, the state
tracker can infer the probability of that state more
efficiently. Using the command phonetic structure
as additional feature for state tracking can be inter-
preted as moving from state tracking in the “com-
mand space”, where similarities between dialogue
states cannot be computed, to state tracking in the
“phone space”, where those similarities can be es-
timated.

In this paper, we propose a method to use
ASR and phone-related general features to im-
prove the generalisation of a Recurrent Neural
Network (RNN) based dialogue state tracker to
unseen states. In the next section, state-of-the-
art methods for generalised state tracking are de-

2Severe dysarthric speakers cannot articulate complete
sentences.

Figure 1: General DST for a single slot.

scribed. Following section describes the proposed
ASR and phone-related features as well as differ-
ent approaches to encode variable length phone se-
quences into fixed length vectors. Section 4 de-
scribes the experimental set-up. Sections 5 and 6
present results and conclusions.

2 Generalised dialogue state tracking
In slot-based dialogue state tracking, the ontology
defines the set of slots S and the set of possible
values for each slot Vs. A dialogue state tracker is
hence a classifier, where classes correspond to the
joint dialogue states. However, slot-based trackers
often factorise the joint dialogue state into slots
and therefore use a classifier to track each slot in-
dependently (Lee, 2013). Then, the set of values
for that slot Vs are the classes. The joint dialogue
state is computed by multiplication and renormal-
isation of individual probabilities for each slot.
Even if the factorisation of the dialogue state helps
to generalise by reducing the number of effective
dialogue states or values to track, slot specifically
trained state trackers are not able to generalise to
unseen values as they learn the specific statistics
of each slot and value. State trackers able to gen-
eralise to unseen values track the probability of
each value independently using value specific gen-
eral features, such as the confidence score of the
concept associated to that value in the SLU output
(Henderson et al., 2014d).
2.1 Rule based state tracking
Rule-based state trackers (Wang and Lemon.,
2013; Sun et al., 2014b) use slot-value indepen-
dent rules to infer the probability of each dia-
logue state. An example is the sum of confidence
scores of the concept related to that value or the
answers confirming that the value is correct. Rule
based methods show a competitive performance
when evaluated in new or extended domains, as
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it was demonstrated in the 3rd DSTC. However,
low adaptability can reduce the performance in do-
mains that are challenging for ASR.

2.2 Slot-value independent data-driven state
tracking

In the first two DSTC, most of the data driven ap-
proaches to dialogue state tracking learned spe-
cific statistics for each slot and value (Lee, 2013;
Williams, 2014). However, in some cases (Lee and
Eskenazi., 2013), parameter tying was used across
slot models, thereby assuming that the statistics
of two slots can be similar. The 3rd DSTC ad-
dressed domain extension, and state trackers able
to generalise to unseen dialogue states had to be
developed. One of the most successful approaches
(Henderson et al., 2014d) combined the output of
two RNNs trackers: one represented slot-specific
statistics and the other modelled slot-value inde-
pendent general statistics. Later, (Mrksic et al.,
2015) modified this model to be able to track the
dialogue state in completely different domains by
using only the general part of the model of (Hen-
derson et al., 2014d). The slot-value independent
model (shown in Fig. 1) comprises of a set of bi-
nary classifiers or value filters3, one for each slot-
value pair, with parameters shared across all fil-
ters. These filters track each value independently,
and the slot s output distribution in each turn is ob-
tained by concatenating the outputs of each value
filter gt

v in Vs, followed by applying a softmax
function. The set of filters only differs from each
other in two aspects: in the input composed by
value specific general features (also called delexi-
calized features); and in the label used during the
training. An RNN-based general state tracker4 up-
dates the probability of each value pt

v in each turn
t as follows:

ht
v = σ(Wxxt

v + Whht−1
v + bh)

gt
v = σ(wght

v + bg)

pt
v =

exp(gt
v)∑

v′∈V exp(gt
v′)

(1)

Where ht
v is the hidden state of each filter, xt

v are
the value specific inputs and Wx, Wh, bh, wg

and bg are the parameters of the model.

3Addressed as filters due to their resemblance with con-
volutional neural networks filters.

4This is a simplified version of the model described in
(Mrksic et al., 2015).

Figure 2: Joint RNN encoder.

3 ASR and phone-related general
features

The model explained in section 2.2 works with
value-specific general features xt

v (e.g. the confi-
dence score seen for that particular value in that
turn). These features do not help to relate di-
alogue states with similar state tracking perfor-
mance, thus the model has to learn the mean statis-
tics from all the states. However, different values
have different state tracking performance. Fea-
tures that can give information about the ASR per-
formance or that can be used to relate the state
tracking performance of values seen in the training
data to unseen states, should allow to generalise to
new dialogue states. In the following section, we
introduce various features that can improve gener-
alisation.

3.1 ASR features
In a command-based environmental control sys-
tem, if recordings of the commands related to the
unseen dialogue states are available, they can be
used to estimate the ASR performance for the new
commands. Then, the value specific features for
each filter can be extended by concatenating the
ASR accuracy of that specific value. When the
tracker faces a value not seen in the training data,
it can improve the estimation of the probability of
that value by using the statistics learnt form values
with similar ASR performance.

3.2 Phone related features
In the previous section, accuracy estimates were
proposed to improve general state tracking accu-
racy. However, these features would have to be
inferred from a held out set of word recordings,
which may not always be available. In order to
avoid this requirement, the phonetic structure of
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Figure 3: Seq2seq phone encoder.

the commands can be used to find similarities be-
tween dialogue states with similar ASR perfor-
mance. The phonetic structure of the commands
can be seen as a space composed by subunits of
the commands, where similarities between states
can be computed.

Phone related features can be extracted in sev-
eral ways. A deep neural network trained jointly
with the ASR can be used to extract a sequence
of phone posterior features, one vector per speech
frame (Christensen et al., 2013b). Another way
is to use a pronunciation dictionary to decompose
the output of the ASR into sequences of phones.
The later method can be also used to extract a
“phonetic fingerprint” of the associated value for
each filter. For example, a filter which is tracking
the value “RADIO”, would have the sequence of
phones “r-ey-d-iy-ow” as phonetic fingerprint.

In each dialogue turn, these features are based
on sequences of different length. In the case of
the ASR phone posteriors, the sequence length is
equal to the number of speech frames. When using
a pronunciation dictionary, the length is equal to
the number of phonemes in the command. How-
ever, in each dialogue turn, a fixed length vec-
tor should be provided as input of the tracker.
Thus, a method to transform these sequences into
fixed length vectors is needed. A straightforward
method is to compute the mean vector of the se-
quence, thereby loosing the phone order informa-
tion. In addition, the number of phones that the
sequence has would affect the value of each phone
in the mean vector. To compress these sequences
in fixed length vectors while maintaining the or-
dering and the phone length of the sequence, we
propose to use a RNN encoder (Cho et al., 2014).
We propose two ways to train this encoder, jointly
with the model, and with a large pronunciation
dictionary.

3.2.1 Joint RNN phone encoder
The state of an RNN is a vector representation
of all the previous sequence inputs seen by the
model. Therefore, the final state after process-
ing a sequence can be seen as a fixed length en-
coding of the sequence. If this encoding is put to
the filters of the state tracker (Fig. 2), the tracker
and the encoder can be trained jointly using back-
propagation. We propose to concatenate the en-
coding of the phonetic sequence in each turn with
the value specific features xt

v for each filter as
shown in Fig. 2. This defines a structure with
two stacked RNNs, one encoding the phonetic se-
quences per turn and the other processing the se-
quence of dialogue turns.

3.2.2 Seq2seq phone encoder
The need to encode the phone sequences into
fixed length “dense” representations which allow
to compute similarities, resembles the computing
of word embeddings (Mikolov et al., 2013). The
difference lies in the fact that word embedding
transforms one-hot encodings of words into dense
vectors, while in the scope of this work we trans-
form sequences of one-hot encodings of phones
into dense vectors. Sequence to sequence models
(a.k.a. seq2seq models, RNN encoder-decoders),
can be used to perform such a task. These mod-
els consist of two RNNs; an encoder which pro-
cesses the input sequence into a fixed length vector
(the final RNN state); and a decoder, which “un-
rolls” the encoded state into an output sequence
(Fig. 3). These models have shown state-of-the-art
performance in machine translation tasks (Cho et
al., 2014), and have been applied to text-based di-
alogue management with promising results (Lowe
et al., 2015; Wen et al., 2016). For the task of gen-
erating dense representations of phone sequences,
the seq2seq model is trained in a similar way to
auto-encoders (Vincent et al., 2008), where in-
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Figure 4: Cosine distance in the phone encod-
ing space of different words of the UASpeech
database.

put and target sequences are the same, forcing the
model to learn to reconstruct the input sequence.
The final state of the encoder RNN (the two-line
block in Fig. 3) is taken as dense representation
of the phone sequence. For this task, the combilex
pronunciation dictionary (Richmond et al., 2010)
is used to train the model. An RNN composed
of two layers of 20 LSTM units is able to recon-
struct 95% of the phone sequences in an indepen-
dent evaluation set. This means compressing se-
quences of one-hot vectors of size 45 (the number
of phones in US English) into a vector of size 20.
In Fig. 4, the cosine distance between the dense
phone representations of two sets of words of the
UASpeech database (see sec. 4.1.1) is plotted, il-
lustrating that these encodings are able to effec-
tively relate words with similar phone composi-
tion.

4 Experimental setup

The experiments are performed within the con-
text of a voice-enabled control system designed to
help speakers with dysarthria to interact with their
home devices (Christensen et al., 2013; Casanueva
et al., 2016). The user can interact with the system
in a mixed initiative way, speaking single-word
commands from a total set of 36. As the ASR is
configured to recognise single words (Christensen
et al., 2012), the SLU operates a direct mapping
from the ASR output, an N-Best list of words, to
an N-Best list of commands. The dialogue state
of the system is factorized into three slots, with

the values of the first slot representing the devices
to control (TV, light, bluray...), the second slot its
functionalities (channel, volume...) and the third
slot the actions that these functionalities can per-
form (up, two, off...). The slots have 4, 17 and
15 values respectively, and the combination of the
values of the three slots compose the joint dia-
logue state or goal (e.g. TV-channel-five, bluray-
volume-up). The set of valid5 joint goals J has a
cardinality of 63, and the belief state for each joint
goal j is obtained by multiplying the slot proba-
bilities of each of the individual slot values and
normalising:

P (j) =
Ps1(j1)Ps2(j2)Ps3(j3)∑

h∈J Ps1(h1)Ps2(h2)Ps3(h3)
(2)

where Psx(jx) is the probability of the value jx in
slot sx and j = (j1, j2, j3).

4.1 Dialogue corpus
One of the main problems in dialogue manage-
ment research is the lack of annotated dialogue
corpora. The corpora released for the first three
DSTCs aimed to mitigate this problem. How-
ever, this corpus does not include acoustic data.
Hence, features extracted from the acoustics such
as phone posteriors cannot be used. A large part of
dialogue management research relies on simulated
users (SU) (Georgila et al., 2006; Schatzmann et
al., 2007; Thomson et al., 2012) for collection
of the data needed. The dialogue corpus used in
the following experiments has been generated with
simulated users interacting with a rule based dia-
logue manager. To simulate data collected from
dysarthric speakers, a set of 6 SUs with dysarthria
has been created.

To simulate data in two different domains, two
environmental control systems are simulated, each
controlled with a different vocabulary of 36 com-
mands. 72 commands selected from the set of 155
more frequent words in the UASpeech database
(Kim et al., 2008), and split into 2 groups, which
are named domain A and domain B. 1000 dia-
logues are collected in each domain6. To be sure
that the methods work independently of the set of
commands selected, 3 different vocabularies of 72
words are randomly selected and the results pre-
sented in the following section show the mean re-
sults for the 3 vocabularies.

5Many combinations of slot values are not valid se-
quences, e.g. light-channel-on.

6200 extra dialogues are collected in domain B for the sec-
ond set of experiments in section 5.
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4.1.1 Simulated dysarthric users
Each SU is composed of a behaviour simulator
and an ASR simulator. The behaviour simula-
tor decides on the commands uttered by the SU
in each turn. It is rule-based and depending on
the machine action, it chooses a command corre-
sponding to the value of a slot or answers a con-
firmation question. To simulate confusions by the
user, it uses a probability of producing a different
command, or of providing a value for a different
slot than the requested one. The probabilities of
confusion vary to simulate different expertise lev-
els with the system. Three different levels are used
to generate the corpus to increase its variability.

The ASR simulator generates ASR N-best out-
puts. These N-best lists are sampled from ASR
outputs of commands uttered by dysarthric speak-
ers from the UASpeech database, using the ASR
model presented in (Christensen et al., 2014). To
increase the variability of the data generated, the
time scale of each recording is modified to 10%
and 20% slower and 10% and 20% faster, gener-
ating more ASR outputs to sample from. Phone
posterior features are generated as described in
(Christensen et al., 2013b) without the principal
component analysis (PCA) dimensionality reduc-
tion. Six different SUs, corresponding to low-
and mid-intelligible speakers, are created from the
UASpeech database. ASR accuracy on these users
ranges from 32% to 60%.

4.1.2 Rule-based state tracker
One of the trackers used in the DSTCs as baseline
(Wang and Lemon., 2013) has been used to collect
the corpus. This baseline tracker performed com-
petitively in the 3 DSTCs, proving its capability to
generalise to unseen states. The state tracking ac-
curacy of this tracker is also used as the baseline
in the following experiments.

4.1.3 Rule-based dialogue policy
The dialogue policy used to collect the corpus fol-
lows simple rules to decide the action to take in
each turn. For each slot, if the maximum belief
of that slot is below a threshold, the system will
ask for that slot’s value. If the belief is above that
threshold but below a second one, it will confirm
the value. If the maximum beliefs of all slots are
above the second threshold, it will take the action
corresponding to the joint goal with the highest
probability. The thresholds values are optimised
by grid search to maximise the dialogue reward.
In addition, the policy implements a stochastic be-

haviour to induce variability in the collected data;
choosing a different action with probability p and
requesting the values of the slots in a different or-
der. The corpus is collected using two different
policy parameter sets.

4.2 General LSTM-based state tracker
A general dialogue state tracker, based on the
model described on section 2.2, has been imple-
mented. Each value filter is composed by a lin-
ear feedforward layer of size 20 and a LSTM
(Hochreiter and Schmidhuber, 1997) layer of size
30. Dropout (Srivastava et al., 2014) regularisa-
tion is used in order to reduce overfitting with
dropout rate of 0.2 in the input connections and 0.5
in the remaining non-recurrent connections. The
models are trained for 60 iterations with stochas-
tic gradient descent. A validation set consisting
on 20% of the training data is used to choose the
parameter set corresponding to the best iteration.
Model combination is also used to avoid overfit-
ting. Every model is trained with 3 different seeds,
and 5 different parameter sets are saved for each
seed, one for the best iteration in the first 20, and
then another for the best iteration in each interval
of 10 iterations.

4.2.1 ASR and phone related general features
In each turn t, each value-specific state tracker
(filter) takes as input the value-specific input fea-
tures xt

v. In this model, these correspond to the
confidence score of the command related to the
specific value, the confidence scores of the meta-
commands such as “yes” or “no” and a one-hot
encoding of the last system action. In addition,
the models are evaluated concatenating the value
specific features xt

v with the following ASR and
phone related general features zt

v:
•ValAcc: The ASR performance of the command
corresponding to the value of the tracker can be
used as general feature. In this paper, the accuracy
per command is used, defining zt

v as the estimated
ASR accuracy of the value v.
•PhSeq: A weighted sequence of phones is gen-
erated form the ASR output (N-best list of com-
mands) as described below. A pronunciation dic-
tionary is used to translate each word into a se-
quence of one-hot encodings of phones (the size
of the one-hot encoding is 45, as the number of
phones in US English). Each of these encodings
is weighted by the confidence score of that com-
mand in the N-best list. This sequence is fed into
an RNN as explained in section 3.2.1, and zt

v is de-
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Joint Slot 1 Slot 2 Slot 3 Mean
Baseline 50.51% 81.00% 51.53% 55.72% 62.75%
General 68.87% 87.59% 66.57% 67.68% 73.95%
ValAcc 74.13% 88.90% 72.16% 66.59% 75.88%
PhSeq 68.38% 89.30% 66.20% 67.74% 74.41%
PostSeq 67.92% 89.20% 65.94% 67.61% 74.25%
ValPhEnc 57.93% 77.91% 61.56% 59.31% 66.26%
PhSeq-ValPhEnc 58.56% 79.85% 62.03% 58.97% 66.95%

Table 1: Joint, mean and per slot state tracking accuracy of trackers trained on domain A and tested on
domain B for trackers using different features.

fined as the vector corresponding to the final state
of this RNN. The RNN is composed by a single
GRU (Chung et al., 2014) layer of size 15.

•PostSeq: A sequence of vectors (one vector per
speech frame) with monophone-state level pos-
terior probabilities are extracted from the output
layers of a Deep Neural Network trained on the
UASpeech corpus. The extracted vectors contain
the posteriors of each of the 3 states (initial, cen-
tral, and final) for the 45 phones of US English. To
reduce the dimensionality of vectors, the posteri-
ors of the each phone states are merged by sum-
ming them. To reduce the length of the sequence,
the mean of each group of 10 speech frames is
taken. This produces a sequence of vectors of size
45 and maximum length of 20, which is fed into an
RNN in the same way as PhSeq features to obtain
zt

v.

•ValPhEnc: For each value filter, zt
v is defined as

the 20 dimensional encoding of the sequence of
phones of the command associated to the value v,
extracted from the seq2seq model defined in sec-
tion 3.2.2. The encoder and decoder RNNs of the
seq2seq model are composed of two layers of 20
LSTM units and the model is trained on the com-
bilex dictionary (Richmond et al., 2010).

Note that two different kinds of features can
be distinguished; value identity features and ASR
output features. Value identity features (ValAcc
and ValPhEnc) give information about the value
tracked. These features are different for each fil-
ter (as each filter has a different associated value),
but they do not change over turns (time invariant).
ASR output features (PhSeq and PostSeq), on the
other hand, give information about the ASR out-
put observed. They are the same for each filter but
change in each dialogue turn.

5 Results
The results presented are the joint state tracking
accuracy, the accuracy of each individual slot and
the mean accuracy of the 3 slots. This is because
it was found that the relation between the mean
slot accuracy and the joint accuracy is highly non-
linear, due to the high dependency on the ontology
of the joint goals, while the costs optimized are re-
lated to the mean accuracy of the slots7. All the
following numbers represent the average results
for the models tested with the 6 simulated users
described in sec. 4.1.1.

Table 1 presents the accuracy results for the
model described in section 4.2, using only value
specific general features (General) and using
the different features described in section 4.2.1.
The models are trained on data from domain A
and evaluated on data from domain B. Baseline
presents the state tracking accuracy for the rule-
based state tracker presented in section 4.1.2. It
can be seen that the General tracker outperforms
the baseline by more than 10%, suggesting that
the baseline tracker does not perform well in ASR
challenging environments. As it is expected, in-
cluding the accuracy estimates (ValAcc) outper-
forms all the other approaches, especially on the
joint goal. Including PhSeq features has a slightly
worse performance in the joint but outperforms
the General features in the mean slot accuracy.
Comparing the slot by slot results, it can be seen
that PhSeq features outperform General features
in slot 1 accuracy by almost 2% while having sim-
ilar behaviour in the other 2 slots. PostSeq fea-
tures have a performance very similar to PhSeq,
suggesting that both features carry very similar
information. Surprisingly, ValPhEnc and PhSeq-

7When joining the slot outputs, the “invalid goals” are dis-
carded as described in section 4. Future work will explore
how to join the slot outputs more efficiently.
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Joint Slot 1 Slot 2 Slot 3 Mean
General 68.97% 87.81% 66.91% 67.55% 74.09%
PhSeq 69.27% 89.54% 66.14% 68.24% 74.64%
ValAcc 74.65% 89.62% 72.73% 67.24% 76.53%
ValPhEnc 72.98% 89.88% 72.87% 75.66% 79.47%
PhSeq-ValPhEnc 73.48% 91.61% 74.03% 77.20% 80.95%
ValId 60.83% 86.38% 66.95% 75.08% 76.14%

Table 2: Joint, mean and per-slot state tracking accuracy of trackers when including 200 dialogues from
domain B in the training data.

ValPhEnc perform much worse than the other fea-
tures. A detailed examination of the training re-
sults showed that, compared to General features,
these features were performing about 10% better
in the validation set (domain A) while getting 10%
worse results in the test set (domain B). This sug-
gests a strong case of overfitting to the training
data, probably caused because the vocabulary size
(36 words for train and other 36 words for test) is
not large enough for the model to find similarities
between the phone encoding vectors.

To partially deal with this problem, Table 2
shows the accuracy results when 200 dialogues
from domain B are included in the training data.
Including these dialogues in the training data has a
very slight effect with the General and PhSeq fea-
tures. ValPhEnc features, however, show a large
improvement, outperforming General features by
4% in the joint goal and more than 5% in the mean
slot accuracy. This improvement is seen in all the
slots individually. To be sure that the model is not
just learning the identities of the words, ValId fea-
tures extend the General features including a one-
hot encoding of the word identity. As it can be
seen, even if the performance in the joint goal is
very low the mean slot accuracy improves the per-
formance of General features by 2%. However, it
is still more than 3% below the ValPhEnc features,
showing that ValPhEnc features are not just learn-
ing the value identity, they are effectively correlat-
ing the performance of values similar in the phone
encoding space. Finally, including the concatena-
tion of PhSeq and ValPhEnc features, outperforms
all the other approaches, even ValAcc features for
the mean slot accuracy by more than 4%.

6 Conclusions

This paper has shown how the generalisation to
unseen states of a dialogue state tracker can be
improved by extending the value specific fea-

tures with ASR accuracy estimates. Using an
RNN encoder jointly trained with the general state
tracker to encode phone-related sequential fea-
tures slightly improved state tracking generalisa-
tion. However, when the model was trained using
dense representations of phone sequences encoded
with a seq2seq model, the tracker strongly overfit-
ted to the training data, even if dropout regulariza-
tion and model combination was used. This might
be caused by the small variability of the command
vocabulary (36 commands in each domain), which
was not large enough for the model to find use-
ful correlations between phone encodings. When
a small amount of data from the unseen domain
was included into the training data, phone encod-
ings greatly boosted performance. This showed
that phone encodings are useful as dense repre-
sentations of the phonetic structure of the com-
mand, helping the model correlate state tracking
performance of values close in the phonetic en-
coding space. This method was tested on a single-
word command-based environmental control in-
terface, where slot-value accuracies can easily be
estimated. In addition, in this domain, the se-
quences of phonetic features are usually short.
However, this method could be adapted to larger
spoken dialogue systems by estimating the con-
cept error rate of the SLU output of concepts re-
lated to slot-value pairs. Longer phonetic feature
sequences could also be used to detect “problem-
atic phones”, or correlate sentences with similar
phonetic composition, given enough variability of
the training dataset to avoid overfitting.
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Abstract

This paper introduces a subtask of entity
linking, called character identification, that
maps mentions in multiparty conversation
to their referent characters. Transcripts
of TV shows are collected as the sources
of our corpus and automatically annotated
with mentions by linguistically-motivated
rules. These mentions are manually linked
to their referents through crowdsourcing.
Our corpus comprises 543 scenes from two
TV shows, and shows the inter-annotator
agreement of κ = 79.96. For statistical mod-
eling, this task is reformulated as corefer-
ence resolution, and experimented with a
state-of-the-art system on our corpus. Our
best model gives a purity score of 69.21 on
average, which is promising given the chal-
lenging nature of this task and our corpus.

1 Introduction

Machine comprehension has recently become one
of the main targeted challenges in natural language
processing (Richardson et al., 2013; Hermann et al.,
2015; Hixon et al., 2015). The latest approaches
to machine comprehension show lots of promises;
however, most of these approaches face difficulties
in understanding information scattered across dif-
ferent parts of documents. Reading comprehension
in dialogues is particularly hard because speakers
take turns to form a conversation such that it often
requires connecting mentions from multiple utter-
ances together to derive meaningful inferences.

Coreference resolution is a common choice for
making connections between these mentions. How-
ever, most of the state-of-the-art coreference reso-
lution systems are not accustomed to handle dia-
logues well, especially when multiple participants
are involved (Clark and Manning, 2015; Peng et al.,

2015; Wiseman et al., 2015). Furthermore, linking
mentions to one another may not be good enough
for certain tasks such as question answering, which
requires to know what specific entities that men-
tions refer to. This implies that the task needs to be
approached from the side of entity linking, which
maps each mention to one or more pre-determined
entities.

In this paper, we introduce an entity linking task,
called character identification, that maps each men-
tion in multiparty conversation to its referent char-
acter(s). Mentions can be any nominals referring
to humans. At the moment, there is no dialogue
corpus available to train statistical models for entity
linking using such mentions. Thus, a new corpus is
created by collecting transcripts of TV shows and
annotating mentions with their referent characters.
Our corpus is experimented with a coreference res-
olution system to show the feasibility of this task by
utilizing an existing technology. The contributions
of this work include:1

• Introducing a subtask of entity linking, called
character identification (Section 2).

• Creating a new corpus for character identifica-
tion with thorough analysis (Section 3).

• Reformulating character identification into a
coreference resolution task (Section 4).

• Evaluating our approach to character identifi-
cation on our corpus (Section 5).

To the best of our knowledge, it is the first time that
character identification is experimented on such a
large corpus. It is worth pointing out that charac-
ter identification is just the first step to a bigger
task called character mining. Character mining is
a task that focuses on extracting information and

1All our work is publicly available at:
github.com/emorynlp/character-mining
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constructing knowledge bases associated with par-
ticular characters in contexts. The target entities
are primarily participants, either spoken or men-
tioned, in dialogues. The task can be subdivided
into three sequential tasks, character identification,
attribute extraction, and knowledge base construc-
tion. Character mining is expected to facilitate and
provide entity-specific knowledge for systems like
question answering and dialogue generation. We
believe that these tasks altogether are beneficial for
machine comprehension on multiparty conversa-
tion.

2 Task Description

Character identification is a task of mapping each
mention in context to one or more characters in a
knowledge base. It is a subtask of entity linking;
the main difference is that mentions in character
identification can be any nominals indicating char-
acters (e.g., you, mom, Ross in Figure 1), whereas
they are mostly related to the Wikipedia entries in
entity linking (Ji et al., 2015). Furthermore, charac-
ter identification allows plural or collective nouns
to be mentions such that a mention can be linked
to more than one character, and they can either
be pre-determined, inferred, or dynamically intro-
duced ; however, a mention is usually linked to one
pre-determined entity for entity linking.

The context can be drawn from any kind of docu-
ment where characters are present (e.g., dialogues,
narratives, novels). This paper focuses on context
extracted from multiparty conversation, especially
from transcripts of TV shows. Entities, mainly the
characters in the shows or the speakers in conver-
sations, are predetermined due to the nature of the
dialogue data.

Instead of grabbing transcripts from the existing
corpora (Janin et al., 2003; Lowe et al., 2015), TV
shows are selected because they represent every-
day conversation well, nonetheless they can very
well be domain-specific depending on the plots and
settings. Their contents and exchanges between
characters are written for ease of comprehension.
Prior knowledge regarding characters is usually
not required and can be learned as show proceeds.
Moreover, TV shows cover a variety of topics and
are carried on over a long period of time by specific
groups of people.

The knowledge base can be either pre-populated
or populated from the context. For the example in
Figure 1, all the speakers can be introduced to the

knowledge base without reading the conversation.
However, certain characters, mentioned during the
conversation but not the speakers, should be dy-
namically added to the knowledge base (e.g., Ross’
mom and dad). This is also true for many real-life
scenarios where the participants are known prior
to a conversation, but characters outside of these
participants are mentioned during the conversation.

Character identification is distinguished from
coreference resolution because mentions are linked
to global entities in character identification whereas
they are linked to one another without considering
global entities in coreference resolution. Further-
more, this task is harder than typical entity linking
because contexts switch of topics more rapidly in
dialogues. In this work, mentions that are either
plural or collective nouns are discarded, and the
knowledge base does not get populated from the
context dynamically. Adding these two aspects will
greatly increase the complexity of this task, which
we will explore in the future.

3 Corpus

The framework introduced here aims to create a
large scale dataset for character identification. This
is the first work to establish a robust framework for
annotating referent information of characters with
a focus on TV show transcripts.

3.1 Data Collection

Transcripts of two TV shows, Friends2 and The Big
Bang Theory3 are selected for the data collection.
Both shows serve as ideal candidates due to the ca-
sual and day-to-day dialogs among their characters.
Seasons 1 and 2 of Friends (F1 and F2), and Season
1 of The Big Bang Theory (B1) are collected. A
total of 3 seasons, 63 episodes, and 543 scenes are
collected (Table 1).

Epi Sce Spk UC SC WC
F1 24 229 116 5,344 9,168 76,038
F2 22 219 113 9,626 12,368 82,737
B1 17 95 31 2,425 3,302 37,154

Total 63 543 225 17,395 24,838 195,929

Table 1: Composition of our corpus. Epi/Sce/Spk:
# of episodes/scenes/speakers. UC/SC/WC: # of
utterances/statements/words. Redundant speakers
between F1 & F2 are counted only once.

2friendstranscripts.tk
3transcripts.foreverdreaming.org

91



MonicaJack Judy

Ross Joey

Ross I told mom and dad last night, they seemed to take it pretty well.

Monica Oh really, so that hysterical phone call I got from a woman at sobbing 3:00 A.M., "I'll 
never have grandchildren, I'll never have grandchildren." was what?  A wrong number?

Ross Sorry.

Joey Alright Ross, look. You're feeling a lot of pain right now. You're angry. You're hurting.  
Can I tell you what the answer is?

Character Identification

Figure 1: An example of character identification. All three speakers are introduced as characters before the
conversation (Ross, Monica, and Joey), and two more characters are introduced during the conversation
(Jack and Judy). The goal of this task is to identify each mention as one or more of these characters.

Each season is divided into episodes, and each
episode is divided into scenes based on the bound-
ary information provided by the transcripts. Each
scene is divided into utterances where each utter-
ance belongs to a speaker (e.g., the scene in Fig-
ure 1 includes four utterances). Each utterance con-
sists of one or more sentences that may or may not
contain action notes enclosed by parentheses (e.g.,
Ross stares at her in surprise). A sentence with its
action note(s) removed is defined as a statement.

3.2 Mention Detection

Given the dataset in Section 3.1, mentions indicat-
ing humans are pseudo-annotated by our rule-based
mention detector, which utilizes dependency rela-
tions, named entities, and a personal noun dictio-
nary provided by the open-source toolkit, NLP4J.4

Our rules are as follows: a word sequence is con-
sidered a mention if (1)it is a person named entity,
(2)it is a pronoun or possessive pronoun exclud-
ing it*, or (3)it is in the personal noun dictionary.
The dictionary contains 603 common and singular

4https://github.com/emorynlp/nlp4j

personal nouns chosen from Freebase5 and DBpe-
dia.6 Plural (e.g., we, them, boys) and collective
(e.g., family, people) nouns are discarded but will
be included in the next version of the corpus.

NE PRP PNN(%) All
F1 1,245 7,536 1,464 (24.18) 10,245
F2 1,209 7,568 1,766 (27.28) 10,543
B1 648 3,586 785 (20.05) 5,019

Total 3,102 18,690 4,015 (24.41) 25,807

Table 2: Composition of the detected mentions.
NE: named entities, PRP: pronouns, PNN(%): sin-
gular personal nouns and its ratio to all nouns.

For quality assurance, 5% of the corpus is sampled
and evaluated. A total of 1,584 mentions from
the first episode of each season in each show are
extracted. If a mention is not identified by the
detector, it is considered a “miss”. If a detected
mention does not refer human character(s), it is
considered an “error”. Our evaluation shows an F1
score of 95.93, which is satisfactory (Table 3).

5http://www.freebase.com
6http://wiki.dbpedia.org
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Miss Error Total P R F
F1 17 19 615 96.82 94.15 94.47
F2 15 3 448 99.31 95.98 97.62
B1 19 14 475 96.93 93.05 94.95

Total 51 36 1,538 97.58 94.34 95.93

Table 3: Evaluation of our mention detection. P:
precision, R: recall, F: F1 score (in %).

A further investigation on the causes is conducted
on the misses and errors of our mention detection.
Table 4 shows the proportion of each cause. The
majority of them are caused by either negligence of
personal common nouns or inclusion of interjection
use of pronouns, which are mostly coming from
the limitation of our lexicon.

1. Interjection use of pronouns (e.g., Oh mine).

2. Personal common nouns not included in the
personal noun dictionary.

3. Non-nominals tagged as nouns.

4. Proper nouns not tagged by either the part-of-
speech tagger or name entity recognizer.

5. Misspelled pronouns (e.g., I’m→ Im).

6. Analogous phrases referring to characters
(e.g, Mr. I-know-everything).

Causes of Error and Miss %
Interjection use of pronouns 27%
Common noun misses 27%
Proper noun misses 18%
Non-nominals 14%
Misspelled pronouns 10%
Analogous phrases 4%

Table 4: Proportions of the misses and errors of our
mention detection.

3.3 Annotation Scheme
All mentions from Section 3.2 are first double an-
notated with their referent characters, then adjudi-
cated if there are disagreements between annotators.
Both annotation and adjudication tasks were con-
ducted on Amazon Mechanical Turk. Annotation
and adjudication of 25,807 mentions took about 8
hours and costed about $450.

Annotation Task
Each mention is annotated with either a main char-
acter, an extra character, or one of the followings:

collective, unknown, or error. Collective indicates
the plural use of you/your, which cannot be deter-
ministically distinguished from the singular use of
those by our mention detector. Unknown indicates
an unknown character that is not listed as an option
or a filler (e.g., you know). Error indicates an in-
correctly identified mention that does not refer to
any human character.

Our annotation scheme is designed to provide
necessary contextual information and easiness for
accurate annotation. The target scene for annota-
tion includes highlighted mentions and selection
boxes with options of main characters, extra char-
acters, collective, unknown, and error. The pre-
vious and next two scenes from the target scene
are also displayed to provide additional contextual
information to annotators (Table 5). We found
that including these four extra scenes substantially
reduced annotation ambiguity. The annotation is
done by two annotators, and only scenes with 8-50
mentions detected are used for the annotation; this
allows annotators to focus while filtering out the
scenes that have insufficient amounts of mentions
for annotation.

Adjudication Task
Any scene containing at least one annotation dis-
agreement is put into adjudication. The same tem-
plate as that for the annotation task is used for the
adjudication, except that options for the mentions
are modified to display options selected by the pre-
vious two annotators. Nonetheless, adjudicators
still have the flexibility of choosing any option
from the complete list as shown in the annotation
task. This task is done by three adjudicators. The
resultant annotation is determined by the majority
vote of the two annotators from the annotation task
and the three adjudicators from this task.

3.4 Inter-Annotator Agreement

Serval preliminary tasks were conducted on Ama-
zon Mechanical Turk to improve the quality of our
annotation using a subset of the Friends season 1
dataset. Though the result on annotating the subset
gave reasonable agreement scores (F1p in Table 6),
the percentage of mentions annotated as unknown
was noticeably high. Such ambiguity was primar-
ily attributed to the lack of contextual information
since these tasks were conducted with a template
that did not provide additional scene information
other than the target scene itself. The unknown rate
decreased considerably in the later tasks (F1, F2,

93



Friends: Season 1, Episode 1, Scene 1
. . .

Ross: I1 told mom2 and dad3 last night, they seemed to take it pretty well. 1. ‘I1’ refers to?
Monica: Oh really, so that hysterical phone call I got from a woman4 at sobbing 3:00 A.M., - . . .

“I5’ll never have grandchildren, I6’ll never have grandchildren.” was what? 2. ‘mom2’ refers to?
Ross: Sorry. - . . .
Joey: Alright Ross7, look. You8’re feeling a lot of pain right now. You9’re angry. 3. ‘dad3’ refers to?

You10’re hurting. Can I11 tell you12 what the answer is? - Main character1..n

. . . - Extra character1..m

Friends: Season 1, Episode 1, Scene 2 - Collective
. . . - Unknown

Friends: Season 1, Episode 1, Scene 3 - Error
. . .

Table 5: An example of our annotation task conducted. Main character1..n displays the names of all main
characters of the show. Extra character1..m displays the names of high frequent, but not main, characters.

and B1) after the previous and the next two scenes
were added for context. As a result, our annotation
gave the absolute matching score of 82.83% and the
Cohen’s Kappa score of 79.96% for inter-annotator
agreement, and the unknown rate of 11.87% across
our corpus, which was a consistent trend across
different TV shows included in our corpus.

Match Kappa Col Unk Err
F1p 83.00 79.94 13.2 33.96 3.95
F1 84.55 80.75 11.2 21.42 3.71
F2 82.22 80.42 13.13 11.69 0.63
B1 81.54 78.73 11.35 7.80 4.99
Avg. 82.83 79.96 12.42 11.87 2.75

Table 6: Annotation analysis. Match and Kappa
show the absolute matching and Cohen’s Kappa
scores between two annotators (in %). Col/Unk/Err
shows the percentage of mentions annotated as col-
lective, unknown, and error, respectively.

One common disagreement in annotation is caused
by the ambiguity of speakers that you/your/yourself
might refer to. Such confusion often occurs during
a multiparty conversation when one party attempts
to give a general example using personal mentions
that refer to no one in specific. For the following
example, annotators label the you’s as Rachel al-
though they should be labeled as unknown since
you indicates a general human being.

Monica: (to Rachel) You1 do this, and you2

do that. You3 still end up with nothing.

The case of you also results in another ambiguity
when it is used as a filler:

Ross: (to Chandler and Joey)
You1 know, life is hard.

The referent of you here is subjective and can be
interpreted differently among individuals. It can
refers to Chandler and Joey collectively. It can also
be unknown if it refers to a general scenario. Fur-
thermore, it potentially can refers to either Chan-
dler or Joey based on the context. Such use case of
you is occasionally unclear to human annotators;
thus, for the purposes of simplicity and consistency,
this work treats them as unknown and considers that
they do not refer to any speaker.

4 Approach

4.1 Coreference Resolution
Character identification is tackled as a coreference
resolution task here, which takes advantage of uti-
lizing existing state-of-the-art systems although it
may not result the best for our task since it is more
similar to entity linking. Most of the current entity
linking systems are accustomed to find entities in
Wikipedia (Mihalcea and Csomai, 2007; Ratinov
et al., 2011), which are not intuitive to adapt to our
task. We are currently developing our own entity
linking system, which we hope to release soon.

Our corpus is first reformed into the CoNLL’12
shared task format, then experimented with two of
the open source systems. The resultant coreference
chains from these system are linked to a specific
character by our cluster remapping algorithm.

CoNLL’12 Shared Task
Our corpus is reformatted to adapt the CoNLL’12
shared task on coreference resolution for the com-
patibility with the existing systems (Pradhan et al.,
2012). Each statement is parsed into a constituent
tree using the Berkeley Parser (Petrov et al., 2006),
and tagged with named entities using the NLP4J
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tagger (Choi, 2016). The CoNLL format allows
speaker information for each statement, which is
used by both systems we experiment with. The con-
verted format preserves all necessary annotation for
our task.

Stanford Multi-Sieve System
The Stanford multi-pass sieve system (Lee et al.,
2013) is used to provide a baseline of how a coref-
erence resolution system performs on our task. The
system is composed of multiple sieves of linguistic
rules that are in the orders of high-to-low preci-
sion and low-to-high recall. Information regarding
mentions, such as plurality, gender, and parse tree,
is extracted during mention detection and used as
global features. Pairwise links between mentions
are formed based on defined linguistic rules at each
sieve in order to construct coreference chains and
mention clusters. Although no machine learning is
involved, the system offers efficiency in decoding
while yielding reasonable results.

Stanford Entity-Centric System
Another system used in this work is the Stanford
entity-centric system (Clark and Manning, 2015).
The system takes an ensemble-like statistical ap-
proach that utilizes global entity-level features to
create feature clusters, and it is stacked with two
models. The first model, mention pair model, con-
sists of two tasks, classification and ranking. Lo-
gistic classifiers are trained for both tasks to assign
probabilities to a mention. The former task con-
siders the likelihood of two mentions are linked.
The latter task estimates the potential antecedent
of a given mention. The model makes primary sug-
gestions of the coreference clusters and provides
additional feature regarding mention pairs. The
second model, entity-centric coreference model,
aims to produce a final set of coreference clusters
through learning from the features and scores of
mentions pairs. It operates between pairs of clus-
ters unlike the previous model. Iteratively, it builds
up entity-specific mention clusters using agglomer-
ative clustering and imitation learning.

This approach is particularly in alignment with
our task, which finds groups of mentions referring
to a centralized character. Furthermore, it allows
new models to be trained with our corpus. This
would give insight on whether our task can be
learned by machines and whether a generalized
model can be trained to distinguish speakers in all
context.

4.2 Coreference Evaluation Metrics
All systems are evaluated with the official CoNLL
scorer on three metrics concerning coreference res-
olution: MUC, B3, and CEAFe.

MUC
MUC (Vilain et al., 1995) concerns the number of
pairwise links needed to be inserted or removed to
map system responses to gold keys. The number
of links the system and gold shared and minimum
numbers of links needed to describe coreference
chains of the system and gold are computed. Preci-
sion is calculated by dividing the former with the
latter that describes the system chains, and recall
is calculated by dividing the former with the later
that describes the gold chains.

B3

In stead of evaluating the coreference chains solely
on their links, the B3 (Bagga and Baldwin, 1998)
metric computes precision and recall on a mention
level. System performance is evaluated by the aver-
age of all mention scores. Given a set M that con-
tains mentions denoted as mi. Coreference chains
Smi and Gmi represent the chains containing men-
tion mi in system and gold responses. Precision(P)
and recall(R) are calculated as below:

P (mi) =
|Smi ∩Gmi |
|Smi |

, R(mi) =
|Smi ∩Gmi |
|Gmi |

CEAFe

CEAFe (Luo, 2005) metric further points out the
drawback of B3, in which entities can be used more
than once during evaluation. As result, both multi-
ple coreference chains of the same entity and chains
with mentions of multiple entities are not penalized.
To cope with this problem, CEAF evaluates only
on the best one-to-one mapping between the sys-
tem’s and gold’s entities. Given a system entity Si

and gold entity Gj . An entity-based similarity met-
ric φ(Si, Gj) gives the count of common mentions
that refer to both Si and Gj . The alignment with
the best total similarity is denoted as Φ(g∗). Thus
precision(P) and recall(R) are measured as below.

P =
Φ(g∗)∑

i φ(Si, Si)
, R =

Φ(g∗)∑
i φ(Gi, Gi)

4.3 Cluster Remapping
Since the predicted coreference chains do not di-
rectly point to specific characters, a mapping mech-
anism is needed for linking those chains to certain
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TRN TST Document: episode Document: scene
MUC B3 CEAFe Avg MUC B3 CEAFe Avg

Stanford multi-pass sieve F1+F2+B1 80.73 44.91 27.00 50.88 79.09 62.26 50.22 63.86
Stanford entity-centric F1+F2+B1 84.44 44.95 19.66 49.68 83.39 69.59 54.48 69.15

F1
F1 90.79 61.25 48.63 66.89 90.16 80.46 69.05 79.89
F2 92.18 44.40 35.07 57.22 88.49 72.74 59.14 73.46
B1 94.83 73.46 61.78 76.69 91.55 80.36 66.95 79.62

F1+F2

F1 89.83 67.18 43.98 67.00 90.02 80.48 71.44 80.65
F2 89.27 55.94 38.55 61.25 89.61 76.76 64.34 76.90
B1 92.94 75.26 48.61 72.27 92.87 83.55 68.09 81.50

F1+F2 90.07 63.33 42.44 65.28 89.89 78.75 68.39 79.01
F1+F2+B1 90.63 65.64 43.21 66.49 90.55 79.84 68.53 79.64

B1 B1 93.33 75.83 59.28 76.15 91.79 82.50 69.69 81.33

F1+F2+B1

F1 89.47 64.56 49.63 67.89 90.04 79.63 71.45 80.37
F2 89.21 57.00 44.31 63.51 89.60 73.78 62.33 75.24
B1 95.72 72.92 53.87 74.17 92.97 84.23 70.58 82.59

F1+F2 89.89 62.26 47.92 66.69 89.92 76.95 67.68 78.18
F1+F2+B1 91.06 64.94 48.26 68.09 90.59 78.53 68.37 79.16

Table 7: Coreference resolution results on our corpus. Stanford multi-pass sieve is a rule-based system.
Stanford entity-centric uses its pre-trained model. Every other row shows results achieved by the entity-
centric system using models trained on the indicated training sets.

characters. The resultant chains from the above sys-
tems are mapped to either a character, collective,
or unknown. Each coreference chain is reassigned
through voting based on the group that majority of
the mentions refer to. The referent of each mention
is determined by the below rules:

1. If the mention is a proper noun or a named
entity that refers to a known character, it is
referent to the character.

2. If the mention is a first-person pronoun or pos-
sessive pronoun, it is referent to the character
of the utterance containing the mention.

3. If the mention is a collective pronoun or pos-
sessive pronoun, it is referent to the collective
group.

If none of these rules apply to any of the mentions
in a coreference chain, the chain is mapped to the
unknown group.

5 Experiments

Both the sieve system and the entity-centric system
with its pre-trained model are first evaluated on our
corpus. The entity-centric system is further evalu-
ated with new models trained on our corpus. The
gold mentions are used for these experiments be-
cause we want to focus solely on the performance
analysis of these existing systems on our task.

5.1 Data Splits
Our corpus is split into the training, development,
and evaluation sets (Table 8). Documents are for-

mulated into two ways, one treating each episode
as a document and the other treating each scene
as a document, which allows us to conduct experi-
ments with or without the contextual information
provided across the previous and next scenes.

Epi Sce Spk UC SC WC
TRN 51 427 189 13,681 19,575 155,789
DEV 5 46 39 1,631 2,313 17,406
TST 7 70 46 2,083 2,950 22,734
Total 63 543 225 17,395 24,838 195,929

Table 8: Data splits. TRN/DEV/TST: training, de-
velopment, and evaluation sets. See Table 1 for the
details about Epi/Sce/Spk/UC/SC/WC.

5.2 Analysis of Coreference Resolution
The results indicate several intriguing trends (Ta-
ble 7), explained in the following observations.

5.2.1 Multi-pass sieve vs. Entity-centric
These models yield close performance when run
out-of-box. It is interesting because both rule-based
and statistical models give similar baseline results.
This serves as an indicator of how current systems,
trained on the CoNLL’12 dataset, do not work as
well with day-to-day multiparty conversational data
that we attend to solve in this work.

5.2.2 Cross-domain Evaluation
Before looking at the results of the models trained
on F1 and F1+F2, we anticipated that these models
would give undesirable performance when evalu-
ated on B1. Those models give the average scores
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TRN TST Document: episode Document: scene
FC EC UC UM Purity FC EC UC UM Purity

Stanford multi-pass sieve 46 53 38.64 16.33 45.97 38 60 22.15 5.97 64.01
Stanford entity-centric 36 60 32.59 8.41 38.78 26 60 8.85 1.49 44.12

F1
F1 19 30 30.23 4.20 61.13 21 30 4.94 1.35 54.11
F2 12 24 40.00 3.15 42.13 17 24 17.91 4.86 51.58
B1 9 14 0.00 0.00 75.99 14 14 6.25 1.90 70.10

F1+F2

F1 20 30 39.39 7.52 69.92 20 30 10.11 2.72 56.28
F2 18 24 49.06 8.25 62.54 23 24 7.46 2.12 57.64
B1 12 14 51.52 12.69 72.16 14 14 10.87 4.56 67.11

F1+F2 30 46 42.24 7.54 66.65 26 46 9.26 1.83 45.11
F1+F2+B1 39 60 44.22 8.44 67.67 30 60 7.76 1.35 41.79

B1 B1 11 14 25.00 1.90 80.08 12 14 14.00 5.47 72.83

F1+F2+B1

F1 25 30 21.67 4.06 73.21 20 30 9.41 3.15 51.74
F2 25 24 29.17 3.64 64.62 25 24 5.80 1.34 58.79
B1 9 14 20.00 1.31 71.29 15 14 6.67 1.33 69.45

F1+F2 39 46 24.76 3.78 69.60 29 46 7.62 1.74 44.49
F1+F2+B1 45 60 23.93 3.27 69.21 36 60 6.84 1.39 42.81

Table 9: Character identification results on our corpus using cluster remapping on the coreference
resolution system results. FC: found clusters after remapping. EC: expected clusters from gold. UC:
percentage of unknown clusters after remapping. UM: percentage of unknown mentions in the unknown
clusters to all the mentions.

of 76.69 and 72.27 for B1 on the episode-level,
and 79.62 and 79.01 for B1 on the scene-level, re-
spectively. Surprisingly, the models trained on B1
do not yield a better accuracy on the episode-level
(76.15), and show an improvement of 1.69 on the
scene-level, which is smaller than expected. Thus,
it is plausible to take models trained on one show
and apply it to another for coreference resolution.

5.2.3 Cross-domain Training
When looking at the models trained on F1+F2+B1,
we found that more training instances do not nec-
essarily guarantee a continuous increase of system
performance. Although more training data from
a single show gives improvements in the results
(F1 vs. F1+F2), a similar trend cannot be assumed
for the case of the models trained on both shows
(F1+F2+B1) when data of another show (B1) is
added for training; in fact, most scores show de-
creases in performance for both episode- and scene-
level evaluations. We suppose that this is caused
by the introduction of noncontiguous context and
content of the additional show. Thus, we deduce
that models trained on data from multiple shows
are not recommended for the highest performance.

5.2.4 Episode-level vs. Scene-level
We originally foresaw the models trained on the
episode-level would outperform the ones trained on
the scene-level because the scene-level documents
would not provide enough contextual information.
However such speculation is not reflected on our

evaluation; the results achieved by the scene-level
models consistently yield higher accuracy, which
is probably because the scene-level documents are
much smaller than the episode-level documents so
that fewer characters appear within each document.

5.3 Analysis of Character Identification
The resultant coreference chains produced by the
systems in Section 4.1 do not point to any specific
characters. Thus, our cluster remapping algorithm
in Section 4.3 is run on the coreference chains to
group multiple chains together and assign them
to individual characters. These remapped results
provide a better insight of the effective system per-
formance on our task. Table 9 shows the remapped
results and the cluster purity scores.

5.3.1 Remapped Clusters
As discussed in Section 5.2.4, the scene-level mod-
els consistently outperform the episode-level mod-
els for coreference resolution. However, an op-
posite trend is found for character identification
when the coreference chains are mapped to their
referent characters. The purity scores of the overall
character-mention clusters can be viewed as an ef-
fective accuracy score for character identification.
The purity scores, or the percentages of recover-
able character-mentions clusters, of the remapped
clusters for the scene-level models are generally
lower than the ones for the episode-level models.
Although the percentages of unknown clusters and
unknown mentions are considerably higher for the

97



episode-level models, we find these results more
reasonable and realistic to the nature of our cor-
pus, since the average percentages of mentions that
are annotated as unknown are 11.87% for the en-
tire corpus and 14.01% for the evaluation set. The
primary cause of lower performance for the scene-
level models is the lack of contextual information
across scenes. The following example is excerpted
from the first utterance in the opening scene of F1:

Monica: There’s nothing to tell!
He1’s just some guy2 I3 work with!

As the conversation proceeds, there is no clear in-
dication of who He1 and guy2 refer to until later
scenes introduce the character. As a result, the
coreference chains in the scene-level documents are
noticeably shorter than those in the episode-level
documents. When trying to determine the referent
characters, fewer mentions exist in the coreference
chains produced by the scene-level models such
that there is a higher chance for those chains to be
mapped to wrong characters. Thus, the episode-
level models are recommended for better perfor-
mance on character identification.

6 Related Work

There exist few corpora concerning multiparty
conversational data. SwitchBoard is a telephone
speech corpus with focuses on speaker authentica-
tion and recognition (Godfrey et al., 1992). The
ICSI Meeting Corpus is a collection of meeting
audios and transcript recordings created for re-
search in speech recognition (Janin et al., 2003).
The Ubuntu Dialogue Corpus is a recently intro-
duced dialogue corpus that provides task-domain
specific conversation with multiple turns (Lowe et
al., 2015). All these corpora provide an immense
amount of dialogue data. However, the primary
purposes of them are aimed to tackle tasks like
speaker or speech recognition and next utterance
generation. Thus, mention referent information are
missing for the purpose of our task.

Entity Linking is a natural language processing
task of determining entities and connecting related
information in context to them (Ji et al., 2015).
Linking can be done on domain-specific informa-
tion using extracted local context (Olieman et al.,
2015). Wikification is a branch of entity linking
with an aim of associating concepts to their corre-
sponding Wikipedia pages (Mihalcea and Csomai,
2007). Ratinov et al. (2011) used linked concepts
and their relevant Wikipedia articles as features on

disambiguation. Kim et al. (2015) explored dia-
logue data in the realm of the task in attempt to im-
prove dialogue tracking using Wikification-based
information.

Similar to entity linking, coreference resolution
is another NLP task that connects mentions to their
antecedents (Pradhan et al., 2012). The task fo-
cuses on finding pair-wise connection between
mentions and forming coreference chains of the
pairs. Dialogues have been studied as a particular
domain for coreference resolution (Rocha, 1999)
due to the complex and context-switching nature
of the data. For most of the systems presented
for the task, they target on narrations or conver-
sations between two parties, such as tutoring sys-
tems (Niraula et al., 2014). Despite their similarity,
coreference resolution still differs from character
identification since the resolved coreference chains
do not directly refer to ant centralized characters.

7 Conclusion

This paper introduces a new task, called character
identification, that is a subtask of entity linking. A
new corpus is created for the evaluation of this task,
which comprises multiparty conversations from TV
show transcripts. Our annotation scheme allows to
create a large dataset with the personal mentions
and their referent characters annotated. The nature
of this corpus is analyzed with potential challenges
and ambiguities identified for future investigation.

Hence, this work provides baseline approaches
and results using the existing coreference resolu-
tion systems. Experiments are run on combinations
of our corpus in various formats to analyze the
applicability of the current systems as well as the
model trainability for our task. A cluster remapping
algorithm is then proposed to connect the corefer-
ence chains to their reference characters or groups.

Character identification is the first step to a ma-
chine comprehension task we define as character
mining. We are going to extend this task to handle
plural and collective nouns, and develop an entity
linking system customized for this task. Further-
more, we will explore an automatic way of building
a knowledge base containing information about the
characters that can be used for more specific tasks
such as question answering.
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Abstract

In this paper, we propose to use deep pol-
icy networks which are trained with an
advantage actor-critic method for statisti-
cally optimised dialogue systems. First,
we show that, on summary state and ac-
tion spaces, deep Reinforcement Learn-
ing (RL) outperforms Gaussian Processes
methods. Summary state and action
spaces lead to good performance but re-
quire pre-engineering effort, RL knowl-
edge, and domain expertise. In order to
remove the need to define such summary
spaces, we show that deep RL can also be
trained efficiently on the original state and
action spaces. Dialogue systems based
on partially observable Markov decision
processes are known to require many di-
alogues to train, which makes them un-
appealing for practical deployment. We
show that a deep RL method based on an
actor-critic architecture can exploit a small
amount of data very efficiently. Indeed,
with only a few hundred dialogues col-
lected with a handcrafted policy, the actor-
critic deep learner is considerably boot-
strapped from a combination of supervised
and batch RL. In addition, convergence to
an optimal policy is significantly sped up
compared to other deep RL methods ini-
tialized on the data with batch RL. All ex-
periments are performed on a restaurant
domain derived from the Dialogue State
Tracking Challenge 2 (DSTC2) dataset.

1 Introduction

The statistical optimization of dialogue manage-
ment in dialogue systems through Reinforcement
Learning (RL) has been an active thread of re-

search for more than two decades (Levin et al.,
1997; Lemon and Pietquin, 2007; Laroche et al.,
2010; Gašić et al., 2012; Daubigney et al., 2012).
Dialogue management has been successfully mod-
elled as a Partially Observable Markov Decision
Process (POMDP) (Williams and Young, 2007;
Gašić et al., 2012), which leads to systems that can
learn from data and which are robust to noise. In
this context, a dialogue between a user and a di-
alogue system is framed as a sequential process
where, at each turn, the system has to act based on
what it has understood so far of the user’s utter-
ances.

Unfortunately, POMDP-based dialogue man-
agers have been unfit for online deployment be-
cause they typically require several thousands of
dialogues for training (Gašić et al., 2010, 2012).
Nevertheless, recent work has shown that it is pos-
sible to train a POMDP-based dialogue system on
just a few hundred dialogues corresponding to on-
line interactions with users (Gašić et al., 2013).
However, in order to do so, pre-engineering ef-
forts, prior RL knowledge, and domain expertise
must be applied. Indeed, summary state and ac-
tion spaces must be used and the set of actions
must be restricted depending on the current state
so that notoriously bad actions are prohibited.

In order to alleviate the need for a summary
state space, deep RL (Mnih et al., 2013) has
recently been applied to dialogue management
(Cuayáhuitl et al., 2015) in the context of negoti-
ations. It was shown that deep RL performed sig-
nificantly better than other heuristic or supervised
approaches. The authors performed learning over
a large action space of 70 actions and they also
had to use restricted action sets in order to learn
efficiently over this space. Besides, deep RL was
not compared to other RL methods, which we do
in this paper. In (Cuayáhuitl, 2016), a simplistic
implementation of deep Q Networks is presented,

101



again with no comparison to other RL methods.
In this paper, we propose to efficiently alleviate

the need for summary spaces and restricted actions
using deep RL. We analyse four deep RL mod-
els: Deep Q Networks (DQN) (Mnih et al., 2013),
Double DQN (DDQN) (van Hasselt et al., 2015),
Deep Advantage Actor-Critic (DA2C) (Sutton
et al., 2000) and a version of DA2C initialized
with supervised learning (TDA2C)1 (similar idea
to Silver et al. (2016)). All models are trained on a
restaurant-seeking domain. We use the Dialogue
State Tracking Challenge 2 (DSTC2) dataset to
train an agenda-based user simulator (Schatzmann
and Young, 2009) for online learning and to per-
form batch RL and supervised learning.

We first show that, on summary state and ac-
tion spaces, deep RL converges faster than Gaus-
sian Processes SARSA (GPSARSA) (Gašić et al.,
2010). Then we show that deep RL enables us to
work on the original state and action spaces. Al-
though GPSARSA has also been tried on origi-
nal state space (Gašić et al., 2012), it is extremely
slow in terms of wall-clock time due to its grow-
ing kernel evaluations. Indeed, contrary to meth-
ods such as GPSARSA, deep RL performs effi-
cient generalization over the state space and mem-
ory requirements do not increase with the num-
ber of experiments. On the simple domain speci-
fied by DSTC2, we do not need to restrict the ac-
tions in order to learn efficiently. In order to re-
move the need for restricted actions in more com-
plex domains, we advocate for the use of TDA2C
and supervised learning as a pre-training step. We
show that supervised learning on a small set of
dialogues (only 706 dialogues) significantly boot-
straps TDA2C and enables us to start learning
with a policy that already selects only valid ac-
tions, which makes for a safe user experience in
deployment. Therefore, we conclude that TDA2C
is very appealing for the practical deployment of
POMDP-based dialogue systems.

In Section 2 we briefly review POMDP, RL and
GPSARSA. The value-based deep RL models in-
vestigated in this paper (DQN and DDQN) are de-
scribed in Section 3. Policy networks and DA2C
are discussed in Section 4. We then introduce the
two-stage training of DA2C in Section 5. Experi-
mental results are presented in Section 6. Finally,
Section 7 concludes the paper and makes sugges-
tions for future research.

1Teacher DA2C

2 Preliminaries

The reinforcement learning problem consists of an
environment (the user) and an agent (the system)
(Sutton and Barto, 1998). The environment is de-
scribed as a set of continuous or discrete states S
and at each state s ∈ S, the system can perform an
action from an action spaceA(s). The actions can
be continuous, but in our case they are assumed to
be discrete and finite. At time t, as a consequence
of an action At = a ∈ A(s), the state transitions
from St = s to St+1 = s′ ∈ S. In addition, a
reward signal Rt+1 = R(St, At, St+1) ∈ R pro-
vides feedback on the quality of the transition2.
The agent’s task is to maximize at each state the
expected discounted sum of rewards received after
visiting this state. For this purpose, value func-
tions are computed. The action-state value func-
tion Q is defined as:

Qπ(St, At) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + . . .

| St = s,At = a], (1)

where γ is a discount factor in [0, 1]. In this equa-
tion, the policy π specifies the system’s behaviour,
i.e., it describes the agent’s action selection pro-
cess at each state. A policy can be a deterministic
mapping π(s) = a, which specifies the action a to
be selected when state s is met. On the other hand,
a stochastic policy provides a probability distribu-
tion over the action space at each state:

π(a|s) = P[At = a|St = s]. (2)

The agent’s goal is to find a policy that maximizes
the Q-function at each state.

It is important to note that here the system does
not have direct access to the state s. Instead, it
sees this state through a perception process which
typically includes an Automatic Speech Recogni-
tion (ASR) step, a Natural Language Understand-
ing (NLU) step, and a State Tracking (ST) step.
This perception process injects noise in the state
of the system and it has been shown that mod-
elling dialogue management as a POMDP helps to
overcome this noise (Williams and Young, 2007;
Young et al., 2013).

Within the POMDP framework, the state at time
t, St, is not directly observable. Instead, the sys-
tem has access to a noisy observation Ot.3 A

2In this paper, upper-case letters are used for random vari-
ables, lower-case letters for non-random values (known or
unknown), and calligraphy letters for sets.

3Here, the representation of the user’s goal and the user’s
utterances.
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POMDP is a tuple (S,A, P,R,O, Z, γ, b0) where
S is the state space, A is the action space, P is
the function encoding the transition probability:
Pa(s, s′) = P(St+1 = s′ | St = s,At = a), R is
the reward function,O is the observation space, Z
encodes the observation probabilities Za(s, o) =
P(Ot = o | St = s,At = a), γ is a discount fac-
tor, and b0 is an initial belief state. The belief state
is a distribution over states. Starting from b0, the
state tracker maintains and updates the belief state
according to the observations perceived during the
dialogue. The dialogue manager then operates on
this belief state. Consequently, the value functions
as well as the policy of the agent are computed on
the belief states Bt:

Qπ(Bt, At) = Eπ

∑
t′≥t

γt
′−tRt′+1 | Bt, At


π(a|b) = P[At = a|Bt = b]. (3)

In this paper, we use GPSARSA as a baseline as
it has been proved to be a successful algorithm for
training POMDP-based dialogue managers (Engel
et al., 2005; Gašić et al., 2010). Formally, the Q-
function is modelled as a Gaussian process, en-
tirely defined by a mean and a kernel: Q(B,A) ∼
GP(m, (k(B,A), k(B,A))). The mean is usually
initialized at 0 and it is then jointly updated with
the covariance based on the system’s observations
(i.e., the visited belief states and actions, and the
rewards). In order to avoid intractability in the
number of experiments, we use kernel span spar-
sification (Engel et al., 2005). This technique con-
sists of approximating the kernel on a dictionary
of linearly independent belief states. This dictio-
nary is incrementally built during learning. Kernel
span sparsification requires setting a threshold on
the precision to which the kernel is computed. As
discussed in Section 6, this threshold needs to be
fine-tuned for a good tradeoff between precision
and performance.

3 Value-Based Deep Reinforcement
Learning

Broadly speaking, there are two main streams of
methodologies in the RL literature: value approxi-
mation and policy gradients. As suggested by their
names, the former tries to approximate the value
function whereas the latter tries to directly approx-
imate the policy. Approximations are necessary
for large or continuous belief and action spaces.

Indeed, if the belief space is large or continuous
it would not be possible to store a value for each
state in a table, so generalization over the state
space is necessary. In this context, some of the
benefits of deep RL techniques are the following:

• Generalisation over the belief space is effi-
cient and the need for summary spaces is
eliminated, normally with considerably less
wall-clock training time comparing to GP-
SARSA, for example.

• Memory requirements are limited and can be
determined in advance unlike with methods
such as GPSARSA.

• Deep architectures with several hidden layers
can be efficiently used for complex tasks and
environments.

3.1 Deep Q Networks

A Deep Q-Network (DQN) is a multi-layer neu-
ral network which maps a belief state Bt to the
values of the possible actions At ∈ A(Bt = b)
at that state, Qπ(Bt, At; wt), where wt is the
weight vector of the neural network. Neural net-
works for the approximation of value functions
have long been investigated (Bertsekas and Tsit-
siklis, 1996). However, these methods were previ-
ously quite unstable (Mnih et al., 2013). In DQN,
Mnih et al. (2013, 2015) proposed two techniques
to overcome this instability-namely experience re-
play and the use of a target network. In experi-
ence replay, all the transitions are put in a finite
pool D (Lin, 1993). Once the pool has reached
its predefined maximum size, adding a new tran-
sition results in deleting the oldest transition in
the pool. During training, a mini-batch of tran-
sitions is uniformly sampled from the pool, i.e.
(Bt, At, Rt+1, Bt+1) ∼ U(D). This method re-
moves the instability arising from strong corre-
lation between the subsequent transitions of an
episode (a dialogue). Additionally, a target net-
work with weight vector w− is used. This target
network is similar to the Q-network except that
its weights are only copied every τ steps from the
Q-network, and remain fixed during all the other
steps. The loss function for the Q-network at iter-
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ation t takes the following form:

Lt(wt) = E(Bt,At,Rt+1,Bt+1)∼U(D)

[
(
Rt+1 + γmax

a′ Qπ(Bt+1, a
′;w−t )

−Qπ(Bt, At;wt)
)2 ]

. (4)

3.2 Double DQN: Overcoming
Overestimation and Instability of DQN

The max operator in Equation 4 uses the same
value network (i.e., the target network) to se-
lect actions and evaluate them. This increases
the probability of overestimating the value of the
state-action pairs (van Hasselt, 2010; van Hasselt
et al., 2015). To see this more clearly, the target
part of the loss in Equation 4 can be rewritten as
follows:

Rt+1 + γQπ(Bt+1, argmax
a

Qπ(Bt+1, a;w−t );w−t ).

In this equation, the target network is used twice.
Decoupling is possible by using the Q-network
for action selection as follows (van Hasselt et al.,
2015):

Rt+1 + γQπ(Bt+1, argmax
a

Qπ(Bt+1, a;wt);w−t ).

Then, similarly to DQN, the Q-network is trained
using experience replay and the target network is
updated every τ steps. This new version of DQN,
called Double DQN (DDQN), uses the two value
networks in a decoupled manner, and alleviates the
overestimation issue of DQN. This generally re-
sults in a more stable learning process (van Hasselt
et al., 2015).

In the following section, we present deep RL
models which perform policy search and output a
stochastic policy rather than value approximation
with a deterministic policy.

4 Policy Networks and Deep Advantage
Actor-Critic (DA2C)

A policy network is a parametrized probabilistic
mapping between belief and action spaces:

πθ(a|b) = π(a|b; θ) = P(At = a|Bt = b, θt = θ),

where θ is the parameter vector (the weight vec-
tor of a neural network).4 In order to train policy

4For parametrization, we use w for value networks and θ
for policy networks.

networks, policy gradient algorithms have been
developed (Williams, 1992; Sutton et al., 2000).
Policy gradient algorithms are model-free meth-
ods which directly approximate the policy by
parametrizing it. The parameters are learnt using
a gradient-based optimization method.

We first need to define an objective function J
that will lead the search for the parameters θ. This
objective function defines policy quality. One way
of defining it is to take the average over the re-
wards received by the agent. Another way is to
compute the discounted sum of rewards for each
trajectory, given that there is a designated start
state. The policy gradient is then computed ac-
cording to the Policy Gradient Theorem (Sutton
et al., 2000).

Theorem 1 (Policy Gradient) For any differen-
tiable policy πθ(b, a) and for the average reward
or the start-state objective function, the policy
gradient can be computed as

∇θJ(θ) = Eπθ [∇θ log πθ(a|b)Qπθ(b, a)]. (5)

Policy gradient methods have been used success-
fully in different domains. Two recent examples
are AlphaGo by DeepMind (Silver et al., 2016)
and MazeBase by Facebook AI (Sukhbaatar et al.,
2016).

One way to exploit Theorem 1 is to parametrize
Qπθ(b, a) separately (with a parameter vector w)
and learn the parameter vector during training in
a similar way as in DQN. The trained Q-network
can then be used for policy evaluation in Equa-
tion 5. Such algorithms are known in general as
actor-critic algorithms, where theQ approximator
is the critic and πθ is the actor (Sutton, 1984; Barto
et al., 1990; Bhatnagar et al., 2009). This can be
achieved with two separate deep neural networks:
a Q-Network and a policy network.

However, a direct use of Equation 5 with Q as
critic is known to cause high variance (Williams,
1992). An important property of Equation 5 can
be used in order to overcome this issue: subtract-
ing any differentiable function Ba expressed over
the belief space from Qπθ will not change the gra-
dient. A good selection of Ba, which is called
the baseline, can reduce the variance dramatically
(Sutton and Barto, 1998). As a result, Equation 5
may be rewritten as follows:

∇θJ(θ) = Eπθ [∇θ log πθ(a|b)Ad(b, a)], (6)
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where Ad(b, a) = Qπθ(b, a)−Ba(b) is called the
advantage function. A good baseline is the value
function V πθ , for which the advantage function
becomes Ad(b, a) = Qπθ(b, a) − V πθ(b). How-
ever, in this setting, we need to train two sepa-
rate networks to parametrize Qπθ and V πθ . A bet-
ter approach is to use the TD error δ = Rt+1 +
γV πθ(Bt+1)− V πθ(Bt) as advantage function. It
can be proved that the expected value of the TD
error is Qπθ(b, a) − V πθ(b). If the TD error is
used, only one network is needed, to parametrize
V πθ(Bt) = V πθ(Bt;wt). We call this network the
value network. We can use a DQN-like method to
train the value network using both experience re-
play and a target network. For a transition Bt = b,
At = a, Rt+1 = r and Bt+1 = b′, the advantage
function is calculated as in:

δt = r + γV πθ(b′;wt)− V πθ(b;wt). (7)

Because the gradient in Equation 6 is weighted by
the advantage function, it may become quite large.
In fact, the advantage function may act as a large
learning rate. This can cause the learning process
to become unstable. To avoid this issue, we add
L2 regularization to the policy objective function.
We call this method Deep Advantage Actor-Critic
(DA2C).

In the next section, we show how this architec-
ture can be used to efficiently exploit a small set
of handcrafted data.

5 Two-stage Training of the Policy
Network

By definition, the policy network provides a prob-
ability distribution over the action space. As a re-
sult and in contrast to value-based methods such
as DQN, a policy network can also be trained with
direct supervised learning (Silver et al., 2016).
Supervised training of RL agents has been well-
studied in the context of Imitation Learning (IL).
In IL, an agent learns to reproduce the behaviour
of an expert. Supervised learning of the policy was
one of the first techniques used to solve this prob-
lem (Pomerleau, 1989; Amit and Mataric, 2002).
This direct type of imitation learning requires that
the learning agent and the expert share the same
characteristics. If this condition is not met, IL can
be done at the level of the value functions rather
than the policy directly (Piot et al., 2015). In this
paper, the data that we use (DSTC2) was collected
with a dialogue system similar to the one we train

so in our case, the demonstrator and the learner
share the same characteristics.

Similarly to Silver et al. (2016), here, we ini-
tialize both the policy network and the value net-
work on the data. The policy network is trained by
minimising the categorical cross-entropy between
the predicted action distribution and the demon-
strated actions. The value network is trained di-
rectly through RL rather than IL to give more flex-
ibility in the kind of data we can use. Indeed,
our goal is to collect a small number of dialogues
and learn from them. IL usually assumes that the
data corresponds to expert policies. However, di-
alogues collected with a handcrafted policy or in
a Wizard-of-Oz (WoZ) setting often contain both
optimal and sub-optimal dialogues and RL can be
used to learn from all of these dialogues. Super-
vised training can also be done on these dialogues
as we show in Section 6.

Supervised actor-critic architectures following
this idea have been proposed in the past (Ben-
brahim and Franklin, 1997; Si et al., 2004); the
actor works together with a human supervisor to
gain competence on its task even if the critic’s es-
timations are poor. For instance, a human can help
a robot move by providing the robot with valid ac-
tions. We advocate for the same kind of methods
for dialogue systems. It is easy to collect a small
number of high-quality dialogues and then use su-
pervised learning on this data to teach the system
valid actions. This also eliminates the need to de-
fine restricted action sets.

In all the methods above, Adadelta will be used
as the gradient-decent optimiser, which in our
experiments works noticeably better than other
methods such as Adagrad, Adam, and RMSProp.

6 Experiments

6.1 Comparison of DQN and GPSARSA
6.1.1 Experimental Protocol
In this section, as a first argument in favour of deep
RL, we perform a comparison between GPSARSA
and DQN on simulated dialogues. We trained an
agenda-based user simulator which at each dia-
logue turn, provides one or several dialogue act(s)
in response to the latest machine act (Schatzmann
et al., 2007; Schatzmann and Young, 2009). The
dataset used for training this user-simulator is the
Dialogue State Tracking Challenge 2 (DSTC2)
(Henderson et al., 2014) dataset. State tracking
is also trained on this dataset. DSTC2 includes
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(a) Comparison of GPSARSA on summary spaces and
DQN on summary (DQN) and original spaces (DQN-no-
summary).
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(b) Comparison of DA2C, DQN and DDQN on original
spaces.

Figure 1: Comparison of different algorithms on simulated dialogues, without any pre-training.

dialogues with users who are searching for restau-
rants in Cambridge, UK.

In each dialogue, the user has a goal containing
constraint slots and request slots. The constraint
and request slots available in DSTC2 are listed in
Appendix A. The constraints are the slots that the
user has to provide to the system (for instance the
user is looking for a specific type of food in a given
area) and the requests are the slots that the user
must receive from the system (for instance the user
wants to know the address and phone number of
the restaurant found by the system).

Similarly, the belief state is composed of two
parts: constraints and requests. The constraint part
includes the probabilities of the top two values for
each constraint slot as returned by the state tracker
(the value might be empty with a probability zero
if the slot has not been mentioned). The request
part, on the other hand, includes the probability
of each request slot. For instance the constraint
part might be [food: (Italian, 0.85) (Indian, 0.1)
(Not mentioned, 0.05)] and the request part might
be [area: 0.95] meaning that the user is probably
looking for an Italian restaurant and that he wants
to know the area of the restaurant found by the sys-
tem. To compare DQN to GPSARSA, we work on
a summary state space (Gašić et al., 2012, 2013).
Each constraint is mapped to a one-hot vector,
with 1 corresponding to the tuple in the grid vec-

tor gc = [(1, 0), (.8, .2), (.6, .2), (.6, .4), (.4, .4)]
that minimizes the Euclidean distance to the top
two probabilities. Similarly, each request slot is
mapped to a one-hot vector according to the grid
gr = [1, .8, .6, .4, 0.]. The final belief vector,
known as the summary state, is defined as the con-
catenation of the constraint and request one-hot
vectors. Each summary state is a binary vector of
length 60 (12 one-hot vectors of length 5) and the
total number of states is 512.

We also work on a summary action space and
we use the act types listed in Table 1 in Appendix
A. We add the necessary slot information as a
post processing step. For example, the request act
means that the system wants to request a slot from
the user, e.g. request(food). In this case, the se-
lection of the slot is based on min-max probabil-
ity, i.e., the most ambiguous slot (which is the slot
we want to request) is assumed to be the one for
which the value with maximum probability has the
minimum probability compared to the most cer-
tain values of the other slots. Note that this heuris-
tic approach to compute the summary state and ac-
tion spaces is a requirement to make GPSARSA
tractable; it is a serious limitation in general and
should be avoided.

As reward, we use a normalized scheme with a
reward of +1 if the dialogue finishes successfully
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before 30 turns,5 a reward of -1 if the dialogue is
not successful after 30 turns, and a reward of -0.03
for each turn. A reward of -1 is also distributed to
the system if the user hangs up. In our settings, the
user simulator hangs up every time the system pro-
poses a restaurant which does not match at least
one of his constraints.

For the deep Q-network, a Multi-Layer Percep-
tron (MLP) is used with two fully connected hid-
den layers, each having a tanh activation. The
output layer has no activation and it provides
the value for each of the summary machine acts.
The summary machine acts are mapped to orig-
inal acts using the heuristics explained previ-
ously. Both algorithms are trained with 15000
dialogues. GPSARSA is trained with ε-softmax
exploration, which, with probability 1 − ε, se-
lects an action based on the logistic distribution
P[a|b] = eQ(b,a)∑

a′ eQ(b,a′) and, with probability ε, se-
lects an action in a uniformly random way. From
our experiments, this exploration scheme works
best in terms of both convergence rate and vari-
ance. For DQN, we use a simple ε-greedy ex-
ploration which, with probability 1 − ε (same ε
as above), uniformly selects an action and, with
probability ε, selects an action maximizing the Q-
function. For both algorithms, ε is annealed to less
than 0.1 over the course of training.

In a second experiment, we remove both
summary state and action spaces for DQN, i.e.,
we do not perform the Euclidean-distance map-
ping as before but instead work directly on the
probabilities themselves. Additionally, the state
is augmented with the probability (returned by
the state tracker) of each user act (see Table 2 in
Appendix A), the dialogue turn, and the number
of results returned by the database (0 if there was
no query). Consequently, the state consists of 31
continuous values and two discrete values. The
original action space is composed of 11 actions:
offer6, select-area, select-food,
select-pricerange, request-area,
request-food, request-pricerange,
expl-conf-area, expl-conf-food,
expl-conf-pricerange, repeat. There

5A dialogue is successful if the user retrieves all the re-
quest slots for a restaurant matching all the constraints of his
goal.

6This act consists of proposing a restaurant to the user. In
order to be consistent with the DSTC2 dataset, an offer al-
ways contains the values for all the constraints understood by
the system, e.g. offer(name = Super Ramen, food = Japanese,
price range = cheap).

is no post-processing via min-max selection
anymore since the slot is part of the action, e.g.,
select-area.

The policies are evaluated after each 1000 train-
ing dialogues on 500 test dialogues without explo-
ration.

6.1.2 Results
Figure 1 illustrates the performance of DQN com-
pared to GPSARSA. In our experiments with GP-
SARSA we found that it was difficult to find a
good tradeoff between precision and efficiency.
Indeed, for low precision, the algorithm learned
rapidly but did not reach optimal behaviour,
whereas higher precision made learning extremely
slow but resulted in better end-performance. On
summary spaces, DQN outperforms GPSARSA
in terms of convergence. Indeed, GPSARSA re-
quires twice as many dialogues to converge. It
is also worth mentioning here that the wall-clock
training time of GPSARSA is considerably longer
than the one of DQN due to kernel evaluation.
The second experiment validates the fact that Deep
RL can be efficiently trained directly on the belief
state returned by the state tracker. Indeed, DQN on
the original spaces performs as well as GPSARSA
on the summary spaces.

In the next section, we train and compare the
deep RL networks previously described on the
original state and action spaces.

6.2 Comparison of the Deep RL Methods
6.2.1 Experimental Protocol
Similarly to the previous example, we work on
a restaurant domain and use the DSTC2 speci-
fications. We use ε−greedy exploration for all
four algorithms with ε starting at 0.5 and be-
ing linearly annealed at a rate of λ = 0.99995.
To speed up the learning process, the actions
select-pricerange, select-area, and
select-food are excluded from exploration.
Note that this set does not depend on the state and
is meant for exploration only. All the actions can
be performed by the system at any moment.

We derived two datasets from DSTC2. The first
dataset contains the 2118 dialogues of DSTC2.
We had these dialogues rated by a human expert,
based on the quality of dialogue management and
on a scale of 0 to 3. The second dataset only con-
tains the dialogues with a rating of 3 (706 dia-
logues). The underlying assumption is that these
dialogues correspond to optimal policies.
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(a) Comparison of DA2C, DQN and DDQN after batch ini-
tialization.
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(b) Comparison of DA2C and DA2C after batch initializa-
tion (batchDA2C), and TDA2C after supervised training on
expert (SupExptBatchDA2C) and non-expert data (SupFull-
BatchDA2C).

Figure 2: Comparison of different algorithms on simulated dialogues, with pre-training.

We compare the convergence rates of the deep
RL models in different settings. First, we com-
pare DQN, DDQN and DA2C without any pre-
training (Figure 1b). Then, we compare DQN,
DDQN and TDA2C with an RL initialization on
the DSTC2 dataset (Figure 2a). Finally, we focus
on the advantage actor-critic models and compare
DA2C, TDA2C, TDA2C with batch initialization
on DSTC2, and TDA2C with batch initialization
on the expert dialogues (Figure 2b).

6.2.2 Results
As expected, DDQN converges faster than DQN
on all experiments. Figure 1b shows that, with-
out any pre-training, DA2C is the one which con-
verges the fastest (6000 dialogues vs. 10000 dia-
logues for the other models). Figure 2a gives con-
sistent results and shows that, with initial train-
ing on the 2118 dialogues of DSTC2, TDA2C
converges significantly faster than the other mod-
els. Figure 2b focuses on DA2C and TDA2C.
Compared to batch training, supervised training
on DSTC2 speeds up convergence by 2000 dia-
logues (3000 dialogues vs. 5000 dialogues). In-
terestingly, there does not seem to be much dif-
ference between supervised training on the expert
data and on DSTC2. The expert data only con-
sists of 706 dialogues out of 2118 dialogues. Our
observation is that, in the non-expert data, many

of the dialogue acts chosen by the system were
still appropriate, which explains that the system
learns acceptable behavior from the entire dataset.
This shows that supervised training, even when
performed not only on optimal dialogues, makes
learning much faster and relieves the need for re-
stricted action sets. Valid actions are learnt from
the dialogues and then RL exploits the good and
bad dialogues to pursue training towards a high
performing policy.

7 Concluding Remarks

In this paper, we used policy networks for dia-
logue systems and trained them in a two-stage
fashion: supervised training and batch reinforce-
ment learning followed by online reinforcement
learning. An important feature of policy networks
is that they directly provide a probability distribu-
tion over the action space, which enables super-
vised training. We compared the results with other
deep reinforcement learning algorithms, namely
Deep Q Networks and Double Deep Q Networks.
The combination of supervised and reinforcement
learning is the main benefit of our method, which
paves the way for developing trainable end-to-end
dialogue systems. Supervised training on a small
dataset considerably bootstraps the learning pro-
cess and can be used to significantly improve the
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convergence rate of reinforcement learning in sta-
tistically optimised dialogue systems.
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A Specifications of restaurant search in
DTSC2

Constraint slots area, type of food, price range.

Request slots area, type of food, address, name,
price range, postcode, signature dish, phone
number

Table 1: Summary actions.

Action Description

Cannot
help

No restaurant in the database
matches the user’s constraints.

Confirm
Domain

Confirm that the user is looking for
a restaurant.

Explicit
Confirm

Ask the user to confirm a piece of
information.

Offer Propose a restaurant to the user.

Repeat Ask the user to repeat.

Request Request a slot from the user.

Select Ask the user to select a value
between two propositions (e.g.
select between Italian and Indian).

Table 2: User actions.

Action Description

Deny Deny a piece of information.

Null Say nothing.

Request
More

Request more options.

Confirm Ask the system to confirm
a piece of information.

Acknowledge Acknowledge.

Affirm Say yes.

Request Request a slot value.

Inform Inform the system of a slot value.

Thank you Thank the system.

Repeat Ask the system to repeat.

Request Request alternative
Alternatives restaurant options.

Negate Say no.

Bye Say goodbye to the system.

Hello Say hello to the system.

Restart Ask the system to restart
the dialogue.

110



Proceedings of the SIGDIAL 2016 Conference, pages 111–116,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

Language Portability for Dialogue Systems: Translating a
Question-Answering System from English into Tamil

Satheesh Ravi1 and Ron Artstein1,2

University of Southern California
1Department of Computer Science, 941 Bloom Walk, Los Angeles, CA 90089-0781, USA
2Institute for Creative Technologies, 12015 Waterfront Drive, Playa Vista CA 90094, USA

satheesr@usc.edu, artstein@ict.usc.edu

Abstract

A training and test set for a dialogue sys-
tem in the form of linked questions and
responses is translated from English into
Tamil. Accuracy of identifying an appro-
priate response in Tamil is 79%, compared
to the English accuracy of 89%, suggest-
ing that translation can be useful to start
up a dialogue system. Machine translation
of Tamil inputs into English also results in
79% accuracy. However, machine transla-
tion of the English training data into Tamil
results in a drop in accuracy to 54% when
tested on manually authored Tamil, indi-
cating that there is still a large gap before
machine translated dialogue systems can
interact with human users.

1 Introduction

Much of the effort in creating a dialogue system
is devoted to the collection of training data, to al-
low the system to process, understand, and react to
input coming from real users. If a comparable sys-
tem is available for a different language, it would
be helpful to use some of the existing foreign lan-
guage resources in order to cut down the develop-
ment time and cost – an issue known as language
portability. Recent efforts have shown machine
translation to be an effective tool for porting di-
alogue system resources from French into Italian
(Jabaian et al., 2010; Jabaian et al., 2013; Servan
et al., 2010); this system used concept-based lan-
guage understanding, and the findings were that
machine translation of the target language inputs
yielded better results than using translation to train
an understanding component directly for the tar-
get language. Here we report similar findings on
more challenging data, by exploring a dialogue
system with a less structured understanding com-

ponent, using off-the-shelf rather than domain-
adapted machine translation, and with languages
that are not as closely related.

Question-answering characters are designed to
sustain a conversation driven primarily by the user
asking questions. Leuski et al. (2006) devel-
oped algorithms for training such characters us-
ing linked questions and responses in the form of
unstructured natural language text. Given a novel
user question, the character finds an appropriate
response from a list of available responses, and
when a direct answer is not available, the charac-
ter selects an “off-topic” response according to a
set policy, ensuring that the conversation remains
coherent even with a finite number of responses.
The response selection algorithms are language-
independent, also allowing the questions and re-
sponses to be in separate languages. These algo-
rithms have been incorporated into a tool (Leuski
and Traum, 2011) which has been used to create
characters for a variety of applications (e.g. Leuski
et al., 2006; Artstein et al., 2009; Swartout et
al., 2010). To date, most characters created using
these principles understood and spoke only En-
glish; one fairly limited character spoke Pashto, a
language of Afghanistan (Aggarwal et al., 2011).

To test language portability we chose Tamil,
a Dravidian language spoken primarily in south-
ern India. Tamil has close to 70 million speak-
ers worldwide (Lewis et al., 2015), is the offi-
cial language of Tamil Nadu and Puducherry in
India (Wasey, 2014), and an official language in
Sri Lanka and Singapore. There is active de-
velopment of language processing tools in Tamil
such as stemmers (Thangarasu and Manavalan,
2013), POS taggers (Pandian and Geetha, 2008),
constituent and dependency parsers (Saravanan et
al., 2003; Ramasamy and Žabokrtský, 2011), sen-
tence generators (Pandian and Geetha, 2009), etc.;
commercial systems are also available, such as
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Google Translate1 between Tamil and English.
Information-providing spoken dialogue systems
have been developed for Tamil (Janarthanam et al.,
2007), but we are not aware of any conversational
dialogue systems.

The main questions we want to answer in this
paper are: (Q1) How good is a dialogue sys-
tem created using translation between English and
Tamil? (Q2) Is there a difference between manual
and machine translation in this regard? (Q3) Can
machine translation be used for interaction with
users, that is with manually translated test data?

To answer these questions, we translated linked
questions and responses from an English question-
answering system into Tamil both mechanically
and manually, and tested the response selection al-
gorithms on the English and both versions of the
Tamil data. We found that translation caused a
drop in performance of about 10% on either man-
ually or mechanically translated text, answering a
tentative fair to Q1 and no to Q2. The answer
to Q3 is mixed: a similar performance drop of
about 10% was found with machine translation on
the target language inputs (that is, translating test
questions from Tamil into English); a much more
severe drop in performance was observed when
using machine translation to create a system in
the target language (that is, translating the training
data from English into Tamil, and testing on man-
ually authored Tamil). The remainder of the pa-
per describes the experiment and results, and con-
cludes with directions for future research.

2 Method

2.1 Materials

Our English data come from the New Dimensions
in Testimony system, which allows people to ask
questions in conversation with a representation of
Holocaust Survivor Pinchas Gutter; this system
had undergone an extensive process of user test-
ing, so the linked questions and responses con-
tain many actual user questions that are relevant
to the domain (Artstein et al., 2015; Traum et al.,
2015). The New Dimensions in Testimony system
has more than 1700 responses, almost 7000 train-
ing questions, and 400 test questions, with a many-
to-many linking between questions and responses
(Traum et al., 2015). To get a dataset that is
large enough to yield meaningful results yet small

1http://translate.google.com

enough to translate manually, we needed a sub-
set that included questions with multiple links, and
answers that were fairly short. We selected all the
test questions that had exactly 4 linked responses,
and removed all the responses that were more than
200 characters in length; this yielded a test set with
28 questions, 45 responses, and 63 links, with each
test question linked to between 1 and 4 responses.
We took all the training questions linked to the
45 test responses, resulting in a training set with
441 questions and 1101 links. This sampling pro-
cedure was deliberately intended to enable high
performance on the English data, in order to pro-
vide a wide range of possible performance for the
various translated versions.

Automatic translation into Tamil was done us-
ing Google Translate, and manual translation was
performed by the first author. Thus, each question
and response in the training and test datasets has
three versions: the original English, and automatic
and manual translations into Tamil.

2.2 Tokenization

We use unigrams as tokens for the response clas-
sification algorithm; these are expected to work
well for Tamil, which has a fairly free word or-
der (Lehmann, 1989). The English text was to-
kenized using the word tokenize routine from
NLTK (Bird et al., 2009). This tokenizer does
not work for Tamil characters, so we used a sim-
ple tokenizer that separates tokens by whitespace
and removes periods, exclamation marks, question
marks and quotation marks. The same simple tok-
enizer was used as a second option for the English
text.

2.3 Stemming

Tamil is an agglutinative language where stems
can take many affixes (Lehmann, 1989), so we ex-
perimented with a stemmer (Rajalingam, 2013).2

For comparison, we also ran the English experi-
ments with the SnowballStemmer("english")
routine from NLTK.3

2.4 Response ranking

We reimplemented parts of the response ranking
algorithms of Leuski et al. (2006), including both
the language modeling (LM) and cross-language
modeling (CLM) approaches. The LM approach

2https://github.com/rdamodharan/tamil-stemmer
3http://www.nltk.org/howto/stem.html
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constructs language models for both questions and
responses using the question vocabulary. For each
training question S, a language model is esti-
mated as the frequency distribution of tokens in S,
smoothed by the distribution of tokens in the en-
tire question corpus (eq. 1). The language model
of a novel question Q is estimated as the proba-
bility of each token in the vocabulary coinciding
with Q (eq. 2). Each available response R is asso-
ciated with a pseudo-question QR made up by the
concatenation of all the questions linked to R in the
training data. The responses are ranked by the dis-
tance between a novel question Q and the associ-
ated pseudo-questions QR using Kullback-Leibler
(KL) divergence (eq. 3).

πS(w) = λπ
#S(w)
|S| +(1−λπ)∑S′ #S′(w)

∑S′ |S′|
(1)

P(w|Q)∼= ∑S′ πS′(w)∏q∈tok(Q) πS′(q)

∑S′ ∏q∈tok(Q) πS′(q)
(2)

D(Q||QR) = ∑
w∈VS′

P(w|Q) log
P(w|Q)
πQR(w)

(3)

In eq. (1), #S(w) is the number of times token w ap-
pears in sequence S; |S| is the length of sequence
S; the variable S′ iterates over all the questions in
the corpus, and λπ is a smoothing parameter. The
sum in eq. (2) is over all the questions in the train-
ing corpus; the product iterates over the tokens in
the question, and thus is an estimate the probabil-
ity of the question Q given a training question S′.
In eq. (3), VS′ is the entire question vocabulary.

The CLM approach constructs language mod-
els for both questions and responses using the re-
sponse vocabulary. The language model of a re-
sponse is estimated in a similar way to eq. (1), but
with the smoothing factor using the response cor-
pus (eq. 4). The language model associated with a
novel question Q represents the ideal response to
Q, and is estimated as the probability of each token
in the response vocabulary coinciding with Q in
the linked question-response training data (eq. 5);
available responses are ranked against this ideal
response (eq. 6).

φR(w) = λφ
#R(w)
|R| +(1−λφ )∑R′ #R′(w)

∑R′ |R′|
(4)

P(w|Q)∼= ∑ j φR j(w)∏q∈tok(Q) πS j(q)

∑ j ∏q∈tok(Q) πS j(q)
(5)

D(Q||R) = ∑
w∈VR′

P(w|Q) log
P(w|Q)
φR(w)

(6)

The sum in eq. (5) is over all linked question-
response pairs {S j,R j} in the training data, and the
product is an estimate the probability of the ques-
tion Q given the training question S j. In eq. (6),
VR′ is the entire response vocabulary.

We did not implement the parameter learning
of Leuski et al. (2006); instead we use a constant
smoothing parameter λπ = λφ = 0.1. We also do
not use the response threshold parameter, which
Leuski et al. (2006) use to determine whether the
top-ranked response is good enough. Instead, we
just check for the correctness of the top-ranked re-
sponse.

2.5 Procedure

Our basic tests kept the language and process-
ing options the same for questions and responses.
Each dataset (English and the two Tamil transla-
tions) was processed with both the LM and CLM
approaches, both with and without a stemmer; En-
glish was also processed with the two tokenizer
options.

Additionally, we processed some cross-
language datasets, with questions in Tamil and
responses in English, and vice versa. We also
performed two tests intended to check whether
it is feasible to use machine-translated data with
human questions: the manually translated Tamil
test questions were machine translated back into
English and tested with the original English
training data (target language input translation);
the manually translated Tamil test questions were
also tested with the automatically translated Tamil
training questions (creating a target language
system).

2.6 Evaluation

We use accuracy as our success measure: the top
ranked response to a test question is considered
correct if it is identified as a correct response in
the linked test data (there are up to 4 correct re-
sponses per question). This measure does not take
into account non-understanding, that is the clas-
sifier’s determination that the best response is not
good enough (Leuski et al., 2006), since this capa-
bility was not implemented; however, since all of
our test questions are known to have at least one
appropriate response, any non-understanding of a
question would necessarily count against accuracy
anyway.
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Tokenizer Accuracy (%)
Language

Translation
Stem

LM CLM

Simple
– 89 82

English
+ 89 79

NLTK
– 89 79
+ 89 79

Google
– 79 68

Tamil
+ 71 64

Manual
– 79 61
+ 68 57

Table 1: Response accuracy on 28 test questions

3 Results

The results of the experiments with matched ques-
tion and response languages are reported in Ta-
ble 1. The LM approach almost invariably pro-
duced better results than the CLM approach; this is
the opposite of the findings of Leuski et al. (2006),
where CLM fared consistently better. In most
cases, the errors produced by the CLM approach
were a superset of those of the LM approach; the
only exceptions were Tamil with stemming.

Accuracy of response selection on the Tamil
data is about 10% lower than that of English, or
twice the errors (6 errors rather than 3). The errors
of automatically translated Tamil are a superset of
the English errors; however, manually translated
Tamil did get right some of the errors of English.

Some of the errors are due to the complexity
of Tamil morphology. For example, the following
test question receives a correct response in English
but incorrect responses in Tamil:

(7) How do you envision the future?
எ"rகாலm எvவா* க+ப னை  செ y23rக4

The correct responses are linked to the following
training questions.

(8) Are you hopeful about the future?
!ŋக$ எ&rகாலt&+ ,- நmπk கை யாக இ5k67rகளா

(9) Do you have hope for the future?
உŋக$k& எ(rகாலt(- ./ நmπk கை  இ5k6றதா

In English the word future, common to train-
ing and test questions, helps identify the desired
responses. In Tamil, however, the word “fu-
ture” appears in distinct case forms: unmarked
எ"rகாலm etirkaalam in the test question, but

Question Accuracy (%)

Train Test
Response

LM CLM

English English Tam (G) 89 82
Tam (G) Tam (G) English 79 68

English Eng (G) English
(NLTK) 79 57

(Simple) 64 46

Tam (G) Tam (M)
English 54 43
Tam (G) 54 39

Table 2: Accuracy with question and response in
different languages (G = Google, M = manual)

genitive எ"rகாலt"( etirkaalattin in the training
questions. It looks as though some morphological
analysis of the Tamil text would be useful. How-
ever, while English appears almost invariant to the
use of stemming, Tamil performs markedly worse
with a stemmer. In this particular case, the stem-
mer does not unify the -am and -attin forms, and
leaves both forms intact (these forms involve both
a stem alternation -am/-att as well as a case mor-
pheme -in). We are still not able to say why the
stemmer hurts performance, but it appears that our
application could benefit from a different level of
morphological analysis than provided by the cur-
rent stemmer.

Table 2 reports the results of the experiments
which use different languages for the questions
and responses. The top two rows use the same lan-
guage for training and test questions, and only the
response language varies. Accuracy is the same as
that of the question language: this is necessarily
the case for the LM approach, which does not use
any of the response content; but it turned out to be
the case even for the CLM approach. The middle
two rows show the effect of machine translation
on the target language inputs: questions in Tamil
(manually translated from English) are automati-
cally translated into English, and tested with the
original English system. The performance penalty
turns out to be the same as for the Tamil systems
with matched training and test data, when using
the NLTK tokenizer; the simple tokenizer incurs
a larger performance penalty. Finally, the bottom
two rows show the effect of using machine transla-
tion to create a target language system: manually
translated questions in Tamil are tested with a sys-
tem trained on automatic translation from English
into Tamil. Performance drops sharply, likely due
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to mismatches between automatically and manu-
ally translated Tamil; this probably speaks to the
quality of present state machine translation from
English to Tamil. The result means that at present,
off-the-shelf machine translation into Tamil is not
quite sufficient for a translated dialogue system to
work well with human user questions.

4 Discussion

The experiments demonstrate that translating data
in the form of linked questions and responses from
one language to another can result in a classifier
that works in the target language, though there is a
drop in performance. The reasons for the drop are
not clear, but it appears that simple tokenization
is not as effective for Tamil as it is for English,
and the level of morphological analysis provided
by the Tamil stemmer is probably not appropri-
ate for the task. We thus need to continue experi-
menting with Tamil morphology tools. The further
drop in performance when mixing automatically
and manually translated Tamil is probably due to
translation mismatches.

Several questions remain left for future work.
One possibility is to improve the machine trans-
lation itself, for example by adapting it to the do-
main. Another alternative is to use both languages
together for classification; the fact that the man-
ual Tamil translation identified some responses
missed by the English classifier suggests that there
may be benefit to this approach. Another direction
for future work is identifying bad responses by us-
ing the distance between question and response to
plot the tradeoff curve between errors and return
rates (Artstein, 2011).

In our experiments the LM approach consis-
tently outperforms the CLM approach, contra
Leuski et al. (2006). Our data may not be quite
natural: while the English data are well tested,
our sampling method may introduce biases that
affect the results. But even if we achieved full
English-like performance using machine transla-
tion, the questions that Tamil speakers want to ask
will likely be somewhat different than those of En-
glish speakers. A translated dialogue system is
therefore only an initial step towards tailoring a
system to a new population.
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Abstract

We investigate the manual and automatic
annotation of PDTB discourse relations
in student essays, a novel domain that is
not only learning-based and argumenta-
tive, but also noisy with surface errors
and deeper coherency issues. We discuss
methodological complexities it poses for
the task. We present descriptive statistics
and compare relation distributions in re-
lated corpora. We compare automatic dis-
course parsing performance to prior work.

1 Introduction

The Penn Discourse Treebank (PDTB) frame-
work (Prasad et al., 2014) has been used to add
discourse relation annotation to numerous cor-
pora, including the Wall Street Journal corpus. It
differs from other approaches because of its fo-
cus on the lexical grounding of discourse relations,
such that all discourse relations either are or can be
instantiated by a discourse connective (e.g., how-
ever, in other words). This linkage between lexi-
con and discourse relation has been shown to yield
reliable human annotation across languages (Al-
saif and Markert, 2011; Zhou and Xue, 2015;
Zeyrek et al., 2013; Sharma et al., 2013; Polkov et
al., 2013; Danlos et al., 2012) and as a result has
facilitated the increased use of discourse relations
in language technology and psycholinguistics re-
search (e.g. (Ghosh et al., 2012; Patterson and
Kehler, 2003; Torabi Asr and Demberg, 2013)).
Researchers are also working towards automating
PDTB annotation, although performance to date
is still low, with F1 scores near 30% under the
strictest evaluation terms (e.g., (Lin et al., 2014;
Xue et al., 2015; Ji and Eisenstein, 2014)).

The purpose of the present study is to inves-
tigate the manual and automatic annotation of

PDTB relations in a corpus of student essays.
This corpus differs markedly from all prior ones
to which the PDTB framework has been applied.
First, it is both argumentative and learning-based:
students are learning about argumentative writing
through the essay-writing process. Second it is
noisy, displaying not only spelling and grammar
errors but also deeper problems of referential and
relational coherency. We hypothesized that these
differences would shed light on unclear aspects
of the PDTB framework, while also challenging
an automatic discourse parser. However, if de-
spite their inherent noise, learning-based datasets
could be shown able to be reliably annotated for
discourse relations, then they could provide lan-
guage technology and psycholinguistics research a
wealth of new applications. For example, interac-
tions between students’ discourse relation use and
their quality and quantity of learning and affec-
tive states could be investigated (c.f. (Litman and
Forbes-Riley, 2014)), as could the use of discourse
relations for improving automated essay graders
and writing tutors (c.f. (Zhang et al., 2016)).

In this paper we discuss methodological com-
plexities posed by applying the PDTB framework
to noisy, learning-based, and argumentative data,
including a heightened ambiguity between EntRel,
Expansion, and Contingency relations. We present
descriptive statistics showing how the relation dis-
tributions compare to both the PDTB (Prasad et
al., 2014) and BioDRB corpus (Prasad et al.,
2011), whose texts possess argumentative struc-
ture without being noisy or learning-based. Some
of these results suggest targets for future learning
research. For example, the essays contain 12%
fewer explicit connectives, contributing not only
to the lowered coherency but also reflecting inex-
perience with connective use. We then investigate
the performance of the Lin et al. (2014) PDTB-
trained parser, and find that relaxing the minimal
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argument constraint and predicting only Level-1
senses tempers the negative impact of the noise;
the parser yields an end-to-end F1 score of 31%
under strictest evaluation terms, similar to other
corpora and parsers (Xue et al., 2015). Like this
prior work, performance is highest on the first
steps of connective identification and argument
match. Patterns of errors in the remaining steps in-
dicate training on domain-specific data could help,
and also that parser and human find the same rela-
tions ambiguous. Overall our results suggest that
despite the inherent noise, learning-based datasets
can be reliably annotated for discourse relations.

2 Student Essay Data

Most prior PDTB applications have focused on
the published news domain, although the Turkish
DB (Zeyrek et al., 2013) also used published nov-
els, while the BioDRB (Prasad et al., 2011) used
published biomedical research articles.

The present study uses first and second drafts
of 47 AP English high school student essays (94
essays, 4271 sentences, 75900 words) (Zhang and
Litman, 2015). The first drafts were written after
students read the first five cantos of Dante’s In-
ferno, and required explaining why a contempo-
rary should be sent to each of the first six sections
of Dante’s hell. The second drafts were revisions
by the original writers after they received and gen-
erated peer feedback as part of the course.

The essays differ markedly from news articles
both in possessing an argumentative structure and
being learning-based, with the goal that by the sec-
ond draft they consist of an introduction, interme-
diate paragraphs developing the reasoning for each
contemporary’s placement in hell, and a conclu-
sion. Although such over-arching rhetorical struc-
ture is deliberately ignored in the PDTB, Prasad
et al. (2011) concluded that it still impacts rela-
tion distribution after applying the framework to
the BioDRB, whose biomedical articles are also
argumentative and segmented into introduction,
method, results and discussion (IMRAD).

The student essays further differ from all prior
PDTB applications in that they are noisy, contain-
ing not only grammar and spelling errors but also
deeper problems of referential and relational co-
herency. The noise often does not improve be-
tween first and second drafts. A.1-A.4 in the ap-
pendix provide essay excerpts illustrating noise
variations. As shown, not only are spelling and

grammar errors common, but a comparison of A.1
and A.2 (beginning an essay) and A.3 and A.4
(mid-essay) illustrate how the lack or misuse of
cohesive devices, along with weakness in or de-
viation from argumentative structure, creates se-
mantic ambiguity and reduces referential and rela-
tional coherence (Sanders and Maat, 2006).

3 Manually Annotating PDTB Relations

Central tenets of the PDTB framework are its fo-
cus on the lexical grounding of discourse relations
and its neutrality with respect to discourse struc-
ture beyond seeking two abstract object arguments
for all relations (Prasad et al., 2014). Five relation
types are annotated: EXPLICIT, IMPLICIT, AL-
TLEX, ENTREL, NOREL. Four Level-1 senses
are annotated: COMPARISON, CONTINGENCY,
EXPANSION, TEMPORAL. Level-2 and -3 senses
are also annotated, along with the relation’s two
minimal argument spans, and when applicable, the
explicit or inserted implicit connective that signals
it, as well as its attribution (i.e., speaker).

Annotated essay examples for each relation
type and Level-1 sense are in Appendix A.5 and
below. In each, the lexical grounding of one rela-
tion is underlined (it may be implicit, explicit or
alternatively lexicalized), its syntactically bound
argument (ARG2) is bolded, its non-structural ar-
gument (ARG1) is italicized, and its type and
sense (where applicable) are in parenthesis.

3.1 Method

Prior applications of the PDTB framework have
adopted its central tenets and most of its annota-
tion conventions while adapting others to suit lan-
guage and domain (Prasad et al., 2011; Alsaif and
Markert, 2011; Zhou and Xue, 2015; Zeyrek et
al., 2013; Sharma et al., 2013; Polkov et al., 2013;
Danlos et al., 2012). Prasad et al. (2014) provide
a comparative discussion of this prior work. Fol-
lowing this work we too retained PDTB’s central
tenets and adhered to most of its annotation con-
ventions but modified some to fit our domain, in-
crease reliability, and reduce cost:

a) As in the Hindi DRB (Sharma et al., 2013),
our workflow proceeded in one pass through each
essay, with each relation annotated for type, argu-
ment span, and sense before moving on.

b) As in the BioDRB (Prasad et al., 2011),
we did not label attribution, as apart from Dante
quotes the student was nearly always the speaker.
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c) We only labeled Level-1 senses because our
noisy conditions often made finer distinctions am-
biguous. We did not adopt the BIoDRB’s new
argument-oriented senses because it is unclear
how they all map to PDTB senses1.

d) The PDTB’s STRUCTURAL ADJACENCY

CONSTRAINT requires Implicits to take arguments
from adjacent units. This exacerbated annotation
difficulty in our noisy conditions by favoring weak
relations often ambiguous between Implicit, En-
tRel, or NoRel over stronger non-adjacent ones.
Thus as in the BioDRB we permitted Implicit
non-structural arguments in non-adjacent within-
paragraph units, even though the automatic parser
would not. This case is illustrated in Example 1.

(1) In the place of the hoarders houses Mary
who took in too much and did not re-
linquish these treasures. Dante states in
Canto seven line forty-seven “Are clerks
– yea, popes and cardinals, in whom cov-
etousness hath made its masterpiece”. So
Although not understanding why Gods
men are housed in this circle she is sen-
tenced to this as she is also a strong
believer in God and his ways. (Im-
plicit/Contingency)

e) The PDTB’s MINIMAL ARGUMENT CON-
STRAINT requires labeling only the minimal nec-
essary argument text. Because our noisy condi-
tions often made boundaries ambiguous, we did
not strictly enforce this. In hard cases a larger unit
was labeled with the expectation that minimality
could be pursued on a subsequent pass. This case
is also illustrated above.

f) Often in the essays relations hold between
ungrammatical units, including sentences concate-
nated without punctuation or syntactically incom-
plete ones, as illustrated in Example 2. Due to
their frequency, we decided to annotate them even
if the automatic parser would not.

(2) The first layer of hell is the vestibule in the
entrance of hell this is a large open gate
symbolizing that is easy to get into. (En-
tRel)

The annotation was performed using the PDTB
tool from the website. The lists of connectives
from the PDTB manual were used to help identify

1Prasad et al. (2011) state that Continuation and Back-
ground map to Expansion and are reformulations of EntRel.

Exp Imp AltL EntR NoR n/a
Exp 73 8
Imp 56 1 13
AltL 1
EntR 2 10
NoR 0
n/a 2 1 1 n/a

Table 1: Relation Types in Interannotator Agree-
ment Study (SE in rows; PDTB in cols)

Comp Cont Expn Temp
Comp 28 1
Cont 24 2
Expn 6 4 42 1
Temp 1 21

Table 2: Senses for Agreed Types in Interannota-
tor Agreement Study (SE in rows; PDTB in cols)

and insert implicit connectives. Although these
lists are productive, only rarely was a new con-
nective inserted, because the conditions regarding
connective classification are still unclear. 2

3.2 Interannotator Reliability Study
The annotator used here was one of the early de-
velopers of the D-LTAG environment that engen-
dered the PDTB framework (Forbes-Riley et al.,
2006; Miltsakaki et al., 2003; Forbes et al., 2002),
and was thus viewed as an expert. To verify this
presumption an inter-annotator agreement study
was performed. Four WSJ articles3 were anno-
tated for the five relation types and the four Level-
1 senses and compared with the gold-standard an-
notations. The student essay (SE) annotator pro-
duced 163 relations while the PDTB produced
160, yielding a total of 168 unique relations. 140
agreed for relation type, meaning the type label
matched and the argument spans were overlap-
ping, i.e. an exact or partial match. Table 1 shows
the type labels across the SE (rows) and PDTB
(columns), with the final column/row (“n/a”) rep-
resenting relations identified by only one. Table 2
shows the senses for the 130 agreed types, exclud-
ing the 10 EntRels, which take no sense label. For
type, agreement is 140/168, or 83%, and for sense
it is 115/130, or 89%, with a Kappa of .84.

This level of agreement is on par with prior
PDTB annotations. For example in the BioDRB
agreement for Explicit and AltLex is 82% (Im-
plicit agreement is not reported), and Kappa for

2E.g. two common clause subordinators, “by” and “in
order to,” are annotated in the BioDRB but not the PDTB.

3wsj1000, wsj2303, wsj2308, and wsj2314
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Type Count Comp Cont Exp Tmp Comp/ Comp/ Comp/ Cont/ Cont/ Exp/
(%) Cont Exp Tmp Exp Tmp Tmp

Exp 1657 315 626 474 192 1 1 7 1 33 7
(33%)

Imp 2495 186 739 1492 18 2 8 4 36 4 6
(49%)

AltL 103 1 49 51 0 0 0 0 0 0 2
(2%)

EntR 844 - - - - - - - - - -
(17%) - - - - - - - - - -

NoR 0 - - - - - - - - - -
All 5099 502 1414 2017 210 3 9 11 37 37 15
Exp/Imp Senses 4262 12% 34% 48% 6%

Table 3: Relation Type and Sense Distribution in Student Essays

Exp Imp AltL EntR NoR Comp Cont Expn Tmp
PDTB 45% 40% 2% 13% 0.6% 23% 22% 42% 13%
BioDRB 45% 51% 3% 0% 0.5% 11% 20% ? 17%

Table 4: Comparison Percentages of Types and Senses in PDTB Corpus and BioDRB Corpus

the 31 BioDRB senses is .71 for Explicit and Al-
tLex and .63 for Implicit (Prasad et al., 2011). In
the PDTB agreement was only reported for argu-
ment spans because some types were developed as
the annotation went along. Agreement for partial
match arguments is 94.5% and 92.6% for Explic-
its and Implicits, respectively (Miltsakaki et al.,
2004; Prasad et al., 2008), while sense agreement
is 94% for Level-1, falling to 84% and 80% for
Level-2 and -3, respectively (Prasad et al., 2008).

3.3 Manual Annotation Results

Table 3 shows the distributions of manually an-
notated discourse relations in the essays. Type
counts in the second column are broken down into
senses across the remaining columns. As shown,
Explicit, Implicit and AltLex can have multiple
senses simultaneously. Table 4 compares relation
distributions in the PDTB and BioDRB corpora.

Considering first relation type, there are 12%
fewer Explicits in the essays than in the PDTB and
BioDRB, both of which report 45%. That high
school students are less likely to provide explicit
markers of their intended discourse relations not
only contributes to lowered coherency but also re-
flects their inexperience with the use of these co-
hesive devices, and points to an area for future
learning-based language technology research. The
type counts are recovered across Implicits and En-
tRels, with the essays containing 49% and 17%,
while the PDTB contains only 40% and 13%, re-
spectively. In the BioDRB, the addition of new
senses inflated the percentage of Implicits (51%)

by removing EntRels completely. AltLex appears
only rarely at 2-3% across all three corpora; how-
ever, these are underannotated in the framework,
i.e. only when inserting a connective creates se-
mantic redundancy (Prasad et al., 2014). NoRels
are even more rare, occurring in the PDTB and
BioDRB at rates of 0.5-0.6%, and not at all in the
essays. A major reason was our loosening of the
structural adjacency requirement (Section 3.1)4;
most NoRels were replaced by an Implicit with a
non-adjacent argument, as in Example 3.

(3) The people in the second circle are the
lustful. Their punishment is to bang
against one an another in Hell for all eter-
nity. The modern day examples would
be prostitutes or Jerry Sandusky. Next,
The third circle is for the gluttons. (Im-
plicit/Expansion)

Other potential NoRels were deemed better
classified as indirect EntRels (i.e. set/subset,
part/whole, or other bridging inferences) (Prince,
1981). However some ambiguity typically re-
mained since EntRels can be extremely indirect in
the essays, which also contributes to their lowered
coherency. In Example 4, an encompassing entity
extending through time can be inferred from “the
world today” and “In Dante.”

(4) There are many types of people in the
world today, people with different beliefs.

4In the BioDRB, NoRels still occurred in the abstracts and
were used to mark duplicate sentences (Prasad et al., 2011).
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In Dante, there are different circles for
every level of hell. (EntRel)

Considering relation sense, the final row of Ta-
ble 3 shows the overall percentage of each Level-1
sense for Explicits and Implicits, as computed by
totaling all occurrences in every sense combina-
tion (e.g., Comp = 315+186+3+9+11 = 524/4262
= 12%). Sense distributions for these types in the
PDTB and BioDRB are shown in Table 4.

The essays contain substantially fewer Compar-
isons than the PDTB (12% versus 23%) but are
very similar to the BioDRB, which contains 11%.
This suggests Comparisons tend to have less use in
argumentative texts, regardless of their level of so-
phistication. On the other hand, the essays contain
substantially more Contingencies (34%) than both
the PDTB (22%) and the BioDRB (20%). This
may reflect a “sledgehammer” approach to argu-
ment construction, and thus a target for learning-
based language technology research.

Temporals occur less frequently in the essays
than in the PDTB (6% versus 13%) because in the
essays most ordering is done in relation to the ex-
position and so falls under the definition of Expan-
sion, as shown in Example 5. However, the Bio-
DRB contains a much higher proportion of Tem-
porals (17%) that may reflect a more sophisticated
use of temporal ordering for argument construc-
tion, and another target for learning-based lan-
guage technology research.

(5) The fourth level of Hell is the hoarder/
spendthrifts of life. ... Lastly, the Wrath-
ful are those who are active while others
are passive. (Explicit/Expansion)

The tendency in the essays to order propositions
may also account for the increased proportion
of Expansions (48%) as compared to the PDTB
(42%). A comparison can’t be made here with the
BioDRB senses because some map to both Expan-
sion and EntRel (see Footnote 1).

However, the essays’ relative proportions of Im-
plicit/Expansion, Implicit/Contingency, and En-
tRel should be considered fluid, because noise
heightened the ambiguity between them. Relation
concurrency is more common in published texts,
i.e. multiple relations holding between two argu-
ments simultaneously (exemplified by “when” and
“since,” which can convey Contingency and Tem-
poral senses concurrently). Relation ambiguity is
more common in the essays, however, and partic-

ularly between these three relations. EntRels’ in-
directness is often the cause, exacerbating the am-
biguity with Implicit/Expansion even despite the
PDTB framework’s subdivision of the latter into
10 sub-categories. However, a better explanation
of how phrases function as connectives would also
help. In Example 6, “In this case” can be inserted
but is not listed in the PDTB manual, although
other prepositional phrases with abstract objects
are, e.g. “as a result,” “to this end,” etc. If “in
this case” is a connective the relation may be an
Expansion; else it is probably an EntRel.

(6) For example an Indian tribe that worships
the moon but not God. There is no real
punishment but the fact that they can-
not go to heaven. (Implicit/Expansion ∨
EntRel?)

The ambiguity between Implicit Expansion and
Contingency appears partially rooted in the noise
of learning. Students are still acquiring the ability
to assert causality through voice and language and
so their sentences are not always clearly linked.
However the ambiguity also results from argument
construction. Thus did the BioDRB researchers
recognize a need to distinguish two new classes
of Contingency: Claims and Justifications, which
hold when one situation is the cause for the truth
or validity of a proposition, from the PDTB’s Rea-
sons and Results, which hold when one situation is
the cause of another situation. In our data Claims
and Justifications often occur with a modal verb,
which can disambiguate cases such as Example 7
but not Example 8, suggesting the ambiguity is a
function of both noise and domain.

(7) A hoarder in life would be myself.
Because I love ice-cream and keep
large amounts in my freezer. (Im-
plicit/Contingency:Justification)

(8) The descent into the pit of hell would
likely be peppered with many more
of the faces of todays celebrities.
Because/In other words Our world today
is easily as corrupt as that in which
Dante lived. Sins are timeless, and, in
Dantes view, their corresponding punish-
ments are eternal.(Implicit/Expansion ∨
Contingency?)
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Parser/ Overall Overall EXP EXP NoEXP noEXP
Train/ Test/ E-to-E E-to-E Conn Arg ID Arg ID E-to-E E-to-E E-to-E E-to-E
Senses Senses pMatch eMatch ID pMatch eMatch pMatch eMatch pMatch eMatch
Lin14
PDTB Essays
L1 L1 45% 31% 90% 85% 57% 64% 36% 39% 26%
Lin14
PDTB Essays
L2 L1 38% 26% 90% 85% 57% 63% 39% 27% 20%
Lin14
PDTB PDTB
L2 L2 38% 21% 94% 81% 40% 81% - 25% -
CoN15
PDTB PDTB
L2 L2 - 30% 94% - 49% - 40% - 20%
CoN15
PDTB WikiN
L2 L2 - 24% 92% - 46% - 31% - 19%

Table 5: Comparison of F1 Scores across Discourse Parsers, Training and Test Sets

4 Automatic Discourse Relations

We used the PDTB-trained Lin et al. discourse
parser (Lin et al., 2014) to automatically predict
our human-annotated relations. As the first end-
to-end free text PDTB discourse parser, it is typi-
cally the parser to which novel technical advances
are compared (e.g., (Xue et al., 2015; Ji and Eisen-
stein, 2014)). In its sequential pipeline architec-
ture, all functional occurrences of a predefined set
of discourse connectives are identified, and then
their two arguments are identified and assigned a
sense. Subsequently within each paragraph all re-
maining unannotated adjacent sentence pairs are
labeled as Non-Explicit, and their argument spans
are identified and assigned a sense. EntRel, Al-
tLex and NoRel relations are also predicted dur-
ing this step. Since our essays are only annotated
with Level-1 senses, we used the Lin et al. parser5

in two different ways. First, we used the original
parser trained on PDTB Level-2 senses to parse es-
says in terms of Level-2 senses; we then converted
the predicted Level-2 senses to their Level-1 ab-
stractions. Second, we retrained the parser by us-
ing only PDTB Level-1 senses; this retrained Lin
et al. parser directly predicted Level-1 senses.6

Table 5 compares both versions of the Lin et
al. parser’s performance on the essays predict-
ing Level-1 senses, with the original parser’s per-
formance on the PDTB test set predicting Level-
2 senses. Also compared are variations of the
Lin et al. architecture recently evaluated in the

5wing.comp.nus.edu.sg/˜linzihen/parser
6Thanks to Ilija Ilievski of the National University of Sin-

gapore for retraining the Lin et. al parser, and running both
the original and retrained versions on our essay corpus.

CoNLL-2015 Shared Task on Shallow Discourse
Parsing (Xue et al., 2015) (CoNNL15), trained on
and predicting a similar set of Level-2 senses. The
fourth row compares the best parsers from this task
on the PDTB test set, while the fifth row compares
them on the task’s own blind test set of WikiNews
texts. Note the essays can be viewed as a simi-
lar blind test set for the Lin et al. parser, in that the
WikiNews texts and essays are unpolished and un-
published; however spelling and grammar errors
were removed from the WikiNews texts.

As shown, performance is typically assessed in
terms of an F1 score. F1s are computed for over-
all end-to-end performance (Overall E-to-E) as
well as performance on the first step of connec-
tive identification (Conn ID) and the second step
(with error propagation from the first step) of ar-
gument span identification (Arg ID). The F1 score
for the final step of sense assignment (with error
propagation from the first two steps) corresponds
to end-to-end performance. End-to-end perfor-
mance on Explicits (EXP E-to-E) is also distin-
guished from Non-Explicits (NoEXP E-to-E), i.e.
Implicit, AltLex and EntRel. Further, within each
evaluation (except for the first step of ConnID),
performance can be evaluated using exact match
(eMatch), whereby the parser’s arguments must
exactly match the human’s, or using partial match
(pMatch), whereby the spans may exactly match
or overlap. The CoNLL-2015 Shared Task did not
report partial match results even though as Lin et
al. (2014) note, most disagreements between exact
and partial match do not show significant seman-
tic differences (Miltsakaki et al., 2004) and result
from small text portions being included or deleted
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to enforce the minimal argument constraint, whose
presumption of deep semantics poses difficulties
for parsers. Because noise made determining min-
imal arguments problematic (Section 3.1), we re-
port exact and partial match results.

Measuring overall end-to-end performance, Ta-
ble 5 shows that on the essays the Lin et al. parser
yielded F1s of 45% with partial match and 31%
with exact match when trained on L1, while its F1s
when trained on L2 were lower (38% and 26%).
On the PDTB test set its F1s were also lower (38%
and 21%). The best CoNLL-2015 parser improved
upon the Lin et al. parser for exact match both on
the PDTB test set and their own blind test set. Be-
cause the annotations being predicted were some-
what different in each case, breaking down per-
formance into component steps helps clarify the
import of these results.

On the first step of connective identification, Ta-
ble 5 shows that performance is uniformly high,
which is unsurprising since few explicit connec-
tives are ambiguous (Pitler et al., 2008; Lin et al.,
2014; Prasad et al., 2011). On the essays the Lin
et al. parser yielded a slightly lower F1 of 90%;
this was due to grammatical errors that caused
it to miss some connectives, and the fact that it
did not recognize all the human-annotated connec-
tives, including prepositional phrases such as “in
that case” and “after all.” On the second step of
argument span identification (with error propaga-
tion from connective identification but regardless
yet of relation type or sense), Table 5 shows that
on the essays the Lin et al. parser yielded par-
tial and exact match F1s of 85% and 57%, outper-
forming all other parsers and corpora. This was al-
most certainly because the minimal argument con-
straint was not strictly enforced in the essay anno-
tation due to noise making argument boundaries
ambiguous (Section 3.1); the larger argument en-
abled more exactly and partially matched spans.
Whether relaxing the minimal argument constraint
could also increase the usefulness of automatic
discourse relation annotation in language technol-
ogy applications is still an open question.

Finally contrasting end-to-end parser perfor-
mance on Explicits and Non-Explicits as well as
Overall, Table 5 shows the performance improve-
ment on the essays is reduced. In particular, the
8-17% increase over other test sets and parsers for
exact match argument identification drops once re-
lation type and sense are predicted for those argu-

ments. Overall the L1 trained essay parser only
retains a 1-10% increase, while the L2 trained ver-
sion’s increase is less or nonexistent. Thus even
relaxing the minimal argument constraint and pre-
dicting only Level-1 senses cannot fully temper
the negative impact of noise. Interestingly, the
L1 trained essay parser performs better on the
Non-Explicits but the L2 trained essay parser per-
forms better on the Explicits; this suggests that the
greater training specificity helps to counteract the
effect of noise when parsing Explicits.

Table 6 illustrates patterns of errors that occur in
the final steps of relation type and sense identifica-
tion, presenting a confusion matrix of the 4216 re-
lations in the essays whose arguments were at least
partially matched. Considering first Explicits, Ta-
ble 6 shows most disagreements involve parser
predictions of Explicit/Temporal (9+28+11) for
connectives that can take other senses as well, such
as “since” in Example 9 as well as “then” used for
textual instead of temporal ordering (Section 3.3).
In addition, the parser failed to identify a num-
ber of explicit connectives signaling Expansion,
labeling them instead as Implicit/Contingency (7)
or Implicit/Expansion (22), including sentence-
initial, comma-delimited “First” and “Next” as
well as sentence-final “too” and “as well.” Further
investigation is needed to determine why.

(9) He now has to spend eternity in the sec-
ond circle of hell since he ruined his mar-
riage as a “cheetah” and not a Tiger.
(Human: Explicit/Contingency; Parser:
Explicit/Temporal)

Considering Non-Explicits, Table 6 shows no
AltLex were predicted by the parser, not surprising
since AltLex are so syntactically productive and
only the first three stemmed terms of the second
argument span were used by the Lin et al. parser
to identify them. However, in these essays the hu-
man annotator had a highly repetitive cue signal-
ing the most commonly occurring AltLex relation,
namely various syntactic permutations of “The ex-
ample is...” as in Examples 10 and 11. Most of
the 99 Implicit/Expansions the parser mislabeled
as EntRel contained further permutations of this
relation, as shown in Example 11. This suggests
that training the parser on essay data could im-
prove its performance on AltLex, EntRel, and Im-
plicit/Expansion.

(10) Their punishment is to “bang” against
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Exp: Exp: Exp: Exp: Imp: Imp: Imp: Imp: EntR AltL
Comp Cont Expn Temp Comp Cont Expn Temp

Exp: Comp 191 1 3 9 0 2 3 0 0 0
Exp: Cont 0 422 1 28 0 2 3 0 0 0
Exp: Expn 0 0 253 11 0 7 22 0 1 0
Exp: Temp 6 2 1 140 0 3 2 0 0 0
Imp: Comp 0 1 0 0 5 36 108 0 7 0
Imp: Cont 0 3 0 0 7 119 524 2 35 0
Imp: Expn 0 0 1 1 16 208 1017 1 99 0
Imp: Temp 0 0 0 0 0 4 16 0 0 0
EntR 4 3 5 1 1 121 569 0 99 0
AltL 0 1 0 0 1 18 59 0 11 0

Table 6: 4216 Partially-Matched Argument Relations in Student Essays (Human: rows, Parser: cols)

one an another in Hell for all eternity.
The modern day examples would be
prostitutes or Jerry Sandusky. (Human:
AltLex/Expansion; Parser: EntRel)

(11) The fourth level of Hell is the hoarder
/ spendthrifts of life. As an example,
The person that falls into this layer
is Christopher Sisley. (Human: Im-
plicit/Expansion; Parser: EntRel)

Otherwise Table 6 reflects the relation am-
biguity that occurred in the human annotation
(Section 3.3). That is, the clusters of counts
around the diagonal show the parser also had dif-
ficulty distinguishing Implicit/Contingency, Im-
plicit/Expansion and EntRel. As illustration, Ex-
ample 12 shows one of the 208 cases in which the
human annotated Expansion and the parser, Con-
tingency. Example 13 shows one of the 524 cases
where the human annotated Contingency and the
parser, Expansion. Example 14 shows one of the
569 cases where the human annotated EntRel and
the parser, Expansion.

(12) Pretty much any teenage boy you talk to
is gluttonous and never stops eating. Ev-
ery meal is large and overindulgence in
food happens every day. (Human: Im-
plicit/Expansion (In other words); Parser:
Implicit/Contingency)

(13) Paul Fields is one who is in this layer of
Hell. He scorn the name of band kids
who have no idea what they are doing.
(Human: Implicit/Contingency (Because);
Parser: Implicit/ Expansion)

(14) The third circle is for the gluttons. They
are not only gluttons for food but also
gluttons for attention. (Human: EntRel;
Parser: Implicit/Expansion)

Finally, inspection of the 883 remaining dis-
agreed relations (5099-4216) whose arguments
weren’t both at least partially matched shows as
expected that the parser disagreed with 55 Implic-
its whose left argument was non-adjacent (Sec-
tion 3.1), since it only labeled Implicits between
adjacent sentences. As expected the parser also
failed to recognize many relations holding be-
tween ungrammatical sentences (Section 3.1), al-
though a manual accounting is still necessary to
determine exactly how often this occurred.

5 Conclusions

We investigated manual and automatic PDTB dis-
course relation annotation in high school student
AP English essays. In contrast to prior PDTB ap-
plications, the essays are learning-based, in that
the writers are learning about argumentative writ-
ing through the essay-writing process, and they
are also noisy, containing errors of spelling, gram-
mar, and deeper cohesive ties. We discussed
methodological complexities of noisy learning-
based data, including a heightened ambiguity be-
tween EntRel, Expansion, and Contingency that
the PDTB framework does not yet resolve. De-
scriptive statistics showed how relation distribu-
tions differ from the PDTB (Prasad et al., 2014)
and BioDRB (Prasad et al., 2011) corpora, and
also suggested possible targets for future learning-
based language technology research. Compari-
son of automatic discourse parser performances
showed that relaxing the minimal argument con-
straint and predicting only Level-1 senses helped
counter the negative impact of noise; the Lin et
al. parser, when trained on the PDTB’s Level 1
senses, gave an overall F1 score of 31% under
strictest evaluation terms, similar to other corpora
and parsers (Lin et al., 2014; Xue et al., 2015).
Performance was highest on connective and ar-
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gument identification, and dropped precipitously
during relation type and sense identification. Pat-
terns of errors occurring in those steps indicate
training on essay data would improve the parser’s
ability to distinguish AltLex, Implicit/Expansion,
and EntRel, but distinguishing EntRel, Expansion,
and Contingency requires first resolving these am-
biguities in the manual case. Our results thus
support prior work suggesting benefits to tailoring
manual annotations to the target data (Zeyrek et
al., 2013) and training domain-specific parsers to
predict them (Prasad et al., 2011; Ramesh and Yu,
2010).

We are currently exploring the effectiveness of
other available discourse parsers. We also plan
to annotate and release a new corpus of student
essays7 that we are currently collecting. In ad-
dition, we are starting to explore the relation-
ships between student learning and discourse re-
lations, including not only relation use but also
the manual and automatic annotations. For exam-
ple, there may be an interaction such that more co-
herent, less ambiguous essays also receive higher
grades. We will also investigate ways in which an-
notated discourse relations in learning-based do-
mains can be used to improve existing educational
technologies such as language-based tutors and
writing assistants (e.g., (Litman and Forbes-Riley,
2014; Zhang et al., 2016)). Level-1 senses have
already been shown to be useful for improving
sentiment analysis in product reviews (Yang and
Cardie, 2014), and we are seeing improvements
when using Level-1 senses to enhance our prior
work on classifying writing revisions.
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A Appendix

A.1 Low Noise Start-of-Essay Excerpt

In Dante’s Inferno we have read about the first five
circles. Each circle has a different punishment for
each sin. In this paper I will fit modern day people
into each circle.

A.2 High Noise Start-of-Essay Excerpt

The ones who are born to not flesh nor earth,
where blessed with the divine grace and the high-
way of hell based on Dante’s representation of
Hell. They are watchers; they have seen Dante’s
struggles on Earth as well as his teachings through
his book. They are all-knowing and represent what
Dante tried to explain through his interpretations
of Hell. Although he was a bit off they have the
true story to be told. To make the levels more re-
latable they have place modern day people to ac-
company each level.

A.3 Low Noise Mid-Essay Excerpt

As Dante descends into the second circle, he sees
“the sinners who make their reason bond thrall un-
der the yoke of their lust” (98). These were the
souls of those who made an act of love, but in-
appropriately and on impulse. This would be a
fine level of Hell for all those who cheat on their
boyfriends or girlfriends in high school because
let’s face it; they aren’t really in love.
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A.4 High Noise Mid-Essay Excerpt

Michael B calls this home as he was lazy and
enjoyed himself to much in his life as a person.
Within his home he kept the foods that satisfied
his sin, indulging in them whenever he could. The
reasoning of this was due to his insatiable appetite,
which seemed to never end as he continues to do
this sin without much notice and without many
hurtles to keep him from the craves. Being housed
within the circle he would lay in the mud of waste,
living in the waste of the sin that he lives with.
While Cerberus acts as his actual sin, him want-
ing more therefore having three heads. This would
give him the experience of the sin that Michael
housed within him.

A.5 Essay Examples of Relation Annotations

I don’t personally know anyone that is over 2012
years old so I cannot place any modern people
into this layer. (Explicit/Contingency)

Usually when I get money I plan what I am go-
ing to use it for and wait until I have that much
or spend it immediately on something I probably
don’t need. (Explicit/Temporal)

Filled with hatred for many, yet never acts
upon his grim thoughts. (Explicit/Comparison)

The man who is stuck in this layer is Hue
Heffner. Because He has devoted his entire life
for other people’s lustful pleasure and his own.
(Implicit/Contingency)

A prime example of this is a woman by the name
of Marie, who abandons man after man in search
of a thrill, thrusting her body to anyone willing
enough. In other words She leaves one man for
the arms of another, just as Francesca fled to
Paolo for satisfaction. (Implicit/Expansion)

Teachers such as Mr. Braverman are externally
wrathful and intentionally cause agony to others
like Mrs. Pochiba. In contrast Other English
teachers, such as Mrs. Butler, are very quiet
and don’t let people know that certain things
bother her. (Implicit/Comparison)

The punishment for these people is to bleed
forever with worms sucking up the blood at
their feet. The example would be people who
would not choose a side in the civil war. (Al-
tLex/Expansion)

He does not believe in Christ, but believes in the
religion of scientology. Due to this, he is against
the fact that Christ had existed, and had been
on Earth. (AltLex/Contingency)

It may cause you fame and fortune, but what
is money if you are greedy? Although Donald
Trump doesn’t look at it that way, in God’s eyes
greed gets you nowhere but the third circle of
Hell. (EntRel/-)

He gives us a better understanding of why cer-
tain people are in a certain level of hell. I will
be discussing in the following paragraphs peo-
ple who deserve to be in each level of hell, in
Dante’s perspective. (EntRel/-)

She is young and has not experience a lot of
things to be put into a certain level of sin. The
level I’m currently discussing is located in be-
tween heaven and hell. (EntRel/-)
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Abstract
Two heuristic rules that transform Rhetor-
ical Structure Theory discourse trees into
discourse dependency trees (DDTs) have
recently been proposed (Hirao et al., 2013;
Li et al., 2014), but these rules derive
significantly different DDTs because their
conversion schemes on multinuclear re-
lations are not identical. This paper re-
veals the difference among DDT formats
with respect to the following questions:
(1) How complex are the formats from a
dependency graph theoretic point of view?
(2) Which formats are analyzed more ac-
curately by automatic parsers? (3) Which
are more suitable for text summarization
task? Experimental results showed that
Hirao’s conversion rule produces DDTs
that are more useful for text summariza-
tion, even though it derives more complex
dependency structures.

1 Introduction

Recent years have seen an increase in the use
of dependency representations throughout various
NLP applications. For the discourse analysis of
texts, dependency graph representations have also
been studied by many researchers (Prasad et al.,
2008; Muller et al., 2012; Hirao et al., 2013; Li et
al., 2014). In particular, Hirao et al. (2013) pro-
posed a current state-of-the-art text summariza-
tion method based on trimming discourse depen-
dency trees (DDTs). Dependency tree represen-
tation is the key to the formulation of the tree
trimming method (Filippova and Strube, 2008),
and dependency-based discourse syntax has fur-
ther potential to improve the modeling of a wide
range of text-based applications.

However, no large-scale corpus exists that is an-
notated with DDTs since it is expensive to manu-
ally construct such a corpus from scratch. There-
fore, Hirao et al. (2013) and Li et al. (2014)
proposed heuristic rules that automatically trans-
form RST discourse trees (RST-DTs)1 into DDTs.
However, even researchers, who cited these two
works in their papers, have ignored their dif-
ferences, probably because the authors described
only abstracts of their conversion methods. To
clarify their algorithmic differences, this paper
provides pseudocodes where the two different
methods can be described in a unified form, show-
ing that they analyze multinuclear relations differ-
ently on RST-DTs. As we show by example in
Section 4, such a slight difference can derive sig-
nificantly different DDTs.

The main purpose of this paper is to exper-
imentally reveal the differences between depen-
dency formats. By investigating the complex-
ity of their structures from the dependency graph
theoretic point of view (Kuhlmann and Nivre,
2006), we prove that the Hirao13 method, which
keeps the semantic equivalence of multinuclear
discourse units in the dependency structures, intro-
duces much more complex DDTs than Li14, while
a simple post-editing method greatly reduces the
complexity of DDTs.

This paper also compares the methods with both
intrinsic and extrinsic evaluations: (1) Which de-
pendency structures are analyzed more accurately
by automatic parsers? and (2) Which structures

1Mann and Thompson (1988)’s Rhetorical Structure The-
ory (RST), which is one of the most influential text organiza-
tion frameworks, represents discourse as a (constituent-style)
tree structure. RST was developed as the basis of annotated
corpora for the automatic analysis of text syntax, most no-
tably the RST Discourse Treebank (RST-DTB) (Carlson et
al., 2003).
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are more suitable to text summarization? We show
from experimental results that even though the Hi-
rao13 DDT format reduces performance, as mea-
sured by intrinsic evaluations, it is more useful for
text summarization. While researchers developing
discourse syntactic parsing (Soricut and Marcu,
2003; Hernault et al., 2010; Feng and Hirst, 2012;
Joty et al., 2013; Li et al., 2014) have focused
excessively on improving accuracies, our exper-
imental results emphasize the importance of ex-
trinsic evaluations since the more accurate parser
does not always lead to better performance of text-
based applications.

2 Related Work

Mann and Thompson (1988)’s Rhetorical Struc-
ture Theory (RST), which is one of the most in-
fluential text organization frameworks, represents
a discourse structure as a constituent tree. The
RST Discourse Treebank (RST-DTB) (Carlson et
al., 2003) has played a critical role in automatic
discourse analysis (Soricut and Marcu, 2003; Her-
nault et al., 2010; Feng and Hirst, 2012; Joty et
al., 2013), mainly because trees are both easy to
formalize and computationally tractable. RST dis-
course trees (RST-DTs) are also used for mod-
eling many text-based applications, such as text
summarization (Marcu, 2000) and anaphora res-
olution (Cristea et al., 1998).

Hirao et al. (2013) and Li et al. (2014) intro-
duced dependency conversion methods from RST-
DTs into DDTs in which a full discourse struc-
ture is represented by head-dependent binary rela-
tions between elementary discourse units. Hirao
et al. (2013) also showed that a text summariza-
tion method, based on trimming DDTs, achieves
significant improvements against Marcu (2000)’s
method using RST-DTs.

On the other hand, some researchers argue that
trees are inadequate to account for a full dis-
course structure (Wolf and Gibson, 2005; Lee et
al., 2006; Danlos and others, 2008; Venant et al.,
2013). Segmented Discourse Representation The-
ory (SDRT) (Asher and Lascarides, 2003) rep-
resents discourse structures as logical form, and
relations function like logical operators on the
meaning of their arguments. The annotation in
the ANNODIS corpus was conducted based on
SDRT (Afantenos et al., 2012). For automatic
discourse analysis using the corpus, Muller et al.
(2012) adopted dependency tree representation to

simplify discourse parsing. They also presented a
method to automatically derive DDTs from SDR
structures.

Wolf and Gibson (2005) used a chain-graph for
representing discourse structures and annotated
135 articles from the AP Newswire and the Wall
Street Journal. The annotated corpus is called
the Discourse Graphbank. The graph represents
crossed dependency and multiple parentship dis-
course phenomena, which cannot be represented
by tree structures, but whose graph structures be-
come very complex (Egg and Redeker, 2010).

The Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) is a large-scale corpus of anno-
tated discourse connectives and their arguments.
Its connective-argument structure can also rep-
resent complex discourse phenomena like multi-
ple parentship, but its objective is to annotate the
discourse relations between individual discourse
units, not full discourse structures. Unfortunately,
to the best of our knowledge, neither the Discourse
Graphbank nor the PDTB has been used for any
specific NLP applications.

3 RST Discourse Tree

RST represents a discourse as a tree structure. The
leaves of an RST discourse tree (RST-DT) cor-
respond to Elementary Discourse Units (EDUs).
Adjacent EDUs are linked by rhetorical relations,
forming larger discourse units that are also sub-
ject to this relation linking. Figure 1 shows part of
an RST-DT (wsj-0623), taken from RST-DTB, for
this text fragment:{

[The fiscal 1989 budget deficit figure came out

Friday .]e-1

}
1
,

{
[It was down a little .]e-2

}
2
,{

[The next time you hear a Member of Congress
moan about the deficit ,]e-3, [consider what
Congress did Friday .]e-4

}
3
,
{

[The Senate , 84-6

, voted to increase to $ 124,000 the ceiling on
insured mortgages from the FHA ,]e-5, [which
lost $ 4.2 billion in loan defaults last year .]e-6

}
4
,{

[Then , by voice vote , the Senate voted a pork-
barrel bill ,]e-7, [approved Thursday by the House
,]e-8, [for domestic military construction .]e-9

}
5
,{

[the Bush request to what the Senators gave

themselves :]e-10

}
6
, . . .

where each subscript at the end of square brack-
ets [] corresponds to a leaf unit (EDU) in the tree.
EDUs grouped by {} consist of a sentence that is
labeled with its index in the text.
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Figure 1: Part of discourse tree (wsj-0623) in RST-DTB: ‘S’, ‘N’ and ‘e’ stand for Satellite, Nucleus and
EDU. Each EDU is labeled with its index in the text, and EDUs grouped with {} brackets are in the same
sentence.

Each discourse unit in the tree that forms a
rhetorical relation is characterized by a rhetor-
ical status: Nucleus (N), which represents the
most essential piece of information in the rela-
tion, or Satellite (S), which indicates the support-
ing information. Rhetorical relations must be ei-
ther mononuclear or multinuclear. Mononuclear
relations hold between two units with Nucleus
and Satellite, whereas multinuclear relations hold
among two or more units with Nucleus. Each unit
in a multinuclear relation has similar semantic in-
formation as the other units. Rhetorical relations
can be grouped into classes that share such rhetori-
cal meaning as “Elaboration” and “Condition”. In
Figure 1, the Satellite unit (covering e-3) and its
sibling Nucleus unit (covering e-4) are linked by a
mononuclear relation with rhetorical label “Con-
dition”, and two Nucleus units (covering e-5, e-6
and e-7, e-8, e-9) are linked by a multinuclear re-
lation with rhetorical label “Temporal”.

4 Conversions from RST-DTs to DDTs

Next, this paper discusses text-level dependency
syntax, which represents grammatical structure by
head-dependent binary relations between EDUs.
This section introduces two existing automatic
conversion methods from RST-DTs to DDTs: the
methods of Li et al. (2014) and Hirao et al. (2013).
Additionally, this paper presents a simple post-
editing method to reduce the complexity of DDTs.
The heart of these conversions closely resembles
that of constituent-to-dependency conversions for
English sentences (Yamada and Matsumoto, 2003;
Johansson and Nugues, 2007; De Marneffe and
Manning, 2008), since RST-DTs can be regarded

Algorithm 1 convert-rst-into-dep
Require: RST discourse tree: rst-dt
Ensure: discourse dependency tree: ddt
1: ddt← /0
2: for all EDU e- j in rst-dt do

3: P←
{

find-My-Top-Node(e- j) // Li14
find-Nearest-S-Ancestor(e- j) // Hirao13

4: if isRoot(P) = TRUE then
5: ℓ← Root
6: i← 0
7: else
8: ℓ← Label(P)
9: P′← Parent(P)

10: i← find-Head-EDU(P′)
11: end if
12: j← Index(e- j)
13: ddt← ddt ∪ (i, ℓ, j)
14: end for
15: Return ddt

Algorithm 2 find-My-Top-Node(e)
Require: EDU: e
Ensure: C
1: C← e
2: P← Parent(e)
3: while LeftmostNucleusChild(P) = C and

isRoot(P) = FALSE do
4: C← P
5: P← Parent(P)
6: end while
7: if isRoot(P) = TRUE then
8: C← P
9: end if

10: Return C

as Penn Treebank-style constituent trees because
EDUs and discourse units respectively correspond
to terminal and non-terminal nodes, and a rhetori-
cal relation, like a CFG-rule, forms an edge in the
tree.

4.1 Li et al. (2014)’s Method
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Algorithm 3 find-Head-EDU(P)
Require: non-terminal node: P
Ensure: i
1: while isLeaf(P) = FALSE do
2: P← LeftmostNucleusChild(P)
3: end while
4: i← Index(P)
5: Return i

..
..

{
e-1

}
1

..
{

e-2
}

2
..

{
e-3 ..e-4

}
3

..
{
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4
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}
5
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Figure 2: Discourse dependency tree produced by
Li’s method for RST discourse tree in Figure 1:
“Elabo.” is short for “Elaboration”.

Li et al. (2014)’s dependency conversion
method is based on the idea of assigning each dis-
course unit in an RST-DT a unique head selected
among the unit’s children. Traversing each non-
terminal node in a bottom-up manner, the head-
assignment procedure determines the head from
its children in the following manner: the head of
the leftmost child node with the Nucleus is the
head; if no child node is the Nucleus, the head of
the leftmost child node is the head.

The procedure was originally introduced
by Sagae (2009), and its core idea is identical as
the head-assignment rules for Penn Treebank-
style constituent trees (Magerman, 1994; Collins,
1999). Li’s conversion method uses the procedure
to assign a head to each non-terminal node of
a right-branching binarized RST-DT (Hernault
et al., 2010) and transforms the head-annotated
binary tree into a DDT.

Algorithms 1-3 show the dependency conver-
sion method. For brevity, we describe it in a dif-
ferent form from Li’s original conversion process2

cited above. In Algorithm 1, the main routine iter-
atively processes every EDU in given RST-DT t to
directly find its single head rather than transform-
ing head-annotated trees into DDTs. The main
process is largely separated into three steps:

1. Algorithm 1 calls Algorithm 2 at line
3, which finds the highest non-terminal

2Unlike Li’s procedure, our algorithm can take not only
binary but also n-ary RST-DTs as inputs. To derive the same
DDTs as those produced by Li’s original method, experi-
ments were performed on right-branching binary RST-DTs.

node in t to which current processed EDU
e- j must be assigned as the head in
Sagae’s lexicalization manner. Parent(P)
and LeftmostNucleusChild(P) are respec-
tively operations that return the parent node
of node P and the leftmost child node with
the Nucleus of node P3.

2. After obtaining node P from Algorithm 2,
Algorithm 1 seeks the head EDU that is as-
signed to the parent node of P. If P is the root
node of t, we set ℓ to rhetorical label “Root”
and i to a special index 0 of virtual EDU e-0
(lines 5-6 in Algorithm 1). Otherwise, we set
ℓ← Label(P) and P′← Parent(P) (lines 8-9
in Algorithm 1), where Label(P) returns the
rhetorical label attached to node P4. Then Al-
gorithm 1 at line 10 calls Algorithm 3, which
iteratively seeks the leftmost child node with
the Nucleus in a top-down manner, starting
from P′, until it reaches terminal node e-i.
Operation Index(P) returns the index of EDU
P.

3. We attach e- j to head e-i and assign rhetori-
cal label ℓ to the dependency edge. We write
(i,ℓ, j) to denote that a dependency edge ex-
ists with rhetorical label ℓ from head e-i to
modifier e- j.

Assuming that e- j is the e-7 of the RST-DT in
Figure 1, Algorithm 2 returns the ‘N:Temporal’
node (covering e-7, e-8, e-9) since its parent node
‘N’ has the other ‘N:Temporal’ node (covering e-
5, e-6) as its leftmost Nucleus child. Starting from
the parent node ‘N’, Algorithm 3 iteratively seeks
the leftmost Nucleus child in the top-down manner
until it reaches the terminal node e-5. Finally, we
obtain a dependency edge (5,Temporal,7).

The DDT in Figure 2 is produced by this
method for the RST-DT in Figure 1. To each
EDU, we also assign ‘N’ or ‘S’ rhetorical status
of its parent node. Li’s dependency format is al-
ways projective, i.e., when all the edges are drawn
in the half-plane above the text, no two edges
cross (Kübler et al., 2009).

4.2 Hirao et al. (2013)’s Method

3If P has no Nucleus children, LeftmostNucleusChild(P)
returns the leftmost child node.

4If P does not have any rhetorical labels, Label(P) returns
a special non-rhetorical label: “Span”.
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Algorithm 4 find-Nearest-S-Ancestor(e)
Require: EDU: e
Ensure: P
1: P← Parent(e)
2: while isNucleus(P) = TRUE and

isRoot(P) = FALSE do
3: P← Parent(P)
4: end while
5: Return P
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Figure 3: Discourse dependency tree produced by
Hirao’s method for RST discourse tree in Figure 1.

Hirao et al. (2013) also proposed a dependency
conversion method for RST-DTs. The only dif-
ference between Li’s and Hirao’s methods is the
process that finds the highest non-terminal node to
which each EDU must be assigned as the head. At
line 3 of Algorithm 1, Hirao’s method calls Algo-
rithm 4, which seeks the nearest Satellite to each
EDU on the path from it to the root node of t.
Note that this head-assignment manner was origi-
nally presented in the Veins Theory (Cristea et al.,
1998).

Assuming that e- j is the e-7 in Figure 1, Algo-
rithm 4 returns the ‘S:Elaboration’ node (covering
e-5, e-6, e-7, e-8, e-9, e-10, . . . ), which is the near-
est Satellite on the path from e-7 to the root node.
Then, as well as in Li’s method, Algorithm 3 iter-
atively seeks the leftmost child node with the Nu-
cleus, starting from the parent node of the Satel-
lite, until it reaches terminal node e-4. Finally, we
obtain a dependency edge (4,Elaboration,7).

Figure 3 represents the DDT produced by Hi-
rao’s method for the RST-DT in Figure 1. Note
that unlike Li’s method, Hirao’s dependency for-
mat is not always projective. The dependency
edges made from the mononuclear relations are
the same as those in Figure 2, but the difference
comes from the treatment of the multinuclear re-
lations. We take as an example the “Temporal”
multinuclear relation in Figure 1 that links sen-
tences 4 (e-5 and e-6) and 5 (e-7, e-8, and e-9).
The Li14 DDT format links them with a “parent-
child” relation, while in the Hirao13 DDT format,
they have a “sibling” relation.
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Figure 4: Discourse dependency tree (DDT) ob-
tained by post-editing the DDT in Figure 3.

4.3 Post-editing Algorithm for Multi-rooted
Sentence Tree Structures

Unlike Li’s method, the dependency structures
produced by Hirao’s method often lose the single-
rooted tree structure of a sentence since Algo-
rithm 4 has no constraints that restrict the EDUs
covered by multinuclear relations to find its head
outside the sentence. For example, in Figure 3,
both EDUs e-7 and e-9 in sentence 5 have the same
head e-4 outside the sentence.

Most sentences form a single-rooted subtree in a
full-text RST-DT (Joty et al., 2013), and previous
studies on sentence-level discourse parsing were
based on this insight (Soricut and Marcu, 2003;
Sagae, 2009). To reduce the complexity of DDTs,
it is reasonable to restrict the tree structure of a
sentence to be single-rooted in a full-text DDT.

To revise a multi-rooted dependency tree struc-
ture of a sentence to a single-rooted one, we pro-
pose a simple post-editing method. Let L =
⟨e-x1, . . . ,e-xn⟩ be a multi-root list consisting of
more than two EDUs (n ≥ 2 and x1 < · · · < xn) in
identical sentence s, each of which has a head out-
side s. Next we define the post-editing process of
multi-root list L ; for each EDU e-x j (2≤ j ≤ n),
let its head be e-y j with rhetorical label ℓ j. Then
the post-editing method replaces the dependency
edge (y j, ℓ j,x j) by (x1,Label(P),x j), where P is a
child node, which covers e-x j, of the highest node
among those that cover only sentence s in the RST-
DT.

For the DDT in Figure 3, the post-editing pro-
cess for multi-root list L = ⟨e-7,e-9⟩ replaces the
edge (4,Temporal,9) by (7,Same-Unit,9). This
process makes the tree structure of sentence 5
single-rooted (Figure 4). Note that if an input de-
pendency graph structure is a tree, even after post-
editing all the multi-root lists of the input tree, the
result remains a tree structure. This post-editing
reduces the number of non-projective dependency
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Label Li14 Hirao13 M-Hirao13

Attribution 3070 3182 3176
Background 937 1176 1064

Cause 692 731 729
Comparison 300 200 246

Condition 328 344 338
Contrast 1130 838 892

Elaboration 7902 10358 9242
Enablement 568 609 603
Evaluation 419 596 501

Explanation 986 1527 1255
Joint 1990 42 593

Manner-Means 226 272 266
Root 385 385 385

Same-Unit 1404 62 1092
Span 1 0 1

Summary 223 332 289
Temporal 530 271 355

TextualOrganization 157 137 121
Topic-Change 205 401 344

Topic-Comment 336 326 297

Table 1: Rhetorical label frequencies in automati-
cally created discourse dependency corpora.

edges, even though the structure might continue to
be non-projective.

5 Experiments

5.1 Analysis of Dependency Structures

5.1.1 Dependency Label Distributions
Our experiments are based on data from the RST
Discourse Treebank (RST-DTB) (Carlson et al.,
2003)5, which consists of 385 Wall Street Journal
articles. Following previous studies on RST-DTB,
we used 18 coarse rhetorical labels. We converted
all 385 RST-DTs to DDTs using the methods in-
troduced in Section 4. Table 1 compares three dis-
tributions of 18 rhetorical labels and 2 special non-
rhetorical labels: “Span”6 and “Root”. M-Hirao13
denotes a modified version of the Hirao13 depen-
dency format by post-editing.

Here, we focus on the three underlined labels.
Even though the DDTs produced by the Hirao13
method contain more edges labeled as “Elabora-
tion”, the number of “Joint” and “Same-Unit” la-
bels, which are assigned to some multinuclear re-
lations, decreases considerably. This is because
for each EDU, Algorithm 4 in the Hirao13 method
finds a Satellite covering the EDU through multin-

5https://catalog.ldc.upenn.edu/
LDC2002T07

6In RST theory, a “Span” label may not be assigned to any
dependency edges. We suspect that the illegal “Span” label
in Table 1 might have been caused by an annotation error in
a subtree from e-7 to e-9 of the wsj-1189 file.

Property Li14 Hirao13 M-Hirao13

max path len. 10.2 8.4 8.6

nodes (depth 2) 6.5 9.6 8.6
nodes (depth 3) 14.3 22.1 20.3
nodes (depth 4) 23.3 35.0 33.3

gap degree 0 385 113 247
gap degree 1 0 260 137
gap degree 2 0 12 1

projective 385 113 247
well-nested 385 385 385

Table 2: Experimental results on average maxi-
mum path length, number of nodes within depth
x, and number of dependency structures that sat-
isfy the property described in Kuhlmann and Nivre
(2006).

uclear relations and most Satellites have the “Elab-
oration” label.

In practice, we should refine such “Elaboration”
labels by encoding in them the information of
multinuclear relations that appear on the path from
the EDU to the Satellite. However, this encod-
ing scheme has a trade-off; increasing the amount
of information encoded in an edge label reduces
the accuracy of the label prediction by automatic
parsers. In future work, we will investigate what
label encoding scheme strikes the best balance in
the trade-off.

5.1.2 Complexity of Dependency Structures
This section investigates the complexity of the de-
pendency structures produced by each conversion
method. Table 2 shows the average maximum path
length from an artificial root to a leaf EDU and the
number of nodes where depth x ∈ N. The results
clearly show that Hirao13 produces more broad
and shallow dependency tree structures than Li14.

Table 2 also displays how large a portion of the
dependency structures is allowed under projectiv-
ity, gap degree, and well-nestedness constraints.
In the dependency parsing community, it is well-
known that these three constraints create a good
balance between expressivity and complexity in
dependency analysis. These constraints were for-
mally defined (Kuhlmann and Nivre, 2006)7, and
refer to that work for details.

All of the DDTs produced by the Li14 method
are projective. Projectivity is the most popu-
lar constraint for sentence-level dependency pars-

7Unlike Kuhlmann and Nivre (2006), when calculating
the statistics in Table 2, we add an edge (0,Root, i) for ev-
ery real root EDU e-i (i≥ 1) of the DDT.
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UAS LAS

Li14 66.6 48.3
MST (Dep) Hirao13 55.0 43.1

M-Hirao13 60.5 42.8

Li14 64.7 49.0
HILDA (RST) Hirao13 57.1 46.2

M-Hirao13 62.4 49.2

Table 3: Dependency unlabeled and labeled at-
tachment scores (UAS and LAS) for MST depen-
dency and HILDA RST parsers.

ing since it offers cubic-time dynamic program-
ming algorithms for dependency parsing (Eisner,
1996; Eisner and Satta, 1999; Gómez-Rodrıguez
et al., 2008). A higher gap degree means that
the dependency trees have more complex non-
projective structures. Both the Hirao13 and M-
Hirao13 methods produce many non-projective
dependency edges, but most of the DDTs have
at most 1 gap degree and all are well-nested.
The well-nested dependency structures of the low
gap degree also allow efficient dynamic program-
ming solutions with polynominal time complexity
to dependency parsing (Gómez-Rodrıguez et al.,
2009).

5.2 Impact on Automatic Parsing Accuracy
The conversion methods introduce different com-
plexities in DDTs. This section investigates which
formats are more accurately analyzed by auto-
matic discourse parsers. For evaluation, we im-
plemented a maximum spanning tree algorithm for
discourse dependency parsing, which was recently
proposed (Muller et al., 2012; Li et al., 2014;
Yoshida et al., 2014). To compare discourse de-
pendency parsing with standard RST parsing, we
also implemented the HILDA RST parser (Her-
nault et al., 2010), which achieved 82.6/66.6/54.2
points for a standard set of RST-style evalua-
tion measures, i.e., Span, Nuclearity and Rela-
tion (Marcu, 2000).

We used a standard split of DDTs automatically
converted from RST-DTB: 347 DDTs as the train-
ing set and 38 as the test set.

Table 3 shows the evaluation results of depen-
dency parsing. The lower the complexity of the
DDT format, the higher is the dependency unla-
beled attachment score. Post-editing the Hirao13
DDTs improves the dependency attachment scores
because the intra-sentential discourse analysis is
more accurate than the inter-sentential one. In all
the DDT formats, the labeled attachment scores

are considerably worse that the unlabeled scores.
Compared with the HILDA parser, the Hirao13

and M-Hirao13 DDTs by the MST parser are less
accurate than those by the RST parser, probably
because unlike word dependency parsing, the fea-
tures defined over the EDUs are too sparse to de-
scribe complex non-projective dependency rela-
tions.

5.3 Impact on Text Summarization

Hirao et al. (2013) proposed a state-of-the-art sin-
gle text summarization method based on trim-
ming unlabeled DDTs. That can be formulated
by the Tree Knapsack Problem (TKP), which they
solved with integer linear programming. To ex-
amine which dependency structures produced by
the three conversion schemes are more suitable to
the task, we performed text summarization exper-
iments with the TKP method.

The 30 Wall Street Journal articles have a
human-made reference summary, which we used
for our evaluations. Table 4 shows the ROUGE
scores for the 30 gold-standard and auto-parse
DDTs. The auto-parse DDTs were obtained by the
MST and HILDA parsers, which were trained with
325 articles and whose hyper parameters were
tuned with 30 articles.

Hirao13 achieved the best results when we em-
ployed the gold DDTs, although the differences
between Hirao13 and the other methods were not
large. On the other hand, Hirao13 and M-Hirao13
obtained good results when we employed auto-
matic parse trees. The gains against Li14 are large.
It is remarkable that the performance with MST’s
DDTs closely approached that of the gold DDTs.
These results imply that the auto parse trees ob-
tained from Hirao13 have broad and shallow hier-
archies because important EDUs, which must be
included in a summary, can be easily extracted by
TKP. Thus, the DDTs converted by the Hirao13
rule have better tree structures for a single doc-
ument summarization even though the structures
are complex and difficult to parse. This is a signif-
icant advantage over Li’s conversion rule.

6 Summary

We evaluated two different RST-DT-to-DDT con-
version schemes from various perspectives. Ex-
perimental results show that even though the Hi-
rao13 DDT format produces more complex depen-
dency structures, it is more useful for text summa-
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Conv. R-1 w/s. R-1 wo/s. R-2 w/s. R-2 wo/s.

Li14 .347 .321 .096 .098
Gold Hirao13 .349 .333 .109 .117

M-Hirao13 .344 .322 .106 .098

Li14 .328 .292 .096 .086
MST (Dep) Hirao13 .341 .307 .106 .111

M-Hirao13 .341 .303 .107 .111

Li14 .315 .281 .083 .086
HILDA (RST) Hirao13 .326 .294 .087 .093

M-Hirao13 .315 .285 .084 .089

Table 4: ROUGE-N scores for text summarization on gold and auto-parse DDTs (N = 1,2).

rization. While studies developing discourse pars-
ing have focused on improving parser accuracies,
our experimental results identified the importance
of extrinsic evaluations over intrinsic evaluations.
In future work, we will further compare the meth-
ods by extrinsic evaluation metrics using discourse
relation labels.
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Carlos Gómez-Rodrıguez, David Weir, and John Car-
roll. 2009. Parsing mildly non-projective depen-
dency structures. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL, pages
291–299.

135



Hugo Hernault, Helmut Prendinger, Mitsuru Ishizuka,
et al. 2010. Hilda: a discourse parser using sup-
port vector machine classification. Dialogue & Dis-
course, 1(3).

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1515–1520.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for en-
glish. In 16th Nordic Conference of Computational
Linguistics, pages 105–112.

Shafiq R Joty, Giuseppe Carenini, Raymond T Ng, and
Yashar Mehdad. 2013. Combining intra-and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics, volume 1, pages 486–496.
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Abstract

Although human-written summaries of
documents tend to involve significant edits
to the source text, most automated summa-
rizers are extractive and select sentences
verbatim. In this work we examine how
elementary discourse units (EDUs) from
Rhetorical Structure Theory can be used
to extend extractive summarizers to pro-
duce a wider range of human-like sum-
maries. Our analysis demonstrates that
EDU segmentation is effective in preserv-
ing human-labeled summarization con-
cepts within sentences and also aligns with
near-extractive summaries constructed by
news editors. Finally, we show that us-
ing EDUs as units of content selection in-
stead of sentences leads to stronger sum-
marization performance in near-extractive
scenarios, especially under tight budgets.

1 Introduction

Document summarization has a wide variety of
practical applications and is consequently a focus
of much NLP research. When a human summa-
rizes a document, they often edit its constituent
sentences in order to succinctly capture the docu-
ment’s meaning. For instance, Jing and McKeown
(2000) observed that summary authors trimmed
extraneous content, combined sentences, replaced
phrases or clauses with more general or specific
variants, etc. These abstractive summaries thus
involve sentences which deviate from those of the
source document in structure or content.

In contrast, automated approaches to summa-
rization generally produce extractive summaries
by selecting complete sentences from the source
document (Nenkova and McKeown, 2011) in or-
der to ensure that the output is grammatical.

Extractive summarization techniques, which are
widely used in practical applications, therefore ad-
dress a substantially simpler problem than human
summarization.

This leads to a natural question: can extrac-
tive summarization techniques be used to produce
more human-like summaries? We hypothesize that
automated methods can generate a wider range
of summaries by extracting over sub-sentential
units of meaning from the source documents rather
than whole sentences. Specifically, in this paper
we investigate whether elementary discourse units
(EDUs) from Rhetorical Structure Theory (Mann
and Thompson, 1988) comprise viable textual
units for summarization. Our focus is on recover-
ing salient summary content under ROUGE (Lin,
2004) while the composition of EDUs into fluent
output sentences is left to future work.

We investigate this hypothesis in two comple-
mentary ways: by studying the compatibility of
EDUs with human-labeled summarization units
from pyramid evaluations (Nenkova et al., 2007)
and by assessing their utility in reconstructing
real-world document previews chosen by news ed-
itors in the New York Times corpus (Sandhaus,
2008). The contributions of this work include:

• A demonstration that EDU segmentation pre-
serves human-identified conceptual units in
the context of document summarization.
• New, large datasets proposed for research

into extractive and compressive summariza-
tion of news articles.
• A study of the lexical omissions made by

news editors in real-world compressive sum-
marization.
• A comparative analysis of supervised single-

document summarization over full sentences
and over a range of budgets in extractive and
near-extractive scenarios.
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2 Background and related work

Discourse structure in summarization Rhetor-
ical Structure Theory (RST) (Mann and Thomp-
son, 1988) represents the discourse in a docu-
ment in the form of a tree (Figure 1). The
leaf nodes of RST trees are elementary discourse
units (EDUs) which are a segmentation of sen-
tences into independent clauses, including depen-
dencies such as clausal subjects and complements.
The more central units to each RST relation are
nuclei while the more peripheral are satellites.
Prior work in document compression (Daumé and
Marcu, 2002) and single-document summariza-
tion (Marcu, 1999; Louis et al., 2010; Hirao et al.,
2013; Kikuchi et al., 2014; Yoshida et al., 2014)
has shown that the structure of discourse trees, es-
pecially the nuclearity of non-terminal discourse
relations in the tree, is valuable for content selec-
tion in summarization.

The Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) on the other hand is theory-neutral
and does not define a recursive structure for the
entire document like RST. Discourse relations are
lexically bound to explicit discourse connectives
within a sentence or exist between adjacent sen-
tences if there is no connective. Each relation is
realized in two text arguments, which are similar
to EDUs. However, unlike EDUs, PDTB relation
arguments have flexibility in size, ordering and ar-
rangement and do not form a complete segmenta-
tion of the text. They are therefore not easily in-
terpretable as textual units that can be combined to
form sentences and summaries.

In this paper, we focus on EDUs and explore
their viability as basic units for summarization.
We did not use PDTB-style arguments to make
sure each part of a document belongs to a textual
unit and that the units are strictly adjacent to each
other. EDU segmentation, typically addressed as
a tagging problem early in discourse parsing sys-
tems, has seen accuracy and speed improvements
in recent years (Hernault et al., 2010; Joty et al.,
2015). It is now practical to segment document
sentences into EDUs at scale as a preprocessing
step for automated summarization.

Textual units in summarization. In extractive
summarization, sentences are typically chosen
as units to assemble output summaries because
of their presumed grammaticality (Nenkova and
McKeown, 2011). Finer-grained units such as

CIRCUMSTANCE

PURPOSEAs your floppy drive writes or reads

a Syncom diskette is work-
ing four ways

to keep loose particles
and dust from causing
soft errors, drop-outs.

S N

N S

Figure 1: A RST discourse tree with EDUs as
leaf nodes (example from Mann and Thompson
(1988)).

n-grams are frequently used for quantifying con-
tent salience and redundancy prior to summa-
rization over sentences (Filatova and Hatzivas-
siloglou, 2004; Thadani and McKeown, 2008;
Gillick and Favre, 2009; Lin and Bilmes, 2011;
Cao et al., 2015). In contrast, when the task at
hand is more abstractive, the units are more fine-
grained, e.g., n-grams and phrases in abstractive
summarization (Kikuchi et al., 2014; Liu et al.,
2015; Bing et al., 2015), n-grams and human-
annotated concept units in summarization evalu-
ation (Lin, 2004; Hovy et al., 2006). Recently,
subject-verb-object triplets were used to automati-
cally identify concept units (Yang et al., 2016) and
in abstractive summarization (Li, 2015); however,
this requires semantic processing while EDU seg-
mentation is presently more accurate and scalable.

Here, we explore EDUs as a middle ground be-
tween fine-grained lexical units and full sentences.
While EDUs have been used in prior work to di-
rectly assemble output summaries (Marcu, 1999;
Hirao et al., 2013; Yoshida et al., 2014), the fo-
cus was on using discourse structure as features
for sentence ranking, while our work is the first to
examine the utility of EDUs themselves.

Datasets. In this work, we address single-
document summarization. Standard datasets for
the task were created for the Document Under-
standing Conference (DUC) in 2001 and 2002.
The datasets for each year were composed of
about 600 documents accompanied by 100-word
abstractive summaries. In addition, the RST Dis-
course Treebank (Carlson et al., 2003) contains
abstractive summaries for 30 documents, which
have been used for evaluation in RST-driven sum-
marization (Hirao et al., 2013; Kikuchi et al.,
2014; Yoshida et al., 2014).

In contrast, we propose the use of datasets de-
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[The European Airbus A380 flew its maiden test flight from France] [10 years after design development started.]

Figure 2: An EDU-segmented sentence with three human-labeled concepts (SCU contributors).

rived from the New York Times (NYT) corpus1

that are orders of magnitude larger than the DUC
dataset, featuring thousands of article summaries
with varying degrees of extractiveness. Although
the summaries in this dataset typically contain
fewer than 100 words and are sometimes intended
to serve as a teaser for the article rather than a dis-
tillation of its content, they were nevertheless cre-
ated by professional editors for a highly-trafficked
news website. Prior work has also demonstrated
the utility of this corpus for summarization (Hong
et al., 2015; Nye and Nenkova, 2015). This dataset
therefore enables the study of summarization in a
realistic setting.

Compressive summarization. To explore the
utility of EDUs in summarization, we examine
near-extractive summaries in the NYT corpus
which are drawn from sentences in the document
but omit at least one word or phrase from them.
This setting is also explored in the summariza-
tion literature for techniques which combine ex-
tractive sentence selection with sentence compres-
sion (Clarke and Lapata, 2007; Berg-Kirkpatrick
et al., 2011; Woodsend and Lapata, 2012; Almeida
and Martins, 2013; Kikuchi et al., 2014). These
approaches are typically evaluated against abstrac-
tive summaries and have not been studied with a
natural compressive dataset such as the ones pro-
posed here. We do not address techniques to gen-
erate compressive summaries in this work but in-
stead attempt to quantify how the omitted content
in a summary relates to its EDU segmentation.

3 EDUs as Concept Units in Summaries

We first investigate whether EDUs from an RST
parse of the document can serve as a middle
ground between abstract units of information and
the sentences in which they are realized. Specif-
ically, given a dataset containing human-labeled
concepts in each article, we examine their corre-
spondence with the EDUs extracted automatically
from the article in terms of both lexical coverage
and content salience.

1Available from the LDC at https://catalog.
ldc.upenn.edu/LDC2008T19
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Figure 3: Number of EDUs which overlap with
each SCU contributor (single or multi-part) in the
DUC/TAC reference summary datasets.

3.1 Data and settings

In the DUC 2005–2007 and TAC 2008–2011
shared tasks on multi-document summarization,
evaluations are conducted under the pyramid
method—a technique which quantifies the seman-
tic content of reference summaries and uses it
as the basis of comparison for system-generated
summaries (Nenkova et al., 2007). For this, human
annotators must identify summary content units
(SCUs) across reference summaries for a single
topic. Each SCU has one or more contributors
from different reference summaries which express
the concept in text. Of the 32,535 contributors
in the DUC and TAC data, 79% form contiguous
text spans while the rest involve two or more non-
contiguous parts within a sentence.

Our primary goal in this section is to investigate
the degree to which EDUs correspond to SCUs.
For this purpose, we treat each reference summary
as an independent article and its SCU contribu-
tors as concept annotations. We parse the sum-
maries using the RST parser of Feng and Hirst
(2014a) to recover an EDU segmentation, specifi-
cally version 2.01 of the parser which shows su-
perior EDU segmentation performance to other
discourse parsers (Feng and Hirst, 2014b). An
example of an EDU-segmented sentence with its
human-labeled concepts is shown in Figure 2.
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[The American Bookseller Association represents private bookstore owners] [and sponsors Book Expo, an annual convention.]

[Napster claimed protection under the Millenium Copyright Act] [because they had no control over users’ actions.]

Figure 4: Examples of sentences in which human-labeled concepts (indicated by connected lines) span
EDUs (in square brackets).
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Figure 5: Number of words in SCU contributors
which remain uncovered by a single EDU in the
DUC/TAC reference summary datasets.

3.2 Concept coverage

Figure 3 indicates the number of EDUs that over-
lap by one or more tokens with each SCU con-
tributor in the data. Most concepts (62%) are cov-
ered by a single EDU. This is more pronounced for
concepts which are realized in a contiguous text
span (69%), while multi-part concepts are unsur-
prisingly more likely to overlap with two EDUs.
On average, concepts overlap with 1.56 EDUs
while EDUs overlap with 1.77 concepts, signifi-
cantly fewer than the average number of concepts
contained in whole sentences (2.18).

Because we consider an overlap of one to-
ken to be sufficient to associate an EDU with an
SCU contributor, we also examine in Figure 5 the
number of non-punctuation contributor words that
would need to be deleted for each concept to be
covered by a single EDU. The vast majority of
SCU contributors are covered by a single EDU,
while the remainder typically have 2–4 words un-
covered. Fewer than 8% of concepts were ob-
served to have more than 4 words outside their
corresponding EDU.

In Figure 4 we show typical examples of sen-
tences with concepts which cross EDU bound-
aries. A major source for breached boundaries
lies within heads of clauses. For instance, the

first example contains two verb phrases in separate
EDUs which each mark a concept, but their shared
head “American Bookseller Association” can be
in only one EDU. Errors are also often caused by
overly broad SCUs which contain too much con-
tent. In the second example, the second EDU
holds a causal relation with the first EDU and is
thus a a satellite to the discourse relation, whereas
the whole relation is combined into a single SCU
contributor. These cases can potentially be re-
solved by taking into account the discourse rela-
tion and nuclearity status of the involved EDUs.

3.3 Salience via discourse structure

In addition to coverage of SCU contributors, we
would like to see the extent to which EDUs are
meaningful with respect to summarization con-
cepts. One of the most intriguing aspects of EDUs
is that they are not merely textual units but rather
units in a discourse tree from which relative con-
cept importance can be derived. In pyramid evalu-
ations, the salience of an SCU is determined by the
number of distinct contributors it has across all ref-
erence summaries for a topic, and thus each SCU
in our dataset has an implicit weight indicating
its importance. We therefore investigate the rela-
tionship between inter-document concept salience
using these SCU weights and an intra-document
counterpart from the EDUs in the discourse tree.

To calculate salience over EDUs, we use the
scoring mechanism in Marcu (1999). Intuitively,
each EDU which is a nucleus of a discourse rela-
tion (as opposed to a satellite) can be promoted
one level up in the discourse tree. The score
weights each EDU according to the depth that it
can be promoted up to: the closer to the root, the
more important the EDU is. For this analysis, we
impute the discourse salience of a contributor by
averaging the Marcu (1999) scores (normalized by
tree depth) of the EDUs it overlaps with.

Table 1 shows the mean of these scores over all
contributors with a particular SCU weight. In each
group with weight w, the average EDU-derived
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SCU weight 1 2 3 ≥4

Proportion of SCUs (%) 54.3 21.6 13.0 11.2
Mean Marcu (1999) score 0.64 0.66 0.68 0.72

Table 1: Average salience scores of EDUs
overlapping with SCU contributors, stratified by
SCU weight. Differences between scores for
each group are statistically significant under the
Wilcoxon rank-sum test (p < 0.05).

salience score is significantly higher (p < 0.05)
compared to the group with weight w − 1. That
is, the more important a SCU is across these
documents, the more important its corresponding
EDUs are within the discourse of each document.
We infer that the human authors of these sum-
maries make structural decisions to highlight im-
portant concepts, and that these choices are re-
flected in the derived discourse structure.

With a large fraction of concepts observed to be
contained within EDUs, we find compelling ev-
idence to support the notion of EDUs as oper-
ational units of summarization. Moreover, we
find evidence that the RST discourse structure
which typically accompanies EDU segmentation
also provides a strong signal of salience, though
further experimentation along these lines is left
to future work. We now investigate the utility of
EDUs in a practical news summarization task us-
ing a large dataset.

4 Near-extractive summarization

In order to investigate the viability of discourse
units in a practical setting, we use the New York
Times Annotated Corpus (Sandhaus, 2008) which
contains over 1.8 million articles published be-
tween 1987 and 2007 as well as their metadata.
We mine this corpus to recover near-extractive
summaries of articles which reveal how human
editors selectively omit information from article
sentences in order to preview the article for po-
tential readers. This presents a middle ground be-
tween purely extractive and fully abstractive sum-
marization which is useful to study the role of sub-
sentential units in content selection.

4.1 Datasets

The NYT dataset contains editor-produced online
lead paragraphs2 which accompany 284,980 arti-

2Despite the name, these are typically not the same as the
leading sentence or paragraph of the article.

cles featured prominently on the NYT homepage
from 2001 onwards. They are explicitly intended
for presentation to readers and usually consist of
one or more complete sentences which serve as a
brief summary or teaser for the full article.3

We ensure that these online lead paragraphs—
henceforth online summaries—are composed of
complete sentences by filtering out cases which
contain no verbs, omit sentence-terminating punc-
tuation or are all-uppercase, respectively indicat-
ing summaries which are caption-like, truncated
or merely topic/location descriptors. We also ex-
clude articles with frequently repeated titles, first
sentences and summaries which we observe to
be template-like and thus not indicative of edi-
torial input. Finally, we preprocess the remain-
ing 244,267 summaries by stripping HTML ar-
tifacts and structured prefixes (e.g., bureau loca-
tions), normalizing Unicode symbols and fixing
whitespace inserted within or deleted between to-
kens. We have released our data preparation code4

to facilitate future research on the NYT corpus.
Three mutually exclusive datasets5 are drawn

from the processed document collection:

• EX-SENT: 38,921 fully extractive instances
in which each summary sentence is drawn
whole from the article when ignoring case,
punctuation and whitespace.
• NX-SPAN: 15,646 near-extractive instances

where one or more summary sentences form
a contiguous span of tokens within an article
sentence, and the remaining fit the definition
above.
• NX-SUBSEQ: 25,381 near-extractive in-

stances where one or more summary sen-
tences form a non-contiguous token subse-
quence within an article sentence, and the re-
maining fit either of the definitions above.

The remaining 164,319 instances contain fully ab-
stractive summaries with sentences that cannot be
unambiguously mapped to those in the articles;
these are not considered in the remainder of this

3Note that this differs from the abstracts used in prior
summarization research (Yang and Nenkova, 2014; Hong et
al., 2015; Nye and Nenkova, 2015). We observe that ab-
stracts appear to serve more as high-level structured descrip-
tions of articles (e.g., referring to type of the article and NYT
sections, using present-tense and collapsed sentences) rather
than narrative summaries intended for presentation to readers.

4https://github.com/grimpil/nyt-summ
5The NYT document IDs for these datasets are avail-

able at http://www.cs.columbia.edu/˜kapil/
datasets/docids_nytsumm.tgz
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NX-SPAN
(contiguous)

Summary: Now that their season is over, the New York Yankees are likely to shop for new players over
the winter. What they really should look for are new fans.
Doc EDUs: [Now that their season is over,] [the New York Yankees are likely to shop for new players
over the winter,] [and may even] [seek a new manager] [to take over from the estimable Joseph Paul
Torre.] [What they really should look for are new fans.]

NX-SUBSEQ
(non-contiguous)

Summary: The country’s appetite for real estate propelled sales of newly built homes to a record pace
in April, adding to concerns that the housing market may be in overdrive.
Doc EDUs: [The country’s avid appetite for real estate propelled sales of newly built homes to a record
pace in April,] [the Commerce Department reported yesterday,] [helping to raise prices] [and adding to
concerns] [that the housing market may be in overdrive.]

Table 2: Examples of reference summaries from NX-SPAN and NX-SUBSEQ alongside their source sen-
tences from the article, segmented into EDUs. Tokens omitted by the summary are italicized.

paper but left to future work. Examples of sum-
maries from the two near-extractive datasets are
presented in Table 2 along with EDU-segmented
source sentences from the corresponding articles.

4.2 Summary coverage

In order for our hypothesis that EDUs are good
units for summarization to hold, we would ex-
pect the omitted text in these summaries to line up
closely with the EDU segmentation of the source
sentences. In particular, we expect to empirically
observe that the number of of token edits required
to recover reference summaries from source docu-
ment EDUs is small.

For each type of unit—sentence and EDU—and
every instance in NX-SPAN and NX-SUBSEQ, we
align units derived from the original article with
corresponding units from the online summary us-
ing Jaccard similarity, which is fairly reliable as
the summaries are near-extractive. This procedure
for deriving the set of input units matching output
units is a necessary first step in training supervised
summarization systems. Following this, we in-
spect the number of tokens that need to be deleted
or added for each unit from the original article
to match its counterpart in the summary. Distri-
butions of the units in NX-SPAN and NX-SUBSEQ

with respect to the number of tokens that need to
be deleted or added are shown in Figure 6 and the
average counts are presented in Table 3.

We observe that the number of deleted tokens
as well as the proportion of units requiring token
deletions is dramatically smaller when consider-
ing EDUs as summarization units. Token dele-
tions are more frequent in summaries from NX-
SUBSEQ in which deletions do not have to be con-
tinuous. Since EDUs in the summary may be er-
roneously aligned to different portions of the doc-
ument, extraneous tokens may also be introduced;
however, we observe these are relatively rare (3%

Dataset Unit # deleted # added

NX-SPAN
Sent 11.47 0.00
EDU 1.24 0.39

NX-SUBSEQ
Sent 11.95 0.00
EDU 1.94 0.77

Table 3: Average #tokens deleted and added from
each type of unit in NX-SPAN and NX-SUBSEQ.

for NX-SPAN and 10% for NX-SUBSEQ). No ex-
traneous tokens are observed for sentence units as
both datasets are near-extractive.

We further analyze the types of tokens that are
involved in the deletion process when using sen-
tences and EDUs as base units. Figure 7 shows
for each dataset the average numbers of deleted
tokens grouped by their universal part-of-speech
tags (Petrov et al., 2012). We observe that the
number of deleted content words drops from 6.83–
7.33 in the case of sentences to 0.54–0.92 for
EDUs, making them easier to convert into refer-
ence summaries. For instance, spurious verbs fre-
quently need to be removed from sentences in both
datasets but this is relatively rare for EDUs.

5 Using EDUs for summarization

In this section, we compare EDUs with sentences
as base units of selection in extractive and near-
extractive single-document summarization. Cru-
cially, we consider summarization under vary-
ing summary budget constraints in order to an-
alyze whether EDU-based summarization is ver-
satile enough to compete with typical sentence-
based summarization when budgets are gener-
ous. Because our goal is to focus on the viabil-
ity of summarization units for content selection,
we evaluated system-generated summaries using
ROUGE (Lin, 2004). Recovering readable sen-
tences from EDU-based summaries remains a goal
for future work.

142



0 20 40 60 80
0

5

10
%

se
nt

en
ce

s

0 20 40 60 80
0

5

10

0 20 40 60 80
0

5

10

0 20 40 60 80
0

5

10

0 20 40 60 80
0

5

10

# deleted, NX-SPAN

%
E

D
U

s

0 20 40 60 80
0

5

10

# added, NX-SPAN

0 20 40 60 80
0

5

10

# deleted, NX-SUBSEQ

0 20 40 60 80
0

5

10

# added, NX-SUBSEQ

Total: 80% Total: 0% Total: 83% Total: 0%

Total: 14% Total: 3% Total: 24% Total: 10%

Figure 6: Proportion of source sentences and EDUs with the number of tokens deleted and added to
recover summaries from NX-SPAN and NX-SUBSEQ. Cases with zero tokens added/deleted are omitted.

NOUN
VERB

ADJ

PROPN
ADV

NUM PP
DET

CONJ
PA

RT
PRON

PUNCT
0

1

2

3 Sent, NX-SPAN Sent, NX-SUBSEQ

EDU, NX-SPAN EDU, NX-SUBSEQ

Content words Function words

Figure 7: Average number of deleted tokens per
instance in NX-SPAN and NX-SUBSEQ.

Summarization framework. We adopt a super-
vised structured prediction approach to extractive
single-document summarization. Summaries are
produced through greedy search-based inference
with features defined over units in the document as
well as over units and partial summaries, resulting
in a feature-based generalization of Carbonell and
Goldstein (1998).6 In order to focus on the role of
summarization units, we work with a simple stan-
dard model using features that are neutral to the
benefits and/or drawbacks of either sentences or
EDUs:7

• Position of the unit
• Position of the unit in the paragraph
• Position of the paragraph containing the unit
• TF-IDF-weighted cosine similarity of the summary

with the unit added and the document centroid;
• Whether the unit is adjacent to the previous unit added
• Whether the sentence containing the unit is adjacent to

the sentence containing the previous unit added

Feature weights are estimated using the structured
6We also experimented with beam search but did not ob-

serve improvements, as was also found in prior work (Mc-
Donald, 2007).

7For example, we do not use features related to nuclearity,
discourse relation labels or discourse tree structure.

EDU Sentence
Dataset Lead Greedy Lead Greedy

EX-SENT 0.65 0.67 0.55 0.58
NX-SPAN 0.46 0.48 0.32 0.36
NX-SUBSEQ 0.54 0.56 0.37 0.40

Table 4: ROUGE-1 of lead sentences vs. the su-
pervised summarizer under a 200-char budget.

perceptron (Collins, 2002) with parameter averag-
ing for generalization. As inference is carried out
via search, we employ a max-violation update pol-
icy (Huang and Feyong, 2012) to improve conver-
gence speed and performance.

Data and settings. We use the extractive and
near-extractive subsets from the NYT corpus de-
scribed in Section 4.1 to train and evaluate our
summarizer. To aid replicability for benchmark-
ing, we partition all datasets by date rather than
random sampling. Articles published in 2006–
2007 are assigned to a held-out test partition while
articles prior to 2005 are used for training, leaving
articles from 2005 for a development partition.

The mean and standard deviation of summary
lengths (specifically the number of characters)
from our three NYT datasets are: EX-SENT

194.0±92.6, NX-SPAN 134.6±31.3, NX-SUBSEQ

143.3 ± 27.9. Summarization budgets are chosen
to cover this range and set to 100, 150, 200, 250
and 300 characters. The lower bound (100 char-
acters) is approximately one standard deviation
below the mean across all three datasets, while
the upper bound (300 characters) is approximately
one standard deviation above the mean for EX-
SENT, which features the longest summaries.

Comparison with lead. To validate this summa-
rization framework, we first compare trained sum-
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ROUGE-1 ROUGE-2 ROUGE-4
Budget EDU Sent EDU Sent EDU Sent

EX-SENT

300 0.80 0.78 0.70 0.71 0.59 0.71
250 0.75 0.69 0.64 0.62 0.54 0.61
200 0.67 0.58 0.56 0.49 0.47 0.48
150 0.54 0.41 0.43 0.32 0.35 0.31
100 0.35 0.21 0.26 0.13 0.20 0.12

NX-SPAN

300 0.61 0.58 0.45 0.44 0.37 0.42
250 0.56 0.50 0.41 0.36 0.33 0.34
200 0.48 0.36 0.33 0.20 0.27 0.18
150 0.38 0.22 0.25 0.08 0.19 0.06
100 0.24 0.14 0.13 0.04 0.09 0.03

NX-SUBSEQ

300 0.70 0.69 0.53 0.55 0.38 0.46
250 0.66 0.59 0.49 0.44 0.35 0.37
200 0.56 0.40 0.40 0.24 0.28 0.20
150 0.43 0.22 0.28 0.08 0.19 0.05
100 0.29 0.14 0.17 0.04 0.11 0.02

Table 5: ROUGE results for EDU- and sentence-
based summarization.

marizers against a standard summarization base-
line which selects the leading sentence(s) of the
document until the budget is exhausted. This eval-
uation uses a budget of 200 characters, which is
about the average length of an extractive summary
in our data.8 ROUGE-1 results are shown in Ta-
ble 4. Across all datasets and unit settings, the
greedy summarizer consistently outperforms the
lead baseline, indicating that the datasets involve
non-trivial summarization problems.

Results. ROUGE results for all three datasets
are shown in Table 5. For all budgets, scores are
notably higher for EX-SENT which involves un-
ambiguous alignment of reference units. ROUGE
performance is also consistently higher for NX-
SUBSEQ over NX-SPAN despite its higher token
deletion rates (cf. Table 3), likely owing to a larger
training dataset. All scores improve with bigger
budgets as ROUGE is a recall-oriented measure.

We observe that EDUs outperform sentences
across all datasets and budgets under ROUGE-1,
on budgets within 250 characters under ROUGE-
2 as well as budgets within 200 characters under
ROUGE-4. Interestingly, EDU-based summariza-
tion remains competitive even on EX-SENT. The
exceptionally strong performance of EDUs under
tight budgets confirms our intuition that summa-
rizers are better able to select salient informa-

8We experimented with all other aforementioned budgets
with consistent results.

tion when working with smaller units. Sentences
only hold a material advantage over EDUs when
summarization budgets are generous enough to
accommodate the more content-dense—and thus
longer—source sentences. In our near-extractive
datasets, this requires a budget greater than one
standard deviation over the average size of refer-
ence summaries.

Analysis. Table 6 contains examples of ref-
erence summaries along with system-generated
summaries produced using EDUs and sentences
under a 200-character budget. All examples il-
lustrate a common scenario in which an important
source sentence is not selected by the sentence-
based summarizer. Yet this is not because the
model is unable to capture content salience, as
the same features can recover salient EDUs. In
each case, the source sentence behind the refer-
ence summary is barred from inclusion because of
the summarization budget. By breaking these sen-
tences into EDUs, the summarizer has the flexibil-
ity to select salient fragments of these sentences.

In addition, we observe a clear correspondence
between EDU boundaries and the concepts which
human editors selected for inclusion, regardless of
whether they appear contiguously (Example B) or
not (Example C). The variable length of EDUs is
also helpful in keeping interdependent text whole.
For instance in Example A, the third segment is
13 tokens long but belongs to a single EDU as it
contains only one independent clause. This coher-
ence is likely to be lost when working with smaller
sub-sentential units such as n-grams.

6 Discussion and Future Work

In order to compare summarization units fairly,
we used a simple model without utilizing the dis-
course structure of the document. However, the
use of discourse trees has yielded promising re-
sults in summarization (Hirao et al., 2013; Yoshida
et al., 2014). With larger training datasets such
as the ones proposed here, an EDU-based summa-
rizer will likely benefit from rich features over dis-
course relations. For instance, we observed in Sec-
tion 3.3 that the Marcu (1999) measure can iden-
tify EDU importance, and furthermore a consid-
eration of discourse relations across units is likely
to encourage coherence in the resulting summary,
potentially preventing the inclusion of unimpor-
tant and incongruous units.

Our results also highlight a need for future work
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(A) Ref: Manager Willie Randolph did not see what the big deal was. All he did before last night’s game against San Diego
at Shea Stadium was drop Mike Piazza in the batting order to sixth from fifth and promote David Wright to fifth from
sixth. But the swap led to a barrage of questions from reporters.
EDU: [Manager Willie Randolph did not see what the big deal was.] [All] [he did before last night ’s game against San
Diego at Shea Stadium] [was drop Mike Piazza in the batting order to sixth from fifth]
Sent: Manager Willie Randolph did not see what the big deal was. But the swap led to a barrage of questions from
reporters. Was Piazza being demoted permanently? How had Piazza and Wright handled the moves?

(B) Ref: Big, cheap and somewhere in Manhattan. Those were the starting criteria for Kelli Grant, who was desperate to
escape a long bus commute between Midtown and southern New Jersey.
EDU: [Big, cheap] [and somewhere in Manhattan.] [Those were the starting criteria for Kelli Grant,] [and for her
boyfriend, James Darling,] [to be with her.]
Sent: Big, cheap and somewhere in Manhattan. At that early, uninformed stage, big meant two bedrooms, they hoped.
Cheap meant up to $1,500 a month.

(C) Ref: The plan, which rivals the scope of Battery Park City, would rezone a 175-block area of Greenpoint and Williams-
burg.
EDU: [The plan,] [which rivals the ambition and scope of the creation of Battery Park City,] [would rezone a 175-block
area of Greenpoint and Williamsburg, two neighborhoods]...[and led to intense pressure]
Sent: The plan, which is expected to be approved by the full City Council next week, imposes some novel requirements
for developers seeking to build the housing.

Table 6: Examples of NYT reference and system-generated summaries using EDUs and sentences from
(A) EX-SENT, (B) NX-SPAN, (C) NX-SUBSEQ. An “...” separates EDUs from different source sentences.

in composing EDUs to form fluent sentences. As
suggested by the coverage analysis in Section 3.2,
it is very likely that this can be accomplished ro-
bustly. For instance, Daumé and Marcu (2002)
demonstrated that an EDU-based document com-
pression system can improve over sentence extrac-
tion in both grammaticality and coherence.

7 Conclusion

In this work, we explore the potential of ele-
mentary discourse units (EDUs) from Rhetorical
Structure Theory in extending extractive summa-
rization techniques to produce a wider range of
human-like summaries. We first demonstrate that
EDU segmentation is effective in preserving con-
cepts extracted from a document. We also ana-
lyze summaries in the New York Times corpus
whose content is extracted from parts of their orig-
inal sentences. When recovering the summaries
using EDUs, the amount of extraneous informa-
tion in the form of content words is dramatically
reduced compared to their original sentences. Fi-
nally, we demonstrate that using EDUs as units
of content selection instead of sentences leads
to stronger summarization performance on these
near-extractive datasets under standard evaluation
measures, particularly when summarization bud-
gets are tight.
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Abstract

Choosing an appropriate way for a spoken
dialog system to initiate a conversation is
a challenging problem, and, if done incor-
rectly, can negatively affect people’s per-
formance on other important tasks. We
describe the results of a study in which
participants play a game and are inter-
rupted by spoken notifications in differ-
ent styles. We compare people’s percep-
tions of the notification styles, as well as
their effect on task performance. The dif-
ferent notifications include manipulations
of pre-notifications and information about
the urgency of the task. We find that pre-
notifications help people respond signifi-
cantly faster to urgent tasks, and that 43%
of people, more than in any other category,
prefer a notification style in which the no-
tification begins by stating the urgency of
the task.

1 Introduction

As spoken dialog systems have improved, they
have become an increasingly prominent part of our
everyday lives. It is now common to interact with
systems that not only perform a single, task-based
function (e.g. booking an airplane flight (Bohus
and Rudnicky, 2009)), but rather act as personi-
fied assistants across a range of domains, includ-
ing answering questions, managing communica-
tion, and organizing schedules, as Apple Siri and
Microsoft Cortana do. In particular, some dialog
systems have taken up residence in our homes, act-
ing as personal assistants, like Amazon Echo, or
as the embodiment of a network of smart home
devices (Oulasvirta et al., 2007). Most research
has assumed that these systems are entirely user-
initiated—that the system will always be respond-

ing to questions and requests from a person, rather
than making its own. However, as these interac-
tions become more natural and human-like, there
are many situations in which the system will also
have reason to initiate the dialog: for example, to
notify someone about a time-sensitive event like
taking medicine, or to start a conversation about
planning dinner. In this paper we study how dif-
ferent wordings of initiations can change people’s
perceptions of the notifications and make it eas-
ier for them to manage interruptions. We find
that pre-notifications and additional explicit infor-
mation about urgency improve interruption man-
agement and are preferred by users. However,
we also find that there is a large range of user
preferences, and in particular people with greater
working memory capacity have distinctly different
preferences.

Allowing a system to begin a conversation
raises questions about how the dialog can and
should be initiated. Ideally, the system should be
aware of the context of the users: where they are
physically located, and what activities or interac-
tions they are already engaged in. If it is acting
as a single voice for multiple devices within the
home, those devices may have competing goals,
and it must decide which takes priority. Addition-
ally, different people may have different prefer-
ences for how they want to interact with the sys-
tem, including frequency, wording, and modality
of interruptions, which the system should be able
to accommodate. It is important that the system
should not only be technically functional, but also
be enjoyable to use. By taking these competing
factors into consideration, it will provide a better
user experience.

The factors mentioned above create a large
and complex set of choices and possibilities.
For the purposes of this paper we studied two
variables—pre-notifications and urgency—that
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provide the potential to make very simple changes
to a system which nonetheless have a large im-
pact on people’s preferences for and perception of
notifications. As a language-based technology, a
dialog system is uniquely situated to use linguis-
tic strategies to accommodate different users and
situations, so we focused specifically on changing
the wording of the notifications to give increased
amounts of warning and information at the cost of
simplicity and directness.

The first variable we looked at was pre-
notification. This was inspired by considering
how people initiate conversations with each other.
Schegloff (1968) introduces the idea that any two-
person conversation typically begins with a “sum-
mons,” which serves to propose the start of a con-
versation. The “summons” is followed by an “an-
swer” from the other person, acknowledging par-
ticipation in the conversation. Our first hypothe-
sis is that by having the dialog system begin with
a summons-style pre-notification it will feel more
natural, so participants will find the interruption
less annoying, and it will disrupt their task perfor-
mance less.

Next, we consider how the urgency of a task af-
fects performance and preference. A number of
studies have found that people are more recep-
tive to being interrupted if the notification is ur-
gent (Vastenburg et al., 2008; Paul et al., 2011;
Paul et al., 2015). Our second hypothesis is that
participants will benefit even more from the pre-
notification if it is not a generic phrase, but rather
indicates the urgency of the task itself. This will
allow participants to prepare themselves to com-
plete the task as quickly as possible when neces-
sary, but let them know that they can take their
time when appropriate.

2 Related Work

There have been studies on the effects of word-
ing in dialog systems and on different ways of
providing notifications, but none of these studies
have combined them to examine how linguistic
style choices in a dialog system interact with and
change people’s perceptions of notifications.

Looking at the effects of wording in a spoken
dialog system, Torrey et al. (2013) studied a sys-
tem that helped people make cupcakes and found
that using hedges and discourse markers made the
system seem less commanding and more friendly.
However, they focused on an in-progress dialog,

rather than initiations and interruptions.

Interruptions, taking the form of notifications,
have both benefits and risks. They can be ex-
tremely useful when reminding people of impor-
tant tasks or appointments, and are particularly
beneficial to people dealing with memory prob-
lems (McGee-Lennon et al., 2011). However, the
danger of interruptions is that they decrease per-
formance on the user’s primary task by disrupting
concentration, and, depending on the perceived
worth of the notification, may also annoy or frus-
trate the user. Warnock et al. (2011) and Paul et
al. (2015) find that all notifications cause errors
in the task that is being interrupted. The ability to
focus on a task and remember items despite in-
terruptions is associated with the cognitive load
of the task, which determines how much mem-
ory it requires; the working memory of the person,
which measures how many items they can remem-
ber at once; and executive attention, which reg-
ulates which items they focus on (Engle, 2002).
Because working memory is essential to interrup-
tion management, in this study we compare per-
formance and perceptions across participants with
different working memory capacities.

One way to address the problem of notifica-
tion interruptions is by detecting natural breaking
points, and interrupting during them (Hudson et
al., 2003; Fogarty et al., 2005; Okoshi et al., 2015).
However, this is a challenging task that relies on
full knowledge or detection of the user’s activities,
and that may also raise privacy concerns. Chang-
ing only the delivery of the alert to make it less
disruptive has a much lower barrier to entry and
can be applied to a wide range of systems being
designed to interact with users through dialog.

Certain types of notifications are less disruptive
than others. McGee-Lennon et al. (2007) com-
pare beeps, musical patterns, and speech-based
notifications, finding that people perform slightly
better with speech notifications, and that differ-
ent people prefer different modalities of notifica-
tion. Warnock et al. (2011) go further, also look-
ing at notifications based on text, pictures, colors,
iconic sounds, touch, and smell, where different
variations must be associated with different tasks.
However, although both the studies have speech as
a notification option, they use only a single phrase
type and do not consider the effect that different
styles of speech may have on either performance
or preference.
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Style Urgent notification Non-urgent notification
base The bathtub is overflowing. The bathtub is dirty.
pre Excuse me...the bathtub is overflowing. Excuse me...the bathtub is dirty.
verbose Urgent task...the bathtub is overflowing. Whenever is convenient...the bathtub is dirty.

Table 1: Example notifications in each style and urgency level

A method of mitigating the negative effects of
notifications is to first send a “pre-alert,” as de-
scribed by Andrews et al. (2009). They find that
a pre-alert increases the speed with which the pri-
mary task is resumed after the interruption, and
negates its disruptive effect. However, the types of
alerts they compared were all non-linguistic, being
either visual or consisting of a single tone.

Research has shown the benefits of pre-
notifications, the relevance of urgency, the util-
ity of language-based notifications, and the impor-
tance of wording choice to perceptions of a dia-
log system. These are all closely related concepts;
however, unlike previous work, we incorporate all
of them into a set of notifications which can be
tested for their effect on users.

Figure 1: Screenshot of primary task screen

Figure 2: Screenshot of secondary task “Kitchen”
screen

3 Experiment

As discussed above, there are many factors that
can influence the perception and effect of notifica-
tions. To look at a well-defined space, we chose
to study three factors: the urgency of the task, the
presence of a pre-notification, and the prominence
of urgency level in the notification. Participants
played a browser-based game that involved going
back and forth between primary and secondary
tasks based on spoken notifications. By framing
the activity as a game and giving players points
for both types of tasks, players were encouraged
to balance doing well in the game with responding
to notifications. This models the real-world sit-
uation of balancing multiple tasks, some of which
are prompted by a dialog system. The primary task
took the form of a game of Snake, shown in Figure
1, and described in more detail in Section 3.2.2.
In the secondary task, participants were periodi-
cally notified to go complete “household tasks.”
For example, in one task participants are told that
the “toast is burning,” and they must go click on
the toast in the kitchen shown in Figure 2. Each
participant went through three rounds with a dif-
ferent combination of variables in each round, so
that we were able to both measure performance
differences and get feedback on participants’ per-
ceptions of the different notifications. Examples
of different notification types, described in more
detail below, are displayed in Table 1.

3.1 Participants

The participants in the experiment were recruited
using the Amazon Mechanical Turk crowdsourc-
ing pool. We required participants to be located
in an English-speaking country (US, Australia,
Canada, Great Britain, or New Zealand), and to
have a 95% or higher HIT approval rate. Addi-
tionally, participants had to sign a consent form
stating they were at least 18 years old.

We conducted 206 sessions. Of those, we dis-
carded the data of 31 because of issues includ-
ing bugs in the game, people repeating the study,
and people making no effort to play the game or
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complete tasks. We sampled the remaining data
to create a data set balanced between the 18 con-
ditions described in Section 3.2.5, leaving a total
of 144 participants in the study. Of these partic-
ipants, 57.64% were male, and 41.67% were fe-
male. Their ages ranged from 20-69, with a mean
of 34.31.

3.2 Procedure

The study procedure consisted of the following
steps:

1. Forward digit span task
2. Primary task tutorial
3. Snake baseline session
4. Secondary task tutorial
5. Experimental manipulation (3 rounds)

3.2.1 Forward Digit Span task
Participants started by completing the Forward
Digit Span task (Hunt et al., 1973), which we used
as a metric for working memory, and is associated
with attention. Working memory is closely related
to people’s ability to deal with interruptions, lead-
ing us to hypothesize that it would help distinguish
different user groups with regard to their ability to
manage interruptions. In the test, digits were pre-
sented visually to the participant at one-second in-
tervals. Each digit was visible for half a second
and was followed by a pause of another half sec-
ond before the next digit was displayed. At the
end of each sequence, the participants entered the
sequence, as they remembered it, into a text box.
Participants were presented with two different se-
quences of equal length, beginning with length 3.
If they got at least one of the two correct, the se-
quence length was increased by one. When they
got both wrong, the task ended and the longest
length at which they got at least one of the two cor-
rect was considered the participant’s “digit span
score.” The participants’ scores had a mean of 7.37
and a standard deviation of 1.83.

3.2.2 Primary task tutorial
Following the digit span task, participants were
given a brief tutorial on the primary task. This
involved playing the computer game Snake, in
which a player maneuvers a “snake” graphic
around a box, trying to make it hit, or “eat,” cir-
cles, without hitting the sides or itself. With each
circle the snake eats, the player gets points equal to
the length of the snake, and the snake gets longer,
thus giving a greater reward to the more difficult

situation of having a longer snake. Participants
got a one-minute tutorial, presented by the same
voice as used in the notifications, to familiarize
them both with the game controls and the notifi-
cation voice.

3.2.3 Snake baseline session
Participants played the game uninterrupted for one
minute to get a baseline measurement of their skill
at the game.

3.2.4 Secondary task tutorial
Next, participants were given a tutorial in the sec-
ondary task. Each task requires that the partici-
pants navigate to a different “room” in the house
by clicking on a labeled door icon. This leads
them to a different screen (e.g. the kitchen shown
in Figure 2), where they must click on an item
in the room, such as the television or the stove.
Some tasks are urgent (they must be accomplished
within 10 seconds), while others can be completed
at any time during the game. Completing each of
these tasks gives the participants 20 game points,
incentivizing them to complete the task despite its
potential disruption to the game.

3.2.5 Experimental manipulation
Each of the three rounds consisted of the partic-
ipant playing Snake for 2 minutes, and being in-
terrupted twice at 30 second intervals with notifi-
cations for secondary tasks. This simulated a per-
son engaged in some activity in their home (rep-
resented by Snake) who is then interrupted by a
spoken dialog notification system. To test our hy-
potheses that pre-notifications and additional ur-
gency information would both be beneficial, in
each round participants were given one of the three
notification styles listed in Table 1.

The experiment comprises three independent
variables. The first is notification style, with 3
different values, as discussed above. Second is
urgency level, with two different values: urgent
and non-urgent. Finally, room/task has three val-
ues: bedroom, bathroom, and kitchen. To control
for the effects of different orders and combina-
tions of variables, we conducted a 3 (notification
style)⇥ 3 (room/tasks)⇥ 2 (urgency level) manip-
ulation, with notification style and room/tasks as
within-subject factors, and urgency as a between-
subject (per-task) factor. In particular, we counter-
balanced notification style and room/tasks using a
3⇥ 3 Latin Square, where each cell contained two
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tasks in the same room, delivered with the same
notification style, creating 3 separate conditions.
Each participant experienced both urgency lev-
els. However, we maintained a consistent urgency
level within each room for each participant. We
accomplished this by constructing all six possible
sequences of three assignments of urgency level
such that both urgency levels were in the sequence
at least once. We then crossed the three conditions
from the Latin Square with the six possible order-
ings of the between-subject factor. Thus, in total,
there were 18 experimental settings.

The six types of notifications were designed to
operationalize the variables of pre-notification, ur-
gency level, and urgency information. In the first,
base, the participant is given just the content of the
notification (e.g. “The toast is burning”). In the
second, pre, the participant is given a simple pre-
notification (“Excuse me”) followed by a pause,
and then the content of the notification. In both the
first and second conditions, the participant must
determine based on the content of the notification
whether it is urgent or not. In the third condition,
verbose , the participant is given a pre-notification
specifying the urgency of the notification (either
“Urgent task” or “Whenever is convenient”), fol-
lowed by a pause, and then the content of the no-
tification. Each task object has an urgent and non-
urgent version. These variations are represented
in Table 1. To help participants identify separate
notification types, each round was associated with
a different room, including two unique tasks. This
room/task pair was an additional manipulated vari-
able.

3.3 Outcomes

In order to compare the notification types, for each
notification type we measured how well the partic-
ipant did in the primary task interrupted by those
notifications, the number of secondary tasks com-
pleted, and the amount of time it took to complete
tasks. In addition, we measured baseline perfor-
mance on the primary task as a metric of individ-
ual skill.

In addition to quantitative measures, at the end
of the study we also asked participants about their
preferences. After participants completed the task,
they were asked to identify the room associated
with the notifications they liked the most, and the
one associated with the notifications they liked the
least. They were also instructed to give more de-

tailed feedback about their preferences.

4 Results

In this section, we compare the outcomes of the
study to our two hypotheses: first, that participants
would perform better and prefer a system that be-
gins with a pre-notification, and second, that par-
ticipants would benefit even more from the pre-
notification if it indicates the urgency of the task.
To evaluate these interactions, we look first at per-
formance on the primary task, second at perfor-
mance on the secondary task, and finally at stated
preference for different notification styles.

To answer the question of whether different
types of notifications effect primary task perfor-
mance, we analyzed the game score and number
of game deaths, shown in Table 2. The gameplay
was highly variable between individuals, so we
compared game scores (Mean: 166.04, Standard
deviation: 166.35) and number of game deaths
(Mean: 7.16, Standard deviation: 5.31) using a
repeated measures ANOVA across different noti-
fication styles. We also ranked each individual’s
rounds from one to three, and performed a chi-
square test between notification style and rank.
However, the only significant indicator of per-
formance was the order of the rounds, with per-
formance improving as people played more (F(1,
143) = 23.80, p<.001).

To answer the question of whether different
types of notifications effect secondary task man-
agement, we analyzed the amount of time it took
to complete tasks (Mean: 7547ms, Standard de-
viation: 7006ms) in different conditions, shown
in Table 3. We found that whether the task was
urgent or not has a significant effect on the com-
pletion time, validating our urgency manipula-
tion (F(1,422)=96.39, p<.0001). For non-urgent
tasks, the notification style did not appear to
have an effect on completion time, but for urgent
tasks it was highly significant (F(2,208)=16.57,
p<.0001). A Tukey post-hoc test reveals that per-
formance in pre and verbose, both of which have
a pre-notification aspect to them, is virtually iden-
tical, but base is significantly slower. This shows
that the presence of a pre-notification, regardless
of the type, helps users manage interruptions to
complete urgent tasks faster.

To answer the question of what effect differ-
ent notification styles had on participants’ percep-
tion of and preference for notifications, we per-
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Table 2: Primary task performance
F df P

Game score by notification style 0.10 2,286 p = .905
Game deaths by notification style 0.03 2,286 p = .972
Game score by round order 23.80 1,143 p < .001 ***

�2 df N P
Rank of round by notification style 9.08 4 432 p = 0.059

Table 3: Secondary task completion times in different conditions
F df P

Urgent vs. non-urgent tasks 96.39 1,422 p < .0001 ***
Non-urgent tasks with different notification
styles

1.38 2,210 p = .254

Urgent tasks with different notification styles 16.57 2,208 p < .0001 ***

Figure 3: Preferences by Notification Style

formed a series of chi-square tests comparing dif-
ferent manipulations with the number of people
who rated each best, worst, or not at all, as shown
in Table 4, Here, the notification style was sig-
nificant (�2(4, N=432)=14.61, p<.01), with the
breakdown shown in Figure 3. A plurality of peo-
ple liked verbose the most, with base and pre rated
about the same. In looking at potential causes of
variation, we also examined interactions between
different components of the manipulation: the ur-
gency of the task, the room containing the objects
people clicked on in the task, and the order it was
presented. Participants rated non-urgent tasks bet-
ter, and also those in the bedroom worse (an un-
intentional effect of varying the tasks for differ-
ent rounds was that the bedroom tasks were more
difficult than others), but overall there were no
significant interactions between these factors and
notification style, displaying a stable main effect.
The pre-notification and added urgency informa-

Figure 4: Preferences by Notification Style and
Digit Span

tion were considered preferable across conditions.
These results show that having a pre-

notification did not help participants on their
main task, but it did help them complete ur-
gent tasks more quickly, which is desirable.
Adding urgency-related information to the pre-
notification, as in the verbose style, did not affect
task performance, but was a clear favorite across
all different conditions.

Nonetheless, not all people liked the verbose
style most, which raises the question of what fac-
tors determine a person’s preferences. For the pur-
pose of this study, we also looked at how three
personal characteristics interact with notification
preferences, shown in Table 5. Age and gender
did not show a significant pattern, but digit span
did. As depicted in Figure 4, across all groups
there was a preference for the verbose style, except
among people with the highest digit span scores.
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Table 4: Interactions between round manipulation and preference distribution
Manipulated Variables �2 df N P
Notification style 14.61 4 432 p < .01 **
Urgency 18.95 2 432 p < .001 ***
Room/task 13.26 4 432 p < .05 *
Order 2.11 4 432 p = .716

Table 5: Interactions between personal characteristics and preference distribution
Personal Characteristics �2 df N P
Age (quartiles) 24.78 12 432 p = .016
Gender 4.04 8 432 p = .854
Digit span (quartiles) 28.99 12 432 p < .005 **

This group instead disliked verbose the most, and
showed a slight preference for the pre style (�2

(12, N=432)=28.88, p<.005). As such, we can
distinguish them as a distinct user group, with
a different focus and different priorities. Given
the difference in their preferences on notification
style, we attempt to identify other factors that dis-
tinguish them as a group. However, we compared
them to the rest of the participants using age, gen-
der, baseline score, number of game deaths, and
all the different round manipulation preferences,
and they are not significantly different in any way.

To gain insight into user preferences, in addi-
tion to ranking their preferences, participants pro-
vided written comments about their favorite and
least favorite rounds. We examined these to bet-
ter understand what components of the round in-
fluenced their choice, and what they liked and dis-
liked about the notifications themselves. The com-
ments reflect what we see in the preference trends.
Of the 270 comments, 23% focus only on the no-
tification itself, while 35% focus only on the con-
tent and visual appearance of the rooms, 23% fo-
cus only on the urgency of the task, and 19% fo-
cus on other aspects of the system. When we
include comments that mention multiple compo-
nents of the study, 30% talk about the notifica-
tion itself, while 37% talk about the room, and
30% talk about urgency. This includes a large
amount of overlap, especially between notification
and urgency, which are closely associated with
each other.

Even though only 30% of people specifically
mentioned the notification, of that 30%, the break-
down of urgencies and rooms they preferred mir-
rored that of the participants as a whole, suggest-
ing that despite what people mentioned in their

comments, everyone was motivated by similar fac-
tors. People who commented on notification style
were most likely to say they liked base because
it was simple and straightforward, but often com-
plained that it didn’t give them a pre-notification.
For pre, some people said they liked it because
it was polite, but even more people complained
that the “excuse me” was “creepy”, “annoying”,
or “unnecessary”. Finally, for verbose, many peo-
ple commented that it helped them to distinguish
between different urgencies, but the most common
complaint was the tone or wording of the message.

5 Discussion

Our hypothesis that pre-notifications would help
people’s performance was supported, but only in
one condition, that of the urgent secondary task.
This suggests that having a pre-notification does
not help people manage interruptions to a primary
task. However, it might be the case that the pri-
mary task, playing Snake, was ultimately not ideal
for this evaluation because interruptions in general
did not have as much of a negative impact on peo-
ple’s performance as we originally thought. Al-
though participants were given a practice round,
if they had a full round without any notifications
at all, it would been easier for us to directly mea-
sure the performance effect of notifications, rather
than just comparing different styles. Additionally,
the best predictor of an individual’s performance
on any given round was the order of the round; in
other words, people improved significantly at the
game over the course of the study. Had game per-
formance remained approximately the same over
time, we might have seen a stronger effect of noti-
fication style.

Looking at preferences, we find that people who

154



scored higher on a test of working memory, as
measured by digit span score, generally view the
verbose style less favorably. The question re-
mains, however, of what other factors determine
people’s preferences. For the purposes of this
study we only looked at a few personal qualities,
most of which were not good predictors of prefer-
ence. If we gain more insight into people’s traits,
for example through additional demographics and
basic personality questions, we may find other fac-
tors that affect their preferences.

The most interesting part of the extended feed-
back was that people frequently commented on the
tone of the notification, either praising it for being
“calm” and “friendly,” or criticizing it for being
“demanding” and “creepy.” Additionally, we often
assume that politeness is a positive, but in one case
someone complained that the verbose notification
was “too kind.” We focused on the information
contained in the notification, but subtle changes to
wording or inflection can result in big changes in
how language is perceived.

One shortcoming of this study was that it looked
at people interacting with a system over a very
short period of time. People’s impressions of no-
tifications may change over time as they become
accustomed to the system. As they become used
to being interrupted, the notifications may be less
startling, but as people learn to predict what the
system will say, they may value concise phrasing
over added information. Our study lays a ground-
work for what aspects of interruption people care
about, but before making conclusions for use in a
real-world system, it would be important to look
at how people adjust and settle into patterns.

6 Conclusion

In general, the verbose style was both most pre-
ferred and best for people’s performance. This
suggests that people prefer a pre-notification be-
fore hearing the task, which enables them to know
the urgency of the task and thus the type of reac-
tions expected, and to prepare for the task. How-
ever, it’s also important to note that many people
did not like verbose the most, and even thought it
was the worst. In particular, the difference in pref-
erence based on digit span score reveals that dif-
ferent types of people may have significantly dif-
ferent opinions. As we consider the design of spo-
ken dialog systems, we should consider not only
whether pre-notifications and urgency information

can make interruptions more helpful and palat-
able, but also how we can accommodate a range
of users. The conclusion we draw, then, is not that
systems should contain urgency pre-notifications,
but rather that they should have flexibility for dif-
ferent people to experiment with a range of initi-
ation styles to choose the one they personally like
the best.
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Abstract

We have been studying methods to per-
sonalize system utterances for users in ca-
sual conversations. We know that per-
sonalization is important, but no well-
established way to personalize system ut-
terances for users has been proposed. In
this paper, we report the results of our ex-
periment that examined how humans per-
sonalize utterances when speaking to each
other in casual conversations. In partic-
ular, we elicited post-dialogue comments
from speakers and analyzed the comments
to determine what they thought about the
dialogues while they engaged in them.
In addition, by analyzing the effective-
ness of their thoughts, we found that dia-
logue strategies for personalization related
to “topic elaboration”, “topic changing”
and “tempo” significantly increased the
satisfaction with regard to the dialogues.

1 Introduction

Recent research on dialogue agents has focused on
casual conversations or chats (Bickmore and Pi-
card, 2005; Ritter et al., 2011; Wong et al., 2012;
Meguro et al., 2014; Higashinaka et al., 2014) be-
cause chat-oriented conversational agents are use-
ful for entertainment or counseling purposes. For
chat-oriented conversational agents, it is impor-
tant to personalize their utterances to increase user
satisfaction (Sugo and Hagiwara, 2014). Several
methods to personalize system utterances using
user information extracted from dialogues have
been proposed (Sugo and Hagiwara, 2014; Kim
et al., 2014; Kobyashi and Hagiwara, 2016). Al-
though we know that personalization is important,

∗Presently, the author is with Nippon Telegraph and Tele-
phone East Corporation.

no well-established way to personalize system ut-
terances for users has been proposed.

In this paper, we report the results of our ex-
periment that examined how humans personalize
their utterances when speaking to each other in ca-
sual conversations. In particular, to analyze what
speakers aimed to convey in dialogues (called dia-
logue strategy), we collected post-dialogue com-
ments by interviewing speakers individually about
what they thought about the dialogues after a
one-to-one text-based chat. In the interview, we
recorded what the speaker said and later made a
transcript of the recorded voice for analysis. We
manually analyzed the post-dialogue comments to
break the dialogue strategies for personalization
down into patterns.

In the experiment, we extracted 252 dialogue
strategies for personalization from 2,498 utter-
ances. Then, we broke them down into 39 unified
dialogue strategies with 10 categories. In addi-
tion, by analyzing the effectiveness of the dialogue
strategies in relation to the satisfaction of speakers
with regard to the dialogues, we found that using
the dialogue strategies in the “topic elaboration”,
“topic changing”, and “tempo” categories of chat-
oriented conversational agents would be expected
to increase user satisfaction.

2 Related Work

ELIZA (Weizenbaum, 1966) and ALICE (Wal-
lace, 2004) are chat-oriented conversational agents
that have the capability to personalize system ut-
terances for users. For example, these agents can
use the user’s name or show that they remem-
ber the user’s preferences by filling slots of ut-
terance templates with user information extracted
from previous utterances.

There are several studies on personalizing sys-
tem utterances using user information extracted
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from dialogues (Sugo and Hagiwara, 2014; Kim
et al., 2014; Kobyashi and Hagiwara, 2016). They
used the same approach as that of ELIZA and AL-
ICE to show that the agents remember user in-
formation. In addition, they selected system ut-
terances that had the most similar vectors to the
user’s interest, which were represented by word
vectors of previous utterances. This way is often
used in information search (Shen et al., 2005; Qiu
and Cho, 2006) and recommendation (Ardissono
et al., 2004; Jiang et al., 2011).

Some commercial chat-oriented conversational
agents have a function for personalizing system ut-
terances for a user. For instance, an application
called “Caraf”1 operates simultaneously with car
navigation systems and preferentially guides the
registered user in accordance with his/her favorite
brands for banks, gas stations, convenience stores,
and so on. A dialogue API called “TrueTALK”2

provides information related to the user’s likes and
tastes, e.g. it provides concert information for the
user’s favorite singers when the user says “I have
free time”. A social robot called “Jibo”3 can learn
the user’s preferences to personalize system utter-
ances by selecting topics related to the user’s pref-
erences.

From these studies, it can be seen that there have
been many attempts to personalize system utter-
ances. However, as far as we know, there is no
thorough research about ways to personalize utter-
ances in dialogues.

3 Collecting Post-dialogue Comments

3.1 Procedure

To analyze dialogue strategies of speakers, we
collected post-dialogue comments by interviewing
experimental participants individually about what
they thought about the dialogue after a one-to-one
text-based chat. In the interview, to elicit spon-
taneous comments from the speakers, what the
speaker said was recorded and was later manually
transcribed. After the interview, each participant
filled out a questionnaire about satisfaction.

For experimental participants, we recruited 4
advanced-level speakers of text-based chat, who
use text-based chat on business, and 30 normal

1http://www.fujitsu-ten.co.jp/eclipse/
product/wifi/carafl/index.html

2http://www.jetrun.co.jp/curation/
truetalk_lp.html

3https://www.jibo.com/

Total Average

Text-based chat 2,457 27.3
Post-dialogue comments 4,986 55.4

Table 1: Number of utterances for 90 dialogues.

speakers who are good at typing and are open to
having a conversation with a stranger. The male-
female ratio of the experimental participants is 1:1,
and most of the participants were in their 20s or
30s. They were paid for their participation.

Text-based Chat
30 normal speakers took part in 3 dialogue ses-
sions each, talking to one of the 4 advanced-level
speakers, who was the same gender as the normal
speaker. The normal speaker always talked to the
same advanced-level speaker.

Normal and advanced-level speakers performed
text-based chat in different rooms. In preparation,
to get used to the chat operation, the participants
first performed an example dialogue session with
the experiment manager.

Each dialogue session lasted for ten minutes.
The participants were instructed to enjoy the chat
with their partner.

Post-dialogue Comments
Just after text-based chat, we collected the post-
dialogue comments by interviewing participants
separately about what they thought about each of
the utterances in the dialogue. We recorded the
interview and later manually transcribed it and
aligned it to utterances in the text-based chat.

Each interview session lasted for seven minutes.
Normal and advanced-level speakers were inter-
viewed in different rooms. At the beginning of
each interview session, the participants were given
the instruction by text to comment about each ut-
terance in the dialogue they had just engaged in by
considering the following points.

• What did you think when you saw your part-
ner’s utterance/reaction?

• What intention did you have when you
replied to your partner’s utterance?

Questionnaire about Satisfaction
After the interview, each participant filled out a
questionnaire about satisfaction asking for his/her
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No. Speaker: Utterance

1 A: Do you like driving cars?
2 B: Yes, I do. Do you drive a car?
3 A: I don’t have a driving license. My

world would probably expand if I could
drive a car!

4 B: Taking trains or airplanes expands
your world more than driving a car.

5 A: As I recall, my friend from Gunma
told me about the number of cars per
capita in Gunma.

6 B: Yup, yup! it’s an obscure area.
· · · · · ·
10 B: In fact, I am living in an inconvenient

place now, too.
11 A: Really?
12 B: On the outskirts of Kanagawa.
· · · · · ·

Table 2: Example of text-based chat.

subjective evaluation of the dialogue on a five-
point Likert scale, where 1 is “very dissatisfied”,
2 is “somewhat dissatisfied”, 3 is “neither satisfied
nor dissatisfied”, 4 is “somewhat satisfied”, and 5
is “very satisfied”.

3.2 Collected Data

In total, we collected 2,457 utterances (27.3 utter-
ances per dialogue) in text-based chat and 4,986
utterances (55.4 utterances per dialogue) in post-
dialogue comments for 90 dialogues as shown in
Table 1.

Table 2 and Table 3 show examples of col-
lected text-based chat and post-dialogue com-
ments. “Target” in Table 3 means the correspond-
ing ID (we call target) of the utterance in the text-
based chat. For example, from the post-dialogue
comment “She remembered that I said I am from
Gunma and she said the number of cars per capita
in Gunma...” whose target is 5, it can be seen that
the partner selected a topic related to both current
topics: “car” and the speaker’s hometown. Also,
from the post-dialogue comment whose target is
11 and 12, it can be seen that the speakers decided
to talk about specific things, which is easy for the
partners to understand.

Figure 1 shows 180 (90 dialogues × 2 partic-
ipants) answers to a questionnaire about satisfac-
tion, and the average score was 3.87 points.

Target Post-dialogue comments

1 In line 1, a question related to the topic
of the previous dialogue session has
been asked!

2, 3 It is my favorite topic. But, just in
case, I asked if she likes driving cars
in line 2. In line 3, she replied that she
does not drive a car, and I was disap-
pointed.

5 She remembered that I said I am
from Gunma, and she said that
the number of cars per capita in
Gunma... I became excited!

· · · · · ·
11, 12 In line 11, it is thoughtful of her to be

surprised, and in line 12, to be more
specific, I said “On the outskirts of
Kanagawa”.

12 Therefore, I think it was easy to un-
derstand, and it became easy to imag-
ine.

· · · · · ·

Table 3: Example of post-dialogue comments by
speaker B.
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Figure 1: Satisfaction of participants.

4 Analyzing Post-dialogue Comments

4.1 Analysis Procedure

We analyzed the post-dialogue comments for what
speakers thought about the dialogues while they
engaged in them. The analysis was done as fol-
lows: Step 1) we read the post-dialogue comments
and manually extracted the dialogue strategies for
personalizing the utterances, Step 2) we annotated
the extracted dialogue strategies with categories,
and Step 3) we unified similar dialogue strategies
within each category. In the analysis, we focused
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Category Description

Topic Changing Strategies about when or how to change topics.
Topic Selection Strategies about selecting next topic when changing topics.
Topic Elaboration Strategies about elaborating on current topic.
Topic General Strategies related to overall topics in dialogues.
Attitude Strategies about stating one’s opinions and interests.
Expression Strategies about expressions in utterances.
Tempo Strategies about tempo of dialogues.
Role Strategies about roles, speakers or listeners, in dialogues.
Discourse Strategies about flows in discourses.
Others Other strategies.

Table 4: Categories of dialogue strategies and their descriptions.

on the comments; the content of the text-based
chat was not used.

In this paper, we used 2,498 utterances of post-
dialogue comments for 45 dialogues. To analyze
inter-annotator agreements, two annotators indi-
vidually performed the following three steps.

Step 1: Extracting Dialogue Strategies from
Post-dialogue Comments
The annotators were instructed to read utterances
in post-dialogue comments and find what speakers
thought about personalization. When the annota-
tors found such a thought, they annotated the utter-
ances with a summarized text (i.e., dialogue strat-
egy) of the thinking behind the utterances, such as
“using the partner’s name” or “talking about topics
related to the partner’s hobby”. Otherwise, they
annotated the utterances with “no”.

For instance, from the example of post-dialogue
comments shown in Table 3, the dialogue strate-
gies “selecting topics related to both the cur-
rent and previous hometown of the partner” and
“bringing up a specific topic” would be extracted.
The former strategy would let the partner talk
about a familiar topic, and the latter would let the
partner easily imagine the topic.

Step 2: Annotating Dialogue Strategies with
Categories
To annotate dialogue strategies with categories,
we manually defined the 10 categories shown in
Table 4 by summarizing the dialogue strategies ex-
tracted at Step 1.

There are 4 categories related to topics, such
as “topic changing”, which consists of strategies
about when or how to change topics, and “topic
selection”, which consists of strategies about se-

lecting the next topic when changing topics. Apart
from the categories related to “topics”, there are 6
categories, such as “attitude”, which consists of
strategies about stating one’s opinions and inter-
ests, and “role”, which consists of strategies about
speakers or listeners in dialogues.

The annotators were instructed to annotate dia-
logue strategies extracted at Step 1 with one cate-
gory from the ten categories shown in Table 4. For
instance, the dialogue strategies “selecting topics
related to both the current and previous hometown
of the partner” and “bringing up a specific topic”
would be annotated with the “topic elaboration”
and “topic general” categories, respectively.

Step 3: Unifying Similar Dialogue Strategies
within Each Category

In dialogue strategies annotated with the same cat-
egory at Step 2, there may be some strategies that
are similar to each other. Therefore, we combine
similar dialogue strategies.

The annotators were instructed to unify simi-
lar dialogue strategies by generalizing them even
though they have different details. For example,
the dialogue strategies “talking about topics re-
lated to partner’s hobby” and “talking about topics
related to partner’s hometown” would be unified
to “talking about topics related to partner’s infor-
mation”.

The unified dialogue strategies induced individ-
ually by the two annotators were later compared
by the two annotators to see if they correspond to
each other. If similar unified dialogue strategies
were found, they were given the same identifiers
for matching.
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4.2 Results
Inter-annotator Agreement
From 2,498 utterances, annotator A extracted 252
dialogue strategies for personalization. The dia-
logue strategies were unified into 39 kinds of di-
alogue strategies. Annotator B extracted 303 di-
alogue strategies and the dialogue strategies were
unified into 41 kinds of dialogue strategies. Both
annotators annotated 211 utterances with dialogue
strategies and 2,154 utterances with no specific
strategy at Step 1. At Step 2, both annotators an-
notated 187 dialogue strategies with the same cat-
egories. At Step 3, we found that 156 dialogue
strategies out of the 187 dialogue strategies were
under the same unified dialogue strategies.

As for the agreement of the extracted dialogue
strategies, precision is 51.5% (156/303), recall is
61.9% (156/252), and F -measure is 0.56. These
values indicate how annotator B extracts the same
unified dialogue strategies as annotator A and are
calculated by the following formulae:

Precision =
C

B
,

Recall =
C

A
,

F -measure =
2 · precision · recall

precision + recall
,

where C represents the number of dialogue strate-
gies annotated with the same unified dialogue
strategy by both annotators, A represents the to-
tal number of extracted dialogue strategies by an-
notator A, and B represents the total number of
extracted dialogue strategies by annotator B.

The accuracy of the inter-annotator agreement
of annotating 2,498 utterances in post-dialogue
comments with unified dialogue strategies, that is
the results of Step 1 + 2 + 3, is 92.4% (Cohen’s
κ = 0.64) (Cohen, 1960). Here, the accuracy is
calculated by the following formula:

Accuracy =
M

T

where M represents the number of utterances
that are annotated with the same unified dialogue
strategies or “no” by both annotators, and T rep-
resents the total number of utterances used for the
analysis. Because κ is more than 0.6, we can say
the agreement is substantial. Table 5 shows the
inter-annotator agreement for each step in the an-
notation.

Accuracy κ

Step 1 94.7 (2,365/2,498) 0.73
Step 1 + 2 93.7 (2,341/2,498) 0.69
Step 1 + 2 + 3 92.4 (2,310/2,498) 0.64

Table 5: Inter-annotator agreement of 2,498 utter-
ances in post-dialogue comments.

Dialogue Strategies for Personalization

Table 6 shows the results of annotator A; there are
39 kinds of dialogue strategies with annotated cat-
egories. It also shows the frequency of each uni-
fied dialogue strategy. Note that almost all the dia-
logue strategies for personalization presented here
have not been used in any previous studies. Here,
we explain some of the dialogue strategies for per-
sonalization in detail.

From this table, we can see that the most fre-
quent dialogue strategies were “telling partner that
I am interested in the current topic, too” and
“showing empathy for the opinion of the partner”
in the “attitude” category, which consists of dia-
logue strategies for letting the partner talk com-
fortably in a dialogue. Dialogue strategies in the
“attitude” category are mainly used by the conver-
sational participants when they were listening, and
there are strategies, such as giving back-channel
feedback and showing that I am impressed with
the story of the partner, that can be performed by
giving praise to the partner.

One of the second most frequent dialogue
strategies was “bringing up a specific topic” in the
“topic general” category, which is a dialogue strat-
egy for letting the partner speak easily by provid-
ing topics that are easy to imagine. For instance,
providing a specific topic, “Tigers”, would let the
partner speak more easily than an unspecific topic
such as “baseball”. In this “topic general” cate-
gory, there is also a strategy “bringing up several
specific topics”, which is similar to the previous
strategy “bringing up a specific topic”. This strat-
egy has another purpose, which is to increase the
probability that the partner would be interested in
one of the topics by providing several specific top-
ics.

With a frequency equal to the dialogue strategy
“bringing up a specific topic”, we can see the di-
alogue strategy “selecting topics related to part-
ner information” in the “topic selection” category,
which is a dialogue strategy for letting the partners
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Category Dialogue Strategy Frequency

Topic
Changing

Changing topics when partner does not know about current topic. 5
Changing topics when only I talked a lot. 3
Changing topics when my replies seemed to be unexpected. 1
Changing topics when partner paused for long time in dialogue. 1
Changing topics by talking about next topic in current conversation. 1

Topic
Selection

Selecting topics related to partner’s information. 22
Selecting topics related to inferred partner information. 11
Selecting topics related to common experiences with partner. 4
Asking question that partner asked me before. 2
Selecting topics of similar experiences to one partner talked about. 2

Topic
Elaboration

Selecting topics related to both current topic and partner information. 5
Selecting topics related to both current topic and inferred partner info. 2
Asking about past experiences of topic after talking about present one. 1

Topic
General

Bringing up specific topic. 22
Bringing up several specific topics. 13
Not talking about too local topics. 8
Bringing up topic that seems to be common topic. 6
Bringing up topic in way that makes partner ask questions. 3
Answering only questions that partner would ask again. 2
Answering question and bringing up conversable topic. 2
Asking questions that seem to be easy for partner to answer. 1

Attitude

Telling partner that I am interested in current topic, too. 24
Showing empathy for partner. 24
Showing that I am impressed with story of partner. 6
Giving back-channel feedback. 2
Not saying anything negative. 1

Expression

Using emotional terms. 16
Using friendly and frank expressions. 10
Using expressions that partner used. 2
Using partner’s name. 2
Using terms for sharing feelings. 1
Exaggerating story. 1

Tempo
Keeping dialogue fast-paced. 14
Keeping pace with tempo of partner. 7

Role
Both participants in the conversation speaking one after another. 7
Changing roles, speaker or listener, depending on partner. 5

Discourse Talking about partner after talking about myself. 10

Others
Asking open questions because partner likes talking a lot. 2
Asking “why” questions. 1

Table 6: Unified dialogue strategies to personalize utterances in dialogue extracted by annotator A.
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speak easily by providing topics related to the part-
ner. Also, we can see the strategy of selecting the
topic by using information of the partner inferred
from the dialogues and not selecting a totally new
topic when changing topics in the dialogue. These
strategies are the ones used in the related work. In
this category, there is the other dialogue strategy
of selecting topics related to common experiences
with the partner.

There are dialogue strategies about elaborating
on the current topic in the “topic elaboration” cat-
egory. In this category, the most frequent strategy
was “selecting topics related to both the current
topic and partner information”. For example, as a
simple way to elaborate on the topic “car”, we can
select topics about “car parts”, such as tire or han-
dle, or “automakers”, such as Toyota or Honda, as
elaboration topics. However, this strategy selects
“car life in the countryside” by considering where
the partners are from and which topics are familiar
to the partner.

As moderately high frequency dialogue strate-
gies, there were strategies using “emotional terms”
and “friendly and frank expressions” in the “ex-
pression” category. These dialogue strategies are
to let the partner feel comfortable by using expres-
sions for talking with one’s friends or families. In
this category, there are other strategies such as not
only “using the partner’s name”, which is used in
related work, but also “using the expressions that
the partner used” to take advantage of being close
to the partners.

Effectiveness of Category of Dialogue
Strategies for Satisfaction of Participants
We analyzed the effectiveness of the category of
dialogue strategies in relation to the satisfaction
of participants with regard to the dialogues. For
each category of dialogue strategy, we split the
dialogues into two classes. One is the dialogues
whose utterances in post-dialogue comments are
annotated with a category, and the other is those
whose utterances in post-dialogue comments are
not annotated with that category. Then, we cal-
culated the average satisfaction score of the dia-
logues in the two classes. For the statistical signif-
icance test, we used two-tailed tests with Welch’s
t-test (Welch, 1947).

Table 7 shows the results. The satisfaction
of dialogues annotated with the category “topic
elaboration”, “topic changing”, and “tempo” are
significantly higher than that of other categories.

Not
Category Annotated annotated

Topic Changing 4.20∗ 3.79
Topic Selection 3.90 3.85
Topic Elaboration 4.29∗∗ 3.80
Topic General 3.92 3.80
Attitude 3.90 3.84
Expression 3.89 3.87
Tempo 4.19∗ 3.71
Role 3.90 3.84
Discourse 3.75 3.90
Others 3.25 3.91

Table 7: Average satisfaction scores of dialogues
whose utterances are annotated or not annotated
with category. Superscript ∗ next to annotated
scores indicates that score is statistically better
than not annotated score. ∗∗ means p < 0.01; ∗
means p < 0.05. For statistical test, we used two-
tailed Welch’s t-test.

The “topic elaboration” and “tempo” categories
increased the satisfaction score by 0.48 points and
the “topic changing” category by 0.41 points. This
means that the personalization using the dialogue
strategies in these categories would be expected to
increase the user satisfaction.

4.3 Discussion

By analyzing the post-dialogue comments, ex-
tracting dialogue strategies for personalization and
breaking them down into patterns worked to some
extent. In particular, the extracted dialogue strate-
gies were not only the ones in the “topic selection”
category, which have been used in related work,
but also the ones in the other categories. In ad-
dition, by analyzing the effectiveness of the dia-
logue strategies in relation to the satisfaction of
speakers with regard to dialogues, we found that
using the dialogue strategies in the “topic elabo-
ration”, “topic changing”, and “tempo” categories
with conversational agents would be expected to
increase the user satisfaction.

However, some issues remain about the cov-
erage of dialogue strategies for personalization
because the dialogue strategy “showing that
the agent remembers user information directly”,
which is used in related work (e.g. saying “As I
recall, you like driving a car, don’t you?’), was
not extracted in our analysis. In this paper, we
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Figure 2: Number of extracted dialogue strategies.

collected all the post-dialogue comments within a
day, so dialogue strategies that appear in the long
term were not extracted.

It is difficult to collect new dialogue strategies
for personalization efficiently by increasing the
number of the post-dialogue comments because
the increasing rate of unified dialogue strategies
are rather low as shown in Figure 2, which shows
the number of extracted total and unified dialogue
strategies extracted from the post-dialogue com-
ments.

From these points, to collect the post-dialogue
comments, the periods of collecting data, such as
within a few days, weeks or months, and devis-
ing a new means for collecting dialogue strategies
should be considered.

5 Summary and Future Work

In this paper, we reported the results of our ex-
periment that examined how humans personalize
utterances when speaking to each other in casual
conversations. In particular, we solicited post-
dialogue comments from speakers and analyzed
the comments to find out what they thought about
the dialogues while they engaged in them.

In the experiment, we extracted 252 dialogue
strategies for personalization from 2,498 utter-
ances. Then, we broke them down into 39 uni-
fied dialogue strategies with 10 categories. In ad-
dition, we found that using the dialogue strate-
gies in the “topic elaboration”, “topic changing”,
and “tempo” categories of chat-oriented conversa-
tional agents would be expected to increase user
satisfaction.

As future work, we would like to implement the
dialogue strategies extracted in the analysis, espe-
cially the dialogue strategies in the above three

categories, on chat-oriented dialogue systems to
check if they actually increase user satisfaction.
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Abstract

This paper investigates the influence of
discourse features on text complexity as-
sessment. To do so, we created two data
sets based on the Penn Discourse Treebank
and the Simple English Wikipedia cor-
pora and compared the influence of coher-
ence, cohesion, surface, lexical and syn-
tactic features to assess text complexity.

Results show that with both data sets co-
herence features are more correlated to
text complexity than the other types of fea-
tures. In addition, feature selection re-
vealed that with both data sets the top most
discriminating feature is a coherence fea-
ture.

1 Introduction

Measuring text complexity is a crucial step in au-
tomatic text simplification where various aspects
of a text need to be simplified in order to make
it more accessible (Siddharthan, 2014). Despite
much research on identifying and resolving lexical
and syntactic complexity (e.g. Kauchak (2013),
Rello et al. (2013), Bott et al. (2012), Carroll et al.
(1998), Barlacchi and Tonelli (2013), Štajner et al.
(2013)), discourse-level complexity remain under-
studied (Siddharthan, 2006; Siddharthan, 2003).
Current approaches to text complexity assessment
consider a text as a bag of words or a bag of syn-
tactic constituents; which is not powerful enough
to take into account deeper textual aspects such as
flow of ideas, inconsistencies, etc. that can influ-
ence text complexity.

For example, according to Williams et al.
(2003), Example 1.a below is more complex than
Example 1.b even though both sentences use ex-
actly the same nouns and verbs.

Example 1.a. Although many people find speed

reading hard, if you practice reading, your skills
will improve.

Example 1.b. Many people find speed reading
hard. But your skills will improve if you practice
reading.

Apart from the choice of words or the way these
words form syntactically sound constituents, the
way these constituents are linked to each other can
influence its complexity. In other words, discourse
information plays an important role in text com-
plexity assessment.

The goal of this paper is to analyse the influ-
ence of discourse-level features for the task of au-
tomatic text complexity assessment and compare
their influence to more traditional linguistic and
surface features used for this task.

2 Background

A reader may find a text easy to read, cohesive,
coherent, grammatically and lexically sound or on
the other hand may find it complex, hard to follow,
grammatically heavy or full of uncommon words.
Focusing only on textual characteristics and ig-
noring the influence of the readers, Siddharthan
(2014) defines text complexity as a metric to mea-
sure linguistic complexities at different levels of
analysis: 1) lexical (e.g. the use of less frequent,
uncommon and even obsolete words), 2) syntac-
tic (e.g. the extortionate or improper use of pas-
sive sentences and embedded clauses), and 3) dis-
course (e.g. vague or weak connections between
text segments).

Text complexity should be distinguished from
text readability. Whereas text complexity is
reader-independent, text readability is reader-
centric. According to Dale and Chall (1949), the
readability of a text is defined by its complexity
as well as characteristics of the readers, such as
their background, education, expertise, level of in-
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terest in the material and external elements such
as typographical features (e.g. text font size, high-
lights, etc.). It is crucial that a reader have access
to a text with the appropriate readability level (e.g.
Collins-Thompson (2014), Williams et al. (2003)).
An article which would be perceived as easy to
read by a more educated or an expert reader may
be hard to follow for a reader with a lower educa-
tional level.

Traditionally, the level of complexity of a text
has mostly been correlated with surface features
such as word length (the number of characters or
number of syllables per word) or sentence length.
One of the most well-known readability indexes,
the Flesch-Kincaid index (Kincaid et al., 1975),
measures a text’s complexity level and maps it to
an educational level. Traditional complexity mea-
sures (e.g. (Chall, 1958; Klare and others, 1963;
Zakaluk and Samuels, 1988)) mostly consider a
text as a bag of words or bag of sentences and
rely on the complexity of a text’s building blocks
(e.g. words or phrases). This perspective does
not take discourse properties into account. Web-
ber and Joshi (2012) define discourse using fours
aspects: position of constitutes, order, context and
adjacency. Such discourse information plays an
important role in text complexity assessment. Tra-
ditional methods do not consider the flow of in-
formation in terms of word ordering, phrase adja-
cency and connection between text segments; all
of which can make a text hard to follow, non-
coherent and more complex.

More recently, some efforts have been made
to improve text complexity assessment by con-
sidering richer linguistic features. For example,
Schwarm and Ostendorf (2005) and Callan and
Eskenazi (2007) used language models to predict
readability level by using different language mod-
els (e.g. a language model for children using chil-
dren’s book, a language model for more advanced
readers using scientific papers, etc.).

Discourse features can refer to text cohesion
and coherence. Text cohesion refers to the gram-
matical and lexical links which connect linguis-
tic entities together; whereas text coherence refers
to the connection between ideas. Several the-
ories have been developed to model both cohe-
sion (e.g. centering theory (Grosz et al., 1995))
and coherence (e.g. Rhetorical Structure Theory
(Mann and Thompson, 1987), DLTAG (Webber,
2004)). Pitler and Nenkova (2008) examined a set

of cohesion features based on an entity-based ap-
proach (Barzilay and Lapata, 2008) and pointed
out that these features were not significantly cor-
related with text complexity level. However to
our knowledge, the influence of coherence on text
complexity has not been studied.

3 Complexity Assessment Model

The goal of this study is to evaluate the influ-
ence of coherence features for text complexity as-
sessment. To do so, we have considered various
classes of linguistic features and build a pairwise
classification model to compare the complexity of
pairs of texts using each class of feature. For ex-
ample, given the pair of sentences of Example 1.a
and 1.b (see Section 1), the classifier will indicate
if 1.a is simpler or more complex than 1.b.

3.1 Data Sets

To perform the experiments, we created two differ-
ent data sets using standard corpora. The first data
set was created from the Penn Discourse Treebank
(PDTB) (Prasad et al., 2008); while, the other was
created from the Simple English Wikipedia (SEW)
corpus (Coster and Kauchak, 2011). These two
data sets are described below and summarized in
Table 1.

3.1.1 The PDTB-based Data Set
Since we aimed to analyze the contribution of dif-
ferent features, we needed a corpus with different
complexity levels where features were already an-
notated or could automatically be tagged. Surface,
lexical, syntactic and cohesion features can be
easily extracted; however, coherence features are
more difficult to extract. Standard resources typ-
ically used in computational complexity analysis
such as the Simple English Wikipedia (Coster and
Kauchak, 2011), Common Core Appendix B1 and
Weebit (Vajjala and Meurers, 2012) are not anno-
tated with coherence information; hence these fea-
tures would have to be induced automatically us-
ing a discourse parser (e.g. Lin et al. (2014), Laali
et al. (2015)).

In order to have better quality discourse annota-
tions, we used the data set generated by Pitler and
Nenkova (2009). This data set contains 30 articles
from the PDTB (Prasad et al., 2008) which are
annotated manually with both complexity level
and discourse information. The complexity level

1https://www.engageny.org
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PDTB-based Data Set SEW-based Data Set
Source Penn Discourse Simple English

Treebank Corpus Wikipedia Corpus
# of pairs of articles 378 1988
# of positive pairs 194 944
# of negative pairs 184 944
Discourse Annotation Manually Annotated Extracted using

End-to-End parser (Lin et al., 2014)

Table 1: Summary of the two data sets.

of the articles is indicated on a scale of 1.0 (easy)
to 5.0 (difficult). Using this set of articles, we
built a data set containing pairs of articles whose
complexity levels differed by least n points. In
order to have a balanced data set, we set n = 0.7.
As a result, our data set consists of 378 instances
with 194 positive instances (i.e. same complexity
level where the difference between the complexity
scores is smaller or equal to 0.7) and 184 negative
instances (i.e. different complexity levels where
the difference between complexity scores is
larger than 0.7). Then, each pair of articles is
represented as a feature vector where the value of
each feature is the difference between the values
of the corresponding feature in each article. For
example, for a given pair of articles < a1, a2 >,
the corresponding feature vector will be:

Va1,a2 =< F a1
1 − F a2

1 , F a1
2 − F a2

2 , ..., F a1
n − F a2

n >

where Va1,a2 represents the feature vector of a
given pair of articles < a1, a2 >, F a1

i corresponds
to the value of the ith feature for article a1 and
F a2

i corresponds to the value of the ith feature for
article a2 and n is the total number of features (in
our case n = 14 (see Section 3.2)).

Because the Pitler and Nenkova (2009) data
set is a subset of the PDTB, it is also annotated
with discourse structure. The annotation frame-
work of the PDTB is based on the DLTAG frame-
work (Webber, 2004). In this framework, 100 dis-
course markers (e.g. because, since, although,
etc.) are treated as predicates that take two ar-
guments: Arg1 and Arg2, where Arg2 is the ar-
gument that contains the discourse marker. The
PDTB annotates both explicit and implicit dis-
course relations. Explicit relations are explicitly
signalled with a discourse marker. On the other
hand implicit relations do not use an explicit dis-
course marker; however the reader still can infer
the relation connecting the arguments. Example
2.a taken from Prasad et al. (2008) shows an ex-
plicit relation which is changed to an implicit one

in Example 2.b by removing the discourse marker
because.

Example 2.a. If the light is red, stop because
otherwise you will get a ticket.

Example 2.b. If the light is red, stop. Other-
wise you will get a ticket.

In addition to labeling discourse relation real-
izations (i.e. explicit or implicit) and discourse
markers (e.g. because, since, etc.), the PDTB also
annotates the sense of each relation using three
levels of granularity. At the top level, four classes
of senses are used: TEMPORAL, CONTINGENCY,
COMPARISON and EXPANSION. Each class is ex-
panded into 16 second level senses; themselves
subdivided into 23 third-level senses. In our work,
we considered the 16 relations at the second-level
of the PDTB relation inventory2.

3.1.2 The SEW-based Data Set
In order to validate our results, we created a larger
data set but this time with induced discourse infor-
mation. To do so, a subset of the Simple English
Wikipedia (SEW) corpus (Coster and Kauchak,
2011) was randomly chosen to build pairs of ar-
ticles. The SEW corpus contains two sections
that are 1) article-aligned and 2) sentence-aligned.
We used the article-aligned section which contains
around 60K aligned pairs of regular and simple ar-
ticles. Since this corpus is not manually annotated
with discourse information, we used the End-to-
End parser (Lin et al., 2014) to annotate it. In to-
tal, we created 1988 pairs of articles consisting of
994 positive and 994 negative instances. Similarly
to the PDTB-based data set, each positive instance
represents a pair of articles at the same complex-
ity level (i.e. either both complex or both simple).

2These are: Asynchronous, Synchronous, Cause, Prag-
matic Cause, Condition, Pragmatic Condition, Contrast,
Pragmatic Contrast, Concession, Pragmatic Concession,
Conjunction, Instantiation, Restatement, Alternative, Excep-
tion, List.
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On the other hand, for each negative instance, we
chose a pair of aligned articles from the SEW cor-
pus (i.e. a pair of aligned articles containing one
article taken from Wikipedia and its simpler ver-
sion taken from SEW).

3.2 Features for Predicting Text Complexity
To predict text complexity, we have considered
16 individual features grouped into five classes.
These are summarized in Table 2 and described
below.

3.2.1 Coherence Features
For a well written text to be coherent, utterances
need to be connected logically and semantically
using discourse relations. We considered coher-
ence features in order to measure the association
between this class of features and text complexity
levels. Our coherence features include:

F1. Pairs of <realization, discourse relations>
(e.g. <explicit, contrast>).

F2. Pairs of <discourse relations, discourse
markers>, where applicable (e.g. <contrast,
but>).

F3. Triplets of <discourse relations, realiza-
tions, discourse markers>, where applicable (e.g.
<contrast, explicit, but>).

F4. Frequency of discourse relations.

Each article was considered as a bag of dis-
course properties. Then for features F1, F2 and
F3, the log score of the probability of each article
is calculated using Formulas (1) and (2). Consid-
ering a particular discourse feature (e.g. pairs of
<discourse relations, discourse markers>), each
article may contain a combination of n occur-
rences of this feature with k different feature val-
ues. The probability of observing such article is
calculated using the multinomial probability mass
function as shown in Formula (2). In order prevent
arithmetic underflow and be more computationally
efficient, we used the log likelihood of this proba-
bility mass function as shown in Formula (1).

log score(P ) = log(P (n)) + log(n!)+
k∑

i=1

(xilog(pi)− log(xi!))
(1)

P = P (n)
n!

x1!...xk!
P1...Pk (2)

P (n) is the probability of an article with n in-
stances of the feature we are considering, xi is the
number of times a feature has its ith value and Pi

is the probability of a feature to have its ith value
based on all the articles of the PDTB. For example,
for the feature F1 (i.e. pair of <realization, dis-
course relation>), consider an article containing
<explicit, contrast>, <implicit, causality> and
<explicit, contrast>. In this case, n is the total
number of F1 features we have in the article (i.e.
n = 3), and P (n) is the probability of an article to
have 3 such features across all PDTB articles. In
addition, x1 = 2 because we have two <explicit,
contrast> pairs and P1 is the probability of ob-
serving the pair <explicit, contrast> over all pos-
sible pairs of <realization, discourse relation>.
Similarly, x2 = 1 and P2 is the probability of ob-
serving <implicit, causality> pair over all possi-
ble pairs of <realization, discourse relation>.

3.2.2 Cohesion Features
Cohesion is an important property of well-written
texts (Grosz et al., 1995; Barzilay and Lapata,
2008). Addressing an entity for the first time in
a text is different from further mentions to the en-
tity. Proper use of referencing influences the ease
of following a text and subsequently its complex-
ity. Pronoun resolution can affect text cohesion in
the way that it prevents repetition. Also, according
to Halliday and Hasan (1976), definite description
is an important characteristic of well-written texts.
Thus, in order to measure the influence of cohe-
sion on text complexity, we considered the follow-
ing cohesive devices.

F5. Average number of pronouns per sentence.

F6. Average number of definite articles per sen-
tence.

3.2.3 Surface Features
Surface features have traditionally been used in
readability measures such as (Kincaid et al., 1975)
to measure readability level. Pitler and Nenkova
(2009) showed that the only significant surface
feature correlated with text complexity level was
the length of the text. As a consequence, we inves-
tigated the influence of surface features by consid-
ering the following three surface features:

F7. Text length as measured by the number of
words.

F8. Average number of characters per word.

F9. Average number of words per sentence.
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Class of Features Index Feature Set
Coherence features F1 Log score of <realization-discourse relation>

F2 Log score of <discourse relation-discourse marker>
F3 Log score of <realization-discourse relation-discourse marker>
F4 Discourse relation frequency

Cohesion features F5 Average # of pronouns per sentence
F6 Average # of definite articles per sentence

Surface features F7 Text length
F8 Average # of characters per word
F9 Average # of words per sentence

Lexical features F10 Average # of word overlaps per sentence
F11 Average # of synonyms of words in WordNet
F12 Average # of frequency of words in Google Ngram corpus

Syntactic features F13 Average # of verb phrases per sentence
F14 Average # of noun phrases per sentence
F15 Average # of subordinate clauses per sentence
F16 Average height of syntactic parse tree

Table 2: List of features in each class.

3.2.4 Lexical Features
In order to capture the influence of lexical choices
across complexity levels, we considered the fol-
lowing three lexical features:

F10. Average number of word overlaps per sen-
tence.

F11. Average number of synonyms of words in
WordNet.

F12. Average frequency of words in the Google
N-gram (Web1T) corpus.

The lexical complexity of a text can be influ-
enced by the number of words that are used in con-
secutive sentences. This means that if some words
are used repetitively rather than introducing new
words in the following sentences, the text should
be simpler. This is captured by feature F10: “Av-
erage # of word overlaps per sentence” which cal-
culates the average number of word overlaps in all
consecutive sentences.

In addition, the number of synonyms of a word
can be correlated to its complexity level. To ac-
count for this feature, F11: “Average # of syn-
onyms of words in WordNet” is introduced to cap-
ture the complexity of the words (Miller, 1995).
Moreover, the frequency of a word can be an in-
dicator of its simplicity. Also, feature F12: “Av-
erage # of frequency of words in Google N-gram
corpus” is used based on the assumption that sim-
pler words are more frequently used. In order
to measure the frequency of each word, we used
the Google N-gram corpus (Michel et al., 2011).
Thus, pairs of articles at the same complexity level
tend to have similar lexical features compared to
pairs of articles at different complexity levels.

3.2.5 Syntactic Features
According to Kate et al. (2010), syntactic struc-
tures seem to affect text complexity level. As
Barzilay and Lapata (2008) note, more noun
phrases make texts more complex and harder to
understand. In addition, Bailin and Grafstein
(2001) pointed out that the use of multiple verb
phrases in a sentence can make the communica-
tive goal of a text more clear as explicit discourse
markers will be used to connect them; however it
can also make a text harder to understand for less
educated adults or children. The Schwarm and Os-
tendorf (2005) readability assessment model was
built based on a trigram language model, syntac-
tic and surface features. Based on these previous
work, we used the same syntactic features which
includes:

F13. Average number of verb phrases per sen-
tence.

F14. Average number of noun phrases per sen-
tence.

15. Average number of subordinate clauses per
sentence.

F16. Average height of syntactic parse tree.

These features were determined using the Stan-
ford parser (Toutanova et al., 2003).

3.3 Results and Analysis

In order to investigate the influence of each class
of feature to assess the complexity level of a given
pair of articles, we built several Random Forest
classifiers and experimented with various subsets
of features. Table 3 shows the accuracy of the
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Feature set No. features SEW-based p-value Stat. Sign PDTB p-value Stat. Sign
Data Set Data Set

Baseline N/A 50.00% N/A N/A 51.23% N/A N/A
All features 16 94.96% N/A N/A 69.04% N/A N/A
Coherence only 4 93.76% 0.15 = 64.02% 0.45 =
Cohesion only 2 66.09% 0.00 ⇓ 57.93% 0.01 ⇓
Surface only 3 83.45% 0.00 ⇓ 51.32% 0.00 ⇓
Lexical only 3 78.20% 0.00 ⇓ 46.29% 0.00 ⇓
Syntactic only 4 79.32% 0.00 ⇓ 62.16% 0.24 =
All-Coherence 12 86.70% 0.00 ⇓ 62.43% 0.08 ⇓
All-Cohesion 14 95.32% 0.44 = 68.25% 0.76 =
All-Surface 13 95.10% 0.43 = 68.25% 0.61 =
All-Lexical 13 95.42% 0.38 = 64.81% 0.57 =
All-Syntactic 12 94.30% 0.31 = 66.40% 0.67 =

Table 3: Accuracy of Random Forest models built using different subset of features.

various classifiers on our data sets (see Section
3.1) using 10-fold cross-validation. In order to
test the statistical significance of the results, we
conducted a two-sample t-test (with a confidence
level of 90%) comparing the models built using
each feature set to the model trained using all fea-
tures. A statistically significant decrease (⇓) or no
difference (=) is specified in the column labeled
Stat. Sign.

Our baseline is to consider no feature and sim-
ply assign the class label of the majority class. As
indicated in Table 3, the baseline is about 50%
for both data sets. When all features are used,
the accuracy of the classifier trained on the SEW-
based data set is 94.96% and the one trained on the
PDTB-based data set is 69.04%.

Considering only one class of features, the
models trained using coherence features on both
data sets outperformed the others (93.76% and
64.02%) and their accuracy are statistically as high
as using all features together. However one must
also note that there is a significant difference be-
tween the number of features (4 for coherence
only vs. 16 for all features). Indeed, in both data
sets, cohesion features are more useful than lexical
features and less than syntactic features.

Furthermore, it is interesting to note that sur-
face features seem to be more discriminating in the
SEW articles rather than in PDTB articles; how-
ever, viceversa is true about cohesion features. In
addition, the decrease in the accuracy of all classi-
fiers trained on the SEW using only one feature
except coherence features is statistically signifi-
cant. The same is true about the models trained
on the PDTB with the only difference being the
one trained using only syntactic features which
performs as well as the one trained using all the
features (62.16% vs. 69.04%).

The last section of Table 3 shows the classifica-
tion results when excluding only one class of fea-
tures. In this case, removing coherence features
leads to a more significant drop in performance
compared to the other classes of features. The
classifier trained using all features except the co-
herence features achieves an accuracy of 86.70%
and 62.43% on the SEW and PDTB corpus respec-
tively. This decrease in both models is statistically
significant; however the changes in the accuracy of
other classifiers trained using all features exclud-
ing only one class is not statistically significant.

3.4 Feature Selection

In any classification problem, feature selection
is useful to identify the most discriminating fea-
tures and reduce the dimensionality and model
complexity by removing the least discriminating
ones. In this classification problem, we built sev-
eral classifiers using different subsets of features;
however, identifying how well a feature can dis-
criminate the classes would be helpful in building
a more efficient model with fewer number of fea-
tures.

Using our pairwise classifier built with all the
features, we ranked the features by their informa-
tion gain. Table 4 shows all the features used in
the two models using all the features trained on
the PDTB-based data set and the SEW-based data
set.

As can be seen in Table 4, coherence features
are among the most discriminating features on the
PDTB-based data set as they hold the top three
positions. Also, the most discriminating feature
on the SEW-based data set is a coherence fea-
ture. We investigated the power of only the top
feature in both data sets by classifying the data us-
ing only this single feature and evaluated using 10-
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Index SEW-based Data Set Index PDTB-based Data Set
F2 Log score of <discourse relation-marker> F1 Log score of <realization-discourse relation>
F9 Average # of words per sentence F3 Log score of <realization-relation-marker>
F14 Average # of noun phrases per sentence F4 Discourse relation frequency
F7 Text length F5 Average # of pronouns per sentence
F16 Average height of syntactic parse tree F9 Average # of words per sentence
F13 Average # of verb phrases per sentence F2 Log score of <discourse relation-marker>
F15 Average # of subordinate clauses per sentence F7 Text length
F10 Average # of word overlaps per sentence F8 Average # of characters per word
F8 Average # of characters per word F12 Average frequency of words in Web1T corpus
F4 Discourse relation frequency F11 Average # of synonyms of words in WordNet
F6 Average # of definite articles per sentence F6 Average # of definite articles per sentence
F11 Average # of synonyms of words in WordNet F10 Average # of word overlaps per sentence
F3 Log score of <realization-relation-marker> F15 Average # of subordinate clauses per sentence
F1 Log score of <realization-discourse relation> F14 Average # of noun phrases per sentence
F12 Average frequency of words in Web1T corpus F13 Average # of verb phrases per sentence
F5 Average # of pronouns per sentence F16 Average height of syntactic parse tree

Table 4: Features ranked by information gain

fold cross-validation. Using only F1: “log score
of <realization, discourse relation>” to classify
the PDTB-based data set, we achieved an accuracy
of 56.34%. This feature on its own outperformed
the individual class of surface features and lexical
features and performed as well as combining the
features of the two classes (four features). It also
performed almost as well as the two cohesion fea-
tures (F5, F6). In addition, using only the feature
F2: “log score of <discourse relation, discourse
marker>” on the SEW corpus resulted in an ac-
curacy of 77.26% which is much higher than the
accuracy of the classifier built using the class of
cohesion and almost as good as lexical features.

4 Conclusion

In this paper we investigated the influence of vari-
ous classes of features in pairwise text complexity
assessment on two data sets created from standard
corpora. The combination of 16 features, grouped
into five classes of surface, lexical, syntactic, co-
hesion and coherence features resulted in the high-
est accuracy. However the use of only 4 coherence
features performed statistically as well as using all
features on both data sets.

In addition, removing only one class of features
from the combination of all the features did not af-
fect the accuracy; except for coherence features.
Removing the class of coherence features from
the combination of all features led to a statisti-
cally significant decrease in accuracy. Thus, we
can conclude a strong correlation between text co-
herence and text complexity. This correlation is
weaker for other classes of features.
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Abstract

Chat language is often referred to as
Computer-mediated communication
(CMC). Most of the previous studies
on chat language has been dedicated to
collecting ”chat room” data as it is the
kind of data which is the most accessible
on the WEB. This kind of data falls under
the informal register whereas we are
interested in this paper in understanding
the mechanisms of a more formal kind
of CMC: dialog chat in contact centers.
The particularities of this type of dialogs
and the type of language used by cus-
tomers and agents is the focus of this
paper towards understanding this new
kind of CMC data. The challenges for
processing chat data comes from the
fact that Natural Language Processing
tools such as syntactic parsers and part
of speech taggers are typically trained on
mismatched conditions, we describe in
this study the impact of such a mismatch
for a syntactic parsing task.

1 Introduction

Chat language received attention in recent years as
part of the general social media galaxy. More pre-
cisely it is often referred to as Computer-mediated
communication (CMC).

This term refers to any human communication
that occurs through the use of two or more elec-
tronic devices such as instant messaging, email or
chat rooms. According to (Jonsson, 1997), who
conducted an early work on data gathered through
the Internet Relay Chat protocol and through
emails: ”eletronic discourse is neither writing nor
speech, but rather written speech or spoken writ-
ing, or something unique”.

Recent projects in Europe, such as the CoM-
eRe (Chanier et al., 2014) or the STAC (Asher,
2011) project gathered collections of CMC data
in several languages in order to study this new
kind of language. Most of the effort has been
dedicated to ”chat room” data as it is the kind of
data which is the most accessible on the WEB.
(Achille, 2005) constituted a corpus in French.
(Forsyth and Martell, 2007) and (Shaikh et al.,
2010) describe similar corpora in English. (Cadil-
hac et al., 2013) have studied the relational struc-
ture of such conversations through a deep discur-
sive analysis of chat sessions in an online video
game.

This kind of data falls under the informal regis-
ter whereas we are interested in this paper in un-
derstanding the mechanisms of a more formal kind
of CMC: dialog chat in contact centers. This study
is realized in the context of the DATCHA project,
a collaborative project funded by the French Na-
tional Research Agency, which aims at perform-
ing unsupervised knowledge extraction from very
large databases of WEB chat conversations be-
tween operators and clients in customer contact
centers. As the proportion of online chat inter-
action is constantly growing in companies’ Cus-
tomer Relationship Management (CRM), it is im-
portant to study such data in order to increase
the scope of Business Analytics. Furthermore,
uch corpora can help us build automatic human-
machine online dialog systems. Among the few
works that have been published on contact cen-
ter chat conversations, (Dickey et al., 2007) pro-
pose a study from the perspective of the strategies
adopted by agents in favor of mutual comprehen-
sion, with a focus on discontinuity phenomena,
trying to understand the reasons why miscompre-
hension can arise. (Wu et al., 2012) propose a
typology of communication modes between cus-
tomers and agents through a study on a conversa-
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tion interface. In this paper we are interested in
evaluating syntactic parsing on such data, with a
particular focus on the impact of language devia-
tions.

After a description of the data and the domain in
section 2, we introduce the issue of syntactic pars-
ing in this particular context in section 3. Then a
detailed analysis of language deviations observed
in chat conversations is proposed in section 4. Fi-
naly, experiments of part of speech (pos hereafter)
tagging and syntactic parsing are presented in sec-
tion 5.

2 Chat language in contact centers

In the book entitled ”Digital textuality” (Trimarco,
2014), the author points out that ”[. . . ] it would
be more accurate to examine Computer Mediated
Communication not so much by genre (such as e-
mail, discussion forum, etc. . . ) as in terms of com-
munities”. The importance of relation between
participants is also pointed out in (Kucukyilmaz
et al., 2008). The authors insist on the fact that
chat messages are targeted for a particular individ-
ual and that the writing style of a user not only
varies with his personal traits, but also heavily de-
pends on the identity of the receiver (correspond-
ing to the notion of sociolinguistic awareness).
Customer-agent chat conversations could be con-
sidered as being closer to customer-agent phone
conversations than to chat-room informal conver-
sations. However the media induces intrinsic dif-
ferences between Digital talk and phone conversa-
tions. The two main differences described in (Tri-
marco, 2014) are related to turn taking and syn-
chronicity issues on the one side, and the use of
semiotic resources such as punctuation or emoti-
cons on the other.

In the case of assistance contact centers, cus-
tomers engage a chat conversation in order to solve
a technical problem or to ask for information about
their contract. The corpus used in this study has
been collected from Orange (the main French tele-
com operator) online assistance for Orange TV
customers who contact the assistance for technical
problems or information on their offers. In certain
cases, the conversation follows a linear progress
(as the example given in Figure 1) and in some
other cases, the agent can perform some actions
(such as line tests) that take some time or the client
can be asked to do some operations on his installa-
tion which also imply latencies in the conversation

flow. In all cases, a chat conversation is logged:
the timestamps at the beginning of each line corre-
sponds to the moment when the participant (agent
or customer) presses the Enter key, i.e. the mo-
ment when the message becomes visible for the
other participant.

A conversation is a succession of messages,
where several consecutive messages can be posted
by the same participant. The temporal information
only concerns the moment when the message is
sent and there is no clear evidence on when writing
starts. There is no editing overlap in the Conversa-
tion Interface as the messages appear sequentially
but it can happen that participants write simultane-
ously and that a message is written while the writer
is not aware of the preceding message.

As one can see in the example in Figure 1, chat
conversations are dissimilar from edited written
text in that they contain typos, agrammaticalities
and other informal writing phenomena. They are
similar to speech in that a dialog with a focused
goal is taking place, and participants take turns for
solving that goal, using dialogic idiomatic terms
which are not found in typical written text. They
differ from speech in that there are no disfluencies,
and that the text of a single turn can be repaired
before being sent. We argue that these differences
must be considered as relevant as the two differ-
ences pointed out by (Trimarco, 2014).

All these properties along with the particular
type of language used by customers and agents is
the focus of this paper towards understanding this
new kind of CMC data. The challenges for pro-
cessing chat comes from the fact that analysis tools
such as syntactic parsers and pos taggers are typ-
ically trained on mismatched conditions, we de-
scribe in this study the impact of such a mismatch
for these two tasks.

3 Syntactic parsing of chat language

An accurate analysis of human-human conversa-
tion should have access to a representation of the
text content that goes beyond surfacic analyses
such as keyword search.

In the DATCHA project, we perform syntactic
parsing as well as semantic analysis of the textual
data in order to produce high-level features that
will be used to evaluate human behaviors. Our tar-
get is not perfect and complete syntax and seman-
tic analysis of the data, but rather to reach a level
allowing to qualify and compare conversations.
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[12:04:20] Vous êtes en relation avec AGENT.
[12:04:29] AGENT Bonjour, je suis AGENT, que puis-je pour vous ?
[12:05:05] CUST mes enfant ont perdu la carte dans le modem et je nai plus de

tele comment dois je faire?
[12:05:27] AGENT Pouvez vous me confirmer votre numéro de ligne fixe
[12:05:56] CUST NUMTEL
[12:07:04] AGENT Si je comprend bien vous avez perdu la carte de votre décodeur.
[12:07:27] CUST oui ces bien sa
[12:07:47] CUST code erreure S03
[12:09:09] AGENT Pas de souci, je vais vous envoyer une autre carte à votre domicile.
[12:09:38] CUST est ce que je peux venir la chercher aujourdui
[12:10:36] AGENT Vous ne pouvez pas récupérer une carte depuis une boutique Orange

car ils peuvent seulement faire un échange.
[12:11:33] CUST ok merci de me lenvoyer au plus vite vous avez bien mes coordonnée
[12:11:57] AGENT Oui je les bien sur votre dossier.
[12:12:51] CUST ok tres bien dici 48h au plus tard 72h pour la carte
[12:14:06] AGENT Vous la recevrez selon les délais postaux

à l’adresse figurant sur votre dossier.
[12:14:25] CUST ok tres bien en vous remerciant a bientot
[12:15:20] AGENT Je vous en prie.
[12:15:29] AGENT Avant de nous quitter avez-vous d’autres questions ?
[12:17:23] CUST non merci

You’re in contact with AGENT
AGENT Hello, I’m AGENT, how can I help you?
CUST my children have lost the card in the modem and I don’t have tv anymore

what can I do?
AGENT Can you confirm your line number?
CUST NUMTEL
AGENT If I understand correctly you lost your decoder card
CUST Yes that’s right
CUST error code S03
AGENT No problem, I will send you another card to your home address.
CUST can I come and get it today
AGENT You can’t get a card from an Orange store because they can only

proceed to exchanges.
CUST ok thank you for sending it as soon as possible you have my coordinates
AGENT Yes I have them in your record.
CUST ok fine within 48h maximum 72h for the card
AGENT You will receive it according to delivery time at the address in your record.
CUST ok fine thank you
AGENT You’re welcome
AGENT Before you go, do you any other question?
CUST no thank you

Figure 1: Example of conversation in the TV assistance domain, in its original forme (above) and a
translation without errors (below)
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We believe that the current models used in the
fields of syntactic and semantic parsing are mature
enough to go beyond normative data that we find
in benchmark corpora and process text that comes
from CRM chat. The experience we gathered
on parsing speech transcriptions in the framework
of the DECODA (Bazillon et al., 2012) and OR-
FEO (Nasr et al., 2014) projects showed that cur-
rent parsing techniques can be successfully used
to parse disfluent speech transcriptions.

Syntactic parsing of non canonical textual in-
put in the context of human-human conversations
has been mainly studied in the context of textual
transcription of spontaneous speech. In such data,
the variation with respect to canonical written text
comes mainly from syntactic structures that are
specific to spontaneous speech, as well as disflu-
encies, such as filled pauses, repetitions and false
starts. Our input has some of the specificities
of spontaneous speech but adds new ones. More
precisely, we find in our data syntactic structures
found in speech (such as a loose integration of mi-
cro syntactic units into macro structures), and for
obvious reasons we do not find other features that
are characteristic to speech, such as repetitions and
restarts. On the other hand, we find in our data
many orthographic errors. The following example,
taken in our corpus, illustrates the specific nature
of our data:

ces deja se que j ai fait les pile
je les est mit tou a l heure elle sont
neuve

All words highlighted can be considered as er-
roneous either lexically or syntactically. This sen-
tence could be paraphrased by:
c’est déjà ce que j’ai fait,

les piles je les ai mises tout à
l’heure, elles sont neuves

Such an utterance features an interesting mix-
ture of oral and written characteristics: the syn-
tax is close to oral, but there are no repetitions
nor false starts. Orthographic errors are numerous
and some of them are challenging for a syntactic
parser.

We present in this paper a detailed analysis of
the impact of all these phenomena on syntactic
parsing. Other types of social media data have
been studied in the literature. In particular tweets
have received lately more attention. (Ritter et al.,
2011) for example provide a detailed evaluation
of a pos tagger on tweets, with the final objec-

tive of performing Named Entity detection. They
showed that the performances of a classical tag-
ger trained on generic news data drop when ap-
plied to tweets and that adaptation with in-domain
data helps increasing these performances. More
recently (Kong et al., 2014) described a depen-
dency parser for tweets. However, to the best of
our knowledge, no such study has been published
on social media data from formal on line web con-
versations.

4 A study on orthographic errors in
agent/customer chat dialogs

Chat conversations are unique from several per-
spectives. In (Damnati et al., 2016), we conducted
a study comparing contact center chat conversa-
tions and phone conversations, both in the do-
main of technical assistance for Orange customers.
The comparative analysis showed significant dif-
ferences in terms of interaction flow. If chat con-
versations were on average twice as long in terms
of effective duration, phone conversations contain
on average four times more turns than chat con-
versations. This can be explained by several fac-
tors: chat is not an exclusive activity and latencies
are more easily accepted than in an oral conversa-
tion. Chat utterances are formulated in a more di-
rect style. Additionally, the fact that an utterance is
visible on the screen and remains visible, reduces
misunderstanding and the need for reformulation
turns in an interaction. Regarding the language it-
self, both media induce specific noise that make
it difficult for automatic Natural Language Under-
standing systems to process them. Phone conver-
sations are prone to spontaneous speech effects
such as disfluencies, and the need to perform Au-
tomatic Speech Recognition generates additional
noise. When processing online chat conversations,
these issues disappear. However the written ut-
terances themselves can contain errors, be it or-
thographic and grammatical errors or typographic
deviations due to high speed typing, poor ortho-
graphic skills and inattention.

In this study we focus on a corpus of 91 chat
conversations that have been fully annotated with
correct orthographic form, lemma and pos tags.
The annotator was advised to correct misspelled
words but she/he was not allowed to modify the
content of a message (adding a missing word
or suppressing an irrelevant word). In order to
compare the original chat conversations with
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Customer Agent Full
#words 11798 23073 34871
SER 10.5% 1.5% 4.5%
MER 41.3% 15.7% 27.2%

Table 1: Language deviation error rates

the corrected ones, punctuation, apostrophe
and case have been normalized. The manually
corrected messages have then been aligned with
the original messages thanks to an automatic
alignment tools using the classical Levenshtein
distance, with all types of errors having the same
weight. A post-processing step was added after
applying the alignment tool, in order to detect
agglutinations or splits. An agglutination is
detected when a deletion follows a substitution
([en->entrain] [train->]) becomes
([en train->entrain]). Conversely, a
split is detected when an insertion follows a
substitution ([télécommande ->télé]
[->commande]) becomes ([télécommande
->télé commande]). Instead of being
counted as two errors, agglutinations and splits
are counted as one substitution. The evaluation is
given in terms of Substitution Error Rate (SER)
which is the amount of substitutions related to
the total amount of words, and the Message Error
Rate (MER) which is the amount of messages
which contain at least one Substitution related
to the total number of messages. As we are
interested in the impact of language deviations on
syntactic parsing of the messages, the latter rate
should also be looked at carefully.

As can be seen in table 1, the overall propor-
tion of misspelled words is not very high (4.5%).
However, 27.2% of the turns contain at least one
misspelled word. The number of words written
by agents is almost twice as large as the number
of words produced by Customers. In fact Agents
have access to predefined utterances that they can
use in various situations. They are also encour-
aged to formulate polite sentences that tend to in-
crease the length of their messages, while Cus-
tomers usually adopt a more direct and concise
style. Consequently, Agents account for more in
the overall SER and MER evaluation, artificially
lowering these rates. In fact, as would be expected,
Agents make much less mistakes and the distribu-
tion of their errors among conversations is quite
balanced with a low standard deviation. The sit-

uation is different for Customers where both SER
and MER have a high standard deviation (respec-
tively 8.7% and 21.5%). The proportion of mis-
spelled words depends on each Customer’s lin-
guistic skills and/or attention when typing.

In order to further study the impact of errors on
Syntactic Analysis modules, we propose, as a pre-
liminary study, to evaluate into more details the
various types of substitutions encountered in the
corpus. We make a distinction between the fol-
lowing types of deviations:

• DIACR diacritic errors are common in
French as accents can be omitted, added or
even substituted (à ->a, très ->trés,
énergie ->énérgie).

• APOST for missing or misplaced apostrophe.

• AGGLU for agglutinations of two words into
one.

• SPLIT for a word split into two words.

• INFL for inflection errors. Morpho-syntactic
inflection in French is error prone as it is
common that different inflected forms of
a same word are homophones (question
->questions). Among these errors, it is
very common (Véronis and Guimier de Neef,
2006) to find past participles replaced by in-
finitives for verbs that end with er (j’ai
changé -> j’ai changer).

• SWITCH two letters are switched.

• SUB1C one character substituted.

• DEL1C one character missing.

• INS1C one character inserted.

• OTHER for all the other errors.

These types of errors are automatically evalu-
ated in this order and are exclusive (e.g. DEL1C
corresponds to words which have one missing
character and are not of any preceding type).

Table 2 presents the proportion of each type of
error observed in the corpus. As can be seen, dia-
critic deviations are predominant. On the overall,
the second source of deviations is the use of erro-
neous inflection for a same word. It represents a
higher proportion for Agents than for Customers.
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Erroneous use of apostrophes is frequent for Cus-
tomers but almost never occurs for Agents. Agglu-
tinations are more frequent than splits, and con-
stitue more than 11% of deviations for Agents.

Customer Agent Full
DIACR 44.3% 34.5% 42.2%
APOST 12.0% 0.9% 9.6%
AGGLU 6.4% 11.2% 7.4%
SPLIT 1.7% 3.2% 2.0%
INFL 11.5% 25.0% 14.4%
SWITCH 0.7% 3.2% 1.3%
SUB1C 5.8% 4.3% 5.5%
DEL1C 7.4% 5.4% 6.9%
INS1C 3.4% 5.7% 3.9%
OTHER 6.8% 6.6% 6.8%

Table 2: Proportion (in %) of the different types of
language deviations

Table 3 presents the repartition of language de-
viations by pos category. Observing this distribu-
tion can give hints on the problems that can be
encountered for pos tagging and syntactic pars-
ing. As one can see, function words are gener-
ally less error prone than content words. Apart
from present participles that are always well writ-
ten, only proper names and imperative verbs have
an SER below the overall SER of 4.5%. But these
categories are not highly represented in our data.
All other content word categories have an SER
above the overall SER. The most error prone cate-
gory is past participle verbs, which are, as already
mentioned, often confused with the infinitive form
and which are also prone to inflection errors.

5 Evaluation and Results

5.1 Corpus description

In order to evaluate the impact of errors on pos
tagging and parsing, the corpus has been split into
two sub-corpora (DEV and TEST]) of similar sizes.

Conversations have been extracted from logs in
a chronological way, meaning that they are repre-
sentative of real conditions, with a variety of call
motives and situations. Hence splitting the cor-
pus into two parts by following the chronological
order reduces the risk of over-fitting between the
DEV corpus and the TEST corpus.

Table 4 illustrates the lexical composition of
the DEV corpus, with a comparison between the
original forms and the corresponding manually

pos prop. SER
VER:ppre pres. participle 0.3% 0.0%
DET determiner 13.2% 1.3%
NAM proper name 1.7% 1.5%
INT interjection 2.1% 1.5%
PRO:REL relative pronoun 0.8% 1.6%
KON conjunction 4.6% 1.8%
NUM numeral 2.0% 2.4%
VER:imp verb imperative 0.9% 3.1%
PRP preposition 11.9% 3.5%
VER:inf verb infinitive 5.1% 4.6%
PRO pronoun 13.7% 5.2%
ADV adverb 6.9% 5.6%
VER verb 10.9% 5.8%
ADJ adjective 3.9% 6.7%
NOM name 19.6% 6.7%
ABR abbreviation 0.2% 10.0%
VER:pper past participle 2.2% 16.9%

Table 3: Language deviation by pos: proportion of
each pos in the corpus and corresponding Substi-
tution Error Rate

corrected version. All conversations have been
anonymized and personal information has been re-
placed by a specific label (one label for Customer
names, one for Agent names, one for phone num-
bers and another one for addresses). Hence, the
entities concerned by this anonymization step do
not account for lexical variety. It is interesting
to notice that the number of different words on
the Full corpus drops from 2381 when computed
on the raw corpus to 2173 (15.3% relative) when
computed on the corrected corpus. The propor-
tion of words occurring just once is also reduced
when computed over the manually corrected to-
kens. The statistics of the TEST corpus are com-
parable. However, the lexical intersection of both
corpora is not very high as 10.3% of word oc-
currences in the TEST corpus are not observed in
the DEV corpus (9.1% for Agents and 19.8% for
Customers). When computing these rates over the
manually corrected tokens, the overall percentage
goes down to 9.0% (8.6% for Agents and 17.3%
for Customers). These last figures remain high
and show that the lexical diversity, if enhanced by
scripting errors is already inherent to the data and
the domain, with a variety of situations encoun-
tered by Customers. Adapting our pos tagger on
the DEV corpus is a reasonable experimental ap-
proach as the preceding observations exclude the
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DEV original DEV corrected
Customer Agent Full Customer Agent Full

#words 5439 11328 16767 5425 11325 17338
diff. words 1431 1468 2381 1301 1414 2173
1 occ. words 879 652 1205 764 599 1020

(61.4%) (44.4%) (50.6%) (58.7%) (42.4%) (46.9%)

Table 4: Description of the DEV corpus in terms of number of words, different words and words occur-
ring only once. Figures vary because of splits and agglutinations.

risk of over-fitting bias at the lexical level.

5.2 Tagging

The pos tagger used for our experiments is a stan-
dard Conditional Random Fields (CRF) (Lafferty
et al., 2001) tagger which obtains state-of-the-art
results on traditional benchmarks. We use a coarse
tagset made of 18 different parts of speech.

Three different taggers based on the same archi-
tecture are evaluated, the first one, TF , is trained
on the French Treebank (Abeillé et al., 2003),
which is composed of newspaper articles. The sec-
ond one, TD, is trained on our DEV corpus and the
third one, TFD on the union of the French Tree-
bank and our DEV corpus.

Taggers are usually evaluated with an accuracy
metric, which is based on the comparison, for ev-
ery token, of its tag in the output of the tagger (the
hypothesis) and its tag in the human annotated cor-
pus (the reference). In our case, the number of to-
kens in the reference and the hypothesis is not the
same, due to agglutinations and splits. In order
to account for these phenomena in the evaluation
metric, we define conventions that are depicted in
Table 5: in case of an agglutination, the tag of the
agglutinated token t in the hypothesis is compared
to the tag of the first token in the reference (see
left part of table 5, where the two tags compared
are in bold face). In case of a split, the tag of the
first token in the hypothesis is compared to the tag
of the token in the reference (see right part of the
table).

agglutination split
REF HYP REF HYP

tok tag tok tag tok tag tok tag
A TA AB TAB AB TAB A TA

B TB B TB

Table 5: Conventions defined when computing the
accuracy of the tagger for a token. Tags in bold
face are compared

tok. TF TFD TD

Cust. Corr. 91.13 93.26 94.36
Orig. 86.59 88.83 90.38

Agent Corr. 91.01 96.60 97.30
Orig. 90.23 95.51 96.50

Table 6: Pos accuracy of the three taggers com-
puted on the original (Orig.) and the corrected
(Corr.) versions of the TEST corpus, for Customers
and Agents parts of the corpus.

The taggers have been evaluated on the TEST

corpus. The results are displayed in Table 6 which
shows several interesting phenomena.

First, the three taggers obtain significantly dif-
ferent results. TF , which is trained on the French
Treebank, obtains the lowest results: 86.59% ac-
curacy on the customer part of the corpus and
90.23% on the agent part. Adding to the French
Treebank the DEV corpus has a benefic impact on
the results, accuracy reaches respectively 88.83%
and 95.51%. The best results are obtained by
TD with 90.38% and 96.50% accuracy, despites
the small size of the DEV corpus, on which it is
trained.

Second, as could be expected, the results are
systematically higher on the corrected versions of
the corpora. The results are around 4.5 points
higher on the customer side and around 1 point
higher on the agent side. These figures consti-
tute the upper bound of the tagging accuracy that
can be expected if the corpus is automatically cor-
rected prior to tagging.

Third, the results are higher on the agent side,
this was also expected from the analysis of the er-
rors in both parts of the corpus (see Table 1).

Tables 7 and 8 give a finer view of the influence
of errors on the pos tagging accuracy for tagger
TD. Each line of the table corresponds to the sta-
tus of a token. If the token is correct, the status is
CORR, otherwise it corresponds to one label of the
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status occ. corr. acc. contrib.
CORR 5916 5547 93.76 59.23
DIACR 201 120 59.70 13.00
AGGLU 76 23 30.26 8.51
SUB1C 46 13 28.26 5.30
INFL 67 45 67.16 3.53
DEL1C 43 22 51.16 3.37
OTHER 40 23 57.50 2.73
INS1C 20 12 60.00 1.28
APOST 47 40 85.11 1.12
SPLIT 6 3 50.00 0.48
SWITCH 2 2 100.00 0.00

Table 7: Influence of token errors on pos tagging,
computed on the customer side of the TEST cor-
pus.

status occ. corr. acc. contrib.
CORR 12883 12517 97.16 79.91
DIACR 61 36 59.02 5.46
INFL 46 25 54.35 4.59
AGGLU 32 18 56.25 3.06
OTHER 11 3 27.27 1.75
SPLIT 8 4 50.00 0.87
DEL1C 10 6 60.00 0.87
SUB1C 8 4 50.00 0.87
INS1C 9 8 88.89 0.22
SWITCH 4 4 100.00 0.00

Table 8: Influence of token errors on pos tagging,
computed on the agent side of the TEST corpus.

error types of Table 2. The second column corre-
sponds to the number of occurrences of tokens that
fall under this category. The third column is the
number of tokens of this status that were correctly
tagged, column four is the accuracy for this status
and column five, the contribution to the error rate.

Table 7 shows that misspelled tokens are re-
sponsible for roughly 40% of the tagging errors.
Among errors, the DIACR type has the highest in-
fluence on the pos accuracy, it corresponds to 13%
of the errors, followed by agglutination. Table 8
shows that erroneous tokens account for 20% of
the errors on the agent side. And the first cause
of token deviation that provokes tagging errors is
DIACR.

5.3 Parsing

The parser used in our experiment is a transi-
tion based parser (Yamada and Matsumoto, 2003;

Nivre, 2003). It is a dependency parser that takes
as input tokens with their pos tag and selects for
every token a syntactic governor (which is an-
other token of the sentence) and a syntactic la-
bel. The prediction is based on several features
that combine lexical information and pos tags. Or-
thographic errors have therefore a double impact
on the parsing process: through the errors they
provoke on the pos tagging process and the errors
they provoke directly on the parsing process. The
parser was trained on the French Treebank. Con-
trary to taggers, a single parser was used for our
experiments since we do not have hand corrected
syntactic annotation of the DATCHA corpus.

In order to evaluate the parser, we have parsed
our DEV corpus with corrected tokens and gold
pos tags and considered the syntactic structures
produced to be our reference. The results that are
given below should therefore be taken with cau-
tion. Their absolute value is not reliable (it is prob-
ably over estimated) but they can be compared
with one another.

The metric used to evaluate the output of the
parser is the Labeled Attachement Score (LAS)
which is the ratio of tokens for which the cor-
rect governor along with the correct syntactic label
have been predicted. The conventions of Table 5
defined for the tagger were also used for evaluat-
ing the parser.

Three series of parsing experiments were con-
ducted, the first one takes as input the tokens as
they appear in the raw corpus and the pos tags
predicted with our best tagger (TD). These ex-
periments correspond to the most realistic situa-
tion, with original tokens and predicted pos tags.
The second series of experiments takes as input
the corrected tokens and the predicted pos tags. Its
purpose is to estimate an upper bound of the pars-
ing accuracy when using an orthographic corrector
prior to tagging and parsing. The third experiment
takes as input raw tokens and gold pos tags. It
corresponds to an artificial situation, its purpose is
to evaluate the influence of orthographic errors on
parsing, independently of tagging errors.

Table 9 shows that the influence of orthographic
errors on parsing is limited, most parsing errors are
due to pos tagging errors.

The table also shows that the difference in pars-
ing accuracy between the customer part of the cor-
pus and the agent part is higher than what it was
for tagging. This can be explained by the fact that,
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tok. pos acc. LAS
O 90.38 73.47

Cust. C 94.36 81.30
O 100 94.68
O 96.50 82.12

Agent C 97.30 86.43
O 100 95.74

Table 9: LAS of the parser output for three types
of input: original tokens (O) and predicted pos
tags, corrected tokens (C) and predicted pos tags
and original tokens and gold pos tags, computed
on the TEST corpus for the customer and the agent
parts of the corpus.

from the syntactic point of view, agent utterances
are probably closer to the data on which the parser
has been trained (journalistic data) than customer
utterances.

6 Conclusion

We study in this paper orthographic mistakes that
occur in data collected in contact centers. A ty-
pology of mistakes is proposed and their influence
on part of speech tagging and syntactic parsing is
studied. We also show that taggers and parsers
trained on standard journalistic corpora yield poor
results on such data and that the addition of a lim-
ited amount of annotated data can significantly im-
prove the performances of such tools.
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Abstract

We present a novel natural language gen-
eration system for spoken dialogue sys-
tems capable of entraining (adapting) to
users’ way of speaking, providing contex-
tually appropriate responses. The genera-
tor is based on recurrent neural networks
and the sequence-to-sequence approach.
It is fully trainable from data which in-
clude preceding context along with re-
sponses to be generated. We show that
the context-aware generator yields signif-
icant improvements over the baseline in
both automatic metrics and a human pair-
wise preference test.

1 Introduction

In a conversation, speakers are influenced by pre-
vious utterances of their counterparts and tend to
adapt (align, entrain) their way of speaking to each
other, reusing lexical items as well as syntactic
structure (Reitter et al., 2006). Entrainment occurs
naturally and subconsciously, facilitates success-
ful conversations (Friedberg et al., 2012; Nenkova
et al., 2008), and forms a natural source of vari-
ation in dialogues. In spoken dialogue systems
(SDS), users were reported to entrain to system
prompts (Parent and Eskenazi, 2010).

The function of natural language generation
(NLG) components in task-oriented SDS typically
is to produce a natural language sentence from a
dialogue act (DA) (Young et al., 2010) represent-
ing an action, such as inform or request, along
with one or more attributes (slots) and their val-
ues (see Fig. 1). NLG is an important component
of SDS which has a great impact on the perceived
naturalness of the system; its quality can also in-
fluence the overall task success (Stoyanchev and
Stent, 2009; Lopes et al., 2013). However, typical

is there another option

inform(line=M102, direction=Herald Square, 
           vehicle=bus, departure_time=9:01am, 
           from_stop=Wall Street)

Take bus line M102 from Wall Street 
                    to Herald Square at 9:01am.
There is a bus at 9:01am from Wall Street 
                           to Herald Square using line M102.

typical NLG

context-aware
additions

contextually bound response

preceding user utterance

Figure 1: An example of NLG input and output,
with context-aware additions.

NLG systems in SDS only take the input DA into
account and have no way of adapting to the user’s
way of speaking. To avoid repetition and add vari-
ation into the outputs, they typically alternate be-
tween a handful of preset variants (Jurčı́ček et al.,
2014) or use overgeneration and random sampling
from a k-best list of outputs (Wen et al., 2015b).
There have been several attempts at introducing
entrainment into NLG in SDS, but they are lim-
ited to rule-based systems (see Section 4).

We present a novel, fully trainable context-
aware NLG system for SDS that is able to entrain
to the user and provides naturally variable outputs
because generation is conditioned not only on the
input DA, but also on the preceding user utter-
ance (see Fig. 1). Our system is an extension of
Dušek and Jurčı́ček (2016b)’s generator based on
sequence-to-sequence (seq2seq) models with at-
tention (Bahdanau et al., 2015). It is, to our knowl-
edge, the first fully trainable entrainment-enabled
NLG system for SDS. We also present our first re-
sults on the dataset of Dušek and Jurčı́ček (2016a),
which includes the preceding user utterance along
with each data instance (i.e., pair of input mean-
ing representation and output sentence), and we
show that our context-aware system outperforms
the baseline in both automatic metrics and a hu-
man pairwise preference test.
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In the following, we first present the architec-
ture of our generator (see Section 2), then give an
account of our experiments in Section 3. We in-
clude a brief survey of related work in Section 4.
Section 5 contains concluding remarks and plans
for future work.

2 Our generator

Our seq2seq generator is an improved version of
Dušek and Jurčı́ček (2016b)’s generator, which it-
self is based on the seq2seq model with atten-
tion (Bahdanau et al., 2015, see Fig. 2) as imple-
mented in the TensorFlow framework (Abadi et
al., 2015).1 We first describe the base model in
Section 2.1, then list our context-aware improve-
ments in Section 2.2.

2.1 Baseline Seq2seq NLG with Attention
The generation has two stages: The first, encoder
stage uses a recurrent neural network (RNN)
composed of long-short-term memory (LSTM)
cells (Hochreiter and Schmidhuber, 1997; Graves,
2013) to encode a sequence of input tokens2 x =
{x1, . . . , xn} into a sequence of hidden states h =
{h1, . . . , hn}:

ht = lstm(xt, ht−1) (1)

The second, decoder stage then uses the hidden
states h to generate the output sequence y =
{y1, . . . , ym}. Its main component is a second
LSTM-based RNN, which works over its own in-
ternal state st and the previous output token yt−1:

st = lstm((yt−1 ◦ ct)WS , st−1) (2)

It is initialized by the last hidden encoder state
(s0 = hn) and a special starting symbol. The gen-
erated output token yt is selected from a softmax
distribution:

p(yt|yt−1 . . . ,x) = softmax((st ◦ ct)WY ) (3)

In (2) and (3), ct represents the attention model – a
sum over all encoder hidden states, weighted by a
feed-forward network with one tanh hidden layer;
WS and WY are linear projection matrices and “◦”
denotes concatenation.

DAs are represented as sequences on the en-
coder input: a triple of the structure “DA type, slot,

1See (Dušek and Jurčı́ček, 2016b) and (Bahdanau et al.,
2015) for a more formal description of the base model.

2Embeddings are used (Bengio et al., 2003), i.e., xt and
yt are vector representations of the input and output tokens.

value” is created for each slot in the DA and the
triples are concatenated (see Fig. 2).3 The gen-
erator supports greedy decoding as well as beam
search which keeps track of top k most probable
output sequences at each time step (Sutskever et
al., 2014; Bahdanau et al., 2015).

The generator further features a simple con-
tent classification reranker to penalize irrelevant
or missing information on the output. It uses an
LSTM-based RNN to encode the generator out-
puts token-by-token into a fixed-size vector. This
is then fed to a sigmoid classification layer that
outputs a 1-hot vector indicating the presence of
all possible DA types, slots, and values. The vec-
tors for all k-best generator outputs are then com-
pared to the input DA and the number of missing
and irrelevant elements is used to rerank them.

2.2 Making the Generator Context-aware

We implemented three different modifications to
our generator that make its output dependent on
the preceding context:4

Prepending context. The preceding user utter-
ance is simply prepended to the DA and fed into
the encoder (see Fig. 2). The dictionary for con-
text utterances is distinct from the DA tokens dic-
tionary.

Context encoder. We add another, separate en-
coder for the context utterances. The hidden states
of both encoders are concatenated, and the de-
coder then works with double-sized vectors both
on the input and in the attention model (see Fig. 2).

n-gram match reranker. We added a second
reranker for the k-best outputs of the generator
that promotes outputs that have a word or phrase
overlap with the context utterance. We use geo-
metric mean of modified n-gram precisions (with
n ∈ {1, 2}) as a measure of context overlap, i.e.,
BLEU-2 (Papineni et al., 2002) without brevity
penalty. The log probability l of an output se-
quence on the generator k-best list is updated as
follows:

l = l + w · √p1p2 (4)

3While the sequence encoding may not necessarily be
the best way to obtain a vector representation of DA, it was
shown to work well (Dušek and Jurčı́ček, 2016b).

4For simplicity, we kept close to the basic seq2seq archi-
tecture of the generator; other possibilities for encoding the
context, such as convolution and/or max-pooling, are possi-
ble.
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Figure 2: The base Seq2seq generator (black) with our improvements: prepending context (green) and
separate context encoder (blue).

Setup BLEU NIST
Baseline (context not used) 66.41 7.037
n-gram match reranker 68.68 7.577
Prepending context 63.87 6.456

+ n-gram match reranker 69.26 7.772
Context encoder 63.08 6.818

+ n-gram match reranker 69.17 7.596

Table 1: BLEU and NIST scores of different gen-
erator setups on the test data.

In (4), p1 and p2 are modified unigram and bigram
precisions of the output sequence against the con-
text, and w is a preset weight. We believe that any
reasonable measure of contextual match would be
viable here, and we opted for modified n-gram
precisions because of simple computation, well-
defined range, and the relation to the de facto stan-
dard BLEU metric.5 We only use unigrams and
bigrams to promote especially the reuse of single
words or short phrases.

In addition, we combine the n-gram match
reranker with both of the two former approaches.

We used gold-standard transcriptions of the im-
mediately preceding user utterance in our experi-
ments in order to test the context-aware capabil-
ities of our system in a stand-alone setting; in a
live SDS, 1-best speech recognition hypotheses
and longer user utterance history can be used with
no modifications to the architecture.

3 Experiments

We experiment on the publicly available dataset of
Dušek and Jurčı́ček (2016a)6 for NLG in the pub-

5We do not use brevity penalty as we do not want to de-
mote shorter output sequences. However, adding it to the for-
mula in our preliminary experiments yielded similar results
to the ones presented here.

6The dataset is released at http://hdl.handle.
net/11234/1-1675; we used a more recent version
from GitHub (https://github.com/UFAL-DSG/alex_

lic transport information domain, which includes
preceding context along with each pair of input
DA and target natural language sentence. It con-
tains over 5,500 utterances, i.e., three paraphrases
for each of the over 1,800 combinations of input
DA and context user utterance. The data con-
cern bus and subway connections on Manhattan,
and comprise four DA types (iconfirm, inform, in-
form no match, request). They are delexicalized
for generation to avoid sparsity, i.e., stop names,
vehicles, times, etc., are replaced by placeholders
(Wen et al., 2015a). We applied a 3:1:1 split of the
set into training, development, and test data. We
use the three paraphrases as separate instances in
training data, but they serve as three references for
a single generated output in validation and evalua-
tion.

We test the three context-aware setups de-
scribed in Section 2.2 and their combinations,
and we compare them against the baseline non-
context-aware seq2seq generator. Same as Dušek
and Jurčı́ček (2016b), we train the seq2seq mod-
els by minimizing cross-entropy on the training set
using the Adam optimizer (Kingma and Ba, 2015),
and we measure BLEU on the development set af-
ter each pass over the training data, selecting the
best-performing parameters.7 The content clas-
sification reranker is trained in a similar fashion,
measuring misclassification on both training and
development set after each pass.8 We use 5 dif-

context_nlg_dataset), which contains several small
fixes.

7Based on our preliminary experiments on development
data, we use embedding size 50, LSTM cell size 128, learning
rate 0.0005, and batch size 20. Training is run for at least
50 and up to 1000 passes, with early stopping if the top 10
validation BLEU scores do not change for 100 passes.

8We use the same settings except for the number of passes
over the training data, which is at least 20 and 100 at most.
For validation, development set is given 10 times more im-
portance than the training set.
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ferent random initializations of the networks and
average the results.

Decoding is run with a beam size of 20 and the
penalty weight for content classification reranker
set to 100. We set the n-gram match reranker
weight based on experiments on development
data.9

3.1 Evaluation Using Automatic Metrics
Table 1 lists our results on the test data in terms
of the BLEU and NIST metrics (Papineni et al.,
2002; Doddington, 2002). We can see that while
the n-gram match reranker brings a BLEU score
improvement, using context prepending or sepa-
rate encoder results in scores lower than the base-
line.10 However, using the n-gram match reranker
together with context prepending or separate en-
coder brings significant improvements of about
2.8 BLEU points in both cases, better than using
the n-gram match reranker alone.11 We believe
that adding the context information into the de-
coder does increase the chances of contextually
appropriate outputs appearing on the decoder k-
best lists, but it also introduces a lot more uncer-
tainty and therefore, the appropriate outputs may
not end on top of the list based on decoder scores
alone. The n-gram match reranker is then able
to promote the relevant outputs to the top of the
k-best list. However, if the generator itself does
not have access to context information, the n-gram
match reranker has a smaller effect as contextually
appropriate outputs may not appear on the k-best
lists at all. A closer look at the generated outputs
confirms that entrainment is present in sentences
generated by the context-aware setups (see Fig. 2).

In addition to BLEU and NIST scores, we mea-
sured the slot error rate ERR (Wen et al., 2015b),
i.e., the proportion of missing or superfluous slot
placeholders in the delexicalized generated out-
puts. For all our setups, ERR stayed around 3%.

3.2 Human Evaluation
We evaluated the best-performing setting based
on BLEU/NIST scores, i.e., prepending context
with n-gram match reranker, in a blind pairwise
preference test with untrained judges recruited on

9w is set to 5 when the n-gram match reranker is run by
itself or combined with the separate encoder, 10 if combined
with prepending context.

10In our experiments on development data, all three meth-
ods brought a mild BLEU improvement.

11Statistical significance at 99% level has been assessed
using pairwise bootstrap resampling (Koehn, 2004).

the CrowdFlower crowdsourcing platform.12 The
judges were given the context and the system out-
put for the baseline and the context-aware system,
and they were asked to pick the variant that sounds
more natural. We used a random sample of 1,000
pairs of different system outputs over all 5 ran-
dom initializations of the networks, and collected
3 judgments for each of them. The judges pre-
ferred the context-aware system output in 52.5%
cases, significantly more than the baseline.13

We examined the judgments in more detail and
found three probable causes for the rather small
difference between the setups. First, both setups’
outputs fit the context relatively well in many cases
and the judges tend to prefer the overall more fre-
quent variant (e.g., for the context “starting from
Park Place”, the output “Where do you want to
go?” is preferred over “Where are you going to?”).
Second, the context-aware setup often selects a
shorter response that fits the context well (e.g., “Is
there an option at 10:00 am?” is confirmed sim-
ply with “At 10:00 am.”), but the judges seem
to prefer the more eloquent variant. And third,
both setups occasionally produce non-fluent out-
puts, which introduces a certain amount of noise.

4 Related Work

Our system is an evolutionary improvement over
the LSTM seq2seq system of Dušek and Jurčı́ček
(2016b) and as such, it is most related in terms
of architecture to other recent RNN-based ap-
proaches to NLG, which are not context-aware:
RNN generation with a convolutional reranker by
Wen et al. (2015a) and an improved LSTM-based
version (Wen et al., 2015b), as well as the LSTM
encoder-aligner-decoder NLG system of Mei et al.
(2015). The recent end-to-end trainable SDS of
Wen et al. (2016) does have an implicit access to
previous context, but the authors do not focus on
its influence on the generated responses.

There have been several attempts at modelling
entrainment in dialogue (Brockmann et al., 2005;
Reitter et al., 2006; Buschmeier et al., 2010) and
even successful implementations of entrainment
models in NLG systems for SDS, where entrain-
ment caused an increase in perceived naturalness
of the system responses (Hu et al., 2014) or in-
creased naturalness and task success (Lopes et al.,

12http://crowdflower.com
13The result is statistically significant at 99% level accord-

ing to the pairwise bootstrap resampling test.
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Context is there a later option
Input DA iconfirm(alternative=next)
Baseline Next connection.
n-gram match reranker You want a later connection.
Prepending context + n-gram match reranker You want a later connection.
Context encoder + n-gram match reranker You want a later option.
Context i need to find a bus connection
Input DA inform no match(vehicle=bus)
Baseline No bus found, sorry.
n-gram match reranker I did not find a bus route.
Prepending context + n-gram match reranker I’m sorry, I cannot find a bus connection.
Context encoder + n-gram match reranker I’m sorry, I cannot find a bus connection.
Context i rather take the bus
Input DA inform(vehicle=bus, departure time=8:01am, direction=Cathedral Parkway, from stop=Bowling Green, line=M15)
Baseline At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
n-gram match reranker At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
Prepending context + n-gram match reranker You can take the M15 bus from Bowling Green to Cathedral Parkway at 8:01am.
Context encoder + n-gram match reranker At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.

Table 2: Example outputs of the different setups of our generator (with entrainment highlighted)

2013; Lopes et al., 2015). However, all of the pre-
vious approaches are completely or partially rule-
based. Most of them attempt to model entrainment
explicitly, focus on specific entrainment phenom-
ena only, and/or require manually selected lists
of variant expressions, while our system learns
synonyms and entrainment rules implicitly from
the corpus. A direct comparison with previous
entrainment-capable NLG systems for SDS is not
possible in our stand-alone setting since their rules
involve the history of the whole dialogue whereas
we focus on the preceding utterance in our experi-
ments.

5 Conclusions and Further Work

We presented an improvement to our natural
language generator based on the sequence-to-
sequence approach (Dušek and Jurčı́ček, 2016b),
allowing it to exploit preceding context user utter-
ances to adapt (entrain) to the user’s way of speak-
ing and provide more contextually accurate and
less repetitive responses. We used two different
ways of feeding previous context into the genera-
tor and a reranker based on n-gram match against
the context. Evaluation on our context-aware
dataset (Dušek and Jurčı́ček, 2016a) showed a sig-
nificant BLEU score improvement for the com-
bination of the two approaches, which was con-
firmed in a subsequent human pairwise preference
test. Our generator is available on GitHub at the
following URL:

https://github.com/UFAL-DSG/tgen

In future work, we plan on improving the n-
gram matching metric to allow fuzzy matching
(e.g., capturing different forms of the same word),
experimenting with more ways of incorporating
context into the generator, controlling the output

eloquence and fluency, and most importantly, eval-
uating our generator in a live dialogue system.
We also intend to evaluate the generator with au-
tomatic speech recognition hypotheses as context
and modify it to allow n-best hypotheses as con-
texts. Using our system in a live SDS will also
allow a comparison against previous handcrafted
entrainment-capable NLG systems.
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Abstract 

We investigate automatic question detection 
from recordings of teacher speech collected 
in live classrooms. Our corpus contains audio 
recordings of 37 class sessions taught by 11 
teachers. We automatically segment teacher 
speech into utterances using an amplitude en-
velope thresholding approach followed by 
filtering non-speech via automatic speech 
recognition (ASR). We manually code the 
segmented utterances as containing a teacher 
question or not based on an empirically-vali-
dated scheme for coding classroom dis-
course. We compute domain-independent 
natural language processing (NLP) features 
from transcripts generated by three ASR en-
gines (AT&T, Bing Speech, and Azure 
Speech). Our teacher-independent supervised 
machine learning model detects questions 
with an overall weighted F1 score of 0.59, a 
51% improvement over chance. Furthermore, 
the proportion of automatically-detected 
questions per class session strongly correlates 
(Pearson’s r = 0.85) with human-coded ques-
tion rates. We consider our results to reflect a 
substantial (37%) improvement over the 
state-of-the-art in automatic question detec-
tion from naturalistic audio. We conclude by 
discussing applications of our work for teach-
ers, researchers, and other stakeholders. 

1 Introduction 

Questions are powerful tools that can inspire 
thought and inquiry at deeper levels of compre-
hension (Graesser and Person, 1994; Beck et al., 
1996). There is a large body of work supporting a 
positive relationship between the use of certain 
types of questions with increased student engage-
ment and achievement (Applebee et al., 2003; 
Kelly, 2007). But not all questions are the same. 
Questions that solicit surface-level facts (called 

test questions) are far less predictive of achieve-
ment compared to more open-ended (or dialogic) 
questions (Nystrand and Gamoran, 1991; 
Gamoran and Nystrand, 1991; Applebee et al., 
2003; Nystrand, 2006). 

Fortunately, providing teachers with training 
and feedback on their use of instructional prac-
tices (including question-asking) can help them 
adopt techniques known to be associated with stu-
dent achievement (Juzwik et al., 2013). However, 
automatic computational methods are required to 
analyze classroom instruction on a large scale. 
Although there are well-known coding schemes 
for manual coding of questions in classroom envi-
ronments (Nystrand et al., 2003; Stivers and En-
field, 2010) research on automatically identifying 
these questions in live classrooms is in its infancy 
and is the focus of this work. 

1.1 Related Work 

To keep scope manageable, we limit our review 
of previous work to question detection from auto-
matic speech recognition (ASR) since the use of 
ASR transcriptions, rather than human transcrip-
tions, is germane to the present problem. 

Boakye et al. (2009) trained models to detect 
questions in office meetings. The authors used the 
ICSI Meeting Recorder Dialog Act (MRDA) cor-
pus, a set of 75 hour-long meetings recorded with 
headset and lapel microphones. Their ASR system 
achieved a word error rate (WER), a measure of 
edit distance comparing the hypothesis to the orig-
inal transcript, of 0.38 on the corpus. They trained 
an AdaBoost classifier to detect questions from 
word, part-of-speech, and parse tree features de-
rived from the ASR transcriptions, achieving F1 
scores of 0.52, 0.35, and 0.50, respectively, and 
0.50 combined. Adding contextual and acoustic 
features slightly improved the F1 score to 0.54, 
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suggesting the importance of linguistic (as op-
posed to contextual or acoustic) information for 
question detection. 

Stolcke et al. (2000) built a dialogue act tagger 
on the conversational Switchboard corpus using 
ASR transcripts (WER 0.41). A Bayesian model, 
trained on likelihoods of word trigrams from ASR 
transcriptions, detected 42 dialogue acts with an 
accuracy of 65% (chance level 35%; human 
agreement 84%). Dialogue acts such as state-
ments, questions, apologies, or agreement were 
among those tagged. Limiting the models to con-
sider only the highest-confidence transcription 
(the 1-best ASR transcript) resulted in a 62% ac-
curacy with the bigram discourse model. Addi-
tionally, the authors noted a 21% decrease in clas-
sification error when human transcripts were used 
instead.  

Stolcke et al. (2000) also attempted to leverage 
prosody to distinguish yes-no questions from 
statements, dialogue acts which may be ambigu-
ous based on transcripts alone. On a selected sub-
set of their corpus containing an equal proportion 
of questions and statements they achieved an ac-
curacy of 75% using transcripts (chance 50%). 
Adding prosodic features increased their accuracy 
to 80%. 

Orosanu and Jouvet (2015) investigated dis-
crimination between statements and questions 
from ASR transcriptions from three French-lan-
guage corpora. Their training set consisted of 
10,077 statements and 10,077 questions, and their 
testing set consisted of 7,005 statements and 831 
questions. Using human transcriptions, the mod-
els classified 73% of questions and 78% of state-
ments correctly. When the authors tested the same 
model against ASR transcriptions, they observed 
a 3% reduction in classification accuracy.  
The authors also compared their datasets based on 
differences in speaking styles.  One corpus con-
sisted of unscripted, spontaneous speech from 
news broadcasts (classification accuracy 70%; 
WER 22%), while the other contained scripted di-
alogue from radio and TV channels (classification 
accuracy 73%; WER 28%).  

All the aforementioned studies have used man-
ually-defined sentence boundaries. However, a 
fully-automatic system for question detection 
would need to detect sentence boundaries without 
manual input. Orosanu and Jouvet (2015) simu-
lated imperfect sentence boundary detection using 
a semi-automatic method. They substituted sen-
tence boundaries defined by human-annotated 
punctuation with boundaries based on silence in 
the audio. When punctuation aligned with silence, 

the boundaries were left unchanged from the man-
ually-defined boundaries. This semi-automatic 
approach to segmentation resulted in a 3% in-
crease in classification errors.   

Finally, in preliminary precursor to this work, 
we explored the potential for question detection in 
classrooms from automatically-segmented utter-
ances that were transcribed by humans (Blanchard 
et al., 2016). We used 1,000 random utterances 
from our current corpus which we manually tran-
scribed and coded as containing a question or not 
(see Section 2.3). Using leave-one-speaker-out 
cross-validation, we achieved an overall-weighted 
F1 score of 0.66, with an F1 of 0.53 for the ques-
tion class. That work showed that question detec-
tion was possible from noisy classroom audio, al-
beit with human transcriptions.  

1.2 Challenges, Contributions, and Novelty 

We describe a novel question detection scenario 
in which we automatically identify teacher ques-
tions using ASR transcriptions of teacher speech 
in a real-world classroom environment. We have 
previously identified numerous constraints that 
need to be satisfied in order to facilitate question 
detection at scale. Such a system must be afforda-
ble, cannot be disruptive to either the teacher or 
the students, and must maintain student privacy, 
which precludes recording or filming individual 
students. Therefore, we primarily rely on a low-
cost, wireless headset microphone for recording 
teachers as they move about the classroom freely. 
This approach accommodates various seating ar-
rangements, classroom sizes, and room layouts, 
and attempts to minimize ambient classroom 
noise, muffled speech, or classroom interruptions, 
all factors that reflect the reality of real-world en-
vironments.  

There are a number of challenges with this 
work. For one, teacher questions in a classroom 
differ from traditional question-asking scenarios 
(e.g., meetings, informal conversations) where the 
goal of a question is to elicit information and the 
questioner usually does not know the answer 
ahead of time. In contrast, rather than infor-
mation-seeking, the key goal of teacher questions 
is to assess knowledge and to prime thought and 
discussion (Nystrand et al., 2003), thereby intro-
ducing difficulties in coding questions them-
selves. 

We note that ASR on classroom speech is par-
ticularly challenging given the noisy environment 
that includes classroom disruptions, accidental 
microphone contact, and sounds from students, 
chairs, and desks. Previous work on this data 
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yielded WERs ranging from 0.34 to 0.60 
(D’Mello et al., 2015), suggesting that we have to 
contend with rather inaccurate transcripts.  

In addition, previous work reviewed in Section 
1.1 has focused on human-segmented speech, 
which is untenable for a fully-automated system. 
Therefore, our approach uses an automated ap-
proach to segment speech, which itself is an im-
perfect process.  

This imperfect pipeline ranging from question 
coding to ASR to utterance segmentation accu-
rately illustrates the difficulties of detecting ques-
tions in real-world environments. Nevertheless, 
we make several novel contributions while ad-
dressing these challenges. First, we implement 
fully automated methods to process teacher audio 
into segmented utterances from which we obtain 
ASR transcriptions. Second, we combine tran-
scriptions from multiple ASR engines to offset the 
inevitable errors associated with automatically 
segmenting and transcribing teacher audio. Third, 
we restrict our feature set to domain-independent 
natural language features that are more likely to 
generalize across different school subjects.  Fi-
nally, we use leave-one-teacher-out cross-valida-
tion so that our models generalize across teachers 
rather than optimizing for individual teachers. 

The remainder of the paper is organized as fol-
lows.  First, we discuss our data collection meth-
ods, data pre-processing, feature extraction ap-
proach, and our classification models in Section 2.  
In Section 3, we present our experiments and re-
view key results. We next discuss the implications 
of our findings and conclude with our future re-
search directions in Section 4. 

2 Method 

2.1 Data Collection 

Data was collected at six rural Wisconsin middle 
schools during literature, language arts, and civics 
classes taught by 11 different teachers (three 
male; eight female). Class sessions lasted between 
30 and 90 minutes, depending on the school. A to-
tal of 37 classroom sessions were recorded and 
live-coded on 17 separate days over a period of a 
year, totaling 32:05 hours of audio. 

Each teacher wore a wireless microphone to 
capture their speech. Based on previous work 
(D’Mello et al., 2015), a Samson 77 Airline wire-
less microphone was chosen for its portability, 
noise-canceling properties, and low-cost. The 
teacher’s speech was captured and saved as a 16 
kHz, 16-bit single channel audio file.  

2.2 Teacher Utterance Extraction 

Teacher speech was segmented into utterances us-
ing a two-step voice activity detection (VAD) al-
gorithm (Blanchard et al., 2015). First, the ampli-
tude envelope of the teacher’s low-pass filtered 
speech was passed through a threshold function in 
20-millisecond increments. Where the amplitude 
envelope was above threshold, the teacher was con-
sidered to be speaking. Any time speech was de-
tected, that speech was considered part of a poten-
tial utterance, meaning there was no minimum 
threshold for how short a potential utterance could 
be. Potential utterances were coded as complete 
when no speech was detected for 1,000 millisec-
onds (1 second).  

The thresholds were set low to ensure capture 
of all speech, but this also caused a high rate of 
false alarms in the form of non-speech utterances. 
These false alarms were filtered from the set of 
potential utterances with the Bing ASR engine 
(Microsoft, 2014). If the ASR engine rejected a 
potential utterance then it was determined to not 
contain any speech. Additionally, any utterances 
less than 125 milliseconds was removed, as this 
speech was not considered meaningful. 

We empirically validated the effectiveness of 
this utterance detection approach by manual cod-
ing a random subset of 1,000 potential utterances 
as either containing speech or not. We achieved 
high levels of both precision (96.3%) and recall 
(98.6%) and an F1 score of 0.97. We applied this 
approach to the full corpus to extract 10,080 utter-
ances from the 37 classroom recordings.  

2.3 Question Coding 

One limitation of automatically segmented speech 
is that each utterance may contain multiple ques-
tions, or conversely, a question may be spread 
across multiple utterances (Komatani et al., 2015). 
This occurs partly because we use both a static 
amplitude envelope threshold and a constant 
pause length to segment utterances rather than 
learning specific thresholds for each teacher. 
However, the use of a single threshold increases 
generalizability to new teachers. Regardless of 
method, voice activity detection is not a fully-
solved problem and any method is expected to 
yield some errors. 

To address this, we manually coded the 10,080 
extracted utterances as “containing a question” or 
“not containing a question” rather than “question” 
or “statement.” The distinction, though subtle, in-
dicated that a question phrase that is embedded 
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within a large utterance would be coded as “con-
taining a question.” Conversely, we also ensured 
that if a question spans adjacent utterances then 
each utterance would be coded as “containing a 
question.” We also do not distinguish among dif-
ferent questions types in this initial work.  

Our definition of “question” follows coding 
schemes that are uniquely designed to analyze 
questions  in classroom discourse (Nystrand et al., 
2003). Questions are utterances in which the 
teacher solicits information from a student either 
procedurally (e.g., “Is everyone ready?”), rhetori-
cally (e.g., “Oh good idea James why don’t we just 
have recess instead of class today”), or for 
knowledge assessment/information solicitation 
purposes (e.g., “What is the capital of Indiana, 
Michael?”).  Likewise, the teacher calling on a 
different student to answer the same question 
(e.g., “Nope. Shelby?”) would also be considered 
a question, although in some coding schemes, the 
previous example would be classified as “Turn 
Eliciting” (Allwood et al., 2007). We do not con-
sider certain cases questions, such as when the 
teacher calls on a student for other reasons (e.g., 
to discipline them) or when the teacher reads from 
a novel in which a character asked a question. 

The coders were seven research assistants and 
researchers whose native language was English. 
The coders first engaged in a training task by la-
beling a common evaluation set of 100 utterances. 
These 100 utterances were manually selected to 
exemplify difficult cases. Once coding of the eval-
uation set was completed, the expert coder, who 
had considerable expertise with classroom dis-
course and who initially selected and coded the 
evaluation set, reviewed the codes. Coders were 
required to achieve a minimal level of agreement 
with the expert coder (Cohen’s kappa, κ	= 0.80). 
If the agreement was lower than 0.80, then errors 
were discussed with the coders. 

After this training task was completed, the cod-
ers coded a subset of utterances from the complete 
dataset. Coders listened to the utterances in tem-
poral order and assigned a code (question or not) 
to each based on the words spoken by the teacher, 
the teachers’ tone (e.g., prosody, inflection), and 
the context of the previous utterance. Coders 
could also flag an utterance for review by a pri-
mary coder, although this was rare. In all, 36% of 
the 10,080 utterances were coded as containing 
questions. A random subset of 117 utterances 
from the full dataset were selected and coded by 
the expert coder. Overall the coders and the pri-
mary coder obtained an agreement of κ	= 0.85.  

2.4 Automatic Speech Recognition (ASR) 

We used the Bing and AT&T Watson ASR sys-
tems (Microsoft, 2014; Goffin et al., 2005), based 
on evaluation in previous work (Blanchard, 2015; 
D’Mello et al., 2015). For both of these systems, 
individual utterances were submitted to the engine 
for transcription. We also considered the Azure 
Speech API (Microsoft, 2016) which processes a 
full-length classroom recording to produce a set 
of time-stamped words, from which we recon-
structed the individual utterances. 

We evaluated the performance of the ASR en-
gines on a random subset of 1,000 utterances. We 
considered two metrics: word error rate (WER), 
which accounts for word order between ASR and 
human transcripts, and simple word overlap 
(SWO), a metric that does not consider word or-
der. WER was computed by summing the number 
of substitutions, deletions, and insertions required 
to transform the human transcript into the com-
puter transcript, divided by the number of words 
in the human transcript. SWO was computed by 
dividing the number of words that appear in both 
the human and computer transcripts by the num-
ber of words in the human transcript. Table 1 pre-
sents the WER and SWO for the three ASR sys-
tems, where we note moderate accuracy given the 
complexity of the task in that we are processing 
conversational speech recorded in a noisy natural-
istic environment.  

 
Table 1. ASR word error rate and simple word over-

lap averaged by teacher for 1,000 utterances, with stand-
ard deviations shown in parentheses. 

ASR WER  SWO 
Bing Speech 0.45 (0.10) 0.55 (0.06) 
AT&T Watson 0.63 (0.11) 0.42 (0.11) 
Azure Speech 0.49 (0.07) 0.64 (0.16) 
 

2.5 Model Building 

We trained supervised classification models to 
predict if utterances contained a question or not 
(as defined in Section 2.3).      

Feature extraction. In this work we focused 
on a small set of domain-general features rather 
than word specific models, such as n-grams or 
parse trees. Because we sampled many different 
teachers and classes, the topics covered vary sig-
nificantly between class sessions, and a content-
heavy approach would likely overfit to specific 
topics. This decision helps emphasize generaliza-
bility across topics as our models are intended to 
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be applicable to class sessions that discuss topics 
not covered in the training set. 

Features (N = 37) were generated using the 
ASR transcripts for each utterance obtained from 
Bing Speech, AT&T Watson, and Azure Speech 
engines. Of these, 34 features were obtained by 
processing each utterance with the Brill Tagger 
(Brill, 1992) and analyzing each token (Olney et 
al., 2003). Features included the presence or ab-
sence of certain words (e.g., what, why, how), cat-
egories of words (e.g., definition, comparison), or 
part-of-speech tags (e.g., presence of nouns, pres-
ence of adjectives). These features were previ-
ously used to detect domain-independent question 
properties from human-transcribed questions 
(Samei et al., 2014). We supplemented these fea-
tures with three additional features: proper nouns 
(e.g., student names), pronouns associated with 
uptake (teacher questions that incorporate student 
responses), and pronouns not associated with up-
take, as recommended by a domain expert on 
teacher questions.  

We extracted all 37 NLP features for each ASR 
transcription, yielding three feature sets. We also 
created a fourth set of NLP features that combined 
the features from the individual ASRs. For this 
set, each feature value was taken as the proportion 
of each features’ appearances in the three ASR 
outputs. For example, if a feature was present in 
an utterance as transcribed by Bing and AT&T, 
but not Azure, then the feature’s value would be 
0.67.  

Oversampling. We supplemented our imbal-
anced training data with synthetic instances (for 
the minority question class) generated with the 
Synthetic Minority Over-sampling Technique 
(SMOTE) algorithm (Chawla et al., 2011). Class 
distributions in the testing set were preserved.  

Classification and validation. We considered 
the following classifiers: logistic regression, ran-
dom forest, J48 decision tree, J48 with Bagging, 
Bayesian network, k-nearest neighbor (k = 7, 9, 
and 11), and J48 decision tree, using implementa-
tions from the WEKA toolkit (Hall et al., 2009). 
For each classifier, we tested with and without 
wrapping the classifiers with MetaCost, a cost-
sensitive procedure for imbalanced datasets that 
assigned a higher penalty (weights of 2 or 4) to 
misclassification of the question class. 

Classification models were validated using a 
leave-one-teacher-out cross-validation technique, 
in which models were built on data from 10 teach-
ers (training set) and validated on the held-out 
teacher (testing set). The process was repeated un-
til each teacher was included in the testing set. 

This cross-validation technique tests the potential 
of our models to generalize to unseen teachers 
both in terms of acoustic variability and in terms 
of variability in question asking. 

3 Results 

3.1 Classification Accuracy 

In Table 2 we present the best performing classi-
fication model for each ASR and their combina-
tion based on the F1 score for the question class 
(target metric). Table 2 includes the F1 score for 
the question class, the F1 score for the non-ques-
tion class, and the overall weighted F1 score. The 
best-performing individual ASR models were 
each Bayesian networks. The combined model 
was built with J48 with Bagging and with Meta-
Cost (miss weight of 2). We show the confusion 
matrix for this model in Table 3.  
 

Table 2. Results of best models for question detection. 

Model F1 
Question 

F1 Not-
Question 

F1 
Overall 

AT&T 0.52 0.68 0.63 
Azure 0.53 0.67 0.63 
Bing 0.54 0.67 0.63 
Combined 0.59 0.74 0.69 

 
Table 3. Confusion matrix of combined ASR model 

for Question (Q) and Utterances (U). 

n Actual Predicted 
  Q U 

3586 Q 2273 1313 
6494 U 1946 4548 

 
Overall, these results show a general con-

sistency between the models using individual 
ASR transcriptions, which imply the relative suc-
cess of each despite the differences in WER. Fur-
thermore, we note that the combination of three 
ASR transcriptions resulted in improved perfor-
mance compared to models built using individual 
ASR transcriptions. Using the combined model, 
we achieved slightly higher recall (0.63) than pre-
cision (0.57) for identifying questions.  

We also compared our results to a chance 
model that assigned the question label at the same 
rate (42%) as our model, but did so randomly 
across 10,000 iterations. We consider this ap-
proach to computing chance to be more informa-
tive than a naïve minority baseline model (as the 
class of interest is the minority class) that would 
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yield perfect recall but negligible precision. The 
chance model had a mean recall of 0.42 and pre-
cision of 0.36 for the question class. From these 
averages, we calculated the chance F1 score for 
questions (0.39). Our combined model achieved 
an F1 score of 0.59 for the question class, which 
represents a 51% improvement over chance.  

3.2 Feature Analysis 

We explored the utility of the individual features 
using forward stepwise feature selection (Draper 
et al., 1966). For each individual ASR engine we 
identified the features selected in all folds of the 
teacher-level cross-validation procedure. We 
found four of the features were used in all three of 
the ASR models: how, what, why, and wh- (any 
word that starts with “wh-“, including who and 
where). The selection of these features across the 
different ASR feature sets is perhaps unsurprising, 
but these results confirm that identifying question 
words are paramount for detecting questions re-
gardless of the specific ASR engine.  

3.3 Consistency Across Class-Sessions 

The models were trained using leave-one-teacher-
out cross-validation, but we perform additional 
post-hoc analyses exploring the model’s accuracy 
across the 37 individual class sessions. This anal-
ysis allows an investigation of the stability of our 
model for individual class sessions, which will be 
essential for generalizability to future class ses-
sions and topics.  

Question Rate Analysis. Some applications 
only require an overall indication of the rate of 
question asking rather than identifying individual 
questions. To analyze the use of our model to 
these applications, we compared the proportion of 
predicted to actual questions for each class session 
(see Figure 1). There was a mean absolute differ-
ence of 0.08 (SD = 0.06) in the predicted propor-
tion of questions compared to the true proportion 
(Pearson’s r = 0.85). This small difference and 
strong correlation indicates that even though there 
are misclassifications at the level of individual ut-
terances, the error rate is ameliorated at the ses-
sion level, indicating the model performs well at 
correctly predicting the proportion of questions in 
a class session.  

Performance Across Class-Sessions. Figure 2 
presents a histogram of F1 scores for the question 
class by class session. We note that model accu-
racy was evenly spread across class sessions ra-
ther than being concentrated on the tails (which 
would indicate a skewed distribution). In particu-
lar, 25% of the class sessions scored below 0.47 

and 25% of the sessions scored above 0.66, yield-
ing an interquartile range of 0.47 to 0.66. Encour-
agingly, the poorest performing class session still 
yielded an F1 score of 0.33 while the best class 
session had a score of 0.84.  

 

 
Figure 1. Proportion of predicted to actual questions 

in each class session. 

 
Figure 2. Histogram of F1 scores for the question 

class by class-session.  

 
 

Figure 3. Models (ASR vs. human) built on 1,000    
utterance subset. 

 

3.4 Effects of ASR Errors 

We explored how our models were affected by 
ASR errors. We built models on the subset of 
1,000 utterances that we manually transcribed to 
evaluate WER and SWO of the ASRs in Section 
2.4. Specifically, we retrained the J48 classifier 
reported in Section 3.1 on this data subset, using 
the combination of features from the three indi-
vidual ASRs, comparing it to the same model built 

0.0

0.5

1.0

0.0 0.5 1.0

Ac
tu

al
 P

ro
po

rti
on

Predicted Proportion

0

4

7

0.35 0.45 0.55 0.65 0.75 0.85

Fr
eq

ue
nc

y

0.0

0.5

1.0

Question Non-Question Overall

F 1
Sc

or
e

ASR Human

196



Table 4. Confusion matrix showing a comparison of the ASR and Human models. 

using features extracted from the human transcrip-
tions. The results of leave-one-teacher-out cross-
validation are shown in Figure 3. 

We must note that direct comparisons of mod-
els built on this subset of 1,000 instances with 
those built on the full data set (Section 3.1) are 
improper due to significantly fewer training in-
stances in the former. In general, the human model 
achieved a higher F1 for the question class com-
pared to the combined ASR model, while the ASR 
model has a higher F1 for the non-question class. 
We also note the tendency of the human model to 
over-predict questions, potentially resulting from 
the use of the MetaCost wrapper. 

We further compared the predictions of the hu-
man and ASR models and observed that both 
models agreed in classifying utterances, either 
correctly or incorrectly, as questions and non-
questions 65% of the time (see Table 4). They dif-
fered 35% of the time, disagreeing 25% of the 
time for non-questions and 10% of the time for 
questions. We note that, when the models disa-
greed, the human model was more likely to clas-
sify a non-question as a question (16%) compared 
to the ASR (9%), presumably due to its tendency 
to over-predict questions as noted above. 

3.5 Analysis of Classification Errors 

We selected a random sample of 100 incorrectly 
classified utterances using the human transcrip-
tion model (so as to eliminate ASR errors as a po-
tential explanation) to study possible causes of er-
rors. We identified 44 utterances with common er-
ror patterns, whereas the cause of the error could 
not be easy discerned for the remaining 56 incor-
rectly classified utterances. 

Out of the 44 errors, 24 were misses (questions 
predicted as non-questions). In 5 of these 24 
misses, the question was only one part of the ut-
terance (e.g., “If I could just get this thing to open 
I’d be fine. Can you do it?”). The remaining 19 
errors yielded examples of question types that 
may be problematic for our model. These include 
calling on individual students (e.g., “Sam?”), rhe-
torical questions (e.g., “musical practice, 

right?”), implicit questions requiring clues from 
previous context (e.g., “why did she say that?”), 
fill-in-the-blank questions (e.g., “Madagascar 
and _______?”), and students being directed to 
speak, rather than being asked a traditional ques-
tion (e.g., “tell us about it”).  

Additionally, there were 20 false alarms (non-
questions incorrectly classified as questions). 
Nine of these non-questions were offhand/casual 
statements made by teachers (“I don’t know if you 
guys should call him that or not” said jokingly) 
while interacting with student, indicative of the 
difficulty of classifying questions in contexts with 
informal dialogue. Five short utterances may have 
been classified incorrectly because of limited con-
text (e.g., “good.” vs. “good?”, “okay.” vs. 
“okay?”). Three misclassifications involved 
teachers reading directly from a book, (e.g., quot-
ing a passage from a novel in which a character 
asks a question). Additionally, there was one 
aborted statement and one aborted question, in 
which the teacher started to say something but 
changed course mid-sentence (e.g., “No wh- … 
put that away!”). Finally, in another case, the 
teacher paused midsentence, resulting in a very 
short utterance that left the full intent of the state-
ment to the next utterance (e.g., “Juliet reversed 
course, the nurse…”). This last example high-
lights the difficulties of classifying questions with 
imperfect sentence boundaries (see Section 2.3) as 
is the case with our data. In general, 15 of the 20 
false alarms were associated with changes in 
speaking style from traditional teacher speech in 
classrooms.  

4 General Discussion 

The importance of teacher questions in class-
rooms is widely acknowledged in both policy 
(e.g., Common Core State Standards for Speaking 
and Listening (2010)) and research (Nystrand and 
Gamoran, 1991; Applebee et al., 2003; Nystrand 
et al., 2003). Teacher questions play a central role 
in student engagement and achievement, suggest-
ing that automating the detection of questions 

Actual Predicted 
  Human Q Human Q Human NQ Human NQ 
Priors  ASR Q ASR NQ ASR Q ASR NQ 
0.30 Q 0.15 0.07 0.03 0.05 
0.70 NQ 0.18 0.16 0.09 0.28 
Note: Q indicates a question and NQ indicates a non-question. Bolded numbers indicate both models 
agreed while italicized numbers indicate disagreement.  
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might have important consequences for both re-
search on effective instructional strategies and on 
teacher professional development. Thus, our cur-
rent work centers on a fully-automated process for 
predicting teacher questions in a noisy real-world 
classroom environment, using only a full-length 
audio recording of teacher speech. 

4.1 Main Findings 

We present encouraging results with our auto-
mated processes, consisting of VAD to automati-
cally segment teacher speech, ASR transcriptions, 
NLP features, and machine learning. In particular, 
our question detection models excel in aggrega-
tion of utterances: the detected proportion of ques-
tions per class strongly correlates with the propor-
tion of actual questions in the classroom (Pear-
son’s r = 0.85). In addition, our models provided 
promising results in the detection of individual 
questions, although further refinement is needed. 
Both types of analysis are useful in providing 
formative feedback to teachers, at coarse- and 
fine-grained levels, respectively. 

A key contribution of our work over previous 
research is that our models were trained and tested 
on automatically-, and thus imperfectly-, seg-
mented utterances. This extends the work of (Oro-
sanu and Jouvet, 2015) which artificially explored 
perturbations of a subset of utterance boundaries 
using the automatic detection of silence within hu-
man-segmented spoken sentences. To our 
knowledge, our work is the first to detect spoken 
questions using a fully automated process. Our 
best model achieved an overall F1 score of 0.69 
and an F1 score of 0.59 for the question class. This 
represents a substantial 37% improvement in 
question detection accuracy over a recent state-of-
the-art model (Boakye et al., 2009) that reported 
an overall F1 of 0.50; the authors do not report F1 
for the question class so the comparison is based 
on the overall F1.  

We validated our models using leave-one-
teacher-out cross-validation, demonstrating gen-
eralizability of our approach across teachers in 
this dataset. Furthermore, we analyzed model per-
formance by class session, finding our model was 
consistent across class sessions, an encouraging 
result supporting our goals of domain-independ-
ent question detection.  

We also explored the differences between mod-
els using ASR transcriptions and using human 
transcriptions. Overall, the results were quite 
comparable suggesting that imperfect ASR need 
not be a barrier against automated question detec-
tion in live classrooms. 

4.2 Limitations and Future Work 

This study is not without limitations. We designed 
our approach to avoid overfitting to specific clas-
ses, teachers, or schools. However, all of our re-
cordings were collected in Wisconsin, a state that 
uses the Common Core standard. It is possible that 
the Common Core may impose aspects of a par-
ticular style of teaching that our models may over-
fit. Similarly, although we used speaker-inde-
pendent ASR and teacher-independent validation 
techniques to improve generalizability to new 
teachers, our sample of teachers are from a single 
region with traditional Midwestern accents and 
dialects. Therefore, broader generalizability 
across the U.S. and beyond remains to be seen.  

We acknowledge that our method for teacher 
utterance segmentation may potentially be im-
proved using proposed techniques in related 
works. Komatani et al. (2015) has explored de-
tecting and merging utterances segmented mid-
sentence, allowing analysis to take place on a full 
sentence, rather than a fragment, which may im-
prove question detection by merging instances in 
which questions were split. An alternative ap-
proach would be to automatically detect sentence 
boundaries within utterances, and extract features 
from each detected sentence. 

Our analysis of errors in Section 3.5 suggests 
that acoustic and contextual features may be 
needed to capture difficulty to classify questions. 
Additionally, related work on question detection 
(see Section 1.1) suggested that acoustic, contex-
tual, and temporal features (Boakye et al., 2009) 
may aid in the detection of questions. We will ex-
plore this in future work to determine if features 
capturing these properties will help improve our 
models for this task. Likewise, we will also ex-
plore temporal models, such as conditional ran-
dom fields and bi-directional long-short-term neu-
ral networks, which might better capture ques-
tions in the larger context of the classroom dia-
logue. This temporal analysis may help find se-
quences of consecutive questions, such as those 
present in question-and-answer sessions or in 
classroom discussions. 

Further, Raghu et al. (2015) has explored using 
context to identify non-sentential utterances 
(NSUs), defined as utterances that are not full sen-
tences but convey complete meaning in context. 
The identification of NSUs may improve our 
model’s ability to differentiate between difficult 
cases (e.g., calling on students, saying a student’s 
name for discipline).  
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In addition to addressing these limitations by 
collecting a more representative corpus and com-
puting additional features, there are several other 
directions for future work. Specifically, we will 
focus on classifying question properties defined 
by Nystrand and Gameron (2003).  While we have 
explored these properties in previous work (Samei 
et al., 2014; Samei et al., 2015), that work used 
perfectly-segmented and human-transcribed ques-
tion text. We will continue this work using our 
fully-automatic approach that employs automatic 
segmentation and ASR transcriptions. 

4.3 Concluding Remarks 

We took steps towards fully-automated detection 
of teacher questions in noisy real-world classroom 
environments. The present contribution is one 
component of a broader effort to automate the col-
lection and coding of classroom discourse. The 
automated system is intended to catalyze research 
in this area and to generate personalized formative 
feedback to teachers, which enables reflection and 
improvement of their pedagogy, ultimately lead-
ing to increased student engagement and achieve-
ment. 
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Abstract

Conversant-independent stochastic turn-
taking (STT) models generally benefit
from additional training data. However,
conversants are patently not identical in
turn-taking style: recent research has
shown that conversant-specific models can
be used to refractively detect some conver-
sants in unseen conversations. The current
work explores an unsupervised framework
for studying turn-taking style variability.
First, within a verification framework us-
ing an information-theoretic model dis-
tance, sides cluster by conversant more of-
ten than not. Second, multi-dimensional
scaling onto low-dimensional subspaces
appears capable of preserving distance.
These observations suggest that, for many
speakers, turn-taking style as character-
ized by time-independent STT models is
a stable attribute, which may be corre-
lated with other stable speaker attributes
such as personality. The exploratory tech-
niques presented stand to benefit speaker
diarization technology, dialogue agent de-
sign, and automated psychological diag-
nosis.

1 Introduction

Turn-taking is an inherent characteristic of spoken
conversation. Among models of turn-taking (Jaffe
et al., 1967; Brady, 1969; Wilson et al., 1984;
J. Dabbs and Ruback, 1987; Laskowski, 2010;
Laskowski et al., 2011b), those labeled “stochas-
tic turn-taking models” (Wilson et al., 1984) of-
fer a particular advantage: they are independent of
the meaning of just what a “turn” might be. This
is felicitous, since researchers are in disagreement
over the definition. Instead, stochastic turn-taking

(STT) models provide a probability that a specific
participant speaks at instant t, conditioned on what
that participant and her interlocutors were doing at
specific prior instants. Whether her speaking con-
stitutes something that might be called a “turn” is
not germane to the applicability of STT models.

In their most commonly studied form (Jaffe
et al., 1967; Brady, 1969; Laskowski, 2010),
STT models condition their estimates on a history
that consists exclusively of binary speech/non-
speech variables; the extension to more com-
plex characterizations of the past have been stud-
ied (Laskowski, 2012) but comprise the minor-
ity. In this binary-feature mode of operation, STT
models ablate from conversations the overwhelm-
ing majority of the overt information contained
in them, including topic, choice of words, lan-
guage spoken, intonation, stress, voice quality,
and voice itself, leaving only speaker-attributed
chronograms (Chapple, 1949) of binary-valued
behavior. This is a strength particular to STT mod-
els: they are language-, topic-, and text- agnostic,
and therefore stand to form a universal framework
for comparison of conversational behavior, where
other methods would need to be extended to cross
language, topic, and speech usage boundaries.

Given the paucity of information contained in
chronograms, however, it is surprising that they
have been efficiently exploited in the supervised
tasks of conversation-type inference, participant-
role inference, social status inference, and even
identity inference. The current article aims to ex-
tend understanding of STT models in an unsuper-
vised way, by starting from a theoretically sound
distance metric between models of individual,
interlocutor-contextualized conversation sides. In
the space induced by these distances, experiments
and analyses are performed which aim to answer
a fundamental question: Do people behave self-
consistently, across disparate longitudinal obser-
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vations, in terms of their turn-taking preferences?
(Self-consistency within conversations was stud-
ied indirectly in (Laskowski et al., 2011b).) To
provide an answer, between-person scatter is com-
pared to within-person scatter, and accounts are
sought for both types of variability. The find-
ings reveal that models of persons are in fact self-
consistent on average, and that, therefore, both (1)
the persons they model are self-consistent, and (2)
the modeling framework presented here is capable
of capturing that self-consistency, while simulta-
neously differentiating among persons. The work
has important implications for social psychology,
diarization technology, and dialogue system de-
sign.

2 Data

The data used in this work was drawn from the
ICSI Meeting Corpus (Janin et al., 2003), which
consists of 75 multi-party meetings involving nat-
urally occurring, spontaneous speech. It has been
claimed that the meetings would have taken place
even if they were not being recorded.

DATASET as defined here is limited to all 29 of
the Bmr meetings, i.e. those held by the group of
15 researchers working on the Meeting Recorder
project at ICSI. Not all 15 persons participated in
every meeting; each of the 29 meetings was at-
tended by an average of 6.8 persons. The total
number of conversation sides in DATASET is 197.
The distribution of sides per participant is shown
in Figure 1.
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Figure 1: The number of sides in DATASET con-
tributed by each of its 15 participants.

Each meeting in the ICSI Meeting Corpus con-
tains an interval of time (at the beginning or end of
the meeting) marked as Digits, used for micro-
phone calibration. This interval was excluded for

the current purposes, as it does not involve conver-
sation. Each recording was left with between 22.8
and 74.5 minutes of data, with an average of 48.4
minutes.

3 Methodology

3.1 Chronograms

From each meeting C in DATASET, a speech/non-
speech chronogram (Chapple, 1949) was con-
structed, designated by Q. Q is a matrix whose
entries are one of {�, �}, or equivalently {0, 1},
designating non-speech or speech respectively.
Rows represent the K persons participating in the
meeting, while columns represent 100-ms time
frames covering its temporal support. The aver-
age Q in DATASET thus contained K = 7 rows
and T = 29K columns.

The cell in row k and columnt t of every Q was
populated, by a value of � or �, by inspecting
the forced alignments to the manually transcribed
speech attributed to the kth speaker of the cor-
responding meeting. The transcriptions, attribu-
tions, and alignments had been made available by
ICSI in (Shriberg et al., 2004). A frame incre-
ment of 100 ms was chosen as in (Laskowski et
al., 2011b) and (Laskowski et al., 2011a); this is
shorter than the average syllable duration, ensur-
ing that no speech is missed, but longer than the
frame step of the recognizer used by ICSI for the
forced alignment. This makes the models devel-
oped in the current work robust to imprecision in
word start and end times.

3.2 Stochastic Turn-Taking Models

The models used in the current work are prob-
abilistic generative models that, given a chrono-
gram Q ∈ {�, �}K×T , provide the probability
that its kth participant will speak during its tth
frame. Participants are most commonly (Jaffe et
al., 1967; Brady, 1969; Laskowski et al., 2011b)
treated as conditionally independent (or “single-
source” in the terminology of (Jaffe et al., 1967));
namely, the probability of speaking at frame t
for participant k is independent of what the other
K − 1 participants do at frame t, but it is condi-
tioned on the joint K-participant history. The his-
tory duration, in number of most-recent contigu-
ous frames, is denoted henceforth by τ .

In multi-party conversation, the number K of
participants varies from conversation to conver-
sation, leading to a context of variable size. To
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eliminate this complication, when constructing or
accessing the model describing the kth row of
chronogram Q, the remaining K − 1 rows (rep-
resenting the kth participant’s interlocutors) are
collapsed via an inclusive-OR operation, to pro-
vide a single “all interlocutors” row. This results
in a conditioning history of τ frames of the kth
participant, and τ frames of context describing
whether any of the kth participant’s interlocutors
were speaking at instant t − τ (Laskowski et al.,
2011b).

The above method yields a history duration
which is independent of K, and lends itself eas-
ily to N -gram modeling. The elements of the
conditioning history are marshalled into a one-
dimensional order, and counts are accumulated
as elsewhere for N -grams. This results in a
maximum-likelihood (ML) model pA (q|h) for a
sequence denoted A, with q ∈ {�, �} and h the
conditioning history. In (Laskowski et al., 2011b),
such models were interpolated with lower-order
(smaller-τ ) models (Jelinek and Mercer, 1980),
yielding smoothed models p̃A (q|h). In the ab-
sence of smoothing, as in the current work, the or-
der of the elements of the (2× τ)-length history is
unimportant, provided it is fixed.

3.3 Supervised Modeling
In supervised modeling, a model A is constructed
from one or more conversation sides attributed to
the same speaker, and then that model is applied to
a conversation side B whose speaker is unknown.
In this case, a commonly used score between gen-
erative model A and sequence B is the average
negative log-likelihood of the sequence given the
model, which is also known as the conditional
cross entropy:

H (pB (q|h) |p̃A (q|h))

= −
∑
h,q

pB (h, q) log p̃A (q|h) , (1)

where pB (h, q) are the ML joint probabilities ob-
served in sequence B. Equation 1 is often normal-
ized by subtracting the conditional entropy (Cover
and Thomas, 1991),

H (pB (q|h))

= −
∑
h,q

pB (h, q) log pB (q|h) . (2)

yielding the conditional relative entropy or con-
ditional Kullback-Leibler divergence (Cover and

Thomas, 1991):

DKL (pB (q|h) ‖p̃A (q|h))

=
∑
h,q

pB (h, q) log
pB (q|h)
p̃A (q|h)

. (3)

For example, in the context of stochastic turn-
taking models, Equation 1 was successfully used
with zero-normalization of scores (Laskowski,
2014).

3.4 Unsupervised Modeling
In the unsupervised case, a score does not nor-
mally compare a sequence B to a model A, but
rather a sequence A to a sequence B (or, alter-
nately, a model trained on sequence A to a model
trained on sequence B). Because of this symme-
try, it is desirable for the score itself to be symmet-
ric; the conditional Kullback-Leibler divergence in
Equation 3 does not exhibit this quality and, ad-
ditionally, is unbounded. It is therefore custom-
ary to compute the conditional Jensen-Shannon di-
vergence (Lin, 1991), which for two equal-weight
conditional probability models pA and pB is given
by

DJS (pA (q|h) ‖pB (q|h))

≡ 1
2

DKL (pB (q|h) ‖p (q|h))

+
1
2

DKL (pA (q|h) ‖p (q|h)) . (4)

Here, p (q|h) is the “joint-source” (ie. A and B)
model; (El-Yaniv et al., 1997) showed that for
models of conditional probability, its form is

p (q|h) = λA (h) · pA (q|h)
+ λB (h) · pB (q|h) , (5)

namely that it is the linear interpolation of the two
single-source models, with weights given by their
relative probabilities of the occurrence of the con-
text h:

λA (h) =
pA (h)

pA (h) + pB (h)
(6)

λB (h) =
pB (h)

pA (h) + pB (h)
. (7)

The Jensen-Shannon distance, a score which is
both bounded and symmetric, is given by

dA,B ≡
√

DJS (pA (q|h) ‖pB (q|h)) . (8)
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Table 1: Leave-one-out (LOO) modified-KNN classification accuracies, using Jensen-Shannon distances
between STT models of individual conversation sides in DATASET. K specifies the maximal number
of neighbors; τ is the number of 100-ms frames of conditioning history. Each frame contains 2 bits of
information: whether the modeled-side participant was speaking, and whether any of that participant’s
interlocutors were speaking.

τ
K

1 2 3 4 5 6 7 8
1 0.37 0.44 0.56 0.54 0.47 0.37 0.18 0.09
3 0.36 0.53 0.51 0.55 0.48 0.37 0.16 0.09
5 0.40 0.53 0.59 0.58 0.49 0.34 0.15 0.07
7 0.40 0.54 0.59 0.57 0.49 0.33 0.16 0.07
9 0.41 0.54 0.57 0.57 0.50 0.33 0.13 0.07
11 0.43 0.55 0.59 0.57 0.52 0.33 0.15 0.08
13 0.43 0.54 0.60 0.57 0.54 0.34 0.15 0.09
15 0.45 0.54 0.60 0.58 0.54 0.35 0.18 0.10
17 0.45 0.54 0.59 0.59 0.55 0.36 0.20 0.13
19 0.45 0.55 0.60 0.58 0.54 0.38 0.21 0.13
25 0.44 0.53 0.57 0.57 0.53 0.38 0.21 0.13

3.5 Modified Nearest-Neighbor Classification

A central goal of the current work is the determi-
nation of whether two sequences, produced by the
same person in different conversations, are more
proximate than are two sequences produced by
two different persons. One answer to this question
can be provided by classifying sequences based
on their proximity, of which the formalization is
known as K-nearest neighbor classification (Fix
and Hodges, 1951). The input to the algorithm
is a symmetric, zero-diagonal distance matrix D,
whose entries are pair-wise distances.

Here, a modified version of the algorithm is em-
ployed. If the speaker g of the side being classi-
fied is known to have produced only Ng − 1 other
sides in the collection of sides under study, then
K is limited to Ng − 1 for that classification trial.
The use of such side information may be perceived
as unfair; however, the aim is diagnostic, and no
effort has been made in the current work to nor-
malize the distances in D for local density differ-
ences. In addition, it makes little sense to penal-
ize an analysis for those trials whose speakers pro-
duced no other sides in DATASET (cf. Section 2).
The results of such a diagnostic test can be use-
fully compared to the outcome of random guess-
ing under the same circumstances.

An alternative approach, consisting of applying
clustering to the distance matrix, was also tried;
the results yielded similar (albeit more difficult to

disentangle) results and are not presented due to
space constraints.

3.6 Multidimensional Scaling
Finally, multidimensional scaling (MDS; cf.
(Borg and Groenen, 2005) for example) was ap-
plied in an attempt to embed models in a low-
dimensional space and to facilitate visual analysis.
The experiments used the smacofSym() func-
tion (de Leeuw and Mair, 2009) implementation
in R.

4 Results

For a given τ ∈ [1, 2, 3, . . . , 8], each conversa-
tion side qn of the N = 197 sides in DATASET

was used to train a side-specific maximum like-
lihood (ML) model θn. The distance between ev-
ery pair of models was then computed using Equa-
tion 8, leading to a symmetric, zero-diagonal dis-
tance matrix D ∈ R197×197

+ .

4.1 Diagnostic Classification
D was then used within the modified K-nearest
neighbor participant-identity classification frame-
work described in Section 3.5. The achieved accu-
racies are shown in Table 1.

As can be seen, the highest accuracies are ob-
tained for τ ∈ [2, 3, 4, 5] with K > 7, with
an absolute maximum from among those ex-
plored of 60%, at τ = 3 and K = 15. This
is considerably in excess of 11%, the accuracy
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Table 2: LOO modified-KNN classification accuracies, using distances computed following multidimen-
sional scaling (MDS) of the distances between STT models of individual conversation sides in DATASET,
to 5 dimensions. Compare to Table 1.

τ
K

1 2 3 4 5 6 7 8
1 0.37 0.47 0.49 0.56 0.59 0.54 0.55 0.47
3 0.39 0.49 0.57 0.58 0.62 0.61 0.58 0.48
5 0.39 0.46 0.61 0.62 0.65 0.62 0.60 0.52
7 0.40 0.48 0.59 0.63 0.66 0.61 0.59 0.53
9 0.43 0.51 0.58 0.63 0.66 0.62 0.56 0.54
11 0.43 0.49 0.58 0.62 0.68 0.61 0.59 0.53
13 0.43 0.49 0.58 0.63 0.68 0.60 0.60 0.52
15 0.45 0.51 0.57 0.64 0.69 0.61 0.59 0.52
17 0.44 0.52 0.60 0.66 0.70 0.63 0.59 0.54
19 0.45 0.53 0.60 0.65 0.69 0.62 0.58 0.54
25 0.44 0.53 0.59 0.65 0.68 0.63 0.59 0.53

achieved by random guessing with the DATASET

priors. This result corroborates the findings in
(Laskowski, 2014), that participant identities can
frequently be inferred from STT models; the dif-
ference with (Laskowski, 2014) is that in the lat-
ter work, models were trained on same-person sets
of sides in a training portion of the data, rather
than on individual sides, and that the asymmet-
ric conditional cross entropy (Equation 2, with
zero-normalization) was used rather than Jensen-
Shannon divergence (Equation 4).

4.2 Diagnostic Classification after Scaling

The computed pair-wise Jensen-Shannon dis-
tances lie in a space of unknown effective dimen-
sionality; the determination of that effective di-
mensionality is one of the implicit aims of the cur-
rent work. To this end, the distances were em-
bedded in a fixed-dimensionality subspace, using
multidimensional scaling (MDS) as described in
Section 3.6. All 19306 pair-wise distances com-
prising D were then re-computed from the MDS-
derived positions, and the diagnostic experiment
of Section 4.1 was repeated. The results for a 5-
dimensional subspace are shown in Table 2.

As can be seen, relative to Table 1, MDS to 5
dimensions actually increases the attainable clas-
sification accuracy, to 70% at τ = 5 and K = 17.
This suggests that there is considerable noise in
the distance estimates, and that scaling effectively
collapses some of that variability. The accuracy-
maximizing number of dimensions, whose identi-
fication is beyond the scope of the current work,

is expected to be specific to any particular data
set. However, it is notable that for DATASET

this “elimination of unwanted variance” occurs
for the higher-complexity (τ > 2) models; dis-
tances computed using these are more likely to be
noisy that those computed using simpler models,
for fixed conversation-side durations. Since the
τ = 8 context contains the τ = 5 context, this sug-
gests that the duration of the conversations studied
here, between 22.8 and 74.5 minutes, may be in-
sufficient to infer robust long-conditioning-history
models.

Similar experiments were performed after MDS
scaling to each of {4, 3, 2, 1} dimensions. The re-
sults are not shown due to space constraints. A
summary of the maximum achieved accuracy in
each case is depicted in Figure 2.

The figure shows that with each reduction of di-
mensionality of the embedding subspace, by one
additional dimension, the maximum achievable
accuracy falls by an increasing amount. Although
for a one-dimensional subspace the accuracy of
35% is still considerably above chance (11%), it
is already (just) less than halfway to the accuracy
achieved without scaling (60%).

At 3 dimensions, the accuracy of 58% is almost
the same as that achieved without scaling; it oc-
curs at τ = 6 and K = 17 (not shown). This sug-
gests that the relative magnitudes of the distances
are preserved in a continuous small-dimensional
space, and may have implications for understand-
ing what STT models actually learn. For example,
each of the dimensions may be strongly correlated
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Figure 3: Positions of 197 models, each of one conversation side in DATASET, as inferred using a Jensen-
Shannon distance matrix and multidimensional scaling (MDS) to 3 dimensions. Sides produced by the
five most frequently-occurring persons (cf. Section 2) are identified explicitly, together with ellipses
representing projections of the corresponding 50% error ellipsoid.
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Figure 2: Maximum achieved LOO modified-
KNN classification accuracies, using distances
computed following MDS down to [5, 4, 3, 2, 1]
dimensions of the distances between STT mod-
els of individual conversation sides in DATASET.
The accuracies are compared to the maximum ac-
curacy achieved using unscaled distances (“orig”)
and random guessing with actual LOO priors
(“rand”).

with an independently measurable human trait or
role trait. In that case, such traits could be used to
index STT models, for both generation and recog-
nition purposes in multi-party conversational set-
tings.

4.3 Model Subspace Visualization

It is serendipitous that, for the data set under inves-
tigation, three dimensions suffice to yield a good
approximation of the accuracy achievable with-
out scaling. A three-dimensional space is con-
siderably easier to inspect visually, and to under-
stand, than are higher-dimensional spaces. Fig-
ure 3 shows the MDS-derived locations, two di-

mensions at a time. The 197 datapoints, repre-
senting models of individual conversation sides,
are seen to comprise a cloud with heterogenous,
locally clumpy density. The determinant of the to-
tal scatter matrix, given these inferred positions, is
2.74× 103.

The determinants of the between-class scatter
matrix and the within-class scatter matrix, given
the model positions shown in Figure 3, are 3.29×
103 and 2.86 × 103, respectively. It appears
from these numbers that the variability between
different-person sides is on average larger than the
variability between same-person sides, which in
turn suggests that people exhibit low variability —
even across longitudinal spans of many months —
relative to what differentiates them from others.

5 Discussion

5.1 Intra-Person Variability
It is relevant to try to determine whether the vari-
ability observed among models of the same person
are due to actual variability of behavior or to mea-
surement error. One source of measurement er-
ror could be the relative duration of conversations,
leading to unequally (under)trained models. Fig-
ure 4 depicts the five most frequent participants in
DATASET, at the same positions as in Figure 3(a),
with marker size indicative of the duration of ob-
servation.

It can be seen that, broadly, shorter-duration
conversations yield models which lie at the pe-
riphery of the error ellipses. This indicates that
— were conversations longer or models more par-
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Figure 4: Replication of Figure 3(a) with marker
size linearly proportional to the duration of con-
versation from which each side is drawn. Sides for
only the top five most frequent participants shown.

simonious — the resulting error ellipses (shown
unchanged from Figure 3(a) in Figure 4) may be
tighter, and thereby even more discriminative.

A second potential source of intra-person vari-
ability may be not just the duration of observa-
tion (i.e. the duration of conversation), but how
talkative a person is during a specific conversa-
tion. Although the models employed here make
no mathematical distinction between speaking and
not speaking, in multi-party turn-taking the av-
erage participant speaks for only a minority of
time, making speaking (versus not speaking) a dis-
tinctively marked behavior. Figure 5 is like Fig-
ure 4, but marker size is indicative of the amount
of speech observed for each side.

Figure 5 shows that points lying in the bot-
tom right of the figure represent low quantities
of speech per side, globally. This appears to be
true for individual speakers separately, particularly
for the top three most frequent participants (and
me013 most markedly). Since the ellipses ap-
pear cigar-shaped, fanning out from the bottom
right, these observations suggest that when given
the opportunity to speak a lot, participant models
“move” to the upper left where they may be even
further apart. They also suggest that a quantity en-
coded in the plane of the first and second MDS
dimensions (“DIM1” and “DIM2” in the figure) is
the proportion of speech produced by each person,
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Figure 5: Replication of Figure 3(a) with marker
size linearly proportional to the amount of speech
observed for each side. Sides for only the top five
most frequent participants shown.

or their “talkativity”.

5.2 Inter-Person Variability

A source of established (Laskowski et al., 2008)
variability in turn-taking models trained using the
ICSI Meeting Corpus is the relative seniority of
participants within a group. (Laskowski et al.,
2008) used the self-reported Education level.
Figure 6 retains the topology shown in Figure 3(a),
but markers represent the educational level of in-
dividual participants in DATASET. It can be seen
that students (Undergrad and Grad) occupy
exclusively the lower half in the diagram, while
Postdoc and Professor are found predomi-
nantly in the upper half, but in separate clusters.
Persons of type PhD exhibit no such leanings.

Figure 6 suggests that education level is indeed
discriminated by the STT-model topology inferred
via MDS. (Laskowski et al., 2008) observed that
despite the fact that persons of type Professor
spoke a lot, they appeared to avoid overlap with
persons of type Undergrad. Such tendencies are
most likely the result of social roles within the or-
ganization, and not of educational level per se, but
role and education level are probably very corre-
lated in an academic setting. It may be tentatively
concluded that the (“DIM 1”,“DIM 2”) plane also
encodes, in addition to each person’s “talkativity”
(cf. Subsection 5.1), their tendency to initiate and
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terminate talk in overlap.
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Figure 6: Replication of Figure 3(a) with marker
shape denoting the self-reported education level of
each side.

It should be noted that, unlike the measure-
ment of intra-person variability, the measurement
of inter-person variability is likely a function of
the size of the group of people studied. As de-
scribed in Section 2, the group considered here
consists of 15 individuals, some of which partic-
ipated in only a handful of conversations. For
larger groups, it can be expected that — if models
represent interaction styles — inter-person vari-
ability under a fixed model order and a fixed ob-
servation duration will decrease, since nothing a
priori prevents multiple individuals from interact-
ing using the same or similar-enough style. Since
intra-person variability is independent of the num-
ber of other persons considered, it is expected to
remain constant under group resizing. The ratio of
the inter-person variability to the intra-person vari-
ability is therefore likely to decrease with increas-
ingly larger group sizes, when the model complex-
ity and observational duration remain constant.

5.3 Training Speaker-Independent Models
That within-person SST-model variability can be
smaller than between-person variability, as discov-
ered in the dataset used in the current study, has
important consequences for training broad STT
models, intended to be applicable to a wide variety
of domains and conversational interaction styles.
The results presented indicate that including more

training data, without careful consideration of its
interaction-style content, may bias the model to-
wards the styles present in the training data and
therefore away from the styles in test data — since
they can be so different. In this sense, the re-
sults corroborate earlier, similar findings for do-
main and topic variability in language modeling
within automatic speech recognition.

5.4 Potential Impact and Applications

Over and above the immediate recommendations
for the training of STT models, the results ob-
tained in the current study may have several con-
sequences for at least three research areas.

An understanding of the contexts in which par-
ticipants to conversation choose to vocalize can
usefully inform the construction of speaker di-
arization systems. Current state-of-the-art diariza-
tion technology, as used in the transcription of
far-field recordings of multi-party meetings, over-
segments the temporal support of the recorded
track and then performs agglomerative hierarchi-
cal clustering using spectral or voice-print similar-
ity. The prior knowledge used in these systems
consists of minimal duration constraints on inter-
vals of single-party talk, as well as the assump-
tion that each instant is associated with exactly
one participant speaking. The detection of overlap
(or of simultaneous vocalization by more than one
speaker), where performed, is generally treated as
a post-processing step. Information regarding con-
sistent, participant-specific tendencies in the tem-
poral deployment of talk — the subject of the cur-
rent study — do not currently feature in any way
in the assumptions or priors of today’s diarization
systems.

Second, dialogue system design can benefit
from the results presented, particularly those sys-
tems which are conversational and whose behavior
is intended to be more natural than that of sim-
ple human-query-driven information portals. The
confirmation that humans exhibit self-consistency
in their temporal deployment of speech, which
also makes them different from other people,
means that the detection of their style and an ori-
entation to it will result in better predictions, re-
quiring fewer resolutions. If that orientation is per-
ceivable to the human user, the system may appear
to the user as more human itself. An additional di-
mension of human-likeness may be inadvertently
communicated by the system if it has its own, self-
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consistent and differentiable style, which is syn-
tonic with its designed conversational role.

Finally, the results in this study have bearing on
the design of diagnostic tools for social psychol-
ogy, the domain for which STT models were orig-
inally invented (Chapple, 1949; Jaffe et al., 1967).
(Chapple, 1949) was concerned with the measure-
ment of conversational traits correlated with work
performance, whereas (Jaffe et al., 1967) treated
clinical settings. A considerable amount of re-
search in this area had been conducted in the 1970s
and 1980s, primarily in the detection of traits or
conditions. However, the models were first-order
Markovian (corresponding to τ = 1 in the cur-
rent work) and often relying on analysis frames
as small as 20 ms. The findings presented here
indicate that useful speaker-discriminating infor-
mation is contained as far back as 500 ms (with
frames of 100 ms and τ = 5, cf. Subsection 4.2),
even when models are trained on single conver-
sations which are as short as 22 minutes long.
The obtained results may warrant a re-opening of
earlier investigations into diagnostic tools for the
health industry.

6 Conclusions

That people exhibit a degree of consistency in
their conversational behavior agrees with com-
mon sense, and should not be particularly surpris-
ing. A number of earlier works have success-
fully correlated identity with turn-taking prefer-
ences (Jurafsky et al., 2009; Grothendieck et al.,
2011). What the analyses in the current work
show — and which is surprising — is that this
consistency is present even in the very shallow
representation implicit in the so-called stochastic
turn-taking models. In this representation, words,
boundaries, durations, and prosody are markedly
absent; only the frame-level occurrence of party-
attributed speech activity is captured, and a defini-
tion of “turn” is neither needed nor used. Specifi-
cally, results indicate that, for conversations whose
duration is 40-minutes on average, longitudinally
speaker-discriminative models can be learned for
a conditioning history which is only 10 bits long:
whether the modeled speaker, and any of their in-
terlocutors, were speaking in each of the 5 most
recent 100-ms frames. The current study has
shown that under these conditions, for groups of
15 people like the ICSI Bmr group, the inferred
models exhibit greater between-person variabil-

ity than within-person variability. The conver-
stants under study appear to have behaved self-
consistently, across disparate longitudinal obser-
vations, in terms of their turn-taking preferences.

The current experiments also demonstrated that
a conversation-side embedding in three dimen-
sions approximately recovers the Jensen-Shannon
distances between 10-bit-context STT models. In
this embedding, between-person variability was
shown to be smaller for longer conversations, im-
plying that over time people can be observed
to converge on interaction styles which are even
more self-consistent. Although it is premature
to unambiguously ascribe meaning to each of the
three dimensions obtained using the ICSI Bmr
data, jointly they appear to encode: (1) the pro-
portion of conversation-time spent talking; (2) the
inclination to initiate and terminate overlap with
others; and (3) role-specific behaviors exhibited
by members of a hierarchy (with — in the current
work — positions within that hierarchy closely
correlated with self-reported education level).

The presented work suggests the possibility of
inference of speaker-characterizing conversational
interaction styles, as well as the indexing of such
interaction styles by points in an embedding space
consisting of only a few continuous dimensions.
It has immediate bearing on the training of inten-
tionally broad, speaker-independent STT models.
Finally, the work has the potential to usefully im-
pact the design of speaker diarization algorithms
for multi-human conversation settings, of human-
like conversational dialogue systems, and of diag-
nostic software for the health industry.
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Abstract

We demonstrate dialogues with an au-
tonomous android ERICA, who has an ap-
pearance like a human being. Currently,
ERICA plays two social roles: a labora-
tory guide and a counselor. It is designed
to follow the protocols of human dialogue
to make the user comfortable: (1) hav-
ing a chat before the main talk, (2) proac-
tively asking questions, and (3) conveying
proper feedbacks. The combination of the
human-like appearance and the appropri-
ate behaviors according to her social roles
allows for symbiotic human-robot interac-
tion.

1 Introduction

Dialogue systems deployed in various devices
such as smartphones and robots have been widely
used to assist users in daily life. Although they
can reply to users for what they are asked, their
behaviors are mechanical and the primary objec-
tive of dialogue is efficiency (Wilcock and Joki-
nen, 2015; Skantze and Johansson, 2015). Users
need to adapt their behaviors such as their utter-
ance style for the systems, and thus the observed
users’ behaviors are different from those in human
communication.

In the current ERATO project, an autonomous
android ERICA with the appearance of human be-
ing is developed. Our goal is to make her behave
like a human being and naturally interact with hu-
man beings by tightly integrating verbal and non-
verbal information. For the moment, we make ER-
ICA play a specific social role according to the
conversational situation. Figure 1 illustrates some
prospective social roles which could be covered by
ERICA. The roles are plotted on the two axes that
are in the trade-off relation: roles of speaking and

Figure 1: Social roles covered by ERICA

listening. In the long term, ERICA is expected to
replace these human beings with comparable per-
formance.

In this demonstration, ERICA plays two social
roles: a laboratory guide and a counselor. The sce-
narios assume that the user meets ERICA for the
first time where the user might be nervous. The
highlight in the current demonstration is ERICA
trying to make the user comfortable by doing the
following:

1. Have a personal chat before the main talk to
ease their nervousness (ice-breaking)

2. Occasionally make questions from ERICA
toward the user when the user does not say
anything (ERICA does not only respond to
what is asked by the user)

3. Convey proper feedbacks to express that ER-
ICA attentively listens to the user’s talk and
encourage the user to talk more

ERICA is enhanced by a multi-modal sensing sys-
tem which consists of a microphone array and a
depth camera to realize robust and smooth inter-
action.
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Figure 2: Android ERICA

2 Android ERICA

An image of ERICA is shown in Figure 2. ERICA
is a 23 year-old woman. Her design concept is to
contain both the friendliness as an android and a
sense of existence as a human being. The appear-
ance of her face and body is artificially produced
in reference to characteristics of beautiful ladies.

ERICA mounts 19 active joints inside to move
her face, head, shoulder, and back. It is planned
to install more motors on her to move her arms
and legs in the future. Even now, the flexibility of
her face has diversity (including eyebrow, eyelids,
lip, eyeballs, and tongue), which enables her to
show various facial expressions. ERICA is there-
fore able to generate not only verbal responses but
also non-verbal behaviors such as facial expres-
sion, eye-gaze, and nodding, which are used to
convey a variety of her emotions.

3 Social roles played by ERICA

In this demonstration, we show the following two
scenarios of different social roles played by ER-
ICA.

3.1 Laboratory guide

In the first scenario, ERICA introduces research
topics in our laboratory when a guest (user) visits
there. We assume that the user meets ERICA for
the first time. When people meet each other for the
first time, it is common that they have a chat like a
self-introduction to know each other well and ease
the tension, called ice-breaking, so that they are
able to establish rapport, which will result in bet-
ter communication afterward. ERICA follows this
protocol.

In the chatting phase, We provided 31 personal
topics that ERICA and the user can discuss, such
as their hometowns and hobbies, which will be
useful for knowing each other. At first after a
greeting, ERICA prompts the user to ask a ques-

tion regarding herself. The uttered question is
matched against the topic database by a language
understanding module which is implemented by a
two-step search, a keyword matching and a vec-
tor space model. After her reply, she occasionally
makes a follow-up question which is related to the
current topic. Here, we measure a pause as a cue
which triggers this follow-up question. When the
user replies to the follow-up question, ERICA says
an assessment reply. The dialogue continues with
either a new question from the user or a further
follow-up question from ERICA. A dialogue ex-
ample is as follows. Note that U and E correspond
to utterances from the user and ERICA, respec-
tively.

U1 What is your hobby?
E1 My hobbies are watching movies, sports, and

cartoons.
(pause)

E2 Do you have the same hobbies as me? (follow-
up question)

U2 Yes, I also like watching movies.
E3 Wow, I am happy to hear that. (assessment

reply)

Other than questions, the user might say a state-
ment in the chatting dialogue. To deal with this,
if no topic is selected in the above matching, ER-
ICA tries to detect a focus word from the user ut-
terance, which is new information in the dialogue,
and makes the following feedbacks using the de-
tected focus word.

Partial repeats Simply repeat the focus word, or
a phrase containing the focus word

Questions for elaboration Ask a question to
elaborate the focus word

Formulaic responses Fixed phrases (e.g. “Oh re-
ally!”)

Backchannels Short responses suggesting that
ERICA is listening to the user (e.g. “okay”)

The focus word detection is realized by a
CRF-based classification (Yoshino and Kawahara,
2015). A dialogue example is as follows.

U1 I ate a hot dog yesterday.
E1 Hot dog? (partial repeat)
U2 Yeah, I went to a hot dog shop with my family.
E2 Where is the hot dog shop? (question for elab-

oration)
U3 It is near the central station.
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E3 Oh really! (formulaic responses)

Once they have gone through a certain num-
ber of topics or the user says a specific key-phrase
such as “Tell me about your research topics”, the
dialogue is switched to the laboratory guide phase.
In this phase, ERICA presents several research
topics, and the user can choose one of them based
on his/her interest. This is designed as information
navigation (Yoshino and Kawahara, 2015) and im-
plemented by a finite state model. According to
the topic selected by the user, ERICA briefly talks
about the topic and asks the user if she can con-
tinue the topic in detail or not.

3.2 Counselor

Another social role played by ERICA is as a coun-
selor of the user. In recent years, dialogue systems
have been actively studied in the field of counsel-
ing and diagnoses (DeVault et al., 2014). Com-
pared with them, ERICA can generate more realis-
tic behaviors (not virtual) which could elicit more
natural reactions from the interlocutor. The im-
portant role for counselors is to attentively listen
to the user and give appropriate feedbacks to en-
courage the user to talk more. One of the listener’s
feedbacks are backchannels which are a short ut-
terance such as “okay” and “wow.” To generate
appropriate backchannels, we need to predict the
timing and form of the backchannel depending on
the user utterance. Backchannel forms have a va-
riety of different functions: one is to encourage
the user to keep talking (called “continuer”), and
the other is to show reaction to the user utterance
(called “assessment”) (Clancy et al., 1996).

In this demonstration, ERICA predicts the tim-
ing and form of the backchannel using prosodic in-
formation extracted from the user utterance. Here,
we deal with four types of backchannels: three
continuers and one assessment. Prediction of tim-
ing and the form is done by a logistic regression
model trained with a corpus of counseling dia-
logue (Yamaguchi et al., 2016). For practical use,
we recorded many backchannel voices varied in
forms and levels, and choose the appropriate sam-
ple in real time. A dialogue example is as follows.

U1 It is nice weather today.
E1 Un. (continuer)
U2 It is the best day to play football outside.
E2 Un, un. (continuer, stronger than the previous

one)

U3 I really like to play football.
(no backchannel)

U4 I play it with my colleagues every day after
work.

E3 He-! (assessment)

4 System

In this section, we describe a multi-modal inter-
active system for ERICA. Figure 3 illustrates its
entire configuration. The input sensors consist of
a microphone array and a depth camera. These
sensors are located around ERICA, not on the an-
droid, which increases the degree of freedom of
sensor arrangement.

4.1 Speech localization and recognition with
microphone array

The microphone array captures multi-channel au-
dio signals and identifies which direction the
acoustic signal comes from. Here we use a 16-
channel microphone array and adopt the MUltiple
SIgnal Classification (MUSIC) method (Schmidt,
1986) to calculate the sound source direction. Af-
terwards, the input speech is enhanced by using
the delay-and-sum beamforming. From the en-
hanced speech, we calculate prosodic information
including fundamental frequency (F0) and power.

The automatic speech recognition (ASR) in ER-
ICA is done by using the enhanced speech. Distant
speech recognition elicits more natural human be-
havior because the user is able to use their arms
and hands to show gestures. To realize the dis-
tant speech recognition, the enhanced speech is
processed by a denoising auto encoder (DAE) to
suppress reverberation components and signal dis-
tortion. Afterwards, the output speech signal of
the DAE is decoded by an acoustic model based
on a deep neural network (DNN). The DAE and
DNN are trained by using multi-condition speech
data so that it is robust against various types of the
acoustic environment. It is also necessary for the
above processes to be performed in real time.

4.2 Speaker tracking with depth camera
To realize smooth interaction, it is essential for the
system to correctly identify who talks to whom
and if the user is giving his/her attention toward
ERICA (Yu et al., 2015). In this demonstration,
we track the user’s location and head orientation
in the 3D space by using the Kinect v2 sensor. The
user localization enables ERICA to spot if there is
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Figure 3: System architecture

a person who wants to interact with her. ERICA
identifies if the user is speaking to her by the head
orientation. This enables ERICA not to respond
to the talking between people, for example when
a person introduces ERICA to a guest standing in
front of ERICA. ERICA accepts user utterances
when the following are met: the user is standing
in front of ERICA and looking at ERICA’s face,
and the sound source is coming from the direction
of the user. This function is needed when we con-
duct a demonstration to many people such as open
laboratory events.

4.3 Text-to-speech for ERICA
The speech of ERICA is generated by a text-to-
speech engine developed for ERICA. It is based on
the unit-selection framework from a database of
many conversational-style utterances. It also con-
tains many formulaic expressions and backchan-
nels with a variety of prosodic patterns. At the
same time, lip and head movements of ERICA are
generated based on the prosodic information of the
synthesized speech signals (Ishi et al., 2012; Sakai
et al., 2015).

5 Conclusion

We demonstrate dialogues with ERICA who plays
the two social roles. The human-like appearance
of the android and the appropriate behaviors ac-
cording to her social roles are combined to realize
symbiotic human-robot interaction which is close
to human-human interaction.

Acknowledgements

This work was supported by JST ERATO Ishiguro
Symbiotic Human-Robot Interaction Project and
JSPS KAKENHI Grant Number 15J07337.

References
P. Clancy, S. Thompson, R. Suzuki, and H. Tao. 1996.

The conversational use of reactive tokens in English,
Japanese, and Mandarin. Journal of pragmatics,
26(3):355–387.

D. DeVault, R. Artstein, G. Benn, T. Dey, E. Fast,
et al. 2014. SimSensei kiosk: A virtual human in-
terviewer for healthcare decision support. In Proc.
Autonomous Agents and Multi-Agent Systems, num-
ber 1, pages 1061–1068.

C. Ishi, H. Ishiguro, and N. Hagita. 2012. Evalua-
tion of formant-based lip motion generation in tele-
operated humanoid robots. In Proc. IROS, pages
2377–2382.

K. Sakai, C. Ishi, T. Minaot, and H. Ishiguro. 2015.
Online speech-driven head motion generating sys-
tem and evaluation on a tele-operated robot. In Proc.
ROMAN, pages 529–534.

R. Schmidt. 1986. Multiple emitter location and signal
parameter estimation. IEEE Trans. Antennas and
Propagation, 34(3):276–280.

G. Skantze and M. Johansson. 2015. Modelling situ-
ated human-robot interaction using IrisTK. In Proc.
SIGDIAL, pages 165–167.

G. Wilcock and K. Jokinen. 2015. Multilingual Wik-
iTalk: Wikipedia-based talking robots that switch
languages. In Proc. SIGDIAL, pages 162–164.

T. Yamaguchi, K. Inoue, K. Yoshino, K. Takanashi,
N. Ward, and T. Kawahara. 2016. Analysis and pre-
diction of morphological patterns of backchannels
for attentive listening agents. In Proc. IWSDS.

K. Yoshino and T. Kawahara. 2015. Conversational
system for information navigation based on POMDP
with user focus tracking. Computer Speech and
Language, 34(1):275–291.

Z. Yu, D. Bohus, and E. Horvitz. 2015. Incremen-
tal coordination: Attention-centric speech produc-
tion in a physically situated conversational agent. In
Proc. SIGDIAL, pages 402–406.

215



Proceedings of the SIGDIAL 2016 Conference, pages 216–219,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

Rapid Prototyping of Form-driven Dialogue Systems
Using an Open-source Framework

Svetlana Stoyanchev
Interactions Corporation

New York, USA
sstoyanchev@interactions.com

Pierre Lison
Language Technology Group
University of Oslo, Norway

plison@ifi.uio.no

Srinivas Bangalore
Interactions Corporation

Murray Hill, USA
sbangalore@interactions.com

Abstract

Most human-machine communication for
information access through speech, text
and graphical interfaces are mediated by
forms – i.e. lists of named fields. How-
ever, deploying form-filling dialogue sys-
tems still remains a challenging task due
to the effort and skill required to author
such systems. We describe an extension
to the OpenDial framework that enables
the rapid creation of functional dialogue
systems by non-experts. The dialogue de-
signer specifies the slots and their types
as input and the tool generates a domain
specification that drives a slot-filling di-
alogue system. The presented approach
provides several benefits compared to tra-
ditional techniques based on flowcharts,
such as the use of probabilistic reasoning
and flexible grounding strategies.

1 Introduction

Dialogue systems research has witnessed the
emergence of several important innovations in
the last two decades, such as the development
of information-state architectures (Larsson and
Traum, 2000), the use of probabilistic reasoning
to handle multiple state hypotheses (Young et al.,
2013), the application of reinforcement learning to
automatically derive dialogue policies from real
or simulated interactions (Lemon and Pietquin,
2012), and the introduction of incremental pro-
cessing methods to allow for more natural con-
versational behaviours (Schlangen et al., 2010).
However, few of these innovations have so far
made their way into dialogue systems deployed
in commercial environments (Paek and Pierac-
cini, 2008; Williams, 2009). Indeed, the bulk
of currently deployed dialogue systems continue

Figure 1: Architecture overview.

to rely on traditional hand-crafted finite-state or
rule-based approaches to dialogue management
using commercial or proprietary tools generating
VoiceXML. The key reasons for this status quo
are the need for the dialogue designer to (1) retain
control over the system’s behaviour, (2) ensure
the system can scale to large numbers of users,
and (3) easily author and edit the system’s inter-
nal models. These features supersede their short-
comings. While authoring a system-initiative di-
alogue is quick and easy to maintain, authoring a
user-initiative dialogue system in VoiceXML of-
ten results in large interdependent code bases that
are increasingly difficult to maintain. Further-
more, these dialogue systems cannot capture mul-
tiple state hypotheses nor optimise the dialogue by
learning from previous interactions.

Meanwhile, various dialogue authoring frame-
works have been developed in academia to facil-
itate the development of dialogue systems by au-
thoring state update rules (Bohus and Rudnicky,
2009; P. Lison, 2015). In particular, OpenDial,
an open source dialogue system framework based
on a information-state architecture, allows system
developers to easily specify and edit dialogue be-
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haviours, which is a crucial requirement for com-
mercial conversational applications. However, de-
signing and maintaining dialogue systems using
these tools remains a challenge.

In order to address this challenge and lower the
entry barrier for authoring dialogue systems, we
demonstrate a web-based tool that allows a user
to create a form-filling dialogue system automat-
ically by simply specifying a form template. The
architecture of the system is shown in Figure 1.
The dialogue designer using the authoring tool
specifies a form template – as a list of slots as-
sociated with their corresponding semantic types
– as input. The tool compiles the form template
into a specification to drive the dialogue manage-
ment framework, OpenDial. Natural language un-
derstanding is provided through the use of cloud-
based APIs. The authoring tool satisfies the re-
quirements of maintaining control of the dialogue
flow with the use of probabilistic modelling tech-
niques, thus allowing simple authoring of mixed-
initiative slot-filling dialogue systems.

Our target audience includes both researchers
and industry practitioners. A fully-functional spo-
ken interface to a system, such as hotel reserva-
tion, airline booking, or mortgage calculator, can
be generated using the tool by a non-expert in di-
alogue systems. The generated domain specifica-
tion can be further edited by the system developers
in order to integrate more advanced functionality
such as escalated per-field prompts or customized
language generation.

The rest of this paper is structured as follows.
The next section presents the web-based tool, the
generated OpenDial domain file, and the software
bridges to external NLU services. Section 3 de-
scribes a preliminary evaluation, while Section 4
relates the system to previous work.

2 System

We rely on OpenDial as underlying framework (P.
Lison, 2015) for dialogue management. OpenDial
has been previously used for human–robot interac-
tions, in-car driving assistants, and intelligent tu-
toring systems (Lison and Kennington, 2016). It
is also a popular platform for teaching advanced
courses on spoken dialogue systems.

2.1 Form-to-System Generation

We created a web-based tool that generates an
(XML-encoded) OpenDial dialogue domain from

a form specification. The web tool allows the di-
alogue designer to configure any number of form
fields by specifying a field name, a correspond-
ing semantic type, a natural language question for
eliciting the field value, an implicit confirmation
sentence, and a optional set of constraints between
the slots. Figure 2 illustrates the interface for
defining a form for hotel reservations with four
fields: location, arrival, duration, and departure.
Fields can also be marked as “optional”, and can
be mutually exclusive with other fields (for in-
stance, the “duration” of a hotel stay and its “end
date”). It should be noted that the NL Question and
NL Implicit Confirmation can reference the val-
ues of previous slots, such as e.g. “When are you
arriving in location”. This enables the dialogue
designer to implement implicit grounding strate-
gies. When the form is submitted, the authoring
tool generates the corresponding domain file.

2.2 Domain file

OpenDial stores domain-specific information in a
domain file, which is encoded in XML. The do-
main file specifies the following information:

• The initial dialogue state.

• A collection of domain models, which are
themselves composed of probabilistic rules.

• General configuration settings, such as set-
tings for the cloud-based NLU.

The dialogue state is represented as a Bayesian
Network, allowing for explicit capture of uncer-
tainty. For slot-filling tasks, the state variables
capture the values for each slot, the recent dia-
logue history, a list of slots that are already filled
and grounded, and a (possibly empty) set of mu-
tual exclusivity constraints between slots. This di-
alogue state is regularly updated based on user in-
puts and subsequent system responses.

The probabilistic rules are expressed as if-then-
else blocks associating logical conditions to prob-
abilistic effects (see (P. Lison, 2015) for more de-
tails). The domain file generated by the web-based
tool is composed of about fifteen rules responsi-
ble for (1) updating the slot values given the user
inputs, (2) selecting the most appropriate system
actions based on the current state, and (3) map-
ping these high-level actions to concrete system
responses. The (probability and utility) parame-
ters of these rules are initially fixed to reasonable
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Figure 2: Form for generating a dialogue with hotel information domain.

defaults, but the user is free to modify the values
of these parameters (or estimate them from data if
such interaction data is available).

The generated dialogue domain allows for
mixed-initiative interactions where a user can
choose any order and combination of fields for fill-
ing the form, including a single turn (Figure 3a)
or in multiple turns (Figure 3b). In addition, the
dialogue manager includes correction and ground-
ing capabilities (Figure 3c). The user may interact
with the system using either text inputs or speech
(using third-party APIs such as Nuance or Curo
for speech recognition and synthesis).

2.3 Natural Language Understanding (NLU)

In slot-filling applications, the main objective of
natural language understanding is to label the user
utterance with (application-specific) semantic en-
tities. The entities identified through NLU can
then be exploited by the dialogue manager to fill
the fields of the form which in turn drives the
next response. The mapping between NLU labels
and state variables is established through the field
types specified in the form (Figure 2).

We extend OpenDial to access cloud-based
NLU services through HTTP endpoints. When
a user selects an NLU type from the list of sup-
ported services, the values in the Field Type drop-
down boxes for each field are populated with the
NL labels in the selected NLU module. To add
support for a given NLU service, we create a cor-
responding OpenDial module configured with the
service’s HTTP endpoint and session parameters.
This module processes the output json file returned
from the HTTP request to the service and extracts
assigned semantic labels.

We have implemented NLU modules for pub-
licly available cloud services from Microsoft and
Facebook1 and for a proprietary Curo NLU. This
enables dialogue designers with a range of alter-

1https://www.luis.ai/, https://wit.ai

(a) Filling the form in one turn.

(b) Filling the form with multiple turns.

(c) User correction and grounding.

Figure 3: Dialogue Examples in the hotel reserva-
tions domain.

native NLU solutions, from using the already sup-
ported cloud NLU services to implementing their
own NLU module in OpenDial.

3 Evaluation

For a preliminary evaluation, we asked five re-
searchers from the lab to use the web interface and
generate a dialogue system using pre-loaded ho-
tel reservation form, evaluate it by running open-
dial as end-users, and explore the web interface by
creating new systems. All of the participants were
able to generate a hotel reservation form-filling in-
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terface successfully. The participants were asked
to fill out the hotel reservation form using multi-
ple dialogue paths. On average the participants at-
tempted four distinct dialogue paths and success-
fully completing three of them. All of the par-
ticipants agreed that the tool provides an effec-
tive method of generating a voice interface for a
form and four of the participants indicated that
they would use it for generating spoken interfaces
in the future (one was neutral).

4 Related Work

Several web-based NLU services have been re-
cently launched by companies such as wit.ai (now
part of Facebook), Microsoft, Nuance and api.ai 2.
These services provide cloud-based solutions for
creating NLU for systems with simple web-based
interfaces and active learning capabilities. Some
of these tools have now been extended with basic
dialogue management functionalities. These plat-
forms can be employed by novices with no pro-
gramming or speech experience to author and de-
ploy spoken interfaces.

Similar to these commercial solutions, the pre-
sented authoring tool aims at lowering the entry
barrier for dialogue developers wishing to quickly
create functioning dialogue systems. Our so-
lution is intended for both dialogue system re-
searchers and commercial companies that still pre-
dominantly use VoiceXML-based platforms and
have restrictions on transferring customer data to
third-party services. We hope that both target au-
diences will benefit from the ability to deploy the
system on a proprietary server, with full control
over the dialogue flow, easy access to third-party
ASR, NLU and TTS components, and ability to
perform probabilistic reasoning and optimize dia-
logue policies from data.

5 Conclusions and Future Work

We have presented a web-based authoring tool to
facilitate the creation of slot-filling dialogue sys-
tems. Based on a simple form template, the tool
generates an XML domain file that specifies the
system behavior, while intent recognition is dele-
gated to a cloud service, either third-party or pro-
prietary. We aim at bridging the gap between spo-
ken dialogue research and conversational systems

2http://wit.ai, https://www.luis.ai, https://api.ai,
https://developer.nuance.com/mix.

deployed in the industry by providing an open-
sourced tool that combines simple authoring, full
control of the dialogue flow with the ability to op-
timize from historical interaction data.

As future work, we wish to extend the tool to
handle multiple forms and design an interface for
describing system behaviors in a multi-form sys-
tem. We also intend to use the system for research
on clarification strategies and evaluating benefits
of joint ASR and NLU processing in dialogue.
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Abstract
We present the implementation of a large-
vocabulary continuous speech recogni-
tion (LVCSR) system on NVIDIA’s Tegra
K1 hyprid GPU-CPU embedded platform.
The system is trained on a standard 1000-
hour corpus, LibriSpeech, features a tri-
gram WFST-based language model, and
achieves state-of-the-art recognition accu-
racy. The fact that the system is real-
time-able and consumes less than 7.5 watts
peak makes the system perfectly suitable
for fast, but precise, offline spoken dialog
applications, such as in robotics, portable
gaming devices, or in-car systems.

1 Introduction
Many of nowadays’ spoken dialog systems are dis-
tributed systems whose major components, such
as speech recognition, spoken language under-
standing, and dialog managers, are located in the
cloud (Suendermann, 2011). For example, in-
teractive voice response (IVR) systems are often
connected to conventional telephony networks and
handle a substantial portion of customer service
interactions for numerous organizations and enter-
prises. One of the advantages of cloud-based sys-
tems is the strong computational power such sys-
tems can have which is believed to be critical for
some of the components to produce an adequate
performance (see for example recent advances in
commercial speech recognition systems (Hannun
et al., 2014)).

Despite their advantages, cloud-based spoken
dialog systems have several limitations. E.g. they
not only real-time-able speech recognizers, which
poses a number of additional constraints to the im-
plementation of the system (Ivanov et al., 2016),
but, first and foremost, they require a high-speed,
high-reliability, and high-fidelity connection to the

client device. If this precondition is not met, spo-
ken dialog systems cease to be what they promise
to be: dialog systems. Slow, clunky, and intermit-
tent connections may be acceptable with pseudo-
dialog applications such as the ones typical in
virtual assistants (Suendermann-Oeft, 2013), but
they are not suited for realistic conversational ap-
plications such as in customer care (Acomb et
al., 2007), virtual tutoring (Litman and Silliman,
2004), or command and control. Even more im-
portantly, there are numerous applications for spo-
ken dialog systems which require operation in of-
fline mode altogether, for example in moving ve-
hicles (Pellom et al., 2001), with robots in ad-
verse conditions (Toptsis et al., 2004), in certain
medical devices (Williams et al., 2011), or with
portable video game consoles and toys (Sporka et
al., 2006).

Maintaining a cloud application server farm, ca-
pable of supporting the mass service comes at a
recurring operational cost, which limits the range
of possible revenue models with which the spo-
ken dialog system can be offered. A way to solve
this problem is to transfer the necessary hardware
to the client device and let the customer naturally
cover the processing power costs. Thus, reduction
of the complexity of the involved technology and
reducing its power consumption become critical
figures of merit according to which the portable
systems such as robots, portable game consoles,
and toys are going to compete.

Further advantages of using a low-footprint
highly accurate real-time able speech recognizer
over cloud-based recognition include

• no need for complex load balancing, instance
management, or distributed, redundant server
architectures;

• lower energy footprint due to the elimina-
tion of server and communication hardware
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needed to run cloud-based speech recognition
jobs;

• no privacy concern since the data remains on
the local hardware (which can be important
for applications in medical, intelligence, de-
fense, legal, or financial domains, among oth-
ers);

• straight-forward user adaptation directly on
the client hardware without the need to main-
tain potentially millions of customer profiles
in the cloud;

• reduced network activity resulting in lower
operation costs and improved bandwidth for
other concurrent tasks requiring network
communication, especially for wireless ap-
plications;

• enhanced options for voice activity detection
since the speech recognizer can be constantly
running, while constant streaming of audio
from a client to the cloud is not feasible.

In Section 2 we present a large vocabulary
speech recognition system architecture designed
for NVIDIA’s Tegra K1 hybrid GPU-CPU embed-
ded System-on-a-Chip (SoC). We show that its
recognition accuracy performs on par with state-
of-the-art systems while maintaining low power
consumption and real-time ability in Section 3.

2 System Description
Research has shown that an interaction with a di-
alog application becomes overly tiresome for the
human interlocutor when the system’s response
does not occur promptly (Fried and Edmondson,
2006; Wennerstrom and Siege, 2003; Shigemitsu,
2005). Speech recognition is only the first of many
steps in producing the system’s response. There-
fore, it is crucial that the recognition output can
be produced at the rate of speech or as close to
that as possible. While compromising recogni-
tion accuracy for a better real-time factor (xRT)
is trivial, maintaining the state-of-the-art perfor-
mance within the real-time constraints is challeng-
ing (Ivanov et al., 2016).

Building on top of our results described
in (Ivanov et al., 2015) we implemented a highly
parallel real-time speech recognition inference en-
gine with rapid speaker adaptation that is model-
level compatible with the Kaldi toolkit (Povey et

Figure 1: State diagram

al., 2011). It maintains the state-of-the-art accu-
racy while doing real-time online recognition with
the NVIDIA’s Tegra K1 hybrid GPU-CPU embed-
ded platform. The recent studies (Morbini et al.,
2013; Gaida et al., 2014) confirm state-of-the-art
level of the Kaldi model-generation pipelines.

Figures 1, 2 and 3 show the ASR architecture
we designed. The interaction with the ASR sys-
tem follows the Client-Server architecture. Figure
1 depicts the states the server transitions through
from the client’s perspective. After start-up of the
ASR system, it stays in an idle state until a client
opens a session with the server. This session is
implemented as a web-socket connection. If the
ASR system is used as a component within a di-
alog application, this session stays open until the
full conversation with the human user is finished.
When the server receives a new session, it transi-
tions into the processing state, in which it immedi-
ately processes the incoming audio on a per-chunk
basis. Finalizing recognition of a single utterance
within the dialog is triggered by an “end of the ut-
terance” signal. The upstream dialog system com-
ponent receives the recognition result either on a
per utterance basis or as a partial feedback up un-
til the current position in the utterance. Ability to
interactively produce the intermediate recognition
results is an essential feature of the dialog-oriented
speech recognizer as it allows us to start interpre-
tation of the user input even before its comple-
tion. The recognition session is stopped when the
client closes the web-socket connection. Then, the
server transitions back into the idle state.

In the processing state, the data flows through
the ASR system as shown in Figure 2. We grouped
the individual steps in the employed ASR pipeline,
namely: audio data acquisition, feature extraction,
i-Vector computation, acoustic probability com-
putation, decoding, backtracking and propagating
the result back to the client, represented as blocks
within the figure into the modules that run in a sin-
gle thread. The modules are connected to each
other via the ring buffers represented as wide ar-
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Figure 2: Data flow diagram

Figure 3: Component diagram

rows. Each module operates as shown in Figure
3. Every x seconds, the module checks if the input
ring buffer contains a new data chunk, processes
the chunk, stores it in the output ring buffer and
repeats.

In Figure 2, the backtracking component is
grouped together with the decoding component
and executed in each processing cycle. This setup
allows the ASR system to generate a partial result
for each input chunk. A possible alternative to this
strategy is to trigger the backtracking by the ’end
of utterance’ signal and only compute the resulting
lattice once. This would additionally save compu-
tation time and is useful when there is no need for
partial results during the recognition process.

The components running in modules placed on
the GPU part of the chip have been especially im-
plemented to utilize the parallel computing advan-
tages of GPUs. Processing speedup with GPUs is
achieved via committing larger areas of the die for
solving the single task. Compared to CPUs graph-
ical processing units (GPUs) allow for an easier

processing resource management. The GPU chip
lacks extensive control logic making it potentially
more efficient. The downside is increase of the
programming effort.

3 Experiments
In order to verify our design we have used a
set of the models, generated by the standard
Kaldi model-generating recipe for the LibriSpeech
acoustic corpus (Panayotov et al., 2015). Specif-
ically, we have used the Deep Neural Network –
Weighted Finite State Transducer (DNN-WFST)
hybrid with i-vector acoustic adaptation. The
acoustic model is implemented as the 8-layer p-
norm DNN with approximately 14.22 million free
parameters stored as single precision floating point
numbers. For language modeling we have taken
a version of the standard LibriSpeech tri-gram
model pruned with the threshold of 3e−7. There
are approximately 200 thousands uni-grams, 1
million bi-grams and 34 thousands tri-grams. The
resulting WFST has the complexity of about 10
millions nodes and 25 millions arcs. The i-vector
is evaluated from a separately trained Univer-
sal Background Gaussian-Mixture Model (UBM-
GMM) with 512 Gaussians. The final i-vector has
100 components. The standard Kaldi MFCC fea-
tures are used.

The evaluation has been performed with the
standard LibriSpeech test sets, namely: “DC” -
2703 clean development recordings (≈ 5h. 24
min.); “DN” - 2864 noisy development recordings
(≈ 5h. 8 min.); “TC” - 2620 clean test recordings
(≈ 5h. 25 min.); “TN” - 2939 noisy test record-
ings (≈ 5h. 21 min.). The evaluation is performed
as the single-pass recognition with online acous-
tic adaptation within the speaker-specific utterance
sets in order to simulate operation of the speech
recognizer in short single-user dialogues.

We compare performance of our Tegra-based
speech engine with the reference implementation
of the Kaldi online2-wav-nnet2-latgen-faster de-
coder that is running on a system powered by the
Intel Core i7-4930K CPU at 3.40GHz clock fre-
quency. All operating parameters (the pruning
beam widths, model mixing coefficients, etc.) are
kept the same between the reference and the pre-
sented system. Table 1 summarizes accuracy and
real-time factors of the compared systems. There
was a minor random WER difference between the
GPU and CPU implementations, similar to what
was reported in the earlier publications (Ivanov et
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Tasks WER, % CPU 1/xRT TK1 1/xRT
DC ≈ 7.2 1.11 1.20
DN ≈ 19.6 0.97 1.02
TC ≈ 7.8 1.11 1.15
TN ≈ 19.4 0.95 1.01

Table 1: Accuracy and speed of compared recog-
nizers. WER – word error rate; “CPU 1/xRT” – the
inverse of the real-time factor (i.e. the processing-
production speed ratio) for the reference system;
‘TK1 1/xRT” – inverse real-time factor for the pre-
sented system. Power consumption is 150W for
the “CPU” and 7.5W for the “TK1” systems. The
Tegra system hardware cost is approximately 10
times smaller.

al., 2015). The WER figures reported in the table
reflect the average expected performance level.

4 Conclusions
We have demonstrated the possibility to achieve
the state-of-the-art accuracy with a dialog-oriented
real-time able speech recognition inference engine
running on a low-power consumer-grade SoC. The
presented system implements a single-pass rec-
ognizer with online speaker-adaptation which is
essential in dialogs. The system is immediately
usable to support rich dialog experience with the
guaranteed low latency locally-run dialog systems
that take advantage of the complex large vocabu-
lary continuous speech recognition models.
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Abstract

SARA (Socially-Aware Robot Assistant)
is an embodied intelligent personal assis-
tant that analyses the user’s visual (head
and face movement), vocal (acoustic fea-
tures) and verbal (conversational strate-
gies) behaviours to estimate its rapport
level with the user, and uses its own appro-
priate visual, vocal and verbal behaviors
to achieve task and social goals. The pre-
sented agent aids conference attendees by
eliciting their preferences through build-
ing rapport, and then making informed
personalized recommendations about ses-
sions to attend and people to meet.

1 Introduction

Currently major tech companies envision intelli-
gent personal assistants, such as Apple Siri, Mi-
crosoft Cortana, and Amazon Alexa as the front
ends to their services. However those assistants re-
ally play little other role than to query, with voice
input and output - they fulfill very few of the func-
tions that a human assistant might. In this demo,
we present SARA, the Socially-Aware Robot As-
sistant, represented by a humanoid animated char-
acter on a computer screen, which achieves simi-
lar functionality, but through multimodal interac-
tion, and with a focus on building a social relation-
ship with users. Currently SARA is the front end
to an event app. The animated character engages
its users in a conversation to elicit their goals and
preferences and uses them to recommend relevant
conference sessions to attend and people to meet.
During this process, the system monitors the use
of specific conversational strategies (such as self-
disclosure, praise, reference to shared experience,
etc.) by the human user and uses this input, as
well as acoustic and nonverbal input, to estimate

the level of rapport between the user and system.
The system then employs conversational strategies
shown in our prior work to raise the level of rap-
port with the human user, or to maintain it at the
same level if it is already high (Zhao et al., 2014),
(Zhao et al., 2016b). The goal is to use rapport to
elicit personal information from the user that can
be used to improve the helpfulness and personal-
ization of system responses.

2 SARA’s Computational Architecture

SARA is therefore designed to build interper-
sonal closeness over the course of a conversation
through understanding and generation visual, vo-
cal, and verbal behaviors. The current system
leverages prior work on the dynamics of rapport
(Zhao et al., 2014), and the initial consideration of
the computational architecture of a rapport build-
ing agent (Papangelis et al., 2014). Figure 1 shows
the overview of the architecture. All modules of
the system are built on top of the Virtual Human
Toolkit (Hartholt et al., 2013). Main modules of
our architecture are described below.

2.1 Visual and Vocal Input Analysis
Microsoft’s Cognitive Services API converts
speech to text, which is then fed to Microsoft’s
LUIS (Language Understanding Intelligent Ser-
vice) to identify user intents. In the demo, as
the train data of this specific domain is still lim-
ited, a Wizard of Oz GUI will be served as backup
in the case of speech recognition and natural lan-
guage understanding errors. OpenSmile (Eyben et
al., 2010) extracts acoustic features from the au-
dio signal, including fundamental frequency (F0),
loudness (SMA), jitter and shimmer, which then
serve as input to the rapport estimator and the
conversational strategy classifier modules. Open-
Face (Baltrušaitis et al., 2016)) detects 3D facial
landmarks, head pose, gaze and Action Units, and
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Figure 1: SARA Architecture

these also serve as input to the rapport estimator
(smiles, for example, have been shown in the cor-
pus we trained the estimator on to have a strong
impact on rapport (Zhao et al., 2016b)).

2.2 Conversational Strategy Classifier
We implemented a multimodal conversational
strategy classifier to automatically recognize par-
ticular styles and strategies of talking that con-
tribute to building, maintaining or sometimes de-
stroying a budding relationship. These include:
self-disclosure (SD), elicit self-disclosure (QE),
reference to shared experience (RSD), praise (PR),
and violation of social norms (VSN). By analyzing
rich contextual features drawn from verbal, visual
and vocal modalities of the speaker and interlocu-
tor in both the current and previous turns, we can
successfully recognize these dialogue phenomena
in user input with an accuracy of over 80% and
with a kappa of over 60% (Zhao et al., 2016a).

2.3 Rapport Estimator
We also implemented an automatic multimodal
rapport estimator, based on the framework of tem-
poral association rule learning (Guillame-Bert and
Crowley, 2012), to perform a fine-grained investi-
gation into how sequences of interlocutor behav-
iors lead to (are followed by) increases and de-
creases in interpersonal rapport.The behaviors an-
alyzed include visual behaviors such as eye gaze
and smiles and verbal conversational strategies

such as SD, RSE, VSN, PR and BC. The rap-
port forecasting model involves two-step fusion
of learned temporal associated rules: in the first
step, the goal is to learn the weighted contribution
(vote) of each temporal association rule in predict-
ing the presence/absence of a certain rapport state
(via seven random-forest classifiers); in the second
step, the goal is to learn the weight correspond-
ing to each of the binary classifiers for the rap-
port states, in order to predict the absolute contin-
uous value of rapport (via linear regression) model
(Zhao et al., 2016b). Ground truth comes from an-
notations of rapport in videos of peer tutoring ses-
sions divided into 30 second slices which are then
randomized (see (Zhao et al., 2014) for details).

2.4 Dialogue Management

The dialogue manager is composed of a task rea-
soner that focuses on obtaining information to ful-
fill the user’s goals, and a social reasoner that
chooses ways of talking that are intended to build
rapport in the service of better achieving the user’s
goals. A task and social history, and a user model,
also play a role in dialogue management, but will
not be further discussed here.

2.4.1 Task Reasoner
The Task Reasoner is predicated on the system
maintaining initiative to the extent possible. It is
implemented as a finite state machine whose tran-
sitions are determined by different kinds of trig-
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gering events or conditions such as: user’s intents
(extracted by the NLU), past and current state of
the dialogue (stored by the task history) and other
contextual information (e.g., how many sessions
the agent has recommended so far). Task Rea-
soner’s output can be either a query to the domain
database or a system intent that will serve as in-
put to the Social Reasoner and hence the NLG
modules. In order to handle those cases where
the user takes the initiative, the module allows a
specific set of user intents to cause the system to
transition from its current state to a state which
can appropriately handle the user’s request. The
task Reasoner use a statistical discriminative state
tracking approach to update the dialogue state and
deal with error handling, sub-dialog,s and ground-
ing acknowledgements, similar to the implementa-
tion of the Alex framework (Jurčı́ček et al., 2014).

2.4.2 Social Reasoner
The Social Reasoner is designed as a network of
interacting nodes where decision-making emerges
from the dynamics of competence and collabora-
tion relationships among those nodes. That is, it
is implemented as a Behavior Network as origi-
nally proposed by (Maes, 1989) and extended by
(Romero, 2011). Such a network is ideal here
as it can efficiently make both short-term deci-
sions (real-time or reactive reasoning) and long-
term decisions (deliberative reasoning and plan-
ning). The network’s structure relies on observa-
tions extracted from data-driven models (in this
case the collected data referenced above). Each
node (behavior) corresponds to a specific conver-
sational strategy (e.g., SD, PR, QE, etc.) and
links between nodes denote either inhibitory or
excitatory relationships which are labeled as pre-
condition and post-condition premises. As pre-
conditions, each node defines a set of possible sys-
tem intents (generated by the Task Reasoner, e.g.,
“self introduction”, “start goal elicitation”, etc.),
rapport levels (high, medium or low), user con-
versational strategies (SD, VSN, PR, etc.), visu-
als (e.g., smile, head nod, eye gaze, etc.), and sys-
tem’s conversational strategy history (e.g., system
has performed VSN three times in a row). Post-
conditions are the expected user’s state (e.g., rap-
port score increases, user smiles, etc.) after per-
forming the current conversational strategy, and
what conversational strategy should be performed
next. For instance, when a conversation starts
(i.e., during the greeting phase) the most likely

sequence of nodes could be: [ASN, SD, PR, SD
. . . VSN . . . ] i.e., initially the system establishes
a cordial and respectful communication with user
(ASN), then it uses SD as an icebreaking strategy,
followed by PR to encourage the user to also per-
form SD. After some interaction, if the rapport
level is high, a VSN is performed. The Social
Reasoner is adaptive enough to respond to unex-
pected user’s actions by tailoring a reactive plan
that emerges implicitly from the forward and back-
ward spreading activation dynamics and as result
of tuning the network’s parameters which deter-
mine reasoner’s functionality (more oriented to
goals vs. current state, or more adaptive vs. biased
to ongoing plans, or more thoughtful vs. faster.).

2.5 NLG and Behavior Generation

On the basis of the output of the dialogue manager
(which includes the current conversational phase,
system intent, and desired conversational strategy)
sentence and behavior plans are generated. The
Natural Language Generator (NLG) selects syn-
tactic templates associated with the selected con-
versational strategy from the sentence database
and then fills them in with content from database
queries performed by the task reasoner. The gen-
erated sentence plan is sent to BEAT, a non-verbal
behavior generator (Cassell et al., 2004), which
tailors a behavior plan (including relevant hand
gestures, eye gaze, head nods, etc.) and outputs
the plan as BML (Behavior Markup Language),
which is a part of the Virtual Human Toolkit
(Hartholt et al., 2013). This plan is then sent to
SmartBody, which renders the required non-verbal
behaviours.

3 Dialogue examples

SARA was demoed at the World Economic Fo-
rum in Tianjin China in June 2016 where it served
as the front end to the event app. Over 100 par-
ticipants interacted with SARA to get advice on
sessions to attend and people to meet. The sys-
tem operated with a Wizard of Oz GUI serving as
backup in the case of recognition (speech recog-
nition and natural language understanding), task
reasoning errors, and network disruptions. Table
1 shows an extract from an actual interaction with
the system, annotated with the outputs of the dif-
ferent modules as the system works to meet social
and task goals.
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Table 1: Extract from an actual interaction
Turn Speaker Utterance Intent Strategy

1 System
I’m here to be your personal assistant and help you get the most out of the
conference, but to be honest, I’m a little nervous. This is my first time here, is
it yours as well?

introduce,
do attendance elicitation

SD,
QE

2 User Actually, this is my first time here as well. first time attending SD

3 System I’m finding it overwhelming. I bet you are too. feedback attendance
elicitation first time

SD,
QE

4 User Ya, there’s just so much going on. But i’m getting a hang of it. positive confirmation SD

5 System Great. Now, If you wouldn’t mind sharing your goals for attending the world
economic forum this year, I can try to help you achieve them. do goal elicitation ASN

6 User Well, I’m here to meet people who are passionate about the use of technology
in education, and to know more about the latest developments in the field.

recommend people, rec-
ommend sessions None

7 System Great. Good goals. Can you tell me a little bit about your work so I understand
your interests better?

feedback goals,
do interest elicitation ASN

8 User I am the founder of a non profit educational startup which helps deliver quality
education to the remote areas. like {startup, education} None

9 System
Very Interesting. Let’s start by finding some interesting people for you to meet
that are relevant to your interests. This is my favorite part. Let me look this up.
One moment.

feedback interest elicita-
tion, do person recomm-
endation

ASN,
SD

10 User Sure positive confirmation None

11 System I think you would enjoy meeting this attendee. On the screen are some more
details. Well? What do you think?

outcome person recom-
mendation, end person
recommendation

ASN,
VSN

4 Conclusion and Future Work

We have described the design and first implemen-
tation of an end-to-end socially-aware embodied
intelligent personal assistant. The next step is
to evaluate the validity of our approach by using
the data collected at the World Economic Forum
to assess whether rapport does increase over the
conversation. Subsequent implementations will,
among other goals, improve the ability of the sys-
tem to collect data about the user and employ it in
subsequent conversations, as well as the genera-
tivity of the NLG module, and social appropriate-
ness of nonverbal behaviors generated by BEAT.
We hope that data collected at SIGDIAL will help
us to work towards these goals.
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Abstract

Chat functionality is currently considered
an important factor in spoken dialogue
systems. In this paper, we explore the ar-
chitecture of a chat-oriented dialogue sys-
tem that can continue a long conversa-
tion with users and can be used for a long
time. To achieve this goal, we propose
a method combining various types of re-
sponse generation modules, such as a sta-
tistical model-based module, a rule-based
module, and a topic transition-oriented
module. The core of this architecture is a
method for selecting the most appropriate
response based on a breakdown index and
a willingness index.

1 Introduction

In recent years, there have been some research and
development case studies on open-domain chat di-
alogue systems. The merit of chat functionality
in a dialogue system is to encourage the daily use
of the system so as to accustom the user to the
speech interface. Moreover, chat dialogue func-
tionality can give a user a sense of closeness to the
system, especially for novice users of the speech
interface. Considering this situation, the require-
ments of a chat dialogue system are (1) to main-
tain a longer dialogue without a breakdown of the
conversation and (2) to maintain the long duration
of use. We call the property of the first require-
ment as “continuous” and that of the second as
“long-term.” The aim of this paper is to propose
a framework for realizing a continuous and long-
term chat-oriented dialogue system.

In previous research studies on chat dialogue
systems, the central theme of these studies is how
to generate an appropriate and natural response
to the user’s utterance (Higashinaka et al., 2014),

(Xiang et al., 2014). There was little effort to real-
ize both continuous and long-term features in chat-
oriented dialogue systems.

The chat dialogue system’s robustness to re-
spond to any user utterance is a key function-
ality that must be implemented to make it con-
tinuous. Therefore, a statistical response gener-
ation method is used in recent chat-oriented di-
alogue systems. Moreover, appropriateness and
naturalness of the response are required. To re-
alize these functionalities, Higashinaka et al. pro-
posed a method for evaluating the coherence of the
system utterance to judge the latter’s appropriate-
ness(Higashinaka et al., 2014).

On the other hand, a chat system with a long-
term feature should have the ability to keep the
user interested and not bored. For example, it
should be able to provide a new topic in a chat
based on the recent news or seasonal event. It
should also be able to develop a current topic for
the dialogue by bringing up related topics. In gen-
eral, it is difficult to realize such a topic shift in
a statistical method. The rule-based method or a
hybrid of rule and statistics is appropriate for im-
plementing such functionalities.

Because of this difference in methods in im-
plementing a suitable functionality for a continu-
ous and long-term chat dialogue system, it is dif-
ficult to realize the aforementioned functionalities
in one response generation module. Such module
could be complex and difficult to maintain. There-
fore, it is reasonable to implement the elemental
functionalities in separate modules and combine
them to generate one plausible response for the
purpose of the continuous and long-term chat dia-
logue.

In this paper, we propose a framework for chat-
oriented dialogue systems that can continue a
long conversation with users and that can be used
for a long-term. To achieve this goal, we pro-
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pose a combination method of various types of
response generation modules, such as a statisti-
cal model-based module, rule-based module, and
topic transition-oriented module. The core of this
architecture is a selection method of the most ap-
propriate response based on the breakdown index
and willingness index.

The rest of the paper is organized as follows. In
Section 2, we explain the architecture of combin-
ing multiple response generation modules. In Sec-
tion 3, we describe a selection method of the most
appropriate response from several hypotheses. In
Section 4, the demo description shows the details
of the demonstration system. Finally, we conclude
the paper in Section 5.

2 Response generation method

To realize a continuous chat dialogue, the system
needs to be robust to various user utterances. Sta-
tistical methods (Sugiyama et al., 2013) (Banchs
and Li, 2012) are popular in realizing the robust
response generation. These methods can also gen-
erate a high-quality response in terms of appropri-
ateness and naturalness. On the flip side of this
strength, the system response tends to be confined
to the expectations and, sometimes, the user con-
siders it boring. As a result, the appropriateness
and naturalness are not necessarily connected with
the long-term use of the system.

Occasional and sometimes unexpected topic
shift could make the chat interesting, but it re-
quires a different response generation algorithm
aiming for an appropriate and natural response.

Keeping the interest of the user in the chat sys-
tem for a long-term requires changing the behavior
of the system. If the system’s utterance is gradu-
ally matching the user’s preference, the user can
feel a sense of closeness to the system. Such be-
havior is difficult to implement using the statistical
method only. Some type of control by handwrit-
ten rule is required to begin the conversation with
a new topic from the system side. In addition, the
functionality of delivering the news filtered by the
user’s preference can encourage the daily use of
the system. Such dialogue does not require robust
dialogue management. The simple pattern is ben-
eficial for both the user and the system.

As a result, the requirement of a continuous and
long-term chat dialogue system is “to generate an
appropriate and natural response as a majority be-
havior, but sometimes the system may generate

an unexpected but interesting response and, some-
times, may start the chat by following the user’s
preference and recent news/topics.” It is natural to
divide the aforementioned, sometimes conflicting,
functionality into individual specific modules and
select the most plausible response among the can-
didates. Figure 1 shows our proposed architecture
for realizing multiple response generations and the
selection method. In the architecture, we used the
following three chat dialogue systems:

• Rule-based system: This chat system is based
on the ELIZA type system (Weizenbaum,
1966).

• Statistical model-based system: This one
uses the NTT chat dialogue API (Yoshimura,
2014).

• Topic transition-oriented system: This one
is implemented with a sequence-to-sequence
model (Sutskever et al., 2014). First, the sys-
tem extracts topics from user utterances and
generates the nearest topic utterance in the
word embedded space made by Word2Vec
(Mikolov et al., 2013). By doing this, the chat
system aims to generate a response that has
related but unexpected contents.

The rule-based system can reply naturally when
the rules match the user utterance appropriately,
but it does not have a wide coverage. The sta-
tistical model-based system can respond to var-
ious topics, but sometimes it replies inappropri-
ately. The topic transition-oriented system tends to
generate unnatural responses, but sometimes it can
generate appropriate ones and stimulate the user’s
willingness to chat effectively. We try to realize a
continuous and long-term chat-oriented dialogue
system by using the good aspects of these mod-
ules.

3 Evaluation method of the system
response

As a result of the requirements discussed in Sec-
tion 2, we created the following two evaluation in-
dices:

Breakdown Index (BI):
This index determines how natural the system
utterance is.

Willingness Index (WI):
This one determines how the user’s willing-
ness is stimulated.
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Figure 1: Proposed architecture for realizing mul-
tiple response generation modules, and the selec-
tion method.

To create an estimator for the BI, we used a
chat-oriented dialogue corpus collected by the di-
alogue task group of Project Next NLP, Japan1.
We collected training data from this corpus based
on bag-of-words (unigram) from 1000 utterances
(10 * 100 dialogues), which have breakdown an-
notations by 24 participants for each utterance,
and used a linear-kernel support vector machine
(SVM) as the regressor for the target value.

To create an estimator for the WI, we calculated
the similarity between user-system utterance and
tweet-reply pair, and use the similarity as the WI.
According to the online research2 to Japanese user
(1,496 people) who use Twitter one day a week or
more, the top three purposes of using Twitter are
”collecting infomation about their own hobbies”,
”as a pleasure”, and ”communicating with their
friends and family”. Thus, Japanese users mainly
use Twitter for pleasure and communicating with
familier person. Therefore We calculating similar-
ity by using twitter copus as WI.

The method of calculating WI shows as fol-
lows. First, we applied NFKC (Normalization
Form Compatibility Composition) to the sentences
and removed inappropriate tweets such as tweets
from bots. We collected about 205k tweet pairs
and built the model based on the Paragraph Vec-

1https://sites.google.com/site/
projectnextnlp/english-page

2http://www.opt.ne.jp/news/pr/detail/
id=2341

Figure 2: Architecture of the demonstration sys-
tem.

tor model (Le and Mikolov, 2014). Paragraph
Vector is an unsupervised algorithm that learns
fixed-length feature representations from variable-
length pieces of texts, such as sentences, para-
graphs, and documents. We used the Paragraph
Vector model for vectorizing sentences and esti-
mated the semantic similarity by calculating the
cosine similarity. We get 10-best tweets which
similar to user utterance, calculate similarity be-
tween the reply and system utterance, and use the
maximum value as WI.

Finally, the proposed system calculates the
weighted sum of BI and WI, and selects the utter-
ance that has the highest weighted sum as a final
output. The weight is set to optimize the system
output by using development test set.

4 Demo description

Our chat-oriented dialogue system was imple-
mented based on the proposed method described
in Sections 2 and 3. Figure 2 shows the archi-
tecture of the demonstration system. This system
aims to select the most appropriate response by
considering its naturalness and willingness. The
proposed chat-oriented dialogue system works on
a Japanese sentence only. Therefore, the demon-
stration system translates Japanese sentences to
English ones using the Microsoft Translator API
and shows the dialogue in both Japanese and En-
glish.

5 Conclusion

In this work, we propose a selection method of the
most appropriate response by considering its nat-
uralness and willingness. Both a breakdown index
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and a willingness index, which are related to con-
tinuous and long-term functionality, respectively,
contribute to deciding what a good utterance is in
a chat dialogue. In future work, we plan to con-
duct an experimental evaluation on the continuous
and long-term use of the chat dialogue system.
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Abstract

Real-world scenes typically have complex
structure, and utterances about them con-
sequently do as well. We devise and
evaluate a model that processes descrip-
tions of complex configurations of geo-
metric shapes and can identify the de-
scribed scenes among a set of candidates,
including similar distractors. The model
works with raw images of scenes, and
by design can work word-by-word in-
crementally. Hence, it can be used in
highly-responsive interactive and situated
settings. Using a corpus of descriptions
from game-play between human subjects
(who found this to be a challenging task),
we show that reconstruction of description
structure in our system contributes to task
success and supports the performance of
the word-based model of grounded seman-
tics that we use.

1 Introduction

In this paper, we present and evaluate a language
processing pipeline that enables an automated sys-
tem to detect and understand complex referen-
tial language about visual objects depicted on a
screen. This is an important practical capability
for present and future interactive spoken dialogue
systems. There is a trend toward increasing de-
ployment of spoken dialogue systems for smart-
phones, tablets, automobiles, TVs, and other set-
tings where information and options are presented
on-screen along with an interactive speech chan-
nel in which visual items can be discussed (Ce-
likyilmaz et al., 2014). Similarly, for future sys-
tems such as smartphones, quadcopters, or self-
driving cars that are equipped with cameras, users

* The work was done while at Bielefeld University.

may wish to discuss objects visible to the system
in camera images or video streams.

A challenge in enabling such capabilities for a
broad range of applications is that human speakers
draw on a diverse set of perceptual and language
skills to communicate about objects in situated vi-
sual contexts. Consider the example in Figure 1,
drawn from the corpus of RDG-Pento games (dis-
cussed further in Section 2). In this example, a hu-
man in the director role describes the visual scene
highlighted in red (the target image) to another hu-
man in the matcher role. The scene description is
provided in one continuous stream of speech, but
it includes three functional segments each provid-
ing different referential information: [this one is
kind of a uh a blue T] [and a wooden w sort of ]
[the T is kind of malformed]. The first and third
of these three segments refer to the object at the
top left of the target image, while the middle seg-
ment refers to the object at bottom right. An ability
to detect the individual segments of language that
carry information about individual referents is an
important part of deciphering a scene description
like this. Beyond detection, actually understand-
ing these referential segments in context seems
to require perceptual knowledge of vocabulary for
colors, shapes, materials and hedged descriptions
like kind of a blue T. In other game scenarios, it’s
important to understand plural references like two
brown crosses and relational expressions like this
one has the L on top of the T.

A variety of vocabulary knowledge is needed, as
different speakers may describe individual objects
in very different ways (the object described as kind
of a blue T may also be called a blue odd-shaped
piece or a facebook). When many scenes are de-
scribed by the same pair of speakers, the pair tends
to entrain or align to each other’s vocabulary (Gar-
rod and Anderson, 1987), for example by settling
on facebook as a shorthand description for this ob-
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ject type. Finally, to understand a full scene de-
scription, the matcher needs to combine all the ev-
idence from multiple referential segments involv-
ing a group of objects to identify the target image.

In this paper, we define and evaluate a language
processing pipeline that allows many of these per-
ceptual and language skills to be integrated into
an automated system for understanding complex
scene descriptions. We take the challenging visual
reference game RDG-Pento, shown in Figure 1, as
our testbed, and we evaluate both human-human
and automated system performance in a corpus
study. No prior work we are aware of has put
forth techniques for grounded understanding of
the kinds of noisy, complex, spoken descriptions
of visual scenes that can occur in such interactive
dialogue settings. This work describes and evalu-
ates an initial approach to this complex problem,
and it demonstrates the critical importance of seg-
mentation and entrainment to achieving strong un-
derstanding performance. This approach extends
the prior work (Kennington and Schlangen, 2015;
Han et al., 2015) that assumed either that referen-
tial language from users has been pre-segmented,
or that visual scenes are given not as raw images
but as clean semantic representations, or that vi-
sual scenes are simple enough to be described with
a one-off referring expression or caption. Our
work makes none of these assumptions.

Our automated pipeline, discussed in Section 3,
includes components for learning perceptually
grounded word meanings, segmenting a stream
of speech, identifying the type of referential lan-
guage in each speech segment, resolving the ref-
erences in each type of segment, and aggregating
evidence across segments to select the most likely
target image. Our technical approach enables all
of these components to be trained in a supervised
manner from annotated, in-domain, human-human
reference data. Our quantitative evaluation, pre-
sented in Section 4, looks at the performance of
the individual components as well as the over-
all pipeline, and quantifies the strong importance
of segmentation, segment type identification, and
speaker-specific vocabulary entrainment for im-
proving performance in this task.

2 The RDG-Pento Game

The RDG-Pento (Rapid Dialogue Game-
Pentomino) game is a two player collaborative
game. RDG-Pento is a variant of the RDG-Image

Director: this one is kind of a uh a blue T and a
wooden w sort of the T is kind of mal-
formed

Matcher: okay got it

Figure 1: In the game, the director is describing
the image highlighted in red (the target image) to
the matcher, who tries to identify this image from
among the 8 possible images. The figure shows
the game interface as seen by the director includ-
ing a transcript of the director’s speech.

game described by Manuvinakurike and DeVault
(2015). As in RDG-Image, both players see 8
images on their screen in a 2X4 grid as shown
in Figure 1. One person is assigned the role of
director and the other person that of matcher.
The director’s screen has a single target image
(TI) highlighted with a red border. The goal of
the director is to uniquely describe the TI for the
matcher to identify among the distractor images.
The 8 images are shown in a different order on
the director and matcher screens, so that the
TI cannot be identified by grid position. The
players can speak freely until the matcher makes a
selection. Once the matcher indicates a selection,
the director can advance the game. Over time, the
gameplay gets progressively more challenging as
the images tend to contain more objects that are
similar in shape and color. The task is complex by
design.

In RDG-Pento, the individual images are taken
from a real-world, tabletop scene containing an ar-
rangement of between one and six physical Pen-
tomino objects. Individual images with varying
numbers of objects are illustrated in Figure 2. The
8 images at any one time always contain the same
number of objects; the number of objects increases
as the game progresses. Players play for 5 rounds,

233



Figure 2: Example scene descriptions for three TIs

alternating roles. Each round has a time limit
(about 200 seconds) that creates time pressure for
the players, and the time remaining ticks down in
a countdown timer.

Data Set The corpus used here was col-
lected using a web framework for crowd-
sourced data collection called Pair Me Up (PMU)
(Manuvinakurike and DeVault, 2015). To create
this corpus, 42 pairs of native English-speakers lo-
cated in the U.S. and Canada were recruited us-
ing AMT. Game play and audio data were cap-
tured for each pair of speakers (who were not colo-
cated and communicated entirely through their
web browsers), and the resulting audio data was
transcribed and annotated. 16 pairs completed
all 5 game rounds, while the remaining crowd-
sourced pairs completed only part of the game for
various reasons. As our focus is on understanding
individual scene descriptions, our data set here in-
cludes data from the 16 complete games as well as
partial games. A more complete description and
analysis of the corpus can be found in Zarrieß et
al. (2016).

Data Annotation We annotated the transcribed
director and matcher speech through a process of
segmentation, segment type labeling, and referent
identification. The segment types are shown in
Table 1, and example annotations are provided in
Figure 2. The annotation is carried out on each tar-

Segment type Label Examples
Singular SIN this is a green t, plus sign
Multiple objects MUL two Zs at top, they’re all green
Relation REL above, in a diagonal
Others OT that was tough, lets start

Table 1: Segment types, labels, and examples

get image subdialogue in which the director and
matcher discuss an individual target image. The
segmentation and labeling steps create a complete
partition of each speaker’s speech into sequences
of words with a related semantic function in our
framework.1

Sequences of words that ascribe properties to a
single object are joined under the SIN label. Our
SIN segment type is not a simple syntactic concept
like “singular NP referring expression”. The SIN
type includes not only simple singular NPs like the
blue s but also clauses like it’s the blue s and con-
joined clauses like it’s like a harry potter and it’s
like maroon (Figure 1). The individuation crite-
rion for SIN is that a SIN segment must ascribe
properties only to a single object; as such it may
contain word sequences of various syntactic types.

Sequences of words such as the two crosses that
ascribe properties to multiple objects are joined
into a segment under the MUL label.

Sequences of words that describe a geometric
relation between objects are segmented and given
a REL label. These are generally prepositional ex-
pressions, and include both single-word preposi-
tions (underneath, below) and multi-word com-
plex prepositions (Quirk et al., 1985) which in-
clude multiple orthographic words (“next to”, “left
of” etc.). The REL segments generally describe
geometric relations between objects referred to in
SIN and MUL segments. An example would be
[MUL two crosses] [REL above] [MUL two Ts].

All other word sequences are assigned the type
Others and given an OT label. This segment type
includes acknowledgments, confirmations, feed-
back, and laughter, among other dialogue act types
not addressed in this work.

For each segment of type SIN, MUL, or REL,
the correct referent object or objects within the tar-
get image are also annotated.

In the data set, there are a total of 4132 target

1The annotation scheme was developed iteratively while
keeping the reference resolution task and the WAC model
(see Section 3.3.1) in mind. The annotation was done by an
expert annotator.
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image speaker transcripts in which either the di-
rector or the matcher’s transcribed speech for a
target image is annotated. There are 8030 anno-
tated segments (5451 director segments and 2579
matcher segments). There are 1372 word types
and 55,238 word tokens.

3 Language Processing Pipeline

In this section, we present our language process-
ing pipeline for segmentation and understanding
of complex scene descriptions. The modules,
decision-making, and information flow for the
pipeline are visualized in Figure 3. The pipeline
modules include a Segmenter (Section 3.1), a Seg-
ment Type Classifier (Section 3.2), and a Refer-
ence Resolver (Section 3.3).

In this paper, we focus on how our pipeline
could be used to automate the role of the matcher
in the RDG-Pento game. We consider the task of
selecting the correct target image based on a hu-
man director’s transcribed speech drawn from our
RDG-Pento corpus. The pipeline is designed how-
ever for eventual real-time operation using incre-
mental ASR results, so that in the future it can be
incorporated into a real-time interactive dialogue
system. We view it as a crucial design constraint
on our pipeline modules that the resolution pro-
cess must take place incrementally; i.e., process-
ing must not be deferred until the end of the user’s
speech. This is because humans resolve (i.e., com-
prehend) speech as it unfolds (Tanenhaus, 1995;
Spivey et al., 2002), and incremental processing
(i.e., processing word by word) is important to de-
veloping an efficient and natural speech channel
for interactive systems (Skantze and Schlangen,
2009; Paetzel et al., 2015; DeVault et al., 2009;
Aist et al., 2007). In the current study, we have
therefore provided the human director’s correctly
transcribed speech as input to our pipeline on a
word-by-word basis, as visualized in Figure 3.

3.1 Segmenter

The segmenter module is tasked with identifying
the boundary points between segments. In our
pipeline, this task is performed independently of
the determination of segment types, which is han-
dled by a separate classifier (Section 3.2).

Our approach to segmentation is similar to Ce-
likyilmaz et al. (2014) which used CRFs for a
similar task. Our pipeline currently uses linear-
chain CRFs to find the segment boundaries (im-

plemented with Mallet (McCallum, 2002)). Using
a CRF trained on the annotated RDG-Pento data
set, we identify the most likely sequence of word-
level boundary tags, where each tag indicates if the
current word ends the previous segment or not.2

An example segmentation is shown in Figure 3,
where the word sequence weird L to the top left
of is segmented into two segments, [weird L] and
[to the top left of]. The features provided to the
CRF include unigrams3, the speaker’s role, part-
of-speech (POS) tags obtained using the Stanford
POS tagger (Toutanova et al., 2003), and informa-
tion about the scene such as the number of objects.

3.2 Segment Type Classifier

The segment type classifier assigns each detected
segment with one of the type labels in Table 1
(SIN, MUL, REL, OT). This label informs the
Reference Resolver module in how to proceed
with the resolution process, as explained below.

The segment type labeler is an SVM classifier
implemented in LIBSVM (Chang and Lin, 2011).
Features used include word unigrams, word POS,
user role, number of objects in the TI, and the
top-level syntactic category of the segment as ob-
tained from the Stanford parser (Klein and Man-
ning, 2003). Figure 3 shows two examples of out-
put from the segment type classifier, which assigns
SIN to [weird L] and REL to [to the top left of].

3.3 Reference Resolver

We introduce some notation to help explain the
operation of the reference resolver (RR) module.
When a scene description is to be resolved, there is
a visual context in the game which we encode as a
context set C = I1, ..., I8 containing the eight visi-
ble images (see Figure 1). Each image Ik contains
n objects {ok

1, . . . , o
k
n}, where n is fixed per con-

text set, but varies across context sets from n = 1
to n = 6. The set of all objects in all images is
O = {ok

l }, with 0 < k ≤ 8, 0 < l ≤ n.
When the RR is invoked, the director has

spoken some sequence of words which has
been segmented by earlier modules into one
or more segments Sj = w1:mj , and where
each segment has been assigned a segment type
type(Sj) ∈ {SIN, MUL,REL,OT}. For exam-

2We currently adopt this two-tag approach rather than
BIO tagging as our tag-set provides a complete partition of
each speaker’s speech.

3Words of low frequency (i.e., <5) are replaced with a
fixed symbol.

235



Figure 3: Information flow during processing of an utterance. The modules operate incrementally, word-
by-word; as shown here, this can lead to revisions of decisions.

ple, S1 = ⟨weird, L⟩, S2 = ⟨to, the, top, left, of⟩
and type(S1) = SIN, type(S2) = REL.

The RR then tries to understand the individual
words, typed segments, and the full scene descrip-
tion in terms of the visible objects ok

l and the im-
ages Ik in the context set. We describe how words,
segments, and scene descriptions are understood
in the following three sections.

3.3.1 Understanding words
We understand individual words using the Words-
as-Classifiers (WAC) model of Kennington and
Schlangen (2015). In this model, a classifier is
trained for each word wp in the vocabulary. The
model constructs a function from the perceptual
features of a given object to a judgment about how
well those features “fit” together with the word be-
ing understood. Such a function can be learned
using a logistic regression classifier, separately for
each word.

The inputs to the classifier are the low-level con-
tinuous features that represent the object (RGB
values, HSV values, number of detected edges,
x/y coordinates and radial distance from the cen-
ter) extracted using OpenCV.4 These classifiers are
learned from instances of language use, i.e., by ob-
serving referring expressions paired with the ob-

4http://opencv.org

ject referred to. Crucially, once learned, these
word classifiers can be applied to any number of
objects in a scene.

We trained a WAC model for each of the (non-
relational) words in our RDG-Pento corpus, using
the annotated correct referent information for our
segmented data. After training, words can be ap-
plied to objects to yield a score:

score(wp, o
k
l ) = wp(ok

l ) (1)

(Technically, the score is the response of the clas-
sifier associated with word wp applied to the fea-
ture representation of object ok

l .)
Note that relational expressions are trained

slightly differently than non-relational words. Ex-
amples of relational expressions include under-
neath, below, next to, left of, right of, above, and
diagonal. A WAC classifier is trained for each full
relational expression eq (treated as a single token),
and the ‘fit’ for a relational expression’s classifier
is a fit for a pair of objects: (The features used for
such a classifier are comparative features, such as
the euclidean distance between the two objects, as
well as x and y distances.)

scorerel(eq, o
k
l1 , o

k
l2) = eq(ok

l1 , o
k
l2) (2)

There are about 300 of these expressions in RDG-
Pento. [SIN x] [REL r] [SIN y] is resolved as

236



r(x,y), so x and y are jointly constrained. See Ken-
nington and Schlangen (2015) for details on this
training.

3.3.2 Understanding segments
Consider an arbitrary segment Sj = w1:mj such
as S1 = ⟨weird, L⟩. For a segment (SIN or MUL),
we attempt to understand the segment as referring
to some object or set of objects. To do so, we com-
bine the word-level scores for all the words in the
segment to yield a segment-level score5 for each
object ok

l :

score(Sj , o
k
l ) = score(w1, o

k
l ) ⊙ . . . ⊙

score(wmj , o
k
l )

(3)

Each segment Sj = w1:mj hence induces an or-
der Rj on the object set O, through the scores as-
signed to each object ok

l . With these ranked scores,
we look at the type of segment to compute a final
score score∗k(Sj) for each image Ik. For SIN seg-
ments, score∗k(Sj) is the score of the top-scoring
object in Ik. For MUL segments with a cardinal-
ity of two (e.g., two red crosses), score∗k(Sj) is the
sum of the scores of the top two objects in Ik, and
so on.

Obtaining the final score score∗k(Sj) for REL
segments is done in a similar manner with some
minor differences. Because REL segments ex-
press a relation between pairs of objects (referred
to in neighboring segments), a score for the rela-
tional expression in Sj can be computed for any
pair of distinct objects ok

l1
and ok

l2
in image Ik us-

ing Eq. (2). We let score∗k(Sj) equal the score
computed for the top-scoring objects ok

l1
and ok

l2
of the neighboring segments.

3.3.3 Understanding scene descriptions
In general, a scene description consists of seg-
ments S1, ..., Sz . Composition takes segments
S1, ..., Sz and produces a ranking over images.
For this particular task, we make the following as-
sumption: in each segment, the speaker is attempt-
ing to refer to a specific object (or set of objects),
which from our perspective as matcher could be
in any of the images. A good candidate Ik for
the target image will have high scoring objects, all
drawn from the same image, for all the segments
S1, ..., Sz .

We therefore obtain a final score for each image
as shown in Eq. (4):

5The composition operator⊙ is left-associative and hence
incremental. In this paper, word-level scores are composed
by multiplying them.

Label Precision Recall F-Score
SEG 0.85 0.74 0.79
NOSEG 0.93 0.97 0.95

Table 2: Segmenter performance

Label Precision Recall F-score % of segments
SIN 0.91 0.96 0.93 57
REL 0.97 0.85 0.91 6
MUL 0.86 0.60 0.71 3
OT 0.96 0.97 0.96 34

Table 3: Segment type classifier performance

score(Ik) =
z∑

j=1

score∗k(Sj) (4)

The image I∗k selected by our pipeline for a full
scene description is then given by:

I∗k = argmax
k

score(Ik) (5)

4 Experiments & Evaluations

We first evaluate the segmenter and segment type
classifier as individual modules. We then evalu-
ate the entire processing pipeline and explore the
impact of several factors on pipeline performance.

4.1 Segmenter Evaluation
Task & Data We used the annotated RDG-
Pento data to perform a “hold-one-dialogue-pair-
out” cross-validation of the segmenter. The task is
to segment each speaker’s speech for each target
image by tagging each word using the tags SEG
and NOSEG. The SEG tag here indicates the last
word in the current segment. Figure 3 gives an
example of the tagging.

Results The results are presented in Table 2.
These results show that the segmenter is working
with some success, with precision 0.85 and recall
0.74 for the SEG tag indicating a word bound-
ary. Note that occasional errors in segment bound-
aries may not be overly problematic for the overall
pipeline, as what we ultimately care most about is
accurate target image selection. We evaluate the
overall pipeline below (Section 4.3).

4.2 Segment Type Classifier Evaluation
Task & Data We used the annotated RDG-
Pento data to perform a hold-one-pair-out cross-
validation of the segment type classifier, training a
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SVM classifier to predict labels SIN, MUL, REL,
and OT using the features described in Section 3.2.

Results The results are given in Table 3. We also
report the percentage of segments that have each
label in the corpus. The segment type classifier
performs well on most of the class labels. Of slight
concern is the low-frequency MUL label. One fac-
tor here is that people use number words like two
not just to refer to multiple objects, but also to de-
scribe individual objects, e.g., the two red crosses
(a MUL segment) vs. the one with two sides (a
SIN segment).

4.3 Pipeline Evaluation

We evaluated our pipeline under varied conditions
to understand how well it works when segmenta-
tion is not performed at all, when the segmentation
and type classifier modules produce perfect output
(using oracle annotations), and when entrainment
to a specific speaker is possible. We evaluate our
pipeline on the accuracy of the task of image re-
trieval given a scene description from our data set.

4.3.1 Three baselines
We compare against a weak random baseline (1/8
= 0.125) as well as a rather strong one, namely the
accuracies of the human-human pairs in the RDG-
Pento corpus. As Table 4 shows, in the simplest
case, with only one object per image, the average
human success rate is 85%, but this decreases to
60% when there are four objects/image. It then in-
creases to 68% when 6 objects are present, possi-
bly due to the use of a more structured description
ordering in the six object scenes. We leave further
analysis of the human strategies for future work.
These numbers show that the game is challenging
for humans.

We also include in Table 4 a simple Naive Bayes
classification approach as an alternative to our en-
tire pipeline. In our study, there were only 40 pos-
sible image sets that were fixed in advance. For
each possible image set, a different Naive Bayes
classifier is trained using Weka (Hall et al., 2009)
in a hold-one-pair-out cross-validation. The eight
images are treated as atomic classes to be pre-
dicted, and unigram features drawn from the union
of all (unsegmented) director speech are used to
predict the target image. This method is broadly
comparable to the NLU model used in (Paetzel et
al., 2015) to achieve high performance in resolv-
ing references to pictures of single objects. As can

be seen, the accuracy for this method is as high
as 43% for single object TIs in the RDG-Pento
data set, but the accuracy rapidly falls to near the
random baseline as the number of objects/image
increases. This weak performance for a classifier
without segmentation confirms the importance of
segmenting complex descriptions into references
to individual objects in the RDG-Pento game.

4.3.2 Five versions of the pipeline
Table 4 includes results for 5 versions of our
pipeline. The versions differ in terms of which
segment boundaries and segment type labels are
used, and in the type of cross-validation per-
formed. A first version (I) explores how well the
pipeline works if unsegmented scene descriptions
are provided and a SIN label is assumed to cover
the entire scene description. This model is broadly
comparable to the Naive Bayes baseline, but sub-
stitutes a WAC-based NLU component. The
evaluation of version (I) uses a hold-one-pair-out
(HOPO) cross-validation, where all modules are
trained on every pair except for the one being used
for testing. A second version (II) uses automati-
cally determined segment boundaries and segment
type labels, in a HOPO cross-validation, and rep-
resents our pipeline as described in Section 3. A
third version (III) substitutes in human-annotated
or “oracle” segment boundaries and type labels,
allowing us to observe the performance loss asso-
ciated with imperfect segmentation and type label-
ing in our pipeline. The fourth and fifth versions
of the pipeline switch to a hold-one-episode-out
(HOEO) cross-validation, where only the specific
scene description (“episode”) being tested is held
out from training. When compared with a HOPO
cross-validation, the HOEO setup allows us to in-
vestigate the value of learning from and entrain-
ing to the specific speaker’s vocabulary and speech
patterns (such as calling the purple object in Fig-
ure 2 a “harry potter”).

4.3.3 Results
Table 4 summarizes the image retrieval accura-
cies for our three baselines and five versions of
our pipeline. We discuss here some observations
from these results. First, in comparing pipeline
versions (I) and (II), we observe that the use of
automated segmentation and a segment type clas-
sifier in (II) leads to a substantial increase in ac-
curacy of 5-20% (p<0.001)6 depending on the

6wilcoxon rank sum test
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#objects per TI
1 2 3 4 6

Random baseline 0.13 0.13 0.13 0.13 0.13
Naive Bayes baseline 0.43 0.20 0.14 0.14 0.13

Seg+lab X-validation
(I) None HOPO 0.47 0.20 0.24 0.13 0.15
(II) Auto HOPO 0.52 0.40 0.31 0.24 0.23

(III) Oracle HOPO 0.54 0.42 0.32 0.30 0.26
(IV) Auto HOEO 0.60 0.46 0.37 0.25 0.23
(V) Oracle HOEO 0.64 0.50 0.41 0.34 0.44
Human-human baseline 0.85 0.73 0.66 0.60 0.68

Table 4: Image retrieval accuracies for five ver-
sions of the pipeline and three baselines.

number of objects/image. Comparing (II) and
(III), we see that if our segmenter and segment
type classifier could reproduce the human segment
annotations perfectly, an additional improvement
of 1-6% (p<0.001) accuracy would be possible.
Comparing (II) to (IV), we see that exposing our
pipeline training to the idiosyncratic speech and
vocabulary of a given speaker would hypotheti-
cally enable an increase in accuracy of up to 8%
(p<0.001). Note however that this setup can-
not easily be replicated in a real-time system, as
our HOEO training provides not only samples of
the transcribed speech of the same speaker, but
also human annotations of the segment bound-
aries, segment types, and correct referents for this
speech (which would not generally be available for
immediate use in a run-time system). Comparing
(IV) to (V), we see that oracle segment boundaries
and types also improve accuracies in a HOEO
evaluation between 4-19% (p<0.001). Compar-
ing our fully automated HOPO pipeline (II) to
the baselines, we see that our pipeline performs
considerably better than the random and Naive
Bayes baselines. At the same time, there is still
much room for improvement when we compare to
human-human accuracy. Segmentation is harder
the more objects (and hence segments) there are.
Compared to HOEO, HOPO is additionally hurt
by idiosyncratic vocabulary that isn’t learned, so
even with oracle segmentations, performance does
not increase as much.

4.4 Evaluation of Object Retrieval

Table 4 shows that even when there is just one ob-
ject in each of the eight images, our pipeline (II)
only selects the correct image 52% of the time
given the complete scene description, while hu-
mans succeed 85% of the time. We further in-
vestigated our performance at understanding de-

n 1 2 3 4 6
accuracy 1 .88 .77 .60 .66

Table 5: Accuracy for object retrieval in target im-
ages with n objects.

scriptions of individual objects by defining a con-
structed “object retrieval” problem. In this prob-
lem, individual SIN segments from the RDG-
Pento corpus are considered one at a time, and the
correct target image is provided by an oracle. The
only task is to use the WAC model to select the
correct referent object within the image for a sin-
gle SIN segment. An example of the object re-
trieval problem is to select the correct referent for
the SIN segment and a wooden w sort of in the
known target image of Figure 1.

The results are shown in Table 5. We can ob-
serve that object retrieval is by itself a non-trivial
problem for our WAC model, especially as the
number of objects increases. This is somewhat by
design in that the multiple objects present within
an image are often selected to be fairly similar in
their properties, and multiple objects may match
ambiguous SIN segments such as the T or the plus
sign. We speculate that we could gain here from
factoring in positional information implicit in de-
scription strategies such as going from top left to
bottom right in describing the objects.

5 Related Work

The work described in this paper directly builds
off of Paetzel et al. (2015) as the same RDG game
scenario was used, however reference was only
made to single objects in that work. The work
here also builds off of Kennington and Schlangen
(2015) in the same way in that their work only fo-
cused on reference to single objects. The exten-
sion of this previous work to handle more com-
plex scene descriptions required substantial com-
position on the word and segment levels. The seg-
mentation presented here was fairly straight for-
ward (similar in spirit to chunking as in Marcus
(1995)). Composition is currently an active area
in distributional semantics where word meanings
are represented by high-dimensional vectors and
composition amounts to some kind of vector op-
eration (see (Milajevs et al., 2014) for a compar-
ison of methods). An important difference is that
here words and segments are composed at the de-
notational level (i.e., on the scores given by the
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WAC model, akin to referentially afforded concept
composition (Mcnally and Boleda, 2015)). Also
related are the recent efforts in automatic image
captioning and retrieval, where the task is to gen-
erate a description (a caption) for a given image
or retrieve one being given a description. A fre-
quently taken approach is to use a convolutional
neural network to map the image into a dense vec-
tor, and then to condition a neural language model
on this to produce an output string or using it to
map the description into the same space (Vinyals
et al., 2015; Devlin et al., 2015; Socher et al.,
2014). See also Fang et al. (2015), which is more
directly related to our model in that they use “word
detectors” to propose words for image regions.

6 Conclusions & Future work

We have presented an approach to understand-
ing complex, multi-utterance references to im-
ages containing spatially complex scenes. The ap-
proach by design works incrementally, and hence
is ready to be used in an interactive system. We
presented evaluations that go end-to-end from ut-
terance input to resolution decision (but not yet
taking in speech). We have shown that segmen-
tation is a critical component for understanding
complex visual scene descriptions. This work
opens avenues for future explorations in various
directions. Intra- and inter-segment composition
(through multiplication and addition, respectively)
are approached somewhat simplistically, and we
want to explore the consequences of these deci-
sions more deeply in future work. Additionally, as
discussed above, there seems to be much implicit
information in how speakers go from one refer-
ence to the next, which might be possible to cap-
ture in a transition model. Finally, in an online
setting, there is more than just the decision “this is
the referent”; one must also decide when and how
to act based on the confidence in the resolution.
Lastly, our results have shown that human pairs do
align on their conceptual description frames (Gar-
rod and Anderson, 1987). Whether human users
would also do this with an artificial interlocutor, if
it were able to do the required kind of online learn-
ing, is another exciting question for future work,
enabled by the work presented here. We also plan
to extend our work in the future to include descrip-
tions which contain relations between non singular
objects (Ex: [MUL two red crosses] [REL above]
[SIN brown L], [MUL two red crosses] [REL on

top of] [MUL two green Ts] etc.). However, such
descriptions were very rare in the corpus.

Obtaining samples for training the classifiers
is another issue. One source of sparsity is
idiosyncratic descriptions like ’harry potter’ or
’facebook’. In dialogue (our intended setting),
these could be grounded through clarification re-
quests. A more extensive solution would ad-
dress metaphoric or meronymic usage (”looks like
xyz”). We will explore this in future work.
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Abstract

Arguably, spoken dialogue systems are
most often used not in hands/eyes-busy
situations, but rather in settings where a
graphical display is also available, such as
a mobile phone. We explore the use of
a graphical output modality for signalling
incremental understanding and prediction
state of the dialogue system. By visual-
ising the current dialogue state and pos-
sible continuations of it as a simple tree,
and allowing interaction with that visual-
isation (e.g., for confirmations or correc-
tions), the system provides both feedback
on past user actions and guidance on pos-
sible future ones, and it can span the con-
tinuum from slot filling to full prediction
of user intent (such as GoogleNow). We
evaluate our system with real users and re-
port that they found the system intuitive
and easy to use, and that incremental and
adaptive settings enable users to accom-
plish more tasks.

1 Introduction

Current virtual personal assistants (PAs) require
users to either formulate complex intents in one
utterance (e.g., “call Peter Miller on his mobile
phone”) or go through tedious sub-dialogues (e.g.,
“phone call” – who would you like to call? –
“Peter Miller” – I have a mobile number and a
work number. Which one do you want?). This is
not how one would interact with a human assis-
tant, where the request would be naturally struc-
tured into smaller chunks that individually get ac-
knowledged (e.g., “Can you make a connection for
me?” – sure – “with Peter Miller” - uh huh - “on
his mobile” - dialling now). Current PAs signal
ongoing understanding by displaying the state of

the recognised speech (ASR) to the user, but not
their semantic interpretation of it. Another type
of assistant system forgoes enquiring user intent
altogether and infers likely intents from context.
GoogleNow, for example, might present traffic in-
formation to a user picking up their mobile phone
at their typical commute time. These systems dis-
play their “understanding” state, but do not allow
any type of interaction with it apart from dismiss-
ing the provided information.

In this work, we explore adding a graphical user
interface (GUI) modality that makes it possible to
see these interaction styles as extremes on a con-
tinuum, and to realise positions between these ex-
tremes and present a mixed graphical/voice en-
abled PA that can provide feedback of understand-
ing to the user incrementally as the user’s utter-
ance unfolds–allowing users to make requests in
instalments instead of fully thought-out requests.
It does this by signalling ongoing understanding
in an intuitive tree-like GUI that can be displayed
on a mobile device. We evaluate our system by di-
recting users to perform tasks using it under non-
incremental (i.e., ASR endpointing) and incremen-
tal conditions and then compare the two condi-
tions. We further compare a non-adaptive with an
adaptive (i.e., infers likely events) version of our
system. We report that the users found the inter-
face intuitive and easy to use, and that users were
able to perform tasks more efficiently with incre-
mental as well as adaptive variants of the system.

2 Related Work

This work builds upon several threads of previ-
ous research: Chai et al. (2014) addressed mis-
alignments in understanding (i.e., common ground
(Clark and Schaefer, 1989)) between robots and
humans by informing the human of the internal
system state via speech. We take this idea and ap-
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ply it to a PA by displaying the internal state of
the system to the user via a GUI (explained in Sec-
tion 3.5), allowing the user to determine if system
understanding has taken place–a way of providing
feedback and backchannels to the user. Dethlefs et
al. (2016) provide a good review of work that show
how backchannels facilitate grounding, feedback,
and clarifications in human spoken dialogue, and
apply an information density approach to deter-
mine when to backchannel using speech. Because
we don’t backchannel using speech here, there is
no potential overlap between the user and the sys-
tem; rather, our system can display backchannels
and ask clarifications without frustrating the user
through inadvertent overlaps.

Though different in many ways, our work is
similar in some regards to Larsson et al. (2011),
which displays information to the user and allows
the user to navigate the display itself (e.g., by say-
ing up or down in a menu list)–functionality that
we intend to apply to our GUI in future work. Our
work is also comparable to SDS toolkits such as
IrisTK (Skantze and Moubayed, 2012) and Open-
Dial (Lison, 2015) which enable SDS designers to
visualise the internal state of their systems, though
not for end user interpretability.

Some of the work here is inspired by the Mi-
crosoft Language Understanding Intelligent Ser-
vice (LUIS) project (Williams et al., 2015). While
our system by no means achieves the scale that
LUIS does, we offer here an additional contribu-
tion of an open source LUIS-like system (with the
important addition of the graphical interface) that
is authorable (using JSON files; we leave author-
ing using a web interface like that of LUIS to fu-
ture work), extensible (affordances can be easily
added), incremental (in that respect going beyond
LUIS), trainable (i.e., can learn from examples,
but can still function well without examples), and
can learn through interacting (here we apply a user
model that learns during interaction).

3 System Description

This section introduces and describes our SDS,
which is modularised into four main components:
ASR, natural language understanding (NLU), dia-
logue management (DM), and the graphical user
interface (GUI) which, as explained below, is visu-
alised as a right-branching tree. The overall sys-
tem is represented in Figure 1. For the remain-
der of this section, each module is explained in

turn. As each module processes input incremen-
tally (i.e., word for word), we first explain our
framework for incremental processing.

ASR NLU

DM

w1...wn
w1...wn

d1

dm

s1 : v1

sm : vm

...

s1 : v1

sm : vm

...

...

GUI

Figure 1: Overview of system made up of ASR which takes in
a speech signal and produces transcribed words, NLU, which
takes words and produces a slots in a frame, DM which takes
slots and produces a decision for each, and the GUI which
displays the state of the system.

3.1 Incremental Dialogue
An aspect of our SDS that sets it apart from oth-
ers is the requirement that it process incrementally.
One potential concern with incremental process-
ing is regarding informativeness: why act early
when waiting might provide additional informa-
tion, resulting in better-informed decisions? The
trade off is naturalness as perceived by the user
who is interacting with the SDS. Indeed, it has
been shown that human users perceive incremen-
tal systems as being more natural than traditional,
turn-based systems (Aist et al., 2006; Skantze and
Schlangen, 2009; Skantze and Hjalmarsson, 1991;
Asri et al., 2014), offer a more human-like expe-
rience (Edlund et al., 2008) and are more satisfy-
ing to interact with than non-incremental systems
(Aist et al., 2007). Psycholinguistic research has
also shown that humans comprehend utterances
as they unfold and do not wait until the end of
an utterance to begin the comprehension process
(Tanenhaus et al., 1995; Spivey et al., 2002).

The trade-off between informativeness and nat-
uralness can be reconciled when mechanisms are
in place that allow earlier decisions to be repaired.
Such mechanisms are offered by the incremen-
tal unit (IU) framework for SDS (Schlangen and
Skantze, 2011), which we apply here. Follow-
ing Kennington et al. (2014), the IU framework
consists of a network of processing modules. A
typical module takes input, performs some kind
of processing on that data, and produces output.
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Figure 2: Example of IU network; part-of-speech tags are
grounded into words, tags and words have same level links
with left IU; four is revoked and replaced with forty.

The data are packaged as the payload of incre-
mental units (IUs) which are passed between mod-
ules. The IUs themselves are interconnected via
so-called same level links (SLL) and grounded-
in links (GRIN), the former allowing the linking
of IUs as a growing sequence, the latter allowing
that sequence to convey what IUs directly affect it
(see Figure 2 for an example of incremental ASR).
Thus IUs can be added, but can be later revoked
and replaced in light of new information. The IU

framework can take advantage of up-to-date infor-
mation, but have the potential to function in such
a way that users perceive as more natural.

The modules explained in the remainder of this
section are implemented as IU-modules and pro-
cess incrementally. Each will now be explained.

3.2 Speech Recognition

The module that takes speech input from the user
in our SDS is the ASR component. Incremen-
tal ASR must transcribe uttered speech into words
which must be forthcoming from the ASR as early
as possible (i.e., the ASR must not wait for end-
pointing to produce output). Each module that
follows must also process incrementally, acting in
lock-step upon input as it is received. Incremen-
tal ASR is not new (Baumann et al., 2009) and
many of the current freely-accessible ASR systems
can produce output (semi-) incrementally. We opt
for Google ASR for its vocabulary coverage of our
evaluation language (German). Following, Bau-
mann et al. (2016), we package output from the
Google service into IUs which are passed to the
NLU module, which we now explain.

3.3 Language Understanding

We approach the task of NLU as a slot-filling task
(a very common approach; see Tur et al. (2012))
where an intent is complete when all slots of a
frame are filled. The main driver of the NLU in

our SDS is the SIUM model of NLU introduced in
Kennington et al. (2013). SIUM has been used in
several systems which have reported substantial
results in various domains, languages, and tasks
(Han et al., 2015; Kennington et al., 2015; Ken-
nington and Schlangen, 2017) Though originally
a model of reference resolution, it was always in-
tended to be used for general NLU, which we do
here. The model is formalised as follows:

P (I|U) =
1

P (U)
P (I)

∑
r∈R

P (U |R = r)P (R = r|I) (1)

That is, P (I|U) is the probability of the in-
tent I (i.e., a frame slot) behind the speaker’s (on-
going) utterance U . This is recovered using the
mediating variable R, a set of properties which
map between aspects of U and aspects of I . We
opt for abstract properties here (e.g., the frame
for restaurant might be filled by a certain
type of cuisine intent such as italian which
has properties like pasta, mediterranean,
vegetarian, etc.). Properties are pre-defined
by a system designer and can match words that
might be uttered to describe the intent in question.
For P (R|I), probability is distributed uniformly
over all properties that a given intent is specified
to have. (If other information is available, more
informative priors could be used as well.) The
mapping between properties and aspects of U can
be learned from data. During application, R is
marginalised over, resulting in a distribution over
possible intents.1 This occurs at each word incre-
ment, where the distribution from the previous in-
crement is combined via P (I), keeping track of
the distribution over time.

We further apply a simple rule to add in a-
priori knowledge: if some r ∈ R and w ∈ U
are such that r .= w (where .= is string equal-
ity; e.g., an intent has the property of pasta
and the word pasta is uttered), then we set
C(U=w|R=r)=1. To allow for possible ASR

confusions, we also apply C(U=w|R=r)= 1 −
ld(w, r)/max(len(w), len(r)), where ld is the
Levenshtein distance (but we only apply this if the
calculated value is above a threshold of 0.6; i.e.,
the two strings are mostly similar). For all otherw,
C(w|r)=0. This results in a distribution C, which
we renormalise and blend with learned distribution
to yield P (U |R).

1In Kennington et al. (2013) the authors apply Bayes’
Rule to allow P (U |R) to produce a distribution over prop-
erties, which we adopt here.
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We apply an instantiation of SIUM for each slot.
The candidate slots which are processed depends
on the state of the dialogue; only slots represented
by visible nodes are considered, thereby reducing
the possible frames that could be predicted. At
each word increment, the updated slots (and their
corresponding) distributions are given to the DM,
which will now be explained.

3.4 Dialogue Manager

The DM plays a crucial role in our SDS: as well
as determining how to act, the DM is called upon
to decide when to act, effectively giving the DM

the control over timing of actions rather than re-
lying on ASR endpointing–further separating our
SDS from other systems. The DM policy is based
on a confidence score derived from the NLU (in
this case, we used the distribution’s argmax value)
using thresholds for the actions (see below), set
by hand (i.e., trial and error). At each word and
resulting distribution from NLU, the DM needs to
choose one of the following:

• wait – wait for more information (i.e., for
the next word)

• select – as the NLU is confident enough,
fill the slot can with the argmax from NLU

• request – signal a (yes/no) clarification re-
quest on the current slot and the proposed
filler

• confirm – act on the confirmation of the
user; in effect, select the proposed slot
value

Though the thresholds are statically set, we ap-
plied OpenDial (Lison, 2015) as an IU-module to
perform the task of the DM with the future goal
that these values could be adjusted through rein-
forcement learning (which OpenDial could pro-
vide). The DM processes and makes a decision
for each slot, with the assumption that only one
slot out of all that are processed will result in an
non-wait action (though this is not enforced).

3.5 Graphical User Interface

The goal of the GUI is to intuitively inform the
user about the internal state of the ongoing under-
standing. One motivation for this is that the user
can determine if the system understood the user’s
intent before providing the user with a response

(e.g., a list of restaurants of a certain type); i.e., if
any misunderstanding takes place, it happens be-
fore the system commits to an action and is poten-
tially more easily repaired.

Figure 3: Example tree
as branching from the
root; each branch repre-
sents a system affordance
(i.e., making a phone
call, reminder, finding
a restaurant, leaving a
message, and finding a
route).

The display is a right-
branching tree, where the
branches directly off the
root node display the af-
fordances of the system
(i.e., what domains of
things it can understand
and do something about).
When the first tree is dis-
played, it represents a
state of the NLU where
none of the slots are
filled, as in Figure 3.

When a user verbally
selects a domain to ask
about, the tree is adjusted
to make that domain the
only one displayed and
the slots that are required for that domain are
shown as branches. The user can then fill those
slots (i.e., branches) by uttering the displayed
name, or, alternatively, by uttering the item to fill
the slot directly. For example, at a minimum, the
user could utter the name of the domain then an
item for each slot (e.g., food Thai downtown) or
the speech could be more natural (e.g., I’m quite
hungry, I am looking for some Thai food maybe in
the downtown area). Crucially, the user can also
hesitate within and between chunks, as advance-
ment is not triggered by silence thresholding, but
rather semantically. When something is uttered
that falls into the request state of the DM as
explained above, the display expands the subtree
under question and marks the item with a question
mark (see Figure 4). At this point, the user can ut-
ter any kind of confirmation. A positive confirma-
tion fills the slot with the item in question. A neg-
ative confirmation retracts the question, but leaves
the branch expanded. The expanded branches are
displayed according to their rank as given by the
NLU’s probability distribution. Though a branch
in the display can theoretically display an unlim-
ited number of children, we opted to only show 7
children; if a branch had more, the final child dis-
played as an ellipsis.

A completed branch is collapsed, visually
marking its corresponding slot as filled. At any
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Figure 4: Example tree asking for confirmation on a specific
node (in red with a question mark).

time, a user can backtrack by saying no (or equiv-
alent) or start the entire interaction over from the
beginning with a keyword, e.g., restart. To aid the
user’s attention, the node under question is marked
in red, where completed slots are represented by
outlined nodes, and filled nodes represent candi-
dates for the current slot in question (see examples
of all three in Figure 4). For cases where the sys-
tem is in the wait state for several words (during
which there is no change in the tree), the system
signals activity at each word by causing the red
node in question to temporarily change to white,
then back to red (i.e., appearing as a blinking node
to the user). Figure 5 shows a filled frame, repre-
sented as tree with one branch for each filled slot.

Figure 5: Example tree where all of the slots are
filled. (i.e., domain:food, location:university,
type:thai)

Such an interface clearly shows the internal
state of the SDS and whether or not it has under-
stood the request so far. It is designed to aid the
user’s attention to the slot in question, and clearly
indicates the affordances that the system has. The
interface is currently a read-only display that is
purely speech-driven, but it could be augmented
with additional functionalities, such as tapping a
node for expansion or typing input that the system
might not yet display. It is currently implemented
as a web-based interface (using the JavaScript D3
library), allowing it to be usable as a web applica-
tion on any machine or mobile device.

Adaptive Branching The GUI as explained af-
fords an additional straight-forward extension: in
order to move our system towards adaptivity on
the above-mentioned continuum, the GUI can be
used to signal what the system thinks the user
might say next. This is done by expanding
a branch and displaying a confirmation on that
branch, signalling that the system predicts that the
user will choose that particular branch. Alterna-
tively, if the system is confident that a user will fill
a slot with a particular value, that particular slot
can be filled without confirmation. This is dis-
played as a collapsed tree branch. A system that
perfectly predicts a user’s intent would fill an en-
tire tree (i.e., all slots) only requiring the user to
confirm once. A more careful system would con-
firm at each step (such an interaction would only
require the user to utter confirmations and nothing
else). We applied this adaptive variant of the tree
in one of our experiments explained below.

4 Experiments

In this section, we describe two experiments where
we evaluated our system. It is our primary goal
to show that our GUI is useful and signals under-
standing to the user. We also wish to show that
incremental presentation of such a GUI is more
effective than an endpointed system. We further
want to show that an adaptive system is more ef-
fective than a non-adaptive system (though both
would process incrementally). In order to best
evaluate our system, we recruited participants to
interact with our system in varied settings to com-
pare endpointed (i.e., non-incremental) and non-
adaptive as well as adaptive versions. We describe
how the data were collected from the participants,
then explain each experiment and give results.

4.1 Task & Procedure

The participants were seated at a desk and given
written instructions indicating that they were to
use the system to perform as many tasks as pos-
sible in the allotted time. Figure 6 shows some
example tasks as they would be displayed (one
at a time) to the user. A screen, tablet, and key-
board were on the desk in front of the user (see
Figure 7).2 The user was instructed to convey the
task presented on the screen to the system such

2We used a Samsung 8.4 Pro tablet turned to its side to
show a larger width for the tree to grow to the right. The tablet
only showed the GUI; the SDS ran on a separate computer.
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that the GUI on the tablet would have a completed
tree (e.g., as in Figure 5). When the participant
was satisfied that the system understood her intent,
she was to press space bar on the keyboard which
triggered a new task to be displayed on the screen
and reset the tree to its start state on the tablet (as
in Figure 3).

Figure 6: Examples of tasks,
as presented to each participant.
Each icon represents a spe-
cific task domain (i.e., call, re-
minder, find a restaurant, leave
a message, or directions).

The possible task
domains were call,
which had a single
slot for name to
be filled (i.e., one
out of the 22 most
common German
given names); mes-
sage which had
a slot for name
and a slot for the
message (which,
when invoked,
would simply fill
in directly from the
ASR until 1 second of silence was detected); eat
which had slots for type (in this case, 6 possible
types) and location (in this case, 6 locations
based around the city of Bielefeld); route which
had slots for source city and the destination city
(which shared the same list of the top 100 most
populous German cities); and reminder which had
a slot for message.

For each task, the domain was first randomly
chosen from the 5 possible domains, and then each
slot value to be filled was randomly chosen (the
message slot for the name and message domains
was randomly selected from a list of 6 possible
“messages”, each with 2-3 words; e.g., feed the
cat, visit grandma, etc.). The system kept track of
which tasks were already presented to the partic-
ipant. At any time after the first task, the system
could choose a task that was previously presented
and present it again to the participant (with a 50%
chance) so the user would often see tasks that she
had seen before (with the assumption that humans
who use PAs often do perform similar, if not the
same, tasks more than once).

The participant was told that she would inter-
act with the system in three different phases, each
for 4 minutes, and to accomplish as many tasks
as possible in that time allotment. The partici-
pant was not told what the different phases were.
The experiments described in Sections 4.2 and

screen
tablet
keyboard

participant

Figure 7: Bird’s eye view of the experiment: the participant
sat at a table with a screen, tablet, and keyboard in front of
them.

4.3 respectively describe and report a compari-
son first between the Phase 1 and 2 (denoted as
the endpointed and incremental variants of the
system) in order to establish whether or not the
incremental variant produced better results than
the endpointed variant. We also report a com-
parison between Phase 2 and 3 (incremental and
incremental-adaptive phases). Phase 1 and Phase
3 are not directly comparable to each other as
Phase 3 is really a variant of Phase 2. Because of
this, we fixed the order of the phase presentation
for all participants. Each of these phases are de-
scribed below. Before the participant began Phase
1, they were able to try it out for up to 4 min-
utes (in Phase 1 settings) and ask for help from
the experimenter, allowing them to get used to the
Phase 1 interface before the actual experiment be-
gan. After this trial phase, the experiment began
with Phase 1.

Phase 1: Non-incremental In this phase, the
system did not appear to work incrementally; i.e.,
the system displayed tree updates after ASR end-
pointing (of 1.2 seconds–a reasonable amount of
time to expect a response from a commercial spo-
ken PA). The system displayed the ongoing ASR

on the tablet as it was recognised (as is often done
in commercial PAs). At the end of Phase 1, a pop
up window notified the user that the phase was
complete. They then moved onto Phase 2.

Phase 2: Incremental In this phase, the sys-
tem displayed the tree information incrementally
without endpointing. The ASR was no longer dis-
played; only the tree provided feedback in under-
standing, as explained in Section 3.5.

After Phase 2, a 10-question questionnaire was
displayed on the screen for the participant to fill
out comparing Phase 1 and Phase 2. For each
question, they had the choice of Phase 1, Phase
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2, Both, and Neither. (See Appendix for full list
of questions.) After completing the questionnaire,
they moved onto Phase 3.

Phase 3: Incremental-adaptive In this phase,
the incremental system was again presented to
the participant with an added user model that
“learned” about the user. If the user saw a task
more than once, the user model would predict
that, if the user chose that task domain again (e.g.,
route) then the system would automatically ask a
clarification using the previously filled values (ex-
cept for the message slot, which the user always
had to fill). If the user saw a task more than 3
times, the system skipped asking for clarifications
and filled in the domain slots completely, requir-
ing the user only to press the space bar to confirm
it was the correct one (i.e., to complete the task).
An example progression might be as follows: a
participant is presented with the task route from
Bielefeld to Berlin, then the user would attempt to
get the system to fill in the tree (i.e., slots) with
those values. After some interaction in other do-
mains, the user sees the same task again, and now
after indicating the intent type route, the user must
only say “yes” for each slot to confirm the sys-
tem’s prediction. Later, if the task is presented a
third time, when entering that domain (i.e, route),
the two slots would already be filled. If later a
different route task was presented, e.g., route from
Bielefeld to Hamburg, the system would already
have the two slots filled, but the user could back-
track by saying “no, to Hamburg” which would
trigger the system to fill the appropriate slot with
the corrected value. Later interactions within the
route domain would ask for a clarification on the
destination slot since it has had several possible
values given by the participant, but continue to fill
the from slot with Bielefeld.

After Phase 3, the participants were presented
with another questionnaire on the screen to fill out
with the same questions (plus two additional ques-
tions), this time comparing Phase 2 and Phase 3.
For each item, they had the choice of Phase 2,
Phase 3, Both, and Neither. At the end of the
three phases and questionnaires, the participants
were given a final questionnaire to fill out by hand
on their general impressions of the systems.

We recruited 14 participants for the evaluation.
We used the Mint tools data collection framework
(Kousidis et al., 2012) to log the interactions. Due
to some technical issues, one of the participants

did not log interactions. We collected data from 13
participants, post-Phase 2 questionnaires from 12
participants, post-Phase 3 questionnaires from all
14 participants, and general questionnaires from
all 14 participants. In the experiments that follow,
we report objective and subjective measures to de-
termine the settings that produced superior results.

Metrics We report the subjective results of the
participant questionnaires. We only report those
items that were statistically significant (see Ap-
pendix for a full list of the questions). We further
report objective measures for each system vari-
ant: total number of completed tasks, fully correct
frames, average frame f-score, and average time
elapsed (averages are taken over all participants
for each variant; we only used the 10 participants
who fully interacted with all three phases). Dis-
cussion is left to the end of this section.

4.2 Experiment 1: Endpointed vs.
Incremental

In this section we report the results of the
evaluation between the endpointed (i.e., non-
incremental; Phase 1) variant vs the incremental
(Phase 2) variant of our system.

Subjective Results We applied a multinomial
test of significance to the results, treating all four
possible answers as equally likely (with Bonfer-
roni correction of 10). The item The interface was
useful and easy to understand with the answer of
Both was significant (χ2 (4, N = 12) = 9.0, p <
.005), as was The assistant was easy and intu-
itive to use also with the answer Both (χ2 (4, N
= 12) = 9.0, p < .005). The item I always under-
stood what the system wanted from me was also
answered Both significantly more times than other
answers (χ2 (4, N = 14) = 9.0, p< .005), similarly
for It was sometimes unclear to me if the assis-
tant understood me with the answer of Both (χ2

(4, N = 12) = 10.0, p < .005). These responses
tell us that though the participants did not report
preference for either system variant, they reported
a general positive impression of the GUI (in both
variants). This is a nice result; the GUI could be
used in either system with benefit to the users.

Objective Results The endpointed (Phase 1)
and incremental (Phase 2) columns in Table 1
show the results of the objective evaluation.
Though the average time per task and fscore for
the endpointed variant are better than those of the
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endpointed incr. adaptive
tasks 105 122 124

frames 46 46 59
fscore 0.81 0.74 0.80

time 19.1 19.6 19.5

Table 1: Objective measures for Experiments 1 & 2: count
of completed tasks, number of fully correct frames, average
fscore (over all participants), and average elapsed time per
task (over all participants).

incremental variant, the total number of tasks for
the incremental variant was higher.

Manual inspection of logs indicate that partic-
ipants took advantage of the system’s flexibility
of understanding instalments (i.e., filling frames
incrementally). This is evidenced in that partici-
pants often uttered words understood by the sys-
tem as being negative (e.g., nein/no), either as a
result of an explicit confirmation request by the
system (e.g., Thai?) or after a slot was incorrectly
filled (something very easily determined through
the GUI). This is a desired outcome of using our
system; participants were able to repair local ar-
eas of misunderstanding as they took place in-
stead of needing to correct an entire intent (i.e.,
frame). However, we cannot fully empirically
measure these tendencies given our data.

4.3 Experiment 2: Incremental vs.
Incremental-Adaptive

In this section we report results for the eval-
uation between the incremental (Phase 2) and
incremental-adaptive (henceforth just adaptive;
Phase 3) systems.

Subjective Results We applied the same signif-
icance test as Experiment 1 (with Bonferroni cor-
rection of 12). The item The interface was useful
and easy to understand was answered with Both
significantly (χ2 (4, N = 14) = 10.0, p < .0042),
The item I had the feeling that the assistant at-
tempted to learn about me was answered with Nei-
ther (χ2 (4, N = 14) = 8.0, p < .0042), though
Phase 3 was also marked (6 times). All other items
were not significant. Here again we see that there
is a general positive impression of the GUI under
all conditions. If anyone noticed that a system
variant was attempting to learn a user model at all,
they noticed that it was in Phase 3, as expected.

Objective Results The incremental (Phase 2)
and adaptive (Phase 3) columns in Table 1 show

the results for the objective evaluation for this
experiment. There is a clear difference between
the two variants, with the adaptive showing more
completed tasks, more fully correct frames, and a
higher average fscore (all three likely due to the
fact that frames were potentially pre-filled).

4.4 Discussion

While the responses don’t express any preference
for a particular system variant, the overall impres-
sion of the GUI was positive. The objective mea-
sures show that there are gains to be made when
the system signals understanding at a more fine-
grained interval than at the utterance level, due to
the higher number of completed tasks and locally-
made repairs. There are further gains to be made
when the system applies simple user modelling
(i.e., adaptivity) by attempting to predict what the
user might want to do in a chosen domain, de-
creasing the possibility of user error and allow-
ing the system to accurately and quickly complete
more tasks. Participants also didn’t just get used
to the system over time, as the average time per
episode was fairly similar in all three phases.

The open-ended questionnaire sheds additional
light. Most of the suggestions for improvement
related to ASR misrecognition and speed (i.e., not
about the system itself). Two participants sug-
gested an ability to add “free input” or select alter-
natives from the tree. Two participants suggested
that the system be more responsive (i.e., in wait
states), and give more feedback (i.e., backchan-
nels) more often. For those participants that ex-
pressed preference to the non-incremental system
(Phase 1), none of them had used a speech-based
PA before, whereas those that expressed prefer-
ence to the incremental versions (Phases 2 and
3) use them regularly. We conjecture that people
without SDS experience equate understanding with
ASR, whereas those that are more familiar with
PAs know that perfect ASR doesn’t translate to per-
fect understanding–hence the need for a GUI. A
potential remedy would be to display ASR with the
tree, signalling understanding despite ASR errors.

5 Conclusion & Future Work

Given the results and analysis, we conclude that an
intuitive presentation that signals a system’s ongo-
ing understanding benefits end users who perform
simple tasks which might be performed by a PA.
The GUI that we provided, using a right-branching
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tree, worked well; indeed, the participants who
used it found it intuitive and easy to understand.
There are gains to be made when the system sig-
nals understanding at finer-grained levels than just
at the end of a pre-formulated utterance. There are
further gains to be made when a PA attempts to
learn (even a rudimentary) user model to predict
what the user might want to do next. The adap-
tivity moves our system from one extreme of the
continuum–simple slot filling–closer towards the
extreme that is fully predictive, with the additional
benefit of being able to easily correct mistakes in
the predictions.

For future work, we intend to provide simple
authoring tools for the system to make building
simple PAs using our GUI easy. We want to im-
prove the NLU and scale to larger domains.3 We
also plan on implementing this as a standalone ap-
plication that could be run on a mobile device,
which could actually perform the tasks. It would
further be beneficial to compare the GUI with a
system that responds with speech (i.e., without a
GUI). Lastly, we will investigate using touch as an
additional input modality to select between possi-
ble alternatives that are offered by the system.
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Appendix
The following questions were asked on both ques-
tionnaires following Phase 2 and Phase 3 (com-
paring the two most latest used system versions;
as translated into English):

• The interface was useful and easy to understand.

• The assistant was easy and intuitive to use.

• The assistant understood what I wanted to say.

• I always understood what the system wanted from me.

• The assistant made many mistakes.

• The assistant did not respond while I spoke.

3Kennington and Schlangen (2017) showed that our cho-
sen NLU approach can scale fairly well, but the GUI has
some limits when applied to larger domains with thousands
of items. We leave improved scaling to future work.

• It was sometimes unclear to me if the assistant under-
stood me.

• The assistant responded while I spoke.

• The assistant sometimes did things that I did not expect.

• When the assistant made mistakes, it was easy for me
to correct them.

In addition to the above 10 questions, the follow-
ing were also asked on the questionnaire following
Phase 3:
• I had the feeling that the assistant attempted to learn

about me.

• I had the feeling that the assistant made incorrect
guesses.

The following questions were used on the general
questionnaire:
• I regularly use personal assistants such as Siri, Cortana,

Google now or Amazon Echo: Yes/No

• I have never used a speech-based personal assistant:
Yes/No

• What was your general impression of our personal as-
sistants?

• Would you use one of these assistants on a smart phone
or tablet if it were available? If yes, which one?

• Do you have suggestions that you think would help us
improve our assistants?

• If you have used other speech-based interfaces before,
do you prefer this interface?
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Abstract

In this paper, we present and evaluate an
approach to incremental dialogue act (DA)
segmentation and classification. Our ap-
proach utilizes prosodic, lexico-syntactic
and contextual features, and achieves an
encouraging level of performance in of-
fline corpus-based evaluation as well as in
simulated human-agent dialogues. Our ap-
proach uses a pipeline of sequential pro-
cessing steps, and we investigate the contri-
bution of different processing steps to DA
segmentation errors. We present our results
using both existing and new metrics for DA
segmentation. The incremental DA seg-
mentation capability described here may
help future systems to allow more natural
speech from users and enable more natural
patterns of interaction.

1 Introduction

In this paper we explore the feasibility of incor-
porating an incremental dialogue act segmentation
capability into an implemented, high-performance
spoken dialogue agent that plays a time-constrained
image-matching game with its users (Paetzel et al.,
2015). This work is part of a longer-term research
program that aims to use incremental (word-by-
word) language processing techniques to enable
dialogue agents to support efficient, fast-paced in-
teractions with a natural conversational style (De-
Vault et al., 2011; Ward and DeVault, 2015; Paetzel
et al., 2015).

It’s important to allow users to speak naturally
to spoken dialogue systems. It has been understood
for some time that this ultimately requires a system
to be able to automatically segment a user’s speech
into meaningful units in real-time while they speak
(Nakano et al., 1999). Still, most current systems

use relatively simple and limited approaches to this
segmentation problem. For example, in many sys-
tems, it’s assumed that pauses in the user’s speech
can be used to determine the segmentation, often
by treating each detected pause as indicating a dia-
logue act (DA) boundary (Komatani et al., 2015).

While easily implemented, such a pause-based
design has several problems. First, a substantial
number of spoken DAs contain internal pauses
(Bell et al., 2001; Komatani et al., 2015), as in
I need a car in... 10 minutes. Using simple pause
length thresholds to join certain speech segments to-
gether for interpretation is not a very effective rem-
edy for this problem (Nakano et al., 1999; Ferrer
et al., 2003). More sophisticated approaches train
algorithms to join speech across pauses (Komatani
et al., 2015) or decide which pauses constitute end-
of-utterances that should trigger interpretation (e.g.
(Raux and Eskenazi, 2008; Ferrer et al., 2003)).
This addresses the problem of DA-internal pauses,
but it does not address the second problem with
pause-based designs, which is that it’s also com-
mon for a continuous segment of user speech to
include multiple DAs without intervening pauses,
as in Sure that’s fine can you call when you get
to the gate? A third problem is that waiting for a
pause to occur before interpreting earlier speech
may increase latency and erode the user experience
(Skantze and Schlangen, 2009; Paetzel et al., 2015).
Together, these problems suggest the need for an
incremental dialogue act segmentation capability in
which a continuous stream of captured user speech,
including the intermittent pauses therein, is incre-
mentally segmented into appropriate DA units for
interpretation.

In this paper, we present a case study of im-
plementing an incremental DA segmentation ca-
pability for an image-matching game called RDG-
Image, illustrated in Figure 1. In this game, two
players converse freely in order to identify a spe-
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Figure 1: An example RDG-Image dialogue, where the director (D) tries to identify the target image,
highlighted in red, to the matcher (M). The DAs of the director (D DA) and matcher (M DA) are indicated.

cific target image on the screen (outlined in red).
When played by human players, as in Figure 1,
the game creates a variety of fast-paced interac-
tion patterns, such as question-answer exchanges.
Our motivation is to eventually enable a future ver-
sion of our automated RDG-Image agent (Paet-
zel et al., 2015) to participate in the most com-
mon interaction patterns in human-human game-
play. For example, in Figure 1, two fast-paced
question-answer exchanges arise as the director
D is describing the target image. In the first, the
matcher M asks brown...brown seat? and receives
an almost immediate answer brown seat yup. A mo-
ment later, the director continues the description
with and handles got it?, both adding and han-
dles and also asking got it? without an intervening
pause. We believe that an important step toward
automating such fast-paced exchanges is to create
an ability for an automated agent to incrementally
recognize the various DAs, such as yes-no ques-
tions (Q-YN), target descriptions (D-T), and yes
answers (A-Y) in real-time as they are happening.

The contributions of this paper are as follows.
First, we define a sequential approach to incre-
mental DA segmentation and classification that is
straightforward to implement and which achieves
a useful level of performance when trained on a
small annotated corpus of domain-specific DAs.
Second, we explore the performance of our ap-
proach using both existing and new performance
metrics for DA segmentation. Our new metrics
emphasize the importance of precision and recall
of specific DA types, independently of DA bound-
aries. These metrics are useful for evaluating DA
segmenters that operate on noisy ASR output and
which are intended for use in systems whose dia-

logue policies are defined in terms of the presence
or absence of specific DA types, independently of
their position in user speech. This is a broad class
of systems. Third, while much of the prior work on
DA segmentation has been corpus-based, we report
here on an initial integration of our incremental DA
segmenter into an implemented, high-performance
agent for the RDG-Image game. Our case study
suggests that incremental DA segmentation can be
performed with sufficient accuracy for us to be-
gin to extend our baseline agent’s conversational
abilities without significantly degrading its current
performance.

2 Related Work

In this paper, we are concerned with the alignment
between dialogue acts (DAs) and individual words
as they are spoken within Inter-Pausal Units (IPUs)
(Koiso et al., 1998) or speech segments. (We use
the two terms interchangeably in this paper to re-
fer to a period of continuous speech separated by
pauses of a minimum duration before and after.)
Beyond the work on this alignment problem men-
tioned in the introduction, a related line of work has
looked specifically at DA segmentation and clas-
sification given an input string of words together
with an audio recording to enable prosodic and tim-
ing analysis (Petukhova and Bunt, 2014; Zimmer-
mann, 2009; Zimmermann et al., 2006; Lendvai
and Geertzen, 2007; Ang et al., 2005; Nakano et al.,
1999; Warnke et al., 1997). This work generally en-
compasses the problems of identifying DA-internal
pauses as well as locating DA boundaries within
speech segments. Prosody information has been
shown to be helpful for accurate DA segmentation
(Laskowski and Shriberg, 2010; Shriberg et al.,
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2000; Warnke et al., 1997) as well as for DA classi-
fication (Stolcke et al., 2000; Fernandez and Picard,
2002). In general, DA segmentation has been found
to benefit from a range of additional features such
as pause durations at word boundaries, the user’s
dialogue tempo (Komatani et al., 2015), as well
as lexical, syntactic, and semantic features. Work
on system turn-taking decisions has used similar
features to optimize a system’s turn-taking policy
during a user pause, often with classification ap-
proaches; e.g. (Sato et al., 2002; Takeuchi et al.,
2004; Raux and Eskenazi, 2008). To our knowl-
edge, very little research has looked in detail at the
impact of adding incremental DA segmentation to
an implemented incremental system (though see
Nakano et al. (1999)).1

3 The RDG-Image Game and Data Set

Our work in this paper is based on the RDG-Image
game (Paetzel et al., 2014), a collaborative, time
constrained, fast-paced game with two players de-
picted in Figure 1. One player is assigned the role
of director and the other the role of matcher. Both
players see the same eight images on their screens
(but arranged in a different order). The director’s
screen has a target image highlighted in red, and
the director’s goal is to describe the target image so
that the matcher can identify it as quickly as possi-
ble. Once the matcher believes they have selected
the right image, the director can request the next
target. Both players score a point for each correct
selection, and the game continues until a time limit
is reached. The time limit is chosen to create time
pressure.

3.1 Dialogue Act Annotations

We have previously collected data sets of human-
human gameplay in RDG-Image both in a lab set-
ting (Paetzel et al., 2014) and in an online, web-
based version of the game (Manuvinakurike and
DeVault, 2015; Paetzel et al., 2015). To support
the experiments in this paper, a single annotator
segmented and annotated the main game rounds
from our lab-based RDG-Image corpus with a set

1In Manuvinakurike et al. (2016), we describe a related
application of incremental speech segmentation in a variant
rapid dialogue game with a different corpus. In that paper, we
focus on fine-grained segmentation of referential utterances
that would all be labeled as D-T in this paper. The model
presented here is shallower and more general, focusing on
high-level DA labels.

of DA tags.2 The corpus includes gameplay be-
tween 64 participants (32 pairs, age: M = 35,
SD = 12, gender: 55% female). 11% of all par-
ticipants reported they frequently played similar
games before; the other 89% had no or very rare
experience with similar games. All speech was pre-
viously recorded, manually segmented into speech
segments (IPUs) at pauses of 300ms or greater, and
manually transcribed. The new DA segmentation
and annotation steps were carried out at the same
time by adding boundaries and DA labels to the
transcribed speech segments from the game. The
annotator used both audio and video recordings to
assist with the annotation task. The annotations
were performed on transcripts which were seen as
segmented into IPUs.

Table 1 provides several examples of this anno-
tation. We designed the set of DA labels to include
a range of communicative functions we observed
in human-human gameplay, and to encode distinc-
tions we expected to prove useful in an automated
agent for RDG-Image. Our DA label set includes
Positive Feedback (PFB), Describe Target (D-T),
Self-Talk (ST), Yes-No Question (Q-YN), Echo
Confirmation (EC), Assert Identified (As-I), and
Assert Skip (As-S). We also include a filled-pause
DA (P) used for ‘uh’ or ‘um’ separated from other
speech by a pause. The complete list of 18 DA la-
bels and their distribution are included in Tables 9
and 10 in the appendix. To assess the reliability of
annotation, two annotators annotated one game (2
players, 372 speech segments); we measured kappa
for the presence of boundary markers (‖) at 0.92
and word-level kappa for DA labels at 0.83.

Summary statistics for the annotated corpus are
as follows. The corpus contains 64 participants
(32 pairs), 1,906 target images, 8,792 speech seg-
ments, 67,125 word tokens, 12,241 DA segments,
and 4.27 hours of audio. The mean number of DAs
per speech segment is 1.39. In Table 2, we summa-
rize the distribution in number of DAs initiated per
speech segment. 23% of speech segments contain
the beginning of at least two DAs; this highlights
the importance of being able to find the boundaries
between multiple DAs inside a speech segment.
Most DAs begin at the start of a speech segment
(i.e. immediately after a pause), but 29% of DAs
begin at the second word or later in a speech seg-
ment. 4% of DAs contain an internal pause and

2We excluded from annotation the training rounds in the
corpus, where players practiced playing the game.
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Example # IPUs # DAs Annotation
1 1 5 PFB that’s okay ‖ D-T um this castle has a ‖ ST oh gosh this is hard ‖ D-T this castle is tan ‖

D-T it’s at a diagonal with a blue sky
2 1 2 D-T and it’s got lemon in it ‖ Q-YN you got it
3 1 2 PFB okay ‖ D-T this is the christmas tree in front of a fireplace
4 1 2 EC fireplace ‖ As-I got it
5 2 2 D-M all right ‖ D-T this is ... this is this is the brown circle and it’s not hollow
6 3 1 D-T this is a um ... tan or light brown ... box that is clear in the middle
7 3 2 D-M all right ‖ D-T he’s got he’s got that ... that ... first uh the first finger and the thumb

pointing up
8 3 2 ST um golly ‖ DT this looks like a a a ... ginseng ... uh of some sort
9 2 4 ST oh wow ‖ D-M okay ‖ D-T this one ... looks it has gray ‖ D-T a lotta gray on this robot

Table 1: Examples of annotated DA types, DA boundaries (‖), and IPU boundaries (...). The number of
IPUs and DAs in each example are indicated.

Number of DAs 0 1 2 ≥ 3
% of speech segments 3 74 18 5

Table 2: The distribution in the number of DAs
whose first word is within a speech segment.

thus span multiple speech segments.

4 Technical Approach

The goal for our incremental DA segmentation
component is to segment the recognized speech
for a speaker into individual DA segments and to
assign these segments to the 18 DA classes in Table
9. We aim to do this in an incremental (word-by-
word) manner, so that information about the DAs
within a speech segment becomes available before
the user stops or pauses their speech.

Figure 2 shows the incremental operation of our
sequential pipeline for DA segmentation and clas-
sification. We use Kaldi for ASR, and we adapt the
work of Plátek and Jurčı́ček (2014) for incremen-
tal ASR using Kaldi. The pipeline is invoked after
each new partial ASR result becomes available (i.e.,
every 100ms), at which point all the recognized
speech is resegmented and reclassified in a restart
incremental (Schlangen and Skantze, 2011) design.
The input to the pipeline includes all the recognized
speech from one speaker (including multiple IPUs)
for one target image subdialogue.

In our sequential pipeline, the first step is to use
sequential tagging with a CRF (Conditional Ran-
dom Field) (Lafferty et al., 2001) implemented in
Mallet (McCallum, 2002) to perform the segmen-
tation. The segmenter tags each word as either the
beginning (B) of a new DA segment or as a contin-
uation of the current DA segment (I).3 Then, each

3Note that our annotation scheme completely partitions our

Figure 2: The operation of the pipeline on selected
ASR partials (with time index in seconds).

resulting DA segment is classified into one of 18
DA labels using an SVM (Support Vector Machine)
classifier implemented in Weka (Hall et al., 2009).

4.1 Features
Prosodic Features We use word-level prosodic
features similar in nature to Litman et al. (2009).
The alignment between words and computed
prosodic features is achieved using a forced aligner
(Baumann and Schlangen, 2012) to generate word-
level timing information. For each word, we first

data, with every word belonging to a segment and receiving a
DA label. We have therefore elected not to adopt BIO (Begin-
Inside-Outside) tagging.
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obtain pitch and RMS values every 10ms using In-
proTK (Baumann and Schlangen, 2012). Because
pitch and energy features can be highly variable
across users, our pitch and energy features are rep-
resented as z-scores that are normalized for the
current user up to the current word. For the pitch
and RMS values, we obtain the max, min, mean,
variance and the co-efficients of a second degree
polynomial. Pause durations at word boundaries
provide an additional useful feature (Kolář et al.,
2006; Zimmermann, 2009). All numeric features
are discretized into bins. We currently use prosody
for segmentation but not classification.4

Lexico-syntactic & contextual features We use
word unigrams along with the corresponding part-
of-speech (POS) tags, obtained using Stanford
CORENLP (Manning et al., 2014), as a feature
for both the segmentation and the DA classifier.
Words with a low frequency (<10) are substituted
with a low frequency word symbol. The top level
constituent category from a syntactic parse of the
DA segment is also used.

Several contextual features are included. The
role of the speaker (Director or Matcher) is in-
cluded as a feature. Previously recognized DA
labels from each speaker are included. Another fea-
ture is added to assist with the Echo Confirmation
(EC) DA, which applies when a speaker repeats
verbatim a phrase recently spoken by the other
interlocutor. For this we use features to mark word-
level unigrams that appeared in recent speech from
the other interlocutor. Finally, a categorical fea-
ture indicates which of 18 possible image sets (e.g.
bikes as in Figure 1) is under discussion; simpler
images tend to have shorter segments.5

4.2 Discussion of Machine Learning Setup
A salient alternative to our sequential pipeline ap-
proach – also adopted for example by Ang et al.
(2005) – is to use a joint classification model to
solve the segmentation and classification problems
simultaneously, potentially thereby improving per-
formance on both problems (Petukhova and Bunt,
2014; Morbini and Sagae, 2011; Zimmermann,
2009; Warnke et al., 1997). We performed an ini-
tial test using a joint model and found, unlike the
finding reported by Zimmermann (2009), that for

4For the experiments reported in this paper, prosodic fea-
tures were calculated offline, but they could in principle be
calculated in real-time.

5The image set feature affects the performace of the seg-
menter only slightly.

Condition Transcripts
(T)

Segment
Boundaries (S)

DA la-
bels (D)

HT-HS-HD Human Human Human
HT-HS-AD Human Human Automated
HT-AS-AD Human Automated Automated
AT-AS-AD ASR Automated Automated

Table 3: Conditions for evaluating DA segmenta-
tion and classification.

our corpus a joint approach performed markedly
worse than our sequential pipeline.6 We speculate
that this is due to the relative sparsity of data on
rarer DA types in our relatively small corpus. For
similar reasons, we have not yet tried to use RNN-
based approaches such as LSTMs, which tend to
require large amounts of training data.

5 Experiment and Results

We report on two experiments. In the first experi-
ment, we train our DA segmentation pipeline using
the annotated corpus of Section 3.1 and report re-
sults on the observed DA segment boundaries (Sec-
tion 5.1) and DA class labels (Section 5.2). In the
second experiment, presented in Section 5.3, we
report on a policy simulation that investigates the
effect of our incremental DA segmentation pipeline
on a baseline automated agent’s performance.

For the first experiment, we use a hold-one-pair-
out cross-validation setup where, for each fold, the
dialogue between one pair of players is held out
for testing, while automated models are trained
on the other pairs. To evaluate our pipeline, we
use four data conditions, summarized in Table 3,
that represent increasing amounts of automation in
the pipeline. These conditions allow us to better
understand the sources for observed errors in seg-
ment boundaries and/or DA labels. Our notation
for these conditions is a compact encoding of the
data sources used to create the transcripts of user
speech, the segment boundaries, and the DA labels.
Our reference annotation, described in Section 3.1,
is notated HT-HS-HD (human transcript, human
segment boundaries, human DA labels). Example
segmentations for each condition are in Table 4.

5.1 Evaluation of DA Segment Boundaries
In this evaluation, we ignore DA labels and look
only at the identification of DA boundaries (notated
by ‖ in Table 4, and encoded using B and I tags in
our segmenter). For this evaluation, we use human

6We used a joint CRF model similar to the BI coding of
Zimmermann (2009).
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Condition # IPUs Example
HT-HS-HD 1 (a) A-N um no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat and an orange handle
HT-HS-AD 1 (b) A-N um no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat and an orange handle
HT-AS-AD 1 (c) P um ‖ A-N no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat ‖ D-T and an orange handle
AT-AS-AD 1 (d) A-N on no ‖ D-T it’s the blue frame ‖ D-T but it’s an orange seat ‖ D-T and orange ‖ A-N no

Table 4: Examples of DA boundaries (‖) and DA labels in each condition.

Condition Features Accuracy F-Score DSER
B tag I tag

1-DA-per-IPU 0.78 0.23 0.87 0.26
HT-AS-AD Prosody (I) 0.72 0.62 0.69 0.42
HT-AS-AD Lexico-Syntactic & Contextual (II) 0.90 0.82 0.82 0.31
HT-AS-AD I+II 0.91 0.83 0.84 0.30
Human annotator 0.95 0.91 0.94 0.15

Table 5: Observed DA segmentation performance. These results consider only DA boundaries.

transcripts and compare the boundaries in our ref-
erence annotations (HT-HS-HD) to the boundaries
inferred by our automated pipeline (HT-AS-AD).7

In Table 5, we present results for versions of
our pipeline that use three different feature sets:
only prosody features (I), only lexico-syntactic and
contextual features (II), and both (I+II). We include
also a simple 1-DA-per-IPU baseline that assumes
each IPU is a single complete DA; it assigns the
first word in each IPU a B tag and subsequent words
an I tag. Finally, we also include numbers based on
an independent human annotator using the subset
of our annotated corpus that was annotated by two
human annotators. For this subset, we use our main
annotator as the reference standard and evaluate
the other annotator as if their annotation were a
system’s hypothesis.8

The reported numbers include word-level ac-
curacy of the B and I tags, F-score for each of
the B and I tags, and the DA segmentation error
rate (DSER) metric of Zimmermann et al. (2006).
DSER measures the fraction of reference DAs
whose left and right boundaries are not exactly
replicated in the hypothesis. For example, in Ta-
ble 4, the reference (a) contains three DAs, but
only the boundaries of the second DA (it’s the blue
frame) are exactly replicated in hypothesis (c). This
yields a DSER of 2/3 for this example.

We find that our automated pipeline (HT-AS-
AD) with all features performs the best among
the pipeline methods, with word-level accuracy
of 0.91 and DSER of 0.30. Its performance how-

7We evaluate our DA segmentation performance using
human transcripts, rather than ASR, as this allows a simple
direct comparison of inferred DA boundaries.

8For comparison, the chance-corrected kappa value for
word-level boundaries is 0.92; see Section 3.1.

Condition Metrics used
for human
transcripts

Alignment-
based metrics

DER Strict Lenient Levenshtein-
Lenient

CER

HT-HS-AD 0.39 0.09 0.09 0.07 0.27
HT-AS-AD 0.72 0.38 0.15 0.12 0.39
AT-AS-AD 0.39 0.52

Table 6: Observed DA classification and joint seg-
mentation+classification performance.

ever is worse than an independent human annotator,
with double the DSER. This suggests there remains
room for improvement at boundary identification.
The 1-DA-per-IPU baseline does well on the com-
mon case of single-IPU DAs, but it fails ever to
segment an IPU into multiple DAs. We use the
pipeline with all features in the following sections.

5.2 Evaluation of DA Class Labels

In this evaluation, we consider DA labels assigned
to recognized DA segments using several types of
metrics. We summarize our results in Table 6.

Metrics used for human transcripts We first
compare our reference annotations (HT-HS-HD) to
the performance of our automated pipeline when
provided human transcripts as input. For this com-
parison, we use three error rate metrics (Lenient,
Strict, and DER) from the DA segmentation liter-
ature that are intuitively applied when the token
sequence being segmented and labeled is identi-
cal (or at least isomorphic) to the annotated token
sequence. Lower is better for these. The Lenient
and Strict metrics (Ang et al., 2005) are based on
the DA labels assigned to each individual word (by
way of the label of the DA segment that contains
that word). Lenient is a per-token DA label error
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rate that ignores DA segment boundaries.9 In Ta-
ble 6, this error rate is 0.09 when human-annotated
boundaries are fed into our DA classifier (HT-HS-
AD) and 0.15 when automatically-identified bound-
aries are used (HT-AS-AD).

Strict and DER are boundary-sensitive metrics.
Strict is a per-token error rate that requires each
token to receive the correct DA label and also to
be part of a DA segment whose exact boundaries
appear in the reference annotation. This is a much
higher standard.10 Dialogue Act Error Rate (DER)
(Zimmermann et al., 2006) is the fraction of refer-
ence DAs whose left and right boundaries and label
are perfectly replicated in the hypothesis. While
the reported boundary-sensitive error rate numbers
(0.38 and 0.72) may appear to be high, many of
these boundary errors may be relatively innocuous
from a system standpoint. We return to this below.

Alignment-based metrics We also report two
additional metrics that are intuitively applied even
when the word sequence being segmented and clas-
sified is only a noisy approximation to the word
sequence that was annotated, i.e. under an ASR
condition such as AT-AS-AD. The Concept Error
Rate (CER) is a word error rate (WER) calculation
(Chotimongkol and Rudnicky, 2001) based on a
minimum edit distance alignment of the DA tags
(using one DA tag per DA segment). Our fully au-
tomated pipeline (AT-AS-AD) has a CER of 0.52.

We also report an analogous word-level met-
ric which we call ‘Levenshtein-Lenient’. To our
knowledge this metric has not previously been used
in the literature. It replaces each word in the refer-
ence and hypothesis with the DA tag that applies
to it, and then computes a WER on the DA tag se-
quence. It is thus a Lenient-like metric that can be
applied to DA segmentation based on ASR results.
Our automated pipeline (AT-AS-AD) scores 0.39.

DA multiset precision and recall metrics
When ASR is used, the CER and Levenshtein-
Lenient metrics give an indication of how well you
are doing at replicating the ordered sequence of
DA tags. But in building a system, sometimes the
sequence is less of a concern, and what is desired
is a breakdown in terms of precision and recall per
DA tag. Many dialogue systems use policies that
are triggered when a certain DA type has occurred
in the user’s speech (such as an agent that processes
yes (A-Y) or no (A-N) answers differently, or a di-

9E.g. in Table 4 (c), the only Lenient error is at word um.
10E.g. in Table 4 (c), only the four words it’s the blue frame

would count as non-errors on the Strict standard.

Condition HT-HS-AD HT-AS-AD AT-AS-AD
P R P R P R

D-T 0.98 0.98 0.85 0.95 0.79 0.88
As-I 0.97 0.97 0.74 0.96 0.73 0.68
NG 0.84 0.89 0.72 0.88 0.63 0.50
PFB 0.67 0.65 0.50 0.77 0.42 0.60
ST 0.92 0.92 0.71 0.63 0.41 0.31
Q-YN 0.94 0.85 0.86 0.85 0.55 0.52
AN 0.90 0.90 0.70 0.67 0.42 0.32
A-Y 0.79 0.79 0.65 0.75 0.59 0.58

Table 7: DA multiset precision and recall metrics
for a sample of higher-frequency DA tags.

rector agent for the RDG-Image game that moves
on when the matcher performs As-I (“got it”)). For
such systems, exact DA boundaries and even the
order of DAs is not of paramount importance so
long as a correct DA label is produced around the
time the user performs the DA.

We therefore define a more permissive measure
that looks only at precision and recall of DA labels
within a sample of user speech. As an example, in
(a) in Table 4, there is one A-N label and two D-T
labels. In (d), there are two A-N labels and 3 D-T
labels. Ignoring boundaries, we can represent as a
multiset the collection of DA labels in a reference
A or hypothesis H , and compute standard multiset
versions of precision and recall for each DA type.
For reference, a formal definition of multiset preci-
sion P (DAi) and recall R(DAi) for DA type DAi

is provided in the appendix.

We report these numbers for our most common
DA types in Table 7. Here, we continue to use
the speech of one speaker during a target image
subdialogue as the unit of analysis. The data show
that precision and recall generally decline for all
DA types as automation increases in the condi-
tions from left to right. We do relatively well with
the most frequent DA types, which are D-T and
As-I. A particular challenge, even in human tran-
script+segment condition HT-HS-AD, is the DA
tag PFB. In a manual analysis of common error
types, we found that the different DA labels used
for very short utterances like ‘okay’ (D-M, PFB,
As-I) and ‘yeah’ (A-Y, PFB, As-I) are often con-
fused. We believe this type of error could be re-
duced through a combination of improved features,
collapsed DA categories, and more detailed anno-
tation guidelines. ASR errors also often cause DA
errors; see e.g. Table 4 (d).
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image set total time(sec) total points p p/sec NLU accuracy avg sec/image
All DAs Pets 984.7 182 0.18 0.77 4.15

Zoo 921.1 203 0.22 0.79 3.60
Cocktails 1300.3 153 0.12 0.60 5.12

Bikes 1630.9 126 0.08 0.47 6.12
Only D-T Pets 992.0 184 0.19 0.78 4.19

Zoo 932.8 198 0.21 0.77 3.64
Cocktails 1326.7 155 0.12 0.61 5.22

Bikes 1678.4 130 0.08 0.49 6.29

Table 8: Overall performance of the eavesdropper simulation on the unsegmented data (All DAs) and the
automatically segmented data (Only D-T) identified with our pipeline (AT-AS-AD).

5.3 Evaluation of Simulated Agent Dialogues

Motivation. In prior work (Paetzel et al., 2015),
we developed an automated agent called Eve which
plays the matcher role in the RDG-Image game and
has been evaluated in a live interactive study with
125 human users. Our prior work underscored the
critical importance of pervasive incremental pro-
cessing in order for Eve to achieve her highest per-
formance in terms of points scored and also the best
subjective user impressions. In this second experi-
ment, we perform an offline investigation into the
potential impact on our agent’s image-matching
performance if we integrate the incremental DA
segmentation pipeline from this paper.

We take the “fully-incremental” version of Eve
from Paetzel et al. (2015) as our baseline agent
in this experiment. Briefly, this version of Eve in-
cludes the same incremental ASR used in our new
DA segmentation pipeline (Plátek and Jurčı́ček,
2014), incremental language understanding to iden-
tify the target image (Naive Bayes classification),
and an incremental dialogue policy that uses pa-
rameterized rules. See Paetzel et al. (2015) for full
details.

The baseline agent’s design focuses on the most
common DA types in our RDG-Image corpora:
D-T for the director (constituting 60% of director
DAs), and As-I for the matcher (constituting 46%
of matcher DAs). Effectively, the baseline agent
assumes every word the user says is describing the
target, and uses an optimized policy to decide the
right moment to commit to a selection (As-I) or
ask the user to skip the image (As-S). Eve’s typical
interaction pattern is illustrated in Figure 3.

This experiment is narrowly focused on the im-
pact of using the pipeline to segment out only the
D-T DAs and to use only the words from detected
D-Ts in the target image classifier and the agent’s
policy decisions. Changing the agent pipeline from
using the director’s full utterance towards only tak-
ing the D-T tagged words into account could po-

Figure 3: Eve (E) identifies a target image.

tentially have a negative impact on the baseline
agent’s performance. For example, for the fully
automated condition AT-AS-AD in Table 7, D-T
has precision 0.79 and recall 0.88. The 0.88 re-
call suggests that some D-T words will be lost (in
false negative D-Ts) by integrating the new DA
segmenter. Additionally, as shown in Figure 2, the
recognized words and whether they are tagged as D-
T can change dynamically as new incremental ASR
results arrive, and this instability could undermine
some of the advantage of segmentation. On the
other hand, by excluding non-D-T text from con-
sideration, there is a potential to decrease noise in
the agent’s understanding and improve the agent’s
accuracy or speed.

Experiment. As an initial investigation into the
issues described above, we adopt the “Eavesdrop-
per” framework for policy simulation and training
detailed in Paetzel et al. (2015). In an Eavesdropper
simulation, the director’s speech from pre-recorded
target image dialogues is provided to the agent, and
the agent simulates alternative policy decisions as
if it were in the matcher role. We have found that
higher cross-validation performance in these offline
simulations has translated to higher performance
in live interactive human-agent studies (Paetzel et
al., 2015).

We created a modified version of our agent that
uses the fully automated pipeline (AT-AS-AD) to
pass only word sequences tagged as D-T to the
agent’s language understanding component (a tar-
get image classifier), effectively ignoring other DA
types. Tagging is performed every 100 ms on each
new incremental output segment published by the
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ASR. We then compare the performance of our
baseline and modified agent in a cross-validation
setup, using an Eavesdropper simulation to train
and test the agents. We use a corpus of human-
human gameplay that includes 18 image sets and
game data from both the lab-based corpus of 32
games described in Section 3.1 and also the web-
based corpus of an additional 98 human-human
RDG-Image games described in Manuvinakurike
and DeVault (2015). Each simulation yields a new
trained NLU (target image classifier, based either
on all text or only on D-T text) and a new optimized
policy for when the agent should perform As-I vs.
As-S. Within the simulations, for each target image,
we compute whether the agent would score a point
and how long it would spend on each image.

Table 8 summarizes the observed performance in
these simulations for four sample image sets in the
two agent conditions. All results are calculated
based on leave-one-user-out training and a pol-
icy optimized on points per second. A Wilcoxon-
Mann-Whitney Test on all 18 image sets indicated
that, between the two conditions, there is no signif-
icant difference in the total time (Z = −0.24, p =
.822), total points scored (Z = −0.06, p = .956),
points per second (Z = −0.06, p = .956), average
seconds per image (Z = −0.36, p = .725), or
NLU accuracy (Z = −0.13, p = .907).

These encouraging results suggest that our in-
cremental DA segmenter achieves a performance
level that is sufficient for it to be integrated into
our agent, enabling the incremental segmentation
of other DA types without significantly compromis-
ing (or improving) the agent’s current performance
level. These results provide a complementary per-
spective on the various DA classification metrics
reported in Section 5.2.

The current baseline agent (Paetzel et al., 2015)
can only generate As-I and As-S dialogue acts. In
future work, the fully automated pipeline presented
here will enable us to expand the agent’s dialogue
policies to support additional patterns of interaction
beyond its current skillset. For example, the agent
would be better able to understand and react to a
multi-DA user utterance like and handles got it?
in Figure 1. By segmenting out and understanding
the Q-YN got it?, the agent would be able to detect
the question and answer with an A-Y like yeah.
Overall, we believe the ability to understand the
natural range of director’s utterances will help the
agent to create more natural interaction patterns,

which might receive a better subjective rating by
the human dialogue partner and in the end might
even achieve a better overall game performance, as
ambiguities can be resolved quicker and the flow
of communication can be more efficient.

6 Conclusion & Future Work

In this paper, we have defined and evaluated a
sequential approach to incremental DA segmen-
tation and classification. Our approach utilizes
prosodic, lexico-syntactic and contextual features,
and achieves an encouraging level of performance
in offline analysis and in policy simulations. We
have presented our results in terms of existing met-
rics for DA segmentation and also introduced ad-
ditional metrics that may be useful to other system
builders. In future work, we will continue this line
of work by incorporating dialogue policies for ad-
ditional DA types into the interactive agent.
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A Appendix

Definition of multiset precision and recall Let
D = {DA1, ...,DAn} be the set of possible DAs.
Let A : D → Z≥0 be an annotated reference DA
multiset and H : D → Z≥0 be a hypothesized DA
multiset. The multiset intersection for each DA
type DAi is:

(A ∩H)(DAi) = min(A(DAi), H(DAi))

DA-level multiset precision P (DAi) and recall
R(DAi) are then defined as:

P (DAi) = (A ∩H)(DAi) / H(DAi)

R(DAi) = (A ∩H)(DAi) / A(DAi)

DA Description Example
D-T Describe target this is the christmas

tree in front of a fire-
place

As-I Assert Identified got it
NG Non-game utterances okay there i saw the

light go on
PFB Positive feedback okay
ST Self-talk statements ooh this is gonna be

tricky
P Filled pause uh
D-M Discourse marker alright
Q-YN Yes-No question is it on something

white
A-Y Yes answer yeah
EC Echo confirmation the blue
As-M Matcher assertions it didn’t let me do it
Q-C Clarification question bright orange eyes?
A-D Action directive oh oh wait hold on
A-N No answer no, nah
H Hedge i don’t know what it

is
Q-D Disjunctive question are we talking

dark brown or like
caramel brown

Q-Wh Wh-question what color’s the
kitty

As-S Assert skip i’m gonna pass on
that

Table 9: The complete list of DAs in the annotated
RDG-Image corpus.

DA All Dir Mat DA All Dir Mat
D-T 41 60 0 EC 2 .5 6
As-I 15 0 46 As-M 2 0 4
NG 11 9 11 Q-C 2 .5 4
PFB 8 10 7 A-D 1 .3 2
ST 4 4 4 A-N .5 .7 .2
P 4 6 2 H .5 .7 0
D-M 3 5 .2 Q-Wh .3 0 .5
Q-YN 3 .6 7 As-S .1 0 .1
A-Y 2 3 1 Q-D .4 0 1.2

Table 10: DA distribution. We report the relative
percentages for each DA out of all DAs, director
DAs, and matcher DAs, respectively.
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Abstract

An open challenge in constructing di-
alogue systems is developing methods
for automatically learning dialogue strate-
gies from large amounts of unlabelled
data. Recent work has proposed Next-
Utterance-Classification (NUC) as a sur-
rogate task for building dialogue systems
from text data. In this paper we investigate
the performance of humans on this task to
validate the relevance of NUC as a method
of evaluation. Our results show three main
findings: (1) humans are able to correctly
classify responses at a rate much better
than chance, thus confirming that the task
is feasible, (2) human performance levels
vary across task domains (we consider 3
datasets) and expertise levels (novice vs
experts), thus showing that a range of per-
formance is possible on this type of task,
(3) automated dialogue systems built using
state-of-the-art machine learning methods
have similar performance to the human
novices, but worse than the experts, thus
confirming the utility of this class of tasks
for driving further research in automated
dialogue systems.

1 Introduction

Significant efforts have been made in recent years
to develop computational methods for learning di-
alogue strategies offline from large amounts of text
data. One of the challenges of this line of work is
to develop methods to automatically evaluate, ei-
ther directly or indirectly, models that are trained
in this manner (Galley et al., 2015; Schatzmann
et al., 2005), without requiring human labels or

∗This work was primarily done while LC was at McGill
University.

human user experiments, which are time consum-
ing and expensive. The use of automatic tasks
and metrics is one key issue in scaling the devel-
opment of dialogue systems from small domain-
specific systems, which require significant engi-
neering, to general conversational agents (Pietquin
and Hastie, 2013).

In this paper, we consider tasks and evaluation
measures for what we call ‘unsupervised’ dialogue
systems, such as chatbots. These are in contrast to
‘supervised’ dialogue systems, which we define as
those that explicitly incorporate some supervised
signal such as task completion or user satisfaction.
Unsupervised systems can be roughly separated
into response generation systems that attempt to
produce a likely response given a conversational
context, and retrieval-based systems that attempt
to select a response from a (possibly large) list
of utterances in a corpus. While there has been
significant work on building end-to-end response
generation systems (Vinyals and Le, 2015; Shang
et al., 2015; Serban et al., 2016), it has recently
been shown that many of the automatic evaluation
metrics used for such systems correlate poorly or
not at all with human judgement of the generated
responses (Liu et al., 2016).

Retrieval-based systems are of interest because
they admit a natural evaluation metric, namely the
recall and precision measures. First introduced
for evaluating user simulations by Schatzmann et
al. (2005), such a framework has gained recent
prominence for the evaluation of end-to-end di-
alogue systems (Lowe et al., 2015a; Kadlec et
al., 2015; Dodge et al., 2016). These models
are trained on the task of selecting the correct re-
sponse from a candidate list, which we call Next-
Utterance-Classification (NUC, detailed in Sec-
tion 3), and are evaluated using the metric of re-
call. NUC is useful for several reasons: 1) the
performance (i.e. loss or error) is easy to com-
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pute automatically, 2) it is simple to adjust the
difficulty of the task, 3) the task is interpretable
and amenable to comparison with human perfor-
mance, 4) it is an easier task compared to genera-
tive dialogue modeling, which is difficult for end-
to-end systems (Sordoni et al., 2015; Serban et al.,
2016), and 5) models trained with NUC can be
converted to dialogue systems by retrieving from
the full corpus (Liu et al., 2016). In this case, NUC
additionally allows for making hard constraints on
the allowable outputs of the system (to prevent
offensive responses), and guarantees that the re-
sponses are fluent (because they were generated
by humans). Thus, NUC can be thought of both
as an intermediate task that can be used to eval-
uate the ability of systems to understand natural
language conversations, similar to the bAbI tasks
for language understanding (Weston et al., 2016),
and as a useful framework for building chatbots.
With the huge size of current dialogue datasets that
contain millions of utterances (Lowe et al., 2015a;
Banchs, 2012; Ritter et al., 2010) and the increas-
ing amount of natural language data, it is conceiv-
able that retrieval-based systems will be able to
have engaging conversations with humans.

However, despite the current work with NUC,
there has been no verification of whether machine
and human performance differ on this task. This
cannot be assumed; it is possible that no signifi-
cant gap exists between the two, as is the case with
many current automatic response generation met-
rics (Liu et al., 2016). Further, it is important to
benchmark human performance on new tasks such
as NUC to determine when research has outgrown
their use. In this paper, we consider to what extent
NUC is achievable by humans, whether human
performance varies according to expertise, and
whether there is room for machine performance
to improve (or has reached human performance
already) and we should move to more complex
conversational tasks. We performed a user study
on three different datasets: the SubTle Corpus of
movie dialogues (Banchs, 2012), the Twitter Cor-
pus (Ritter et al., 2010), and the Ubuntu Dialogue
Corpus (Lowe et al., 2015a). Since conversations
in the Ubuntu Dialogue Corpus are highly tech-
nical, we recruit ‘expert’ humans who are adept
with the Ubuntu terminology, whom we compare
with a state-of-the-art machine learning agent on
all datasets. We find that there is indeed a signif-
icant separation between machine and expert hu-

Figure 1: An example NUC question from the
SubTle Corpus (Banchs, 2012).

man performance, suggesting that NUC is a useful
intermediate task for measuring progress.

2 Related Work

Evaluation methods for supervised systems have
been well studied. They include the PARADISE
framework (Walker et al., 1997), and MeMo
(Möller et al., 2006), which include a measure
of task completion. A more extensive overview
of these metrics can be found in (Jokinen and
McTear, 2009). We focus in this paper on unsu-
pervised dialogue systems, for which proper eval-
uation is an open problem.

Recent evaluation metrics for unsupervised di-
alogue systems include BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005),
which compare the similarity between response
generated by the model, and the actual response of
the participant, conditioned on some context of the
conversation. Word perplexity, which computes a
function of the probability of re-generating exam-
ples from the training corpus, is also used. How-
ever, such metrics have been shown to correlate
very weakly with human judgement of the pro-
duced responses (Liu et al., 2016). They also suf-
fer from several other drawbacks (Liu et al., 2016),
including low scores, lack of interpretability, and
inability to account for the vast space of acceptable
outputs in natural conversation.

3 Technical Background on NUC

Our long-term goal is the development and de-
ployment of artificial conversational agents. Re-
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cent deep neural architectures offer perhaps the
most promising framework for tackling this prob-
lem. However training such architectures typi-
cally requires large amounts of conversation data
from the target domain, and a way to automat-
ically assess prediction errors. Next-Utterance-
Classification (NUC, see Figure 1) is a task, which
is straightforward to evaluate, designed for train-
ing and validation of dialogue systems. They are
evaluated using the metric of Recall@k, which we
define in this section.

In NUC, a model or user, when presented with
the context of a conversation and a (usually small)
pre-defined list of responses, must select the most
appropriate response from this list. This list in-
cludes the actual next response of the conversa-
tion, which is the desired prediction of the model.
The other entries, which act as false positives, are
sampled from elsewhere in the corpus. Note that
no assumptions are made regarding the number of
utterances in the context: these can be fixed or
sampled from arbitrary distributions. Performance
on this task is easy to assess by measuring the
success rate of picking the correct next response;
more specifically, we measure Recall@k (R@k),
which is the percentage of correct responses (i.e.
the actual response of the conversation) that are
found in the top k responses with the highest rank-
ings according to the model. This task has gained
some popularity recently for evaluating dialogue
systems (Lowe et al., 2015a; Kadlec et al., 2015).

There are several attractive properties of this ap-
proach, as detailed in the introduction: the perfor-
mance is easy to compute automatically, the task
is interpretable and amenable to comparison with
human performance, and it is easier than genera-
tive dialogue modeling. A particularly nice prop-
erty is that one can adjust the difficulty of NUC
by simply changing the number of false responses
(from one response to the full corpus), or by alter-
ing the selection criteria of false responses (from
randomly sampled to intentionally confusing). In-
deed, as the number of false responses grows to
encompass all natural language responses, the task
becomes identical to response generation.

One potential limitation of the NUC approach
is that, since the other candidate answers are sam-
pled from elsewhere in the corpus, these may also
represent reasonable responses given the context.
Part of the contribution of this work is determining
the significance of this limitation.

What is your gender?
Male 56.5%

Female 44.5%
What is your age?

18-20 3.4%
21-30 38.1%
31-40 33.3%
41-55 14.3%
55+ 10.2%

How would you rate your fluency in English?
Beginner 0%

Intermediate 8.2%
Advanced 6.8%

Fluent 84.4%
What is your current level of education?

High school or less 21.1%
Bachelor’s 60.5%
Master’s 13.6%

Doctorate or higher 3.4%
How would you rate your knowledge of Ubuntu?
I’ve never used it 70.7%

Basic 21.8%
Intermediate 5.4%

Expert 2.7%

Table 1: Data on the 145 AMT participants.

4 Survey Methodology

4.1 Corpora
We conducted our analysis on three corpora that
have gained recent popularity for training dialogue
systems. The SubTle Corpus (Banchs, 2012) con-
sists of movie dialogues as extracted from subti-
tles, and includes turn-taking information indicat-
ing when each user has finished their turn. Un-
like the larger OpenSubtitles1 dataset, the Sub-
Tle Corpus includes turn-taking information in-
dicating when each user has finished their turn.
The Twitter Corpus (Ritter et al., 2010) contains
a large number of conversations between users
on the microblogging platform Twitter. Finally,
the Ubuntu Dialogue Corpus contains conversa-
tions extracted from IRC chat logs (Lowe et al.,
2015a). 2 For more information on these datasets,
we refer the reader to a recent survey on dialogue
corpora (Serban et al., 2015). We focus our at-
tention on these as they cover a range of popu-
lar domains, and are among the largest available
dialogue datasets, making them good candidates
for building data-driven dialogue systems. Note
that while the Ubuntu Corpus is most relevant to
supervised systems, the NUC task still applies in
this domain. Models that take semantic informa-
tion into account (i.e., to solve the user’s problem)
can still be validated with NUC, as demonstrated

1http://www.opensubtitles.org
2http://irclogs.ubuntu.com
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in Lowe et al. (2015b).
A group of 145 paid participants were re-

cruited through Amazon Mechanical Turk (AMT),
a crowdsourcing platform for obtaining human
participants for various studies. Demographic data
including age, level of education, and fluency of
English were collected from the AMT partici-
pants, and is shown in Table 1. An additional 8
volunteers were recruited from the student popu-
lation in the computer science department at the
author’s institution.3 This second group, referred
to as “Lab experts”, had significant exposure to
technical terms prominent in the Ubuntu dataset;
we hypothesized that this was an advantage in se-
lecting responses for that corpus.

4.2 Task description

Each participant was asked to answer either 30 or
40 questions (mean=31.9). To ensure a sufficient
diversity of questions from each dataset, four ver-
sions of the survey with different questions were
given to participants. For AMT respondents, the
questions were approximately evenly distributed
across the three datasets, while for the lab ex-
perts, half of the questions were related to Ubuntu
and the remainder evenly split across Twitter and
movies. Each question had 1 correct response, and
4 false responses drawn uniformly at random from
elsewhere in the (same) corpus. An example ques-
tion can be seen in Figure 1. Participants had a
time limit of 40 minutes.

Conversations were extracted to form NUC
conversation-response pairs as described in Sec. 3.
The number of utterances in the context were
sampled according to the procedure in (Lowe et
al., 2015a), with a maximum context length of
6 turns — this was done for both the human tri-
als and ANN model. All conversations were pre-
processed in order to anonymize the utterances.
For the Twitter conversations, this was extended
to replacing all user mentions (words beginning
with @) throughout the utterance with a place-
holder ‘@user’ symbol, as these are often repeated
in a conversation. Hashtags were not removed, as
these are often used in the main body of tweets,
and many tweets are illegible without them. Con-
versations were edited or pruned to remove offen-
sive language according to ethical guidelines.

3None of these participants were directly involved with
this research project.

4.3 ANN model
In order to compare human results with a strong
artificial neural network (ANN) model, we use
the dual encoder (DE) model from Lowe et
al. (2015a). This model uses recurrent neu-
ral networks (RNNs) with long-short term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997) to encode the context c of the conversa-
tion, and a candidate response r. More precisely,
at each time step, a word xt is input into the
LSTM, and its hidden state is updated according
to: ht = f(Whht−1+Wxxt), whereW are weight
matrices, and f(·) is some non-linear activation
function. After all T words have been processed,
the final hidden state hT can be considered a vec-
tor representation of the input sequence.

To determine the probability that a response r
is the actual next response to some context c, the
model computes a weighted dot product between
the vector representations c, r ∈ Rd of the context
and response, respectively:

P (r is correct response) = σ(c>Mr)

where M is a matrix of learned parameters, and
σ is the sigmoid function. The model is trained
to minimize the cross-entropy error of context-
response pairs. For training the authors randomly
sample negative examples.

The DE model is close to state-of-the-art for
neural network dialogue models on the Ubuntu Di-
alogue Corpus; we obtained further results on the
Movie and Twitter corpora in order to facilitate
comparison with humans. For further model im-
plementation details, see Lowe et al. (2015a).

5 Results

As we can see from Table 1, the AMT participants
are mostly young adults, fluent in English with
some undergraduate education. The split across
genders is approximately equal, and the majority
of respondents had never used Ubuntu before.

Table 2 shows the NUC results on each cor-
pus. The human results are separated into AMT
non-experts, consisting of paid respondents who
have ‘Beginner’ or no knowledge of Ubuntu ter-
minology; AMT experts, who claimed to have ‘In-
termediate’ or ‘Advanced’ knowledge of Ubuntu;
and Lab experts, who are the non-paid respondents
with Ubuntu experience and university-level com-
puter science training. We also presents results on
the same task for a state-of-the-art artificial neural
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Number Movie Corpus Twitter Corpus Ubuntu Corpus
of Users R@1 R@2 R@1 R@2 R@1 R@2

AMT non- 135 65.9 ± 2.4% 79.8 ± 2.1% 74.1 ± 2.3% 82.3 ± 2.0% 52.9 ± 2.7% 69.4 ± 2.5%experts
AMT experts 10 — — — — 52.0 ± 9.8% 63.0 ± 9.5%
Lab experts 8 69.7 ± 10% 94.0 ± 5.2%∗ 88.4 ± 7.0% 98.4 ± 2.7%∗ 83.8 ± 8.1% 87.8 ± 7.2%
ANN model

machine 50.6% 74.9% 66.9% 89.6% 66.2% 83.7%(Lowe et al.,
2015a)

Table 2: Average results on each corpus. ‘Number of Users’ indicates the number of respondents for each
category. ‘AMT experts’ and ‘AMT non-experts’ are combined for the Movie and Twitter corpora. 95%
confidence intervals are calculated using the normal approximation, which assumes subjects answer each
question independently of other examples and subjects. Starred (*) results indicate a poor approximation
of the confidence interval due to high scores with small sample size, according to the rule of thumb by
Brown et al. (2001).

network (ANN) dialogue model (see (Lowe et al.,
2015a) for implementation details).

We first observe that subjects perform above
chance level (20% for R@1) on all domains,
thus the task is doable for humans. Second we
observe difference in performances between the
three domains. The Twitter dataset appears to have
the best predictability, with a Recall@1 approxi-
mately 8% points higher than for the movie dia-
logues for AMT workers, and 18% higher for lab
experts. Rather than attributing this to greater fa-
miliarity with Twitter than movies, it seems more
likely that it is because movie utterances are of-
ten short, generic (e.g. contain few topic-related
words), and lack proper context (e.g., video cues
and the movie’s story). Conversely, tweets are typ-
ically more specific, and successive tweets may
have common hashtags.

As expected, untrained respondents scored low-
est on the Ubuntu dataset, as it contains the most
difficult language with often unfamiliar terminol-
ogy. Further, since the domain is narrow, ran-
domly drawn false responses could be more likely
to resemble the actual next response, especially to
someone unfamiliar with Ubuntu terminology. We
also observe that the ANN model achieves similar
performance to the paid human respondents from
AMT. However, the model is still significantly be-
hind the lab experts for Recall@1.

An interesting note is that there is very little dif-
ference between the paid AMT non-experts and
AMT experts on Ubuntu. This suggests that the
participants do not provide accurate self-rating of
expertise, either intentionally or not. We also
found that lab experts took on average approx-
imately 50% more time to complete the survey
than paid testers; this is reflected in the results,

where the lab experts score 30% higher on the
Ubuntu Corpus, and even 5-10% higher on the
non-technical Movie and Twitter corpora. While
we included attention check questions to ensure
the quality of responses,4 this reflects poorly on
the ability of crowdsourced workers to answer
technical questions, even if they self-identify as
being adept with the technology.

6 Discussion

Our results demonstrate that humans outperform
current dialogue models on the task of Next-
Utterance-Classification, indicating that there is
plenty of room for improvement for these models
to better understand the nature of human dialogue.
While our results suggest that NUC is a useful
task, it is by no means sufficient; we strongly ad-
vocate for automatically evaluating dialogue sys-
tems with as many relevant metrics as possible.
Further research should be conducted into finding
metrics or tasks which accurately reflect human
judgement for the evaluation of dialogue systems.
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Abstract

Existing speaking tests only require non-
native speakers to engage in dialogue
when the assessment is done by humans.
This paper examines the viability of us-
ing off-the-shelf systems for spoken dia-
logue and for speech grading to automate
the holistic scoring of the conversational
speech of non-native speakers of English.

1 Introduction

Speaking tests for assessing non-native speakers
of English (NNSE) often include tasks involving
interactive dialogue between a human examiner
and a candidate. An IELTS1 example is shown
in Figure 1. In contrast, most automated spoken
assessment systems target only the non-interactive
portions of existing speaking tests, e.g., the task of
responding to a stimulus in TOEFL2 (Wang et al.,
2013) or BULATS3 (van Dalen et al., 2015).

This gap between the current state of man-
ual and automated testing provides an opportu-
nity for spoken dialogue systems (SDS) research.
First, as illustrated by Figure 1, human-human
testing dialogues share some features with ex-
isting computer-human dialogues, e.g., examin-
ers use standardized topic-based scripts and ut-
terance phrasing. Second, automatic assessment
of spontaneous (but non-conversational) speech is
an active research area (Chen et al., 2009; Chen
and Zechner, 2011; Wang et al., 2013; Bhat et
al., 2014; van Dalen et al., 2015; Shashidhar et
al., 2015), which work in SDS-based assessment

1International English Language Testing System.
2Test of English as a Foreign Language.
3Business Language Testing Service.

E: Do you work or are you a student
C: I’m a student in university er
E: And what subject are you studying

Figure 1: Testing dialogue excerpt between an
IELTS human examiner (E) and a candidate (C)
(Seedhouse et al., 2014).

should be able to build on. Third, there is increas-
ing interest in building automated systems not to
replace human examiners during testing, but to
help candidates prepare for human testing. Sim-
ilarly to systems for writing (Burstein et al., 2004;
Roscoe et al., 2012; Andersen et al., 2013; Foltz
and Rosenstein, 2015), automation could provide
unlimited self-assessment and practice opportuni-
ties. There is already some educationally-oriented
SDS work in computer assisted language learn-
ing (Su et al., 2015) and physics tutoring (Forbes-
Riley and Litman, 2011) to potentially build upon.

On the other hand, differences between speak-
ing assessment and traditional SDS applications
can also pose research challenges. First, currently
available SDS corpora do not focus on includ-
ing speech from non-native speakers, and when
such speech exists it is not scored for English
skill. Even if one could get an assessment com-
pany to release a scored corpus of human-human
dialogues, there would likely be a mismatch with
the computer-human dialogues that are our tar-
get for automatic assessment.4 Second, there is
a lack of optimal technical infrastructure. Ex-
isting SDS components such as speech recogniz-
ers will likely need modification to handle non-

4Users speak differently to Wizard-of-Oz versus auto-
mated versions of the same SDS, despite believing that both
versions are fully automated (Thomason and Litman, 2013).
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native speech (Ivanov et al., 2015). Existing au-
tomated graders will likely need modification to
process spontaneous speech produced during dia-
logue, rather than after a prompt such as a request
to describe a visual (Evanini et al., 2014).

We make a first step at examining these issues,
by using three off-the-shelf SDS to collect dia-
logues which are then assessed by a human expert
and an existing spontaneous speech grader. Our
focus is on the following research questions:

RQ1: Will different corpus creation methods5 in-
fluence the English skill level of the SDS
users we are able to recruit for data collection
purposes?

RQ2: Can an expert human grader assess speak-
ers conversing with an SDS?

RQ3: Can an automated grader for spontaneous
(but prompted) speech assess SDS speech?

Our preliminary results suggest that while SDS-
based speech assessment shows promise, much
work remains to be done.

2 Related Work

While SDS have been used to assess and tutor na-
tive English speakers in areas ranging from sci-
ence subjects to foreign languages, SDS have gen-
erally not been used to interactively assess the
speech of NNSE. Even when language-learning
SDS have enabled a system’s behavior to vary
based on the speaker’s prior responses(s), the
skills being assessed (e.g., pronunciation (Su et al.,
2015)) typically do not involve prior dialogue con-
text.

In one notable exception, a trialogue-based
system was developed to conversationally assess
young English language learners (Evanini et al.,
2014; Mitchell et al., 2014). Similarly to our re-
search, a major goal was to examine whether stan-
dard SDS components could yield reliable con-
versational assessments compared to humans. A
small pilot evaluation suggested the viability of a
proof-of-concept trialogue system. Our work dif-
fers in that we develop a dialogue rather than a

5As explained in Section 3.1, this paper compares three
corpora that were created in three different ways: via Ama-
zon Mechanical Turk with worker qualification restrictions,
via Amazon Mechanical Turk with non-English task titles,
and via a Spoken Dialogue Challenge with SDS users from
participant sites.

trialogue system, focus on adults rather than chil-
dren, and use an international scoring standard
rather than task completion to assess English skill.

3 Computer Dialogues with NNSE

The first step of our research involved creating cor-
pora of dialogues between non-native speakers of
English and state-of-the-art spoken dialogue sys-
tems, which were then used by an expert to man-
ually assess NNSE speaking skills. Our methods
for collecting and annotating three corpora, each
involving a different SDS and a different user re-
cruitment method, are described below.

3.1 Corpora Creation

The Laptop (L) corpus contains conversations
with users who were instructed to find laptops with
certain characteristics. The SDS was produced
by Cambridge University (Vandyke et al., 2015),
while users were recruited via Amazon Mechani-
cal Turk (AMT) and interacted with the SDS over
the phone. To increase the likelihood of attract-
ing non-native speakers, an AMT Location quali-
fication restricted the types of workers who could
converse with the system. We originally required
workers to be from India6, but due to call con-
nection issues, we changed the restriction to re-
quire workers to not be from the United States,
the United Kingdom, or Australia. In pilot studies
without such qualification restrictions, primarily
native speakers responded to the AMT task even
though we specified that workers must be non-
native speakers of English only.

The Restaurant (R) corpus contains conversa-
tions with users who were instructed to find Michi-
gan restaurants with certain characteristics. The
SDS used to collect this corpus was produced by
VocalIQ7 (Mrkšić et al., 2015). Users were again
recruited via AMT, but interacted with this SDS
via microphone using the Chrome browser. Rather
than using a location qualification, the title of the
AMT task was given only in Hindi.

The Bus (B) corpus contains conversations with
users who were instructed to find bus routes in
Pittsburgh. Although the SDS was again produced
by Cambridge University, the dialogues were pre-

6The speech recognizer used in the off-the-shelf grader
described in Section 4.1 was trained on speakers with Gujarti
as their first language. The grader itself, however, was trained
on data from Polish, Vietnamese, Arabic, Dutch, French, and
Thai first-language speakers (van Dalen et al., 2015).

7Thanks to Blaise Thompson for providing the system.
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Assessed Not All
n A1 A2 B1 B1B2 B2 B2C1 C1 C1C2 C2 Turns / Wds. / n n

Dial. Turn
L 21 1 4 6 7 2 1 11.48 3.9 4 25
R 14 2 8 3 1 6.36 5.5 6 20
B 20 1 2 10 6 1 13.65 2.6 2 22
C 55 1 2 13 11 18 8 2 10.96 3.6 12 67

Table 1: Human CEFR dialogue assessments, average # of user turns per dialogue, and average number
of recognized words per turn, across corpora. L = Laptop, R=Restaurant, B=Bus, C=Combined.

viously collected as part of the first Spoken Dia-
logue Challenge (SDC) (Black et al., 2011). How-
ever, our Bus corpus includes only a subset of the
available SDC dialogues, namely non-native dia-
logues from the control condition. As in our AMT
corpus collections, callers in the control condi-
tion received a scenario to solve over a web inter-
face. Furthermore, callers in the control condition
were spoken dialogue researchers from around the
world. Whether a caller was a non-native speaker
was in fact annotated in the SDC corpus download.

Since our Bus corpus contained 22 dialogues8,
we used AMT to collect similar numbers of dia-
logues with the other SDS. After removing prob-
lematic dialogues where the AMT task was com-
pleted but there was no caller speech or the caller
turned out to be a native speaker, our final Com-
bined (C) corpus contained 67 dialogues, dis-
tributed as shown in the “All” column of Table 1.

3.2 Manual Speaking Skill Assessment

Once the corpora were collected, the speaking
skill of the human in each dialogue was manually
assessed using the Common European Framework
of Reference for Languages (CEFR, 2001).9 The
CEFR is an international standard for benchmark-
ing language ability using an ordered scale of 6
levels: A1, A2, B1, B2, C1, C2. A1 represents
beginning skill while C2 represents mastery.

Assessment was done by a human expert while
listening to logged SDS audio files. Speech recog-
nition output was also made available. Since an
expert in CEFR performed the assessment10, di-
alogues were only scored by this single assessor.
Sometimes the assessor assigned two adjacent lev-

8Only 22 of the 75 control callers were non-natives.
9The scores produced by the automatic grader described

in Section 4.1 come with a mapping to CEFR.
10The Director of Academic Development and Training for

International Students at Cambridge’s Language Centre.

els to a speaker. To support a later comparison
with the unique numerical score produced by the
automatic grader discussed in Section 4.1, dual
assessments were mapped to a new intermediate
level placed between the original levels in the or-
dered scale. For example, if the expert rated a
speaker as both “B1” and “B2”, we replaced those
two levels with the single level “B1B2.”

The A1-C2 columns of the “Assessed” section
of Table 1 show the expert assessment results
for each corpus. The average number of user
turns per assessed dialogue (“Turns/Dial.”) and
the average number of recognized words11 per
user turn (“Wds./Turn”) are also shown. With re-
spect to RQ1, comparing the CEFR level distribu-
tions across rows suggests that different user re-
cruitment methods do indeed yield different skill
levels. Using AMT (the Laptop and Restaurant
corpora) yielded more mid-level English speakers
than the SDC method (the Bus corpus).12 How-
ever, speakers in all three corpora are still biased
towards the higher CEFR skill levels.

With respect to RQ2, not all dialogues could be
assessed by the expert (as shown by the “Not” As-
sessed column of Table 1), often due to poor audio
quality. Even for those dialogues that the expert
was able to assess, human assessment was often
felt to be difficult. When the SDS worked well,
there was not very much user speech for making
the assessment. When the SDS worked poorly, the
dialogues became unnatural and speakers had to
curtail potential demonstrations of fluency such as
producing long sentences. Finally, only the Lap-
top and Bus systems recorded both sides of the
conversation. Although the text for the Restaurant

11The output of the speech recognizer for each SDS was
used as only the SDC Bus download has transcriptions.

12A statistical analysis demonstrating that the Restaurant
scores are significantly lower will be presented in Section 4.2,
after the CEFR labels are transformed to a numeric scale.
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Corpus Mean (SD) Grades Correlation
n Human Auto R p

L 21 24.2 (3.1) 17.1 (1.9) .41 .07
R 14 21.5 (2.0) 11.6 (3.1) .69 .01
B 15 25.9 (1.9) 17.1 (1.7) -.11 .69
C 50 24.0 (3.0) 15.6 (3.3) .59 .01

Table 2: Mean (standard deviation) of human and
automated grades, along with Pearson’s correla-
tions between the human and automated individ-
ual dialogue grades, within each corpus.

system’s prompts was made available, assessment
was felt to be more difficult with only user speech.

4 Automated Assessment

After creating the SDS corpora with gold-standard
speaker assessments (Section 3), we evaluated
whether speech from such SDS interactions could
be evaluated using an existing automated grader
developed for prompted (non-dialogue) sponta-
neous speech (van Dalen et al., 2015).

4.1 The GP-BULATS Grader

The GP-BULATS automated grader (van Dalen
et al., 2015) is based on a Gaussian process.
The input is a set of audio features (fundamen-
tal frequency and energy statistics) extracted from
speech, and fluency features (counts and proper-
ties of silences, disfluencies, words, and phones)
extracted from a time-aligned speech recognition
hypothesis. The output is a 0–30 score, plus a
measure of prediction uncertainty. The grader was
trained using data from Cambridge English’s BU-
LATS corpus of learner speech. Each of 994 learn-
ers was associated with an overall human-assigned
grade between 0 and 30, and the audio from all
sections of the learner’s BULATS test was used to
extract the predictive features. The speech recog-
nizer for the fluency features was also trained on
BULATS data. When evaluated on BULATS test
data from 226 additional speakers, the Pearson’s
correlation between the overall grades produced
by humans and by GP-BULATS was 0.83.

4.2 Applying GP-BULATS to SDS Speech

We transformed the expert CEFR ability labels
(Table 1) to the grader’s 0-30 scale, using a bin-
ning previously developed for GP-BULATS. The
mean grades along with standard deviations are

shown in the “Human” column of Table 2.13 A
one-way ANOVA with post-hoc Bonferroni tests
shows that the Restaurant scores are significantly
lower than in the other two corpora (p ≤ .01).

For automatic dialogue scoring by GP-
BULATS (trained prior to our SDS research
as described above), the audio from every user
utterance in a dialogue was used for feature
extraction. The scoring results are shown in the
“Auto” column of Table 2. Note that in all three
corpora, GP-BULATS underscores the speakers.

The “R” and “p” columns of Table 2 show the
Pearson’s correlation between the human and the
GP-BULATS grades, and the associated p-values
(two-tailed tests). With respect to RQ3, there is
a positive correlation for the corpora collected via
AMT (statistically significant for Restaurant, and
a trend for Laptop), as well as for the Combined
corpus. Although the SDS R values are lower
than the 0.83 GP-BULATS value, the moderate
positive correlations are encouraging given the
much smaller SDS test sets, as well as the train-
ing/testing data mismatch resulting from using off-
the-shelf systems. The SDS used to collect our
dialogues were not designed for non-native speak-
ers, and the GP-BULATS system used to grade our
dialogues was not designed for interactive speech.

Further work is needed to shed light on why
the Bus corpus yielded a non-significant correla-
tion. As noted in Section 3.2, shorter turns made
human annotation more difficult. The Bus corpus
had the fewest words per turn (Table 1), which per-
haps made automated grading more difficult. The
Bus user recruitment did not target Indian first lan-
guages, which could have impacted GP-BULATS
speech recognition. Transcription is needed to ex-
amine recognition versus grader performance.

5 Discussion and Future Work

This paper presented first steps towards an auto-
mated, SDS-based method for holistically assess-
ing conversational speech. Our proof-of-concept
research demonstrated the feasibility of 1) using
existing SDS to collect dialogues with NNSE,
2) human-assessing CEFR levels in such SDS
speech, and 3) using an automated grader designed
for prompted but non-interactive speech to yield
scores that can positively correlate with humans.

13GP-BULATS was unable to grade 5 Bus dialogues. For
example, if no words were recognized, fluency features such
as the average length of words could not be computed. There
are thus differing “n” values in Tables 1 and 2.
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Much work remains to be done. A larger
and more diverse speaker pool (in terms of first-
languages and proficiency levels) is needed to gen-
eralize our findings. To create a public SDS cor-
pus with gold-standard English skill assessments,
work is needed in how to recruit speakers with
such diverse skills, and how to change existing
SDS systems to facilitate human scoring. Further
examination of our research questions via con-
trolled experimentation is also needed (e.g., for
RQ1, comparing different corpus creation meth-
ods while keeping the SDS constant). Finally, we
would like to investigate the grading impact of us-
ing optimized rather than off-the-shelf systems.
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Üstünel, et al. 2014. Relationship between speak-
ing features and band descriptors: A mixed methods
study, the. IELTS Research Reports Online Series,
page 30.

274



Vinay Shashidhar, Nishant Pandey, and Varun Aggar-
wal. 2015. Automatic spontaneous speech grad-
ing: A novel feature derivation technique using the
crowd. In Proceedings 53rd Annual Meeting of
the Association for Computational Linguistics and
7th International Joint Conference on Natural Lan-
guage Processing, pages 1085–1094.

Pei-Hao Su, Chuan-Hsun Wu, and Lin-Shan Lee.
2015. A recursive dialogue game for personalized
computer-aided pronunciation training. IEEE/ACM
Trans. Audio, Speech and Lang. Proc., 23(1):127–
141.

Jesse Thomason and Diane Litman. 2013. Differences
in user responses to a wizard-of-oz versus automated
system. In Proceedings of NAACL-HLT, pages 796–
801.

Rogier C. van Dalen, Kate M. Knill, and Mark J. F.
Gales. 2015. Automatically grading learners’ En-
glish using a Gaussian process. In Proceedings Sixth
Workshop on Speech and Language Technology in
Education (SLaTE), pages 7–12.

David Vandyke, Pei-Hao Su, Milica Gašić, Nikola
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Abstract

When people converse about social or po-
litical topics, similar arguments are often
paraphrased by different speakers, across
many different conversations. Debate
websites produce curated summaries of ar-
guments on such topics; these summaries
typically consist of lists of sentences that
represent frequently paraphrased proposi-
tions, or labels capturing the essence of
one particular aspect of an argument, e.g.
Morality or Second Amendment. We call
these frequently paraphrased propositions
ARGUMENT FACETS. Like these curated
sites, our goal is to induce and identify
argument facets across multiple conversa-
tions, and produce summaries. However,
we aim to do this automatically. We frame
the problem as consisting of two steps:
we first extract sentences that express an
argument from raw social media dialogs,
and then rank the extracted arguments in
terms of their similarity to one another.
Sets of similar arguments are used to rep-
resent argument facets. We show here that
we can predict ARGUMENT FACET SIMI-
LARITY with a correlation averaging 0.63
compared to a human topline averaging
0.68 over three debate topics, easily beat-
ing several reasonable baselines.

1 Introduction

When people converse about social or political
topics, similar arguments are often paraphrased by
different speakers, across many different conver-
sations. For example, consider the dialog excerpts
in Fig. 1 from the 89K sentences about gun control
in the IAC 2.0 corpus of online dialogs (Abbott et
al., 2016). Each of the sentences S1 to S6 provide

different linguistic realizations of the same propo-
sition namely that Criminals will have guns even
if gun ownership is illegal.

S1: To inact a law that makes a crime of illegal gun own-
ership has no effect on criminal ownership of guns..
S2: Gun free zones are zones where criminals will have
guns because criminals will not obey the laws about gun
free zones.
S3: Gun control laws do not stop criminals from getting
guns.
S4: Gun control laws will not work because criminals do
not obey gun control laws!
S5: Gun control laws only control the guns in the hands
of people who follow laws.
S6: Gun laws and bans are put in place that only affect
good law abiding free citizens.

Figure 1: Paraphrases of the Criminals will have
guns facet from multiple conversations.

Debate websites, such as Idebate and ProCon
produce curated summaries of arguments on the
gun control topic, as well as many other topics.12

These summaries typically consist of lists, e.g.
Fig. 2 lists eight different aspects of the gun con-
trol argument from Idebate. Such manually cu-
rated summaries identify different linguistic real-
izations of the same argument to induce a set of
common, repeated, aspects of arguments, what we
call ARGUMENT FACETS. For example, a curator
might identify sentences S1 to S6 in Fig. 1 with a
label to represent the facet that Criminals will have
guns even if gun ownership is illegal.

Like these curated sites, we also aim to induce
and identify facets of an argument across multiple
conversations, and produce summaries of all the
different facets. However our aim is to do this
automatically, and over time. In order to simplify
the problem, we focus on SENTENTIAL ARGU-
MENTS, single sentences that clearly express

1See http://debatepedia.idebate.org/en/
index.php/Debate: Gun control,

2See http://gun-control.procon.org/
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Pro Arguments
A1: The only function of a gun is to kill.
A2: The legal ownership of guns by ordinary citizens
inevitably leads to many accidental deaths.
A3: Sports shooting desensitizes people to the lethal na-
ture of firearms.
A4: Gun ownership increases the risk of suicide.
Con Arguments
A5: Gun ownership is an integral facet of the right to self
defense.
A6: Gun ownership increases national security within
democratic states.
A7: Sports shooting is a safe activity.
A8: Effective gun control is not achievable in democratic
states with a tradition of civilian gun owership.

Figure 2: The eight facets for Gun Control on
IDebate, a curated debate site.

a particular argument facet in dialog. We aim
to use SENTENTIAL ARGUMENTS to produce
extractive summaries of online dialogs about
current social and political topics. This paper
extends our previous work which frames our goal
as consisting of two tasks (Misra et al., 2015;
Swanson et al., 2015).

• Task1: Argument Extraction: How can we
extract sentences from dialog that clearly ex-
press a particular argument facet?
• Task2: Argument Facet Similarity: How

can we recognize that two sentential argu-
ments are semantically similar, i.e. that
they are different linguistic realizations of the
same facet of the argument?

Task1 is needed because social media dialogs
consist of many sentences that either do not ex-
press an argument, or cannot be understood out
of context. Thus sentences that are useful for in-
ducing argument facets must first be automatically
identified. Our previous work on Argument Ex-
traction achieved good results, (Swanson et al.,
2015), and is extended here (Sec. 2).

Task2 takes pairs of sentences from Task1 as
input and then learns a regressor that can pre-
dict Argument Facet Similarity (henceforth AFS).
Related work on argument mining (discussed in
more detail in Sec. 4) defines a finite set of facets
for each topic, similar to those from Idebate in
Fig. 2.3 Previous work then labels posts or sen-
tences using these facets, and trains a classifier to
return a facet label (Conrad et al., 2012; Hasan
and Ng, 2014; Boltuzic and Šnajder, 2014; Naderi
and Hirst, 2015), inter alia. However, this sim-
plification may not work in the long term, both be-
cause the sentential realizations of argument facets
are propositional, and hence graded, and because

3See also the facets in Fig. 3 below from ProCon.org.

facets evolve over time, and hence cannot be rep-
resented by a finite list.

In our previous work on AFS, we developed
an AFS regressor for predicting the similarity
of human-generated labels for summaries of
dialogic arguments (Misra et al., 2015). We
collected 5 human summaries of each dialog, and
then used the Pyramid tool and scheme to annotate
sentences from these summaries as contributors to
(paraphrases of) a particular facet (Nenkova and
Passonneau, 2004). The Pyramid tool requires
the annotator to provide a human readable label
for a collection of contributors that realize the
same propositional content. The AFS regressor
operated on pairs of human-generated labels from
Pyramid summaries of different dialogs about the
same topic. In this case, facet identification is
done by the human summarizers, and collections
of similar labels represent an argument facet. We
believe this is a much easier task than the one
we attempt here of training an AFS regressor on
automatically extracted raw sentences from social
media dialogs. The contributions of this paper are:

• We develop a new corpus of sentential argu-
ments with gold-standard labels for AFS.
• We analyze and improve our argument ex-

tractor, by testing it on a much larger dataset.
We develop a larger gold standard corpus for
ARGUMENT QUALITY (AQ).
• We develop a regressor that can predict AFS

on extracted sentential arguments with a cor-
relation averaging 0.63 compared to a human
topline of 0.68 for three debate topics.4

2 Corpora and Problem Definition

Many existing websites summarize the frequent,
and repeated, facets of arguments about current
topics, that are linguistically realized in different
ways, across many different social media and de-
bate forums. For example, Fig. 2 illustrates the
eight facets for gun control on IDebate. Fig. 3
illustrates a different type of summary, for the
death penalty topic, from ProCon, where the ar-
gument facets are called out as the “Top Ten Pros
and Cons” and given labels such as Morality,
Constitutionality and Race. See the top of
Fig. 3. The bottom of Fig. 3 shows how each facet
is then elaborated by a paragraph for both its Pro
and Con side: due to space we only show the sum-
mary for the Morality facet here.

These summaries are curated, thus one would
4Both the AQ and the AFS pair corpora are available at

nlds.soe.ucsc.edu.
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Figure 3: Facets of the death penalty debate as
curated on ProCon.org

not expect that different sites would call out the
exact same facets, or even that the same type of
labels would be used for a specific facet. As
we can see, ProCon (Fig. 3) uses one word or
phrasal labels, while IDebate (Fig. 2) describes
each facet with a sentence. Moreover, these cu-
rated summaries are not produced for a particu-
lar topic once-and-for-all: the curators often re-
organize their summaries, drawing out different
facets, or combining previously distinct facets un-
der a single new heading. We hypothesize that this
happens because new facets arise over time. For
example, it is plausible that for the gay marriage
topic, the facet that Gay marriage is a civil rights
issue came to the fore only in the last ten years.

Our long-term aim is to produce summaries
similar to these curated summaries, but automat-
ically, and over time, so that as new argument
facets arise for a particular topic, we can identify
them. We begin with three debate topics, gun con-
trol (38102 posts), gay marriage (22425 posts) and
death penalty (5283 posts), from the Internet Ar-
gument Corpus 2.0 (Abbott et al., 2016). We first
need to create a large sample of high quality sen-
tential arguments (Task1 above) and then create a
large sample of paired sentential arguments in or-
der to train the model for AFS (Task2 above).

2.1 Argument Quality Data
We extracted all the sentences for all of the posts
in each topic to first create a large corpus of topic-
sorted sentences. See Table 1.

We started with the Argument Quality (AQ) re-

Topic Original Rescored Sampled AQ #N (%)
GC 89,722 63,025 2140 1887 (88%)
DP 17,904 11,435 1986 1520 (77%)
GM 51,543 40,306 2062 1745 (85%)

Table 1: Sentence count in each domain. Sam-
pled bin range > 0.55 and number of sentential
arguments (high AQ) after annotation. GC=Gun
Control, DP=Death Penalty, GM=Gay Marriage.

gressor from Swanson et al. (2015), which gives a
score to each sentence. The AQ score is intended
to reflect how easily the speaker’s argument can be
understood from the sentence without any context.
Easily understandable sentences are assumed to
be prime candidates for producing extractive sum-
maries. In Swanson et al. (2015), the annotators
rated AQ using a continuous slider ranging from
hard (0.0) to easy to interpret (1.0). We refined the
Mechanical Turk task to elicit new training data
for AQ as summarized in Table 1. Fig. 8 in the ap-
pendix shows the HIT we used to collect new AQ
labels for sentences, as described below.

We expected to to apply Swanson’s AQ regres-
sor to our sample completely “out of the box”.
However, we first discovered that many sentences
given high AQ scores were very similar, while we
need a sample that realizes many diverse facets.
We then discovered that some extracted sentential
arguments were not actually high quality. We hy-
pothesized that the diversity issue arose primarily
because Swanson’s dataset was filtered using high
PMI n-grams. We also hypothesized that the qual-
ity issue had not surfaced because Swanson’s sam-
ple was primarily selected from sentences marked
with the discourse connectives but, first, if, and so.
Our sample (Original column of Table 1) is much
larger and was not similarly filtered.

Figure 4: Word count distribution for argument
quality prediction scores > 0.91 for Swanson’s
original model.

Fig. 4 plots the distribution of word counts for
sentences from our sample that were given an AQ
score > 0.91 by Swanson’s trained AQ regres-
sor. The first bin shows that many sentences with
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less than 10 words are predicted to be high qual-
ity, but many of these sentences in our data con-
sisted of only a few elongated words (e.g. HA-
HAHAHA...). The upper part of the distribution
shows a large number of sentences with more than
70 words with a predicted AQ > 0.91. We discov-
ered that most of these long sentences are multiple
sentences without punctuation. We thus refined
the AQ model by removing duplicate sentences,
and rescoring sentences without a verb and with
less than 4 dictionary words to AQ = 0. We then
restricted our sampling to sentences between 10
and 40 tokens, to eliminate run-on sentences and
sentences without much propositional content. We
did not retrain the regressor, rather we resampled
and rescored the corpus. See the Rescored column
of Table 1. After removing the two tails in Fig. 4,
the distribution of word counts is almost uniform
across bins of sentences from length 10 to 40.

As noted above, the sample in Swanson et al.
(2015) was filtered using PMI, and PMI con-
tributes to AQ. Thus, to end up with a diverse
set of sentences representing many facets of each
topic, we decided to sample sentences with lower
AQ scores than Swanson had used. We binned
the sentences based on predicted AQ score and ex-
tracted random samples across bins ranging from
.55–1.0, in increments of .10. Then we extracted a
smaller sample and collected new AQ annotations
for gay marriage and death penalty on Mechani-
cal Turk, using the definitions in Fig. 8 (in the ap-
pendix). See the Sampled column of Table 1. We
pre-selected three annotators using a qualifier that
included detailed instructions and sample annota-
tions. A score of 3 was mapped to a yes and scores
of 1 or 2 mapped to a no. We simplified the task
slightly in the HIT for gun control, where five an-
notators were instructed to select a yes label if the
sentence clearly expressed an argument (score 3),
or a no label otherwise (score 1 or 2).

We then calculated the probability that the sen-
tences in each bin were high quality arguments
using the resulting AQ gold standard labels, and
found that a threshhold of predicted AQ > 0.55
maintained both diversity and quality. See Fig. 9
in the appendix. Table 1 summarizes the results
of each stage of the process of producing the new
AQ corpus of 6188 sentences (Sampled and then
annotated). The last column of Table 1 shows that
gold standard labels agree with the rescored AQ
regressor between 77% and 88% of the time.

2.2 Argument Facet Similarity Data

The goal of Task2 is to define a similarity metric
and train a regression model that takes as input two
sentential arguments and returns a scalar value that
predicts their similarity(AFS). The model must re-
flect the fact that similarity is graded, e.g. the same
argument facet may be repeated with different lev-
els of explicit detail. For example, sentence A1 in
Fig. 2 is similar to the more complete argument,
Given the fact that guns are weapons—things de-
signed to kill—they should not be in the hands of
the public, which expresses both the premise and
conclusion. Sentence A1 leaves it up to the reader
to infer the (obvious) conclusion.

S7: Since there are gun deaths in countries that have
banned guns, the gun bans did not work.
S8: It is legal to own weapons in this country, they are
just tightly controlled, and as a result we have far less
gun crime (particularly where it’s not related to organ-
ised crime).
S9: My point was that the theory that more gun con-
trol leaves people defenseless does not explain the lower
murder rates in other developed nations.

Figure 5: Paraphrases of the Gun ownership does
not lead to higher crime facet of the Gun Control
topic across different conversations.

Our approach to Task2 draws strongly on recent
work on semantic textual similarity (STS) (Agirre
et al., 2013; Dolan and Brockett, 2005; Mihalcea
et al., 2006). STS measures the degree of seman-
tic similarity between a pair of sentences with val-
ues that range from 0 to 5. Inspired by the scale
used for STS, we first define what a facet is, and
then define the values of the AFS scale as shown
in Fig. 10 in the appendix (repeated from Misra et
al. (2015) for convenience). We distinguish AFS
from STS because: (1) our data are so different:
STS data consists of descriptive sentences whereas
our sentences are argumentative excerpts from di-
alogs; and (2) our definition of facet allows for
sentences that express opposite stance to be real-
izations of the same facet (AFS = 3) in Fig. 10.

Related work has primarily used entailment or
semantic equivalence to define argument similar-
ity (Habernal and Gurevych, 2015; Boltuzic and
Šnajder, 2015; Boltuzic and Šnajder, 2015; Haber-
nal et al., 2014). We believe the definition of AFS
given in Fig. 10 will be more useful in the long
run than semantic equivalence or entailment, be-
cause two arguments can only be contradictory if
they are about the same facet. For example, con-
sider that sentential argument S7 in Fig. 5 is anti
gun-control, while sentences S8 and S9 are pro
gun-control. Our annotation guidelines label them
with the same facet, in a similar way to how the
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curated summaries on ProCon provides both a Pro
and Con side for each facet. See Fig. 3.

Figure 6: The distribution of AFS scores as a
function of UMBC STS scores for gun control
sentences.

In order to efficiently collect annotations for
AFS, we want to produce training data pairs that
are more likely than chance to be the same facet
(scores 3 and above as defined in Fig. 10). Sim-
ilar arguments are rare with an all-pairs matching
protocol, e.g. in ComArg approximately 67% of
the annotations are “not a match” (Boltuzic and
Šnajder, 2014). Also, we found that Turkers are
confused when asked to annotate similarity and
then given a set of sentence pairs that are almost
all highly dissimilar. Annotations also cost money.
We therefore used UMBC STS (Han et al., 2013)
to score all potential pairs.5 To foreshadow, the
plot in Fig. 6 shows that this pre-scoring works:
(1) the lower quadrant of the plot shows that STS
< .20 corresponds to the lower range of scores for
AFS; and (2) the lower half of the left hand side
shows that we still get many arguments that are
low AFS (values below 3) in our training data.

We selected 2000 pairs in each topic, based on
their UMBC similarity scores, which resulted in
lowest UMBC scores of 0.58 for GM, 0.56 for
GC and 0.58 for DP. To ensure a pool of diverse
arguments, a particular sentence can appear in at
most ten pairs. MT workers took a qualification
test with definitions and instructions as shown in
Fig. 10. Sentential arguments with sample AFS
annotations were part of the qualifier. The 6000
pairs were made available to our three most reli-
able pre-qualified workers. The last row of Table 3
reports the human topline for the task, i.e. the av-
erage pairwise r across all three workers. Interest-
ingly, the Gay marriage topic (r = 0.60) is more
difficult for human annotators than either Death
Penalty (r = 0.74) or Gun Control (r = 0.69).

5This is an off-the-shelf STS tool from Uni-
versity of Maryland Baltimore County available at
swoogle.umbc.edu/SimService/.

3 Argument Facet Similarity

Given the data collected above, we defined a su-
pervised machine learning experiment with AFS
as our dependent variable. We developed a num-
ber of baselines using off the shelf tools. Features
are grouped into sets and discussed in detail below.

3.1 Feature Sets
NGRAM cosine. Our primary baseline is an
ngram overlap feature. For each argument, we ex-
tract the unigrams, bigrams and trigrams, and then
calculate the cosine similarity between two texts
represented as vectors of their ngram counts.
Rouge. Rouge is a family of metrics for compar-
ing the similarity of two summaries (Lin, 2004),
which measures overlapping units such as con-
tinuous and skip ngrams, common subsequences,
and word pairs. We use all the rouge f-scores
from the pyrouge package. Our analysis shows
that rouge s* f score correlates most highly with
AFS.6

UMBC STS. We consider STS, a measure of the
semantic similarity of two texts (Agirre et al.,
2012), as another baseline, using the UMBC STS
tool. Fig. 6 illustrates that in general, STS is rough
approximation of AFS. It is possible that our selec-
tion of data for pairs for annotation using UMBC
STS either improves or reduces its performance.
Google Word2Vec. Word embeddings from
word2vec (Mikolov et al., 2013) are popular for
expressing semantic relationships between words,
but using word embeddings to express entire sen-
tences often requires some compromises. In par-
ticular, averaging word2vec embeddings for each
word may lose too much information in long sen-
tences. Previous work on argument mining has
developed methods using word2vec that are ef-
fective for clustering similar arguments (Habernal
and Gurevych, 2015; Boltuzic and Šnajder, 2015)
Other research creates embeddings at the sen-
tence level using more advanced techniques such
as Paragraph Vectors (Le and Mikolov, 2014).

We take a more direct approach in which we
use the word embeddings directly as features. For
each sentential argument in the pair, we create a
300-dimensional vector by filtering for stopwords
and punctuation and then averaging the word em-
beddings from Google’s word2vec model for the
remaining words.7 Each dimension of the 600 di-
mensional concatenated averaged vector is used
directly as a feature. In our experiments, this

6https://pypi.python.org/pypi/pyrouge/
7https://code.google.com/archive/p/

word2vec/

280



concatenation method greatly outperforms cosine
similarity (Table 2, Table 3). Sec. 3.3 discusses
properties of word embeddings that may yield
these performance differences.
Custom Word2Vec. We also create our own
300-dimensional embeddings for our dialogic do-
main using the Gensim library (Řehůřek and So-
jka, 2010), with default settings, and a very
large corpus of user-generated dialogic content.
This includes the corpus described in Sec. 2
(929, 206 forum posts), an internal corpus of
1, 688, 639 tweets on various topics, and a corpus
of 53, 851, 542 posts from Reddit.8

LIWC category and Dependency Overlap.
Both dependency structures and the Linguistics
Inquiry Word Count (LIWC) tool have been use-
ful in previous work (Pennebaker et al., 2001;
Somasundaran and Wiebe, 2009; Hasan and Ng,
2013). We develop a novel feature set that com-
bines LIWC category and dependency overlap,
aiming to capture a generalized notion of concept
overlap between two arguments, i.e. to capture the
hypothesis that classes of content words such as
affective processes or emotion types are indicative
of a shared facet across pairs of arguments.

Figure 7: LIWC Generalized Dep. tuples

We create partially generalized LIWC depen-
dency features and count overlap normalized by
sentence length across pairs, building on previous
work (Joshi and Penstein-Rosé, 2009). Stanford
dependency features (Manning et al., 2014) are
generalized by leaving one dependency element
lexicalized, replacing the other word in the depen-
dency relation with its LIWC category and by re-
moving the actual dependency type (nsubj, dobj,
etc.) from the triple. This creates a tuple of (“gov-
ernor token”, LIWC category of dependent token).
We call these simplified LIWC dependencies.

Fig. 7 illustrates the generalization process for
three LIWC simplified dependencies, (”deter”,
”fear), (”deter”, ”punishment”), and (”deter”,
”love”). Because LIWC is a hierarchical lexicon,

8One month sample https://www.reddit.com/
r/datasets/comments/3bxlg7/i_have_every_
publicly_available_reddit_comment

two dependencies may share many generalizations
or only a few. Here, the tuples with dependent to-
kens fear and punishment are more closely related
because their shared generalization include both
Negative Emotion and Affective Processes, but the
tuples with dependent tokens fear and love have a
less similar relationship, because they only share
the Affective Processes generalization.

3.2 Machine Learning Regression Results

We randomly selected 90% of our annotated pairs
to use for nested 10-fold cross-validation, set-
ting aside 10% for qualitative analysis of pre-
dicted vs. gold-standard scores. We use Ridge
Regression (RR) with l2-norm regularization and
Support Vector Regression (SVR) with an RBF
kernel from scikit-learn (Pedregosa et al., 2011).
Performance evaluation uses two standard mea-
sures, Correlation Coefficient (r) and Root Mean
Squared Error (RMSE). A separate inner cross-
validation within each fold of the outer cross-
validation is used to perform a grid search to deter-
mine the hyperparameters for that outer fold. The
outer cross-validation reports the scoring metrics.
Simple Ablation Models. We first evaluate sim-
ple models based on a single feature using both
RR and SVR. Table 2, Rows 1, 2, and 3 show the
baseline results: UMBC Semantic Textual Sim-
ilarity (STS), Ngram Cosine, and Rouge. Sur-
prisingly, the UMBC STS measure does not per-
form as well as Ngram Cosine for Death Penalty
and Gay Marriage. LIWC dependencies (Row 4)
perform similarly to Rouge (Row 3) across top-
ics. Cosine similarity for the custom word2vec
model (Row 5) performs about as well or bet-
ter than ngrams across topics, but cosine simi-
larity using the Google model (Row 6) performs
worse than ngrams for all topics except Death
Penalty. Interestingly our custom Word2Vec mod-
els perform significantly better than the Google
word2vec models for Gun Control and Gay Mar-
riage, with both much higher r and lower RMSE,
while performing identically for Death Penalty.
Feature Combination Models. Table 3 shows
the results of testing feature combinations to learn
which ones are complementary. Since SVR con-
sistently performs better than RR, we use SVR
only. Significance is calculated using paired
t-tests between the RMSE values across folds.
We paired Ngrams separately with LIWC and
ROUGE to evaluate if the combination is sig-
nificant. Ngram+Rouge (Row 1) is significantly
better than Ngram for Gun Control and Death
Penalty (p < .01), and Gay Marriage (p = .03).
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Gun Control Gay Marriage Death Penalty
RR SVR RR SVR RR SVR

ID Features r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE
1 UMBC 0.49 0.90 0.50 0.90 0.16 0.90 0.21 0.90 0.21 1.16 0.20 1.20
2 Ngram 0.46 0.91 0.46 0.92 0.24 0.88 0.24 0.91 0.23 1.16 0.24 1.18
3 Rouge 0.52 0.88 0.57 0.86 0.22 0.89 0.26 0.90 0.39 1.10 0.40 1.11
4 LIWC

dependencies
0.50 0.89 0.59 0.85 0.27 0.88 0.26 0.90 0.34 1.12 0.40 1.12

5 CustomW2Vec
Cosine

0.47 0.91 0.52 0.89 0.22 0.89 0.25 0.90 0.29 1.14 0.30 1.16

6 GoogleW2Vec
Cosine

0.40 0.94 0.47 0.93 0.16 0.90 0.20 0.92 0.29 1.14 0.30 1.16

Table 2: Results for predicting AFS with individual features using Ridge Regression (RR) and Support
Vector Regression (SVR) with 10-fold Cross-Validation on the 1800 training items for each topic.

ID Feature Combinations with SVR Gun Control Gay Marriage Death Penalty
r RMSE r RMSE r RMSE

1 Ngram- Rouge 0.59 0.85 0.29 0.89 0.40 1.11
2 Ngram- LIWC dependencies 0.61 0.83 0.34 0.88 0.43 1.10
3 Ngram- LIWC dependencies- Rouge 0.64 0.80 0.38 0.86 0.49 1.05
4 Ngram- LIWC dependencies- Rouge-UMBC 0.65 0.79 0.40 0.86 0.50 1.05
5 CustomW2Vec Concatenated vectors 0.71 0.72 0.48 0.80 0.56 0.99
6 GoogleW2Vec Concatenated vectors 0.71 0.72 0.50 0.79 0.57 0.98
7 Ngram- LIWC dependencies- Rouge- UMBC-

CustomW2Vec Concatenated vectors
0.73 0.70 0.54 0.77 0.62 0.93

8 Ngram- LIWC dependencies- Rouge- UMBC-
GoogleW2Vec Concatenated vectors

0.73 0.70 0.54 0.77 0.63 0.92

9 HUMAN TOPLINE 0.69 0.60 0.74

Table 3: Results for feature combinations for predicting AFS, using Support Vector Regression (SVR)
with 10-fold Cross-Validation on the 1800 training items for each topic.

Ngram+LIWC (Row 2) is significantly better than
Ngram for Gun Control, and Death Penalty (p <
.01). Thus both Rouge and LIWC provide com-
plementary information to Ngrams.

Our best result using our hand-engineered fea-
tures is a combination of LIWC, Rouge, and
Ngrams (Row 3). Interestingly, adding UMBC
STS (Row 4) gives a small but significant im-
provement (p < 0.01 for gun control; p = 0.07
for gay marriage). Thus we take Ngrams, LIWC,
Rouge, and UMBC STS (Row 4) as our best hand-
engineered model across all topics with a correla-
tion of 0.65 for gun control, 0.50 for death penalty
and 0.40 for gay marriage. This combination is
significantly better than the baselines for Ngram
baseline (p < .01), UMBC STS (p <= .02) and
Rouge (p < .01) for all three topics.

We then further combine the hand-engineered
features (Row 4) with the Google Word2Vec fea-
tures (Row 6), creating the model in Row 8. A
paired t-test between RMSE values from each
cross-validation fold for each model (Row 4 vs.
Row 8 and Row 6 vs. Row 8) shows that the our
hand-engineered features are complementary to
Word2Vec, and their combination yields a model
significantly better than either model alone (p <

.01). We note that although the custom word2vec
model performs much better for gun control and
gay marriage when using cosine, it actually per-
forms slightly but significantly (p = .05) worse
when using concatenation with hand-engineered
features. This may simply be due to the size
of the training data, i.e. the Google model used
nearly twice as much training data, while our
domain-specific word2vec model achieves compa-
rable performance to the Google model with much
less training data.

3.3 Analysis and Discussion

Although it is common to translate word em-
beddings into single features or reduced feature
sets for similarity through the use of cluster-
ing (Habernal and Gurevych, 2015) or cosine simi-
larity (Boltuzic and Šnajder, 2015), we show that it
is possible to improve results by directly combin-
ing word embeddings with hand-engineered fea-
tures. In our task, sentences were limited to a max-
imum of 40 tokens in order to encourage single-
facet sentences, but this may have provided an ad-
ditional benefit by allowing us to average word
embeddings while still preserving useful signal.

Our results also demonstrate that using concate-
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ID Argument 1 Argument 2 STS Ngram Rouge LIWC
dep

W2Vec AFS MT
AFS

GC1 You say that gun control must not be effec-
tive because the study’s conclusions about
gun control were inconclusive.

You’re right that gun control isn’t about guns,
however, but ’control’ is a secondary matter, a
means to an end.

1.82 2.56 2.22 1.53 1.40 1.5 1

DP2 I don’t feel as strongly about the death
penalty as I feel about the abortion rights
debate since I can relate to the desire for
vengeance that people feel.

Well I, as creator of this debate, think that there
should not be a death penalty.

1.82 2.38 2.07 1.29 1.44 1.24 1.33

GC3 They do not have the expressed, enumer-
ated power to pass any law regarding guns
in the constitution.

Which passed the law requireing ”smart guns”,
if they ever become available (right now they do
not exist).

1.74 1.83 2.67 1.50 1.82 1.88 2.0

GM4 Technically though marriage is not dis-
crimination, because gays are still allowed
to marry the opposite sex.

Everyone has the right to marry someone of the
opposite sex, and with gay marriage, everyone
will have the right to marry someone of the same
AND opposite sex.

1.76 2.09 1.68 2.00 2.23 2.06 2.33

GM5 If the state wants to offer legal protections
and benefits to straight married couples,
it cannot constitutionally refuse equal pro-
tections to gay ones.

Same-sex couples are denied over 1,000 bene-
fits, rights, and protections that federal law af-
fords to married, heterosexual couples, as well
as hundreds of such protections at the state level.

1.77 1.91 1.77 2.66 3.56 3.72 3.33

DP6 In addition, it is evident that the death
penalty does not deter murder rates.

BUT it is not apparent that death penalty lower
crime rate.

2.03 2.31 3.71 2.21 3.84 3.95 4.0

DP7 Living in jail for life costs less money then
the death penalty.

Morality aside, no evidence of deterrence aside,
the death penalty costs more than life imprison-
ment.

1.84 2.43 2.56 3.23 2.90 2.90 4.33

Table 4: Illustrative Argument pairs, along with the predicted scores from individual feature sets, pre-
dicted(AFS) and the Mechanical Turk human topline (MT AFS). The best performing feature set is
shown in bold. GC=Gun Control, DP=Death Penalty, GM=Gay Marriage.

nation for learning similarity with vector represen-
tations works much better than the common prac-
tice of reducing a pair of vectors to a single score
using cosine similarity. Previous work (Li et al.,
2015; Pennington et al., 2014) also shows that all
dimensions are not equally useful predictors for
a specific task. For sentiment classification, Li
et al. (2015) find that “too large a dimensional-
ity leads many dimensions to be non-functional
... causing two sentences of opposite sentiment to
differ only in a few dimensions.” This may also
be the situation for the 300-dimensional embed-
dings used for AFS. Hence, when using concate-
nation, single dimensions can be weighted to ad-
just for non-functional dimensions, but using co-
sine makes this per-dimension weighting impossi-
ble. This might explain why our custom word2vec
model outperforms the Google model when using
cosine as compared to concatenation, i.e. more di-
mensions are informative in the custom model, but
overall, the Google model provides more comple-
mentary information when non-functional dimen-
sions are accounted for. More analysis is needed
to fully support this claim.

To qualitatively illustrate some of the differ-
ences between our final AFS regressor model
(Row 8 of Table 3) and several baselines, we ap-
ply the model to a set-aside 200 pairs per topic.
Table 4 shows examples selected to highlight the
strengths of AFS prediction for different models
as compared to the AFS gold standard scores.

MT AFS values near 1 indicate same topic but
no similarity. Rows GC1 and DP2 talk about to-
tally different facets and only share the same topic
(AFS = 1). Rouge and Ngram features based on

word overlap predict scores that are too high. In
contrast, LIWC dependencies and word2vec based
on concept and semantic overlap are more accu-
rate. MT values near 3 indicate same facet but
somewhat different arguments. Arguments in row
GM4 talk about marriage rights to all, and there
is some overlap in these arguments beyond sim-
ply being the same topic, however the speakers are
on opposite stance sides. Both of the arguments
in row GM5 (MT AFS of 3.3) reference the same
facet of the financial and legal benefits available to
married couples, but Arg2 is more specific. Both
Word2vec and our trained AFS model can recog-
nize the similarity in the concepts in the two argu-
ments and make good predictions.

MT values above 4 indicate two arguments that
are the same facet and very similar. Row DP6 gets
a high Rouge overlap score and Word2vec relates
‘lower crime rate’ as semantically similar to ‘de-
ter murder rates’ thus yielding an accurately high
AFS score. DP7 is an example where LIWC de-
pendencies perform better as compared to other
features, because it focuses in on the dependency
between the death penalty and cost, but none of the
models do well at predicting the MT AFS score.
One issue here may be that, despite our attempts
to sample pairs with more representatives of high
AFS, there is just less training data available for
this part of the distribution. Hence all the regres-
sors will be conservative at predicting the highest
values. We hope in future work to improve our
AFS regressor by finding additional methods for
populating the training data with more highly sim-
ilar pairs.
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4 Related Work

There are many theories of argumentation that
might be applicable for our task (Jackson and Ja-
cobs, 1980; Reed and Rowe, 2004; Walton et al.,
2008; Gilbert, 1997; Toulmin, 1958; Dung, 1995),
but one definition of argument structure may not
work for every NLP task. Social media arguments
are often informal, and do not necessarily follow
logical rules or schemas of argumentation (Stab
and Gurevych, 2014; Peldszus and Stede, 2013;
Ghosh et al., 2014; Habernal et al., 2014; Goudas
et al., 2014; Cabrio and Villata, 2012).

Moreover, in social media, segments of text that
are argumentative must first be identified, as in
our Task1. Habernal and Gurevych (2016) train
a classifier to recognize text segments that are ar-
gumentative, but much previous work does Task1
manually. Goudas et al. (2014) annotate 16,000
sentences from social media documents and con-
sider 760 of them to be argumentative. Hasan
and Ng (2014) also manually identify argumenta-
tive sentences, while Boltuzic and Šnajder (2014)
treat the whole post as argumentative, after man-
ually removing “spam” posts. Biran and Ram-
bow (2011) automatically identify justifications as
a structural component of an argument.

Other work groups semantically-similar classes
of reasons or frames that underlie a particu-
lar speaker’s stance, what we call ARGUMENT
FACETS. One approach categorizes sentences or
posts using topic-specific argument labels, which
are functionally similar to our facets as discussed
above (Conrad et al., 2012; Hasan and Ng, 2014;
Boltuzic and Šnajder, 2014; Naderi and Hirst,
2015). For example, Fig. 2 lists facets A1 to
A8 for Gun Control from the IDebate website;
Boltuzic and Šnajder (2015) use this list to label
posts. They apply unsupervised clustering using a
semantic textual similarity tool, but evaluate clus-
ters using their hand-labelled argument tags. Our
method instead explicitly models graded similar-
ity of sentential arguments.

5 Conclusion and Future Work

We present a method for scoring argument facet
similarity in online debates using a combination of
hand-engineered and unsupervised features with a
correlation averaging 0.63 compared to a human
top line averaging 0.68. Our approach differs from
similar work that finds and groups the “reasons”
underlying a speakers stance, because our mod-
els are based on the belief that it is not possible
to define a finite set of discrete facets for a topic.
A qualitative analysis of our results, illustrated by

Table 4, suggests that treating facet discovery as a
similarity problem is productive, i.e. examination
of particular pairs suggests facets about legal and
financial benefits for same-sex couples, the claim
that the death penalty does not actually affect mur-
der rates, and an assertion that “they”, implying
“congress”, do not have the express, enumerated
power to pass legislation restricting guns.

Previous work shows that metrics used for eval-
uating machine translation quality perform well
on paraphrase recognition tasks (Madnani et al.,
2012). In our experiments, ROUGE performed
very well, suggesting that other machine transla-
tion metrics such as Terp and Meteor may be use-
ful (Snover et al., 2009; Lavie and Denkowski,
2009). We will explore this in future work.

In future, we will use our AFS regressor to clus-
ter and group similar arguments and produce ar-
gument facet summaries as a final output of our
pipeline. Habernal and Gurevych (2015) apply
clustering in argument mining by averaging word
embeddings from posts and sentences from debate
portals, clustering the resulting averaged vectors,
and then computing distance measures from clus-
ters to unseen sentences (“classification units”)
as features. Cosine similarity between weighted
and summed vector representations is also a com-
mon approach, and Boltuzic and Šnajder (2015)
show word2vec cosine similarity beats bag-of-
words and STS baselines when used with cluster-
ing for argument identification.

Finally, our AQ extractor treats all posts on a
topic equally, operating on a set of concatenated
posts. We will explore other sampling methods to
ensure that the AQ extractor does not eliminate ar-
guments made by less articulate citizens, by e.g.
enforcing that “Every speaker in a debate con-
tributes at least one argument”. We will also sam-
ple by stance-side, so that summaries can be orga-
nized using “Pro” and “Con”, as in curated sum-
maries. Our final goal is to combine quality-based
argument extraction, our AFS model, stance, post
and author level information, so that our sum-
maries represent the diversity of views on a topic,
a quality not always guaranteed by summarization
techniques, human or machine.
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A Appendix

Score Scoring Criteria
3 The phrase is clearly interpretable AND either

expresses an argument, or a premise or a con-
clusion that can be used in an argument about a
facet or a sub-issue for the topic of gay marriage.

2 The phrase is clearly interpretable BUT does not
seem to be a part of an argument about a facet or
a sub-issue for the topic of gay marriage.

1 The phrase cannot be interpreted as an argument.

Figure 8: Argument Quality HIT as instantiated
for the topic Gay Marriage.

Figure 8 shows the definitions used in our Ar-
gument Quality HIT.
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Figure 9 shows the relation between predicted
AQ score and gold-standard argument quality an-
notations.

Figure 9: Probability of sentential argument for
AQ score across bin for Death Penalty.

Figure 10 provides our definition of FACET and
instructions for AFS annotation. This is repeated
here from (Misra et al., 2015) for the reader’s con-
venience.

Facet: A facet is a low level issue that often reoccurs in
many arguments in support of the author’s stance or in at-
tacking the other author’s position. There are many ways
to argue for your stance on a topic. For example, in a dis-
cussion about the death penalty you may argue in favor of
it by claiming that it deters crime. Alternatively, you may
argue in favor of the death penalty because it gives victims
of the crimes closure. On the other hand you may argue
against the death penalty because some innocent people will
be wrongfully executed or because it is a cruel and unusual
punishment. Each of these specific points is a facet.
For two utterances to be about the same facet, it is not nec-
essary that the authors have the same belief toward the facet.
For example, one author may believe that the death penalty
is a cruel and unusual punishment while the other one at-
tacks that position. However, in order to attack that position
they must be discussing the same facet.

We would like you to classify each of the following sets of
pairs based on your perception of how SIMILAR the argu-
ments are, on the following scale, examples follow.
(5) Completely equivalent, mean pretty much exactly the
same thing, using different words.
(4) Mostly equivalent, but some unimportant details differ.
One argument may be more specific than another or include
a relatively unimportant extra fact.
(3) Roughly equivalent, but some important information
differs or is missing. This includes cases where the argu-
ment is about the same FACET but the authors have differ-
ent stances on that facet.
(2) Not equivalent, but share some details. For example,
talking about the same entities but making different argu-
ments (different facets)
(1) Not equivalent, but are on same topic
(0) On a different topic

Figure 10: Definitions used for Facet and AFS in
MT HIT.
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Abstract

We present a simple real-time, real-world
grounding framework, and a system which
implements it in a simple robot, allow-
ing investigation into different ground-
ing strategies. We put particular focus
on the grounding effects of non-linguistic
task-related actions. We experiment with
a trade-off between the fluidity of the
grounding mechanism with the ‘safety’ of
ensuring task success. The framework
consists of a combination of interactive
Harel statecharts and the Incremental Unit
framework. We evaluate its in-robot im-
plementation in a study with human users
and find that in simple grounding situa-
tions, a model allowing greater fluidity is
perceived to have better understanding of
the user’s speech.

1 Introduction

Developing suitable grounding mechanisms for
communication in the sense of (Clark and Bren-
nan, 1991; Clark, 1996) is an ongoing challenge
for designers of robotic systems which interpret
speech. If grounding is the way in which in-
teraction participants build and align their inter-
nal representations towards shared information or
‘common ground’, given the vastly different in-
ternal representations of humans and robots, one
might concede the title of Kruijff (2012)’s paper:
‘There is no common ground in human-robot in-
teraction’.

However despite the lack of ‘real’ common
ground, a robot can still understand what the user
means ‘to a criterion sufficient for current pur-
poses’ (Clark and Brennan, 1991) at a given point
in the interaction, if it is equipped with grounding

mechanisms which deal with the inherent uncer-
tainty in situated dialogue for a robot. This uncer-
tainty lies at multiple layers, including the recog-
nition of words, object recognition and tracking,
resolving references to the objects, the recognition
of the user’s intentions, and the success in execu-
tion of robotic actions. Furthermore, if we are to
reach beyond task completion or speed as crite-
ria for interactive success and wish the interaction
to be more ‘fluid’, these grounding mechanisms
must operate continuously in real time as robotic
actions or user utterances are in progress.

In this paper, we present a simple real-time,
real-world grounding framework, and a system
which implements it in a simple robot, allow-
ing investigation into different grounding strate-
gies. Here, we experiment with a trade-off be-
tween the fluidity of the grounding mechanism
with the ‘safety’ of ensuring task success. The
framework consists of a combination of interac-
tive Harel statecharts (Harel, 1987) and the Incre-
mental Unit framework (Schlangen and Skantze,
2011), and is implemented in dialogue toolkit In-
proTK (Baumann and Schlangen, 2012).

2 Achieving Fluid Communicative
Grounding in Dialogic Robots

In this paper we are concerned with a simple
pick-and-place robot with uni-modal communica-
tion abilities, which is simply its manipulation be-
haviour of objects– see Fig. 1 for example utter-
ances from user U and system S’s actions. While
our robot does not have natural language gener-
ation (NLG) capabilities, its physical actions are
first class citizens of the dialogue so it is capable
of dialogic behaviour through action.

As mentioned above, while a human and robot’s
internal representations of a situation can differ
inherently, success is possible through recovery
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A. Non-incremental grounding:

(1) U: Put the red cross in box 2 right
S: [moves to x] [grabs x] [moves to box 2] [drops x]

(2) i) U: Put the red cross in box 2 no, the other red cross
S: [moves to x] [grabs x] [moves to box 2]

ii) U: right
S:[moves to x’s original position][drops x][moves to y][grabs y][moves to box 2] [drops y]

B. Incremental grounding:

(3) U: Take the red cross right put it in box 2 right
S: [moves to x] [grabs x] [moves to box 2] [drops x]

(4) U: Take the red cross no the other one right put it in box 2 right
S: [moves to x] [moves to y] [grabs y] [moves to box 2] [drops y]

C. Fluid incremental grounding, allowing concurrent user speech and robotic action:

(5) U: Take the red cross right put it in box 2 right
S: [moves to x][grabs x] [moves to box 2] [drops x]

(6) U: Take the red cross no the other one right put it in box 2 right
S: [moves to x(aborted)][moves to y][grabs y] [moves to box 2] [drops y]

Figure 1: Grounding modes in a robotic dialogue system that manipulates real-world objects.

from misunderstanding, which has been central to
dialogue systems research (Traum, 1994; Traum
and Larsson, 2003), with recent work showing
how this can operate incrementally (see e.g. (Buß
and Schlangen, 2011; Skantze and Hjalmarsson,
2010)), and in situated dialogue domains, through
simulation with virtual agents (Marge and Rud-
nicky, 2011; Raux and Nakano, 2010; Buschmeier
and Kopp, 2012). In robotics, much of the ground-
ing research has focussed on perspective taking
and frame of reference differing between robot
and human (Liu et al., 2010; Liu et al., 2012; Kol-
lar et al., 2010).

The aspect of grounding we focus on here is the
mechanisms needed for it to be done fluidly in real
time. In line with results from human-human in-
teraction where action is shown to be representa-
tive of the current state of understanding with lit-
tle latency (Tanenhaus and Brown-Schmidt, 2008;
McKinstry et al., 2008) and where moving in re-
sponse to instructions happens before the end of
the utterance (Hough et al., 2015), we hypothe-
sized that the greater the fluidity, the more nat-
ural the robot’s action would appear. To illus-
trate, in Fig. 1, we show three modes of ground-
ing, (A) non-incremental, (B) incremental and (C)
fluid. Each mode has the ability to recognize pos-
itive feedback and repair and deal with it appro-
priately, however (A) only allows grounding in a
‘half-duplex’ fashion with no overlapping speech

and robot action, and grounding can only be done
once a completed semantic frame for the current
user’s intention has been interpreted. When the
entire frame has been recognized correctly, the
user waits until the robot has shown complete un-
derstanding of the user’s intention through moving
to the target area and awaits confirmation to drop
the object there. In recovering from misunder-
standing as in (2) when the user repairs the robot’s
action, not only must the current action be ‘un-
done’ but the new action must then also be carried
out from the beginning, resulting in long periods
of waiting for the user. In mode (B), grounding
again happens in a half-duplex fashion, however
with opportunities for grounding after shorter in-
crements of speech and with partial information
about the user’s overall goal– the benefit for re-
pair and recovery incrementally is clear in (4). In
(C), the grounding again happens incrementally,
however in a full-duplex way, where concurrency
of speech and action is allowed and reasoned with
appropriately.

To allow human-robot interaction to be more
like mode (B) rather than (A), appropriate mecha-
nisms can be designed for robots in line with com-
putational theories of grounding (Traum, 1994;
Traum and Larsson, 2003; Ginzburg, 2012), ad-
justing these mechanisms to work in real time
rather than turn-finally, in line with recent work
on incremental grounding theories (Ginzburg et
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al., 2014; Eshghi et al., 2015) where semantic
frames can be grounded partially as an utterance
progresses. To move towards fluid mode (C), this
type of incremental processing not only requires
incremental interpretation word-by-word, but use
of the context at the exact time each word is rec-
ognized, where here, context consists in the esti-
mation of both the user’s state and the robot’s cur-
rent state through self-monitoring, both of which
can change dynamically during the course of an
utterance, or even during a word. In this setting,
during a repair from the user, the robot must rea-
son about the action currently ‘under discussion’
and abort it as efficiently as possible in order to
switch to an action consistent with the new goal
presented by the user. This self-repair of action
involves an estimation of which part of the action
the user is trying to repair. The same is true of
the converse of repair, where positive confirma-
tions like ‘right’ may need to be interpreted be-
fore the robot has shown unambiguously what its
goal is to allow the fluidity in setting (C)– this re-
quires a self-monitoring process which estimates
at which point the robot has shown its goal suf-
ficiently clearly to the user, during its movement
and not necessarily only after its goal has become
completely unambiguous.

3 Interactive Statecharts and the
Incremental Unit Framework for
Real-time Grounding

Our approach to modelling and implementing
real-time grounding mechanisms follows work us-
ing Harel statecharts (Harel, 1987) for dialogue
control in robotic dialogue systems by (Peltason
and Wrede, 2010; Skantze and Al Moubayed,
2012). However here, rather than characterizing
a single dialogue state which is accessed by a
single dialogue manager, our statechart character-
izes two independent parallel states for the user
and robot, taking an agents-based approach in the
sense of (Jennings, 2001).

As illustrated in the diagrams in Fig. 2 and
Fig. 7 (Appendix), as per standard statecharts
we utilize states (boxes) and transitions (directed
edges) which are executable by trigger events
(main edge labels) and conditions (edge labels
within []), and, additionally triggered actions can
be represented either within the states (the vari-
able assignments and DO statements in the body
of the boxes), or on the transition edges, after /.

We dub these Interactive Statecharts as the transi-
tions in the participant states can have triggering
events and conditions referring to the other inter-
action partner’s state.

We also make use of composite states (or su-
perstates) which generalize two or more substates,
shown diagrammatically by a surrounding box,
which modularizes, reducing the need to define
the transitions for all substates, and diagrammati-
cally reduces the number of arrows.

We also refer to variables for each agent
state, which for our purposes are UserGoal and
RobotGoal– these represent each agent’s current
private goal as estimated by the robot (i.e. this is
not an omniscient world view).

Given there are mutual dependencies between
the two parallel states, one could argue the state-
chart obscures the complexity which a Finite State
Machine (FSM) characterization of the dialogue
state would make explicit, and without convert-
ing them to FSMs, estimating the probability dis-
tributions for the whole composite state is less
straight-forward. However, the extra expressive
power makes modelling interactive situations and
designing grounding mechanisms much simpler.
We discuss how to deal with concurrency prob-
lems in §3.2, and discuss probabilistic state esti-
mation in the final discussion, though it is not the
main focus of this paper.

3.1 A simple concurrent grounding model
To provide a grounding mechanism for robots to
achieve more fluid interaction, we characterize the
user and robot as having parallel states (either side
of the dotted line) – see Fig. 2. This allows mod-
elling the concurrent robot and human states the
robot believes they are in during the interaction
without having to explicitly represent the Carte-
sian product of all possible dialogue states.

Fig. 2 defines the grounding states and transi-
tions for a simple robotic dialogue system which
interprets a user’s speech to carry out actions. The
main motivation of the model is to explore the na-
ture of the criteria by which the robot judges both
their own and their interaction partner’s goals to
have become publicly manifest (though not neces-
sarily grounded) in real time, and therefore when
they are showing commitment to them. To eval-
uate whether the criteria have been met we posit
functions Ev for each agent’s state, which is a
strength-of-evidence valuation that the agent has
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user_repairing_
robot_action 

  user_committed_to_goal 

user_showing_ 
commitment_to_goal 

w 
[u ⋅ w : request, 

          𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ≥ 𝛿] 

user_uncommited 

robot_committed_to_goal 

robot_uncommited 

action 
[𝐸𝐸 𝑅𝑈𝑅𝑈𝑅𝑈𝑈𝑈𝑈 ≥ 𝜖] 

action 
[user_committed_to_goal] 

[𝐸𝐸 𝑅𝑈𝑅𝑈𝑅𝑈𝑈𝑈𝑈 <  𝜖,  
user_uncommitted] 

robot_repairing
_robot_action 

w 
[u ⋅ w: confirm, 

robot_showing_commtment_to_goal] 

[𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 <  𝛿] 

User                                                                              Robot 

w 
[u ⋅ w : request, 
𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ≥ 𝛿] 

w 
[ u ⋅ w: repair, 
robot_showing_ 
commitment_to 
goal] 

action
[𝐸𝐸 𝑅𝑈𝑅𝑈𝑅𝑈𝑈𝑈𝑈 ≥ 𝜖] 

robot_showing_ 
commitment_to_goal 

action 
[ user_repairing_ 
robot_action] 

Figure 2: An Interactive Statechart as modelled by the Robot. The statechart consists of two paral-
lel, concurrent states, one for each participant. The triggering events and conditions in the transition
functions (the directed edges) can reference the other state.

displayed their goal publicly, where goals are hid-
den in the case of the user state and observed in
the case of the robot.

As shown in Fig.7, UserGoal is estimated as
the most likely desired future state the user intends
in the set of possible future states States, given
the current utterance u, the robot’s stateRobot and
the current task’s state Task, as below.

UserGoal := arg max
s∈States

p(s | u,Robot, Task)
(7)

Note, conditioning on the current task is in line
with agenda-based approaches to dialogue man-
agement (Traum and Larsson, 2003) and also in
line with characterizing tasks (or games) as state
machines themselves. Our future work will in-
volve more complex task structures.

While the user’s goal is being updated through
new evidence, this goal can only be judged to
become sufficiently mutually manifest with the
robot when a certain confidence criteria has been
met– here we characterize this as reaching a
real-valued threshold δ. As the statechart diagram
shows, once Ev(UserGoal) ≥ δ then the state
user_showing_commitment_to_goal
substate can be entered, which is accessi-
ble by the Robot state machine in its tran-
sition functions to trigger the robot into
robot_showing_commitment_to_goal.
Characterizing this criteria as a threshold allows
experimentation into increasing responsiveness of
the robot by reducing it, and we explore this in

our implemented system– see §5 below.
Conversely, the Robot’s view of its own

state uses the function Ev(RobotGoal) and
its own threshold ε. Unlike the user, the
robot’s own state is taken to be fully observed,
however it must still estimate when its own
RobotGoal is made public by its action, and
once ε has been reached, the robot may enter
robot_showing_commitment_to_goal.
Once this is the case it is permissible for
the user state to either commit to the goal
and trigger grounding, else engage the robot
in repair. The robot will be in the repair-
ing state until the user’s state has exited the
user_repairing_robot_action state.
Note that it is only possible for the user state to
repair the RobotGoal, rather than UserGoal– the
user can repair the latter through self-repair, but
that is currently not represented as its own state.

The necessary conditions of incrementality
posed by examples in Fig. 1 (B) and (C) above
are met here as the increment size of the trigger-
ing events in the User state is the utterance of the
latest wordw in current utterance u (as opposed to
the latest complete utterance). The principal Natu-
ral Language Understanding (NLU) decisions are
therefore to classify incrementally which type of
dialogue act u is, (e.g. u : Confirm), whether
w begins a new dialogue act or not, and estimate
UserGoal. The statechart is then checked to see
if a transition is possible from the user’s current
state as each word is processed, akin to incremen-
tal dialogue state tracking (Williams, 2012).
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3.2 Managing Fluid Grounding with the IU
framework

To manage the processing and information flow,
we use the Incremental Unit (IU) framework
(Schlangen and Skantze, 2011). Currently, in
implemented IU framework systems such as
Jindigo (Skantze and Hjalmarsson, 2010), Dy-
Lan (Purver et al., 2011) and InproTK (Baumann
and Schlangen, 2012), processing goes bottom-up
(from sensors to actuators) and the creation of in-
cremental units (IUs) is driven by input events to
each module from bottom to top. IUs are pack-
ages of information at a pre-defined level of gran-
ularity, for instance a wordIU can be used to rep-
resent a single incremental ASR word hypothesis,
and their creation in the output buffers of a mod-
ule triggers downstream processing and creation
of new IUs in modules with access to that buffer.
IUs can be defined to be connected by directed
edges, called Grounded In links, which in gen-
eral take the semantics of “triggered by” from the
source to the sink.

Grounded In links are useful in cases where in-
put IU hypotheses may be revoked (for instance,
by changing ASR hypotheses), as reasoning can
be triggered about how to revoke or repair ac-
tions that are Grounded In these input IUs. Buß
and Schlangen (2011) take precisely this approach
with their dialogue manager DIUM, and Kenning-
ton et al. (2014) show how abandoning synthesis
plans can be done gracefully at short notice.

In order to manage the grounding strategies
above, we recast the IU dependencies: while the
output IUs are taken as Grounded In the input IUs
which triggered them, as per standard processing,
in our system the reverse will also be true: consis-
tent with the statecharts driving the behaviour, the
interpretation of a user action is taken as an action
in response to the robot’s latest or currently ongo-
ing robot action, consequently interpretation IUs
can be grounded in action IUs– see the reversed
feedback arrow in Fig. 3.

To deal with concurrency issues that this
closed-loop approach has, the IU modules coor-
dinate their behaviours by sending event instances
to each other, where events here are in fact IU edit
messages shared in their buffers. The edit mes-
sages consist in ADDs where the IU is initially
created, COMMITs if there is certainty they will
not change their payload, and, as mentioned above
REVOKEs may be sent if the basis for an ADDed

w1 w2 w3 w4
Perception	

(ASR)

Decision maker	

(action selector)

Actuator

Sys:	

!
!

User:
i1 i2 i3 i4

d1 d2 d3 d4

a1 a2 a3 a4

Interpretation

time

Figure 3: The addition of tight feedback over stan-
dard IU approaches helps achieve requirements of
fluid interaction and situated repair interpretation.
Grounded In links in blue.

IU becomes unreliable. IUs also have different
temporal statuses of being either upcoming, ongo-
ing or completed, a temporal logic which allows
the system to reason with the status of the actions
being executed or planned by the robot.

4 PentoRob: A Simple Robot for
Investigating Grounding

We implement the above grounding model and
incremental processing in a real-world pick-and-
place robot PentoRob, the architecture of which
can be seen in Fig. 4. The domain we use in
this paper is grabbing and placing real-world Pen-
tomino pieces at target locations, however the sys-
tem is adaptable to novel objects and tasks.

Hardware For the robotic arm, we use the
ShapeOko2,1 a heavy-duty 3-axis CNC machine,
which we modified with a rotatable electromag-
net, whereby its movement and magnetic field is
controlled via two Arduino boards. The sensors
are a webcam and microphone.

4.1 System components
PentoRob was implemented in Java using the In-
proTK (Baumann and Schlangen, 2012) dialogue
systems toolkit.2 The modules involved are de-

1http://www.shapeoko.com/wiki/index.
php/ShapeOko_2

2http://bitbucket.org/inpro/inprotk
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Figure 4: PentoRob’s architecture.

scribed below, in terms of their input information
or IUs, processing, and output IUs.

Incremental Speech Recognizer (ASR) We
use Google’s web-based ASR API (Schalkwyk et
al., 2010) in German mode, in line with the na-
tive language of our evaluation participants. As
Baumann et al. (2016) showed, while Google can
produce partial results of either multiple or sin-
gle words, all outputs are packaged into single
WordIUs. Its incremental performance is not as
responsive as more inherently incremental local
systems such as Kaldi or Sphinx-4, however, even
when trained on in-domain data, other systems
cannot consistently match its Word Error Rate in
our target domain in German, where it achieves
20%. Its slightly sub-optimal incremental perfor-
mance did not incur great costs in terms of the
grounding we focus on here.

Computer Vision (CV) We utilize OpenCV in
a Python module to track objects in the cam-
era’s view. This information is relayed to In-
proTK from Python via the Robotics Service Bus
(RSB),3 which outputs IDs and positions of ob-
jects it detects in the scene along with their low-
level features (e.g., RGB/HSV values, x,y coor-
dinates, number of edges, etc.), converting these
into SceneIUs which the downstream reference
resolution model consumes.The Robot State Ma-
chine also uses these for reasoning about positions

3https://code.cor-lab.de/projects/rsb

of the objects it plans to grab.4

Reference resolution (WAC) The reference
resolution component consists of a Words
As Classifiers (WAC) model (Kennington and
Schlangen, 2015). PentoRob’s WAC model is
trained on a corpus of Wizard-of-Oz Pentomino
puzzle playing dialogue interactions. In off-line
training, WAC learns a functional “fit” between
words in the user’s speech and low-level visual
object features, learning a logistic regression clas-
sifier for each word. Once trained, when given the
context of a novel visual scene and novel incom-
ing words, each word classifier yields a probabil-
ity given each object’s features. During applica-
tion, as a referring expression is uttered and recog-
nised, each classifier for the words in the expres-
sion are applied to all objects in the scene, which
after normalisation, results in a probability distri-
bution over objects. Kennington and Schlangen
(2015) report 65% accuracy on a 1-out-of-32 ref-
erence resolution task in this domain with the
same features. For this paper, this accuracy can
be seen as a lower bound, as the experimental set-
up we report below uses a maximum of 6 objects,
where the performance is generally significantly
better.

User State Machine We implement the prin-
cipal NLU features within the User State Ma-
chine module, which constitutes the User state
of the Interactive Statechart. While the statechart
manages the possible transitions between states,
their triggering criteria require the variables of
UserGoal, the estimated current user goal and its
strength-of-evidence functionEv to be defined. In
our domain we characterize UserGoal as simply
taking or placing most likely object in the referent
set R being referred to according to WAC’s out-
put distribution given the utterance u so far, e.g.
(8), and the Ev function as simply the probabil-
ity value of the highest ranked object in WAC’s
distribution over its second highest rank as in (9).

UserGoal = TAKE(arg max
r∈R

p(r | u)) (8)

Ev(UserGoal) = Margin(arg max
r∈R

p(r | u)) (9)

As for the process which feeds incoming words
into the WAC model to obtain UserGoal, here

4The objects’ positions are calculated accurately from a
single video stream using perspective projection.
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we use a simple incremental NLU method which
is sensitive to the Robot’s current state in addi-
tion to the User statechart. This is a process
which first performs sub-utterance dialogue act
(DA) classification, judging the utterance to be
in {request, confirm, repair} after every word.
The classifier is a simple segmenter which uses
key word spotting for confirm words and com-
mon repair initiating words, and also classifies
a repair if the word indicates change in the
UserGoal as defined in (8), else outputting the
default request.5 Given the DA classification,
the state machine is queried to see if transition-
ing away from the current state is possible accord-
ing to the statechart (see Fig. 7 in the Appendix)–
if not it remains in the same state and treats the
user’s speech as irrelevant.

If a successful state change is achieved, then
if UserGoal has changed or been instantiated
in the process, a new ActionRequestIU is made
available in its right buffer, whose payload is
a frame with the dialogue act type, the action
type (take or place) and optional arguments
target_piece and target_location.

For dealing with repairs, as seen in Fig. 7, en-
tering a repairing state triggers a prune of States,
removing the evidencedRobotGoal. In PentoRob
this is simply a pruning of the referent setR of the
objects(s) in the RobotGoal as below:

R := {x | p(RobotGoal | x) = 0} (10)

This simple strategy allowsUserGoal to be recal-
culated, resulting in interactions like (4) and (6) in
Fig.1.

Robot State Machine The Robot’s state ma-
chine gets access to its transition conditions in-
volving the User’s state machine through the Ac-
tionRequestIUs it has access to in its left buffer.
As seen in Fig.7 (Appendix), when the User
state is showing_commitment_to_goal,
the RobotGoal is set to UserGoal, and through
a simple planning function, a number of Action-
IUs are cued to achieve it – it sends these as RSB
messages to the PentoRob actuation module and
once confirmed, again via RSB, that the action has
begun, the ActionIU is committed and the Robot’s
action state is set to one of the following, with su-
perstates in brackets:

5While a somewhat crude approach, it worked reliably
enough in our test domain, and is not the focus of the paper.

{stationary_without_piece |
moving_without_piece |
moving_to_piece (taking) |
over_target_piece (taking) |
grabbing_piece (taking) |
stationary_with_piece(placing) |
moving_with_piece (placing) |
over_target_location (placing) |
dropping_piece (placing)}

For estimation of its own state, the robot state has
the following function:

Ev(RobotGoal) =



1 if over target piece,
1 if over target location,
0.5 if taking,
0.5 if placing,
0 otherwise

(11)

The simplistic function embodies the assump-
tion that there is absolute certainty that Pen-
toRob’s goal has been demonstrated when its arm
is directly over the target pieces and locations, else
if it is moving to these positions, there is some ev-
idence, else there is none.

PentoRob actuation module The module con-
trolling the actual robotic actuation of the
ShapeOKO arm is a Python module with an Ar-
duino board G-code interface to the arm. This
sends RSB feedback messages to the PentoRob
control module to the effect that actions have been
successful or unsuccessfully started, and with
their estimated finishing time.

5 Evaluation Experiments

With the above system, we can successfully
achieve all three types of grounding strategy in
Fig 1. We evaluate the incremental mode (B) and
fluid mode (C) in a user study with German speak-
ers. In our first and principal study we experiment
with varying theRobot state’s ε grounding param-
eter to see whether users show preference for a
more fluid model, and what effect fluidity has on
task success.

The study was a within-subjects design. It had
12 participants, who played a total of 6 rounds
each of a simple game with PentoRob. Users were
instructed to tell the robot to pick up and place
wooden Pentomino pieces onto numbered loca-
tions at the bottom of the playing board in a given
order according to a photograph of final config-
urations showing the final location and the de-
sired order of placement. Participants were told
they could confirm or correct Pentorob’s actions.
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They played three rounds in progressing level of
difficulty, beginning with a simple situation of 3
pieces of all differing shapes and colours arranged
in a line and far apart, followed by another round
with 4 pieces arranged in a non grid-like fashion,
followed by a more difficult round with 6 pieces
where the final two shapes to be placed were close
together and the same colour. They play each
round twice, once with each version of the sys-
tem. The order of the conditions was changed
each time. The two settings PentoRob’s system
operated in were as follows:

Incremental: A cautious strategy whereby ε =
1. Given (11) only allows PentoRob to enter the
robot_showing_commitment_to_goal state
when in the states over_target_piece or
over_target_location, confirmations and re-
pairs cannot be interpreted during robotic action.

Fluid: An optimistic strategy whereby ε = 0.5. Given
(11), if PentoRob is the superstates of taking or
placing then this is taken as sufficient evidence for
showing commitment, and therefore confirmations or
repairs can be interpreted during robotic movement.

The users rate the system after every round on a
5-point Likert scale questionnaire asking the ques-
tions (albeit in German) as shown in Fig. 5. We
hypothesized that the fluid setting would be rated
more favourably, due to its behaviour being closer
to that observed in manipulator roles in human-
human interaction. We had several objective cri-
teria: an approximation to task success as the av-
erage time taken to place a piece in the correct
location, and also as indications of the variety of
dialogue behaviour the repair rate per word (i.e.
words classified as belonging to a repair act) and
the confirmation rate per word.

5.1 Results
Several rounds had to be discarded due to tech-
nical failure, leaving 24 ratings from the easier
rounds (1 and 2) and 18 from the harder round
3. We found no significant differences in the over-
all questionnaire responses, however for the easier
rounds alone, there was a significant preference
for the Fluid system for the feeling that the sys-
tem understood the user (Fluid mean=3.88, Incre-
mental mean=3.18, Mann-Whitney U p <0.03).
The Fluid setting was not preferred significantly
in terms of ease of playing (p <0.06), and the rat-
ings were generally positive for ratings of fun and
wanting to play again but without significant dif-
ferences between the two settings.

0 1 2 3 4 5

Fluid

Incremental

Did you find it easy to play with PentoRob?

0 1 2 3 4 5

Fluid

Incremental

Was it fun to play?

0 1 2 3 4 5

Fluid

Incremental

Would you play with PentoRob again?

0 1 2 3 4 5

**Fluid

Incremental

Did you feel PentoRob understood what you were saying?

Figure 5: User ratings of the systems in the easier
setting (** = Mann-Whitney U with p <0.05)

Within the objective measures in terms of task
success (time per piece placed), and rates of differ-
ent incremental dialogue acts, there were no sig-
nificant differences between the systems, only a
tendency for a higher rate of confirmation words
in the fluid setting. The limiting factor of the
speed of the robotic arm meant the task success
was not improved, however the noticeable in-
crease in displaying understanding was likely due
to the affordance of confirming and repairing dur-
ing the robotic action.

5.2 Preliminary investigation into the User’s
criteria for showing commitment

For a preliminary investigation into the other pa-
rameter in our grounding model, we performed
a study with 4 further participants who played
with a system in both the modes described above
again, but this time with δ, the User’s judgement
of showing commitment to their goal (which is
a confidence threshold for WAC’s reference res-
olution hypothesis (8)) being set much lower–
0.05, compared to 0.2 in the first study. The
lower threshold results in earlier, though possibly
less accurate, reference resolution and consequent
movement to target pieces.

We compared this group’s objective measures
to a random sample of 4 participants from the first

295



Fluid Incremental
0

5

10

15

20

25

30

35

40
Time per piece (s)

**Fluid Incremental
0.00

0.02

0.04

0.06

0.08

0.10
Repair rate per word

Figure 6: Preliminary result: Repair rates were
significantly higher in the more fluid setting with
a lower δ parameter of the grounding model whilst
not affecting task success.

study, and there was a significant difference in
repair rates (Fluid= 0.047 per word (st.d=0.024),
Incremental=0.011 per word (st.d=0.011), T-test
p <0.01) – see Fig. 6. Also, there was a ten-
dency for higher rates of confirmation (Fluid=
0.245 per word (st.d=0.112), Incremental=0.151
per word (st.d=0.049), T-test p = 0.06). Encour-
agingly, the repair rates are in line with those re-
ported in human-human similar task-oriented di-
alogue, with onsets occurring in 2-5% of words
(Colman and Healey, 2011). However, also en-
couraging is that despite more time spent repair-
ing and confirming in the more predictive system
with the lower δ threshold, there was no effect on
task success (e.g. see the near identical means for
time taken to place each piece in Fig. 6).

5.3 Discussion
In the first experiment, the ratings results suggest
the fluid setting’s affordance of allowing confir-
mations and repairs during the robot’s movement
was noticed in easier rounds. More work is re-
quired to allow this effect to persist in the harder
round, as severe failures in terms of task success
cancelled the perception of fluidity.

The second experiment showed that the earlier
movement of the robot arm to the target piece re-
sulted in the user engaging in more repair of the
movement, but this did not affect task success in
terms of overall speed of completion. The de-
gree to which the earlier demonstration of com-
mitments to a goal during a user’s speech, despite
repair being required more often, can increase in-
teractive success in more challenging reference
situations will be investigated in future work.

6 Conclusion

We have presented a model of fluid, task action-
based grounding, and have shown that it can be
implemented in a robot that perceives and ma-
nipulates real-world objects. When general task-
performance is good enough, the model leads to
the perception of better understanding over a more
standard incremental processing model.

There are some weaknesses with the cur-
rent study. We intend to use more complex
strength of evidence measures, for example for
Ev(UserGoal) using ASR hypotheses confi-
dence thresholds (Williams, 2012), and having
a more complex Ev(RobotGoal) based on the
robot’s current position and velocity. We also
want to explore learning and optimization for our
incremental processing, with points of departure
being (Paetzel et al., 2015), (Dethlefs et al., 2012),
and the proposal by (Lemon and Eshghi, 2015).

The future challenge, yet potential strength, for
our model is that unlike most approaches which
assume a finite state Markov model for probabilis-
tic estimation, we do not assume the Cartesian
product of all possible substates needs to be mod-
elled. The mathematics of how this can be done
for a complex hierarchical model has had recent
attention, for example in recent work in proba-
bilistic Type Theory with Records (Cooper et al.,
2014)– we intend to pursue such an approach in
coming work.
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Figure 7: The full Interactive Statechart. States relevant for grounding are in grey.
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Abstract

Although word and character n-grams
have been used as features in different
NLP applications, no systematic compar-
ison or analysis has shown the power of
character-based features for detecting abu-
sive language. In this study, we investigate
the effectiveness of such features for abu-
sive language detection in user-generated
online comments, and show that such
methods outperform previous state-of-the-
art approaches and other strong baselines.

1 Introduction

The rise of online communities over the last ten
years, in various forms such as message boards,
twitter, discussion forums, etc., have allowed peo-
ple from disparate backgrounds to connect in a
way that would not have been possible before.
However, the ease of communication online has
made it possible for both anonymous and non-
anonymous posters to hurl insults, bully, and
threaten through the use of profanity and hate
speech, all of which can be framed as “abusive lan-
guage.” Although detection of some of the more
straightforward examples of abusive language can
be handled effectively through blacklists and regu-
lar expressions, as in “I am surprised these fuckers
reported on this crap”, more complex methods are
required to address the more nuanced cases, as in
“Add anotherJEW fined a bi$$ion for stealing like
a lil maggot. Hang thm all.” In that example, there
are tokenization and normalization issues, as well
as a conscious bastardization of words in an effort
to evade blacklists or to add color to the post.

While previous work for detecting abusive lan-
guage has been dominated by lexical-based ap-
proaches, we claim that morphological features
play a more significant role in this task. This

is based on the observation that user language
evolves either consciously or unconsciously based
on standards and guidelines imposed by media
companies that users must adhere to, in conjunc-
tion with regular expressions and blacklists, to
catch bad language and consequently remove a
post. Essentially, users learn over time not to use
common lexical items and words to convey cer-
tain language. Thus, characters often play an im-
portant role in the comment language. Characters,
in combination with words, can act as basic pho-
netic, morpho-lexical and semantic units in com-
ments such as “ki11 yrslef a$$hole”. Character
n-grams have been proven useful for other NLP
tasks such as authorship identification (Sapkota et
al., 2015), native language identification (Tetreault
et al., 2013) and machine translation (Nakov and
Tiedemann, 2012), but surprisingly have not been
the focus in prior work for abusive language.

In this paper, we investigate the role that char-
acter n-grams play in this task by exploring their
use in two different algorithms. We compare their
results to two state-of-the-art approaches by evalu-
ating on a corpus of nearly 1M comments. Briefly,
our contributions are summarized as follows: 1)
character n-grams outperform word n-grams in
both algorithms, and 2) the models proposed in
this work outperform the previous state-of-the-art
for this dataset.

2 Related Work

Prior work in abusive language has been rather dif-
fuse as researchers have focused on different as-
pects ranging from profanity detection (Sood et
al., 2012) to hate speech detection (Warner and
Hirschberg, 2012) to cyberbullying (Dadvar et al.,
2013) and to abusive language in general (Chen et
al., 2012; Djuric et al., 2015b).

The overwhelming majority of this work has
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focused on using supervised classification with
canonical NLP features. Token n-grams are one
of the most popular features across many works
(Yin et al., 2009; Chen et al., 2012; Warner and
Hirschberg, 2012; Xiang et al., 2012; Dadvar et
al., 2013). Hand-crafted regular expressions and
blacklists also feature prominently in (Yin et al.,
2009; Sood et al., 2012; Xiang et al., 2012).

Other features and methodologies have also
been found useful. For example, Dadvar et al.
(2013) found that in the task of identifying cyber-
bullying in YouTube comments, a small perfor-
mance improvement could be gained by includ-
ing features which model the user’s past behav-
ior. Xiang et al. (2012) tackled detecting offensive
tweets via semi-supervised LDA approach. Djuric
et al. (2015b) use a paragraph2vec approach to
classify language on user comments as abusive or
clean. Nobata et al. (2016) was the first to evalu-
ate many of the above features on a common cor-
pus and showed an improvement over Djuric et
al. (2015b). In this paper, we directly compare
against the two works by using the same dataset.

3 Methodology

In general, it is not obvious how to transform com-
ments with different lengths and characteristics to
a representation that moves beyond bag of words
or words/ngrams based classification approaches.
For our work we employ several supervised clas-
sification methods with lexical and morphologi-
cal features to measure various aspects of the user
comment. A major difference of our classifica-
tion phase with previous work in this area is that
we use a hybrid method based on discriminative
and generative classifiers. As in prior work, we
constrained our work to binary classification with
comments being abusive or not. Our features are
divided into three main classes: tokens, characters
and distributional semantics. Our motivation be-
hind using light-weight features, instead of deeper
linguistic features (e.g., part of speech tags), is
two-fold: i) light-weight features are computation-
ally much less expensive than syntactic or dis-
course features, and ii) it is very challenging to
preprocess noisy and malformed text (i.e., com-
ments) to extract deeper linguistic features.

We explore three different methods for abusive
language detection. The first, based on distribu-
tional representation of comments (C2V), is meant
to serve as a strong baseline for this task. The next

two, RNNLM and NBSVM, we use as methodolo-
gies for which to explore the impact of character-
based vs. token-based features.

3.1 Distributional Representation of
Comments (C2V)

The ideas of distributed and distributional word
and text representations has supported many ap-
plications in natural language processing success-
fully. The related work is largely focused on
the notion of word and text representations (as
in (Djuric et al., 2015a; Le and Mikolov, 2014;
Mikolov et al., 2013a)), which improve previous
works on modeling lexical semantics using vec-
tor space models (Mikolov et al., 2013a). More
recently, the concept of embeddings has been ex-
tended beyond words to a number of text seg-
ments, including phrases (Mikolov et al., 2013b),
sentences and paragraphs (Le and Mikolov, 2014)
and entities (Yang et al., 2014). In order to learn
vector representation we develop a comment em-
beddings approach akin to Le and Mikolov (2014)
which is different from the one used in Djuric et al.
(2015a) since our representation doesn’t model the
relationships between the comments (e.g., tempo-
ral). Moreover, given the similarity with a prior
state-of-the-art approach (Djuric et al., 2015b),
this method can also be used as a strong baseline.

In order to obtain the embeddings of comments
we learn distributed representations for our com-
ments dataset. The comments are represented as
low-dimensional vectors and are jointly learned
with distributed vector representations of tokens
using a distributed memory model explained in
Le and Mokolov (2014). In this work, we train
the embeddings of the words in comments using
a skip-bigram model (Mikolov et al., 2013a) with
window sizes of 5 and 10 using hierarchical soft-
max training. We also experiment with training
two low-dimensional models (100 and 300 dimen-
sions). We limit the number of iterations to 10. For
the classification phase we use the Multi-core Li-
bLinear Library (Lee et al., 2015) logistic regres-
sion classifier over the resulting embeddings.

3.2 Recurrent Neural Network Language
Model (RNNLM)

The intuition behind this model comes from the
idea that if we can train a reasonably good lan-
guage model over the instances for each class,
then it will be straightforward to use Bayes rule
to predict the class of a new comment. Language
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models typically require large amounts of data to
achieve a decent performance, but there are cur-
rently no large-scale datasets for abuse detection.
To overcome this challenge, we exploit the power
of recurrent neural networks (RNNs) (Mikolov et
al., 2010) which demonstrated state-of-the-art re-
sults for language models with less training data
(Mikolov, 2012). Another advantage of RNNs is
their potential in representing more advanced pat-
terns (Mikolov, 2012). For example, patterns that
rely on characters that could have occurred at vari-
able comments can be encoded much more effec-
tively with the recurrent architecture.

We train models for both classes of abusive lan-
guage in comments (abuse and clean): a) token
n-grams for n = 1..5, and b) character n-grams
for n = 1..5 preserving the space character, to
investigate our character vs. words claim. Dur-
ing testing, we estimate the ratio of the probability
of the comment belonging to each class via Bayes
rule. In this way, if the probability of a comment
given the abusive language model is higher than its
probability given the non-abusive language model,
then the comment is classified as abusive and vice
versa (Mesnil et al., 2014) and their ratio is used
to calculate the AUC metric.

For the experiments we use the RNNLM toolkit
developed by (Mikolov et al., 2011). We use 5%
of the training set for validation and the rest for
training the language model. We train one word
(word) and two character based language models
(char1 & char2). For the word and char1 lan-
guage models we set the size of hidden layers to
50 with 200 hashes of for direct connections and
4 steps to propagate error back (bptt). In order
to train a better character-based language model
(i.e., char2) we increase the number of hidden lay-
ers to 200 and bptt set to 10. Although training
a character-based RNN language model with 200
hidden layers takes much longer, our secondary
goal is to measure the gains in performance with
this more intensive training.

3.3 Support Vector Machine with Naive
Bayes Features (NBSVM)

Naive Bayes (NB) and Support Vector Machines
(SVM) have been proven to be effective ap-
proaches for NLP applications such as sentiment
and text analysis. Wang and Manning (2012)
showed the power of combining these two gener-
ative and discriminative classifiers where an SVM

is built over NB log-count ratios as feature values
and demonstrated that this combination outper-
forms the standalone NB and SVM in many tasks
using token n-gram features. However, to the best
of our knowledge, the effect of character-based
NB feature values has not been experimented.

In this work, besides using token n-grams (n =
1..5) features, for character level features we com-
pute the log-ratio vector between the average char-
acter n-gram counts (n = 1..5) from abusive and
non-abusive comments. In this way, the input to
the SVM classifier is the log-ratio vector mul-
tiplied by the binary pattern for each character
ngram in the comment vector. For SVM classi-
fication we use the Multi-core LibLinear Library
(Lee et al., 2015) in its standard setting.

4 Evaluation

4.1 Experimental Setup

We use the same dataset employed in Djuric et
al. (2015b) and Nobata et al. (2016). The la-
bels came from a combination of in-house raters,
users reactively flagging bad comments and abu-
sive language pattern detectors. To date, this is the
largest dataset available for abusive language de-
tection. We use this dataset so as to directly com-
pare with that prior work, and in doing so, we also
adopt their evaluation methodology and employ 5-
fold cross-validation and report AUC, in addition
to recall, precision and F-1. As an additional base-
line, we developed a token n-gram classifier with
n = 1..5 using a logistic regression classifier.

4.2 Results

Table 1 shows the results of all experiments. The
four baselines (Djuric et al. (2015), Nobata et al.
(2016), token n-grams and C2V) are listed in the
first seven rows, and the NBVSM and RNNLM
experiments are listed under the double line. We
also show the results of a method which com-
bines the token n-grams with the features from
the best performing versions of the C2V, NBSVM
and RNNLM classes, using our SVM classifier
(”Combination”).

In terms of overall performance, all methods
improved on or tied the Djuric et al. (2015b), C2V
and token n-gram baselines. The top performing
baseline and current state-of-the-art, Nobata et al.
(2016), which consists of a comprehensive com-
bination of a range of different features, is bested
by NBSVM using solely character n-grams (77 F-
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Method Rec. Prec. F-1 AUC
Djuric et al. - - - 80
Nobata et al. 79 77 78 91
Token n-grams 76 70 73 84
C2V d300w10∗ 58 77 66 85
C2V d300w5 57 76 66 84
C2V d100w10 56 75 65 82
C2V d100w5 56 76 64 82
NBSVM (word)∗ 60 84 70 89
NBSVM (char)∗ 72 83 77 92
RNNLM (word)∗ 72 59 65 82
RNNLM (char1)∗ 78 60 68 85
RNNLM (char2) 68 68 68 85
Combination 75 84 79 93

Table 1: Results on Djuric et al. (2015) data

1 and 92 AUC). This shows that a light-weight
method using character level features can outper-
form more intricate methods for this task. More-
over, the combination of the best features (marked
by ∗ in the Table 1) outperforms all other methods
in all measures save for recall. This shows that by
increasing the number of relevant features we can
improve precision with just a small loss in recall.

For both NBSVM and RNNLM methods, char-
acter n-grams outperform their token counterparts
(7 and 3 points F-1 score respectively). As most
prior work has made use of blacklists and word n-
grams, this proves to be an effective method for
improving performance.

Comparing the two RNNLM character-based
models, using a deeper RNN model improves the
precession by 8 points at the loss of 10 points in
recall. This finding fits our expectations since,
in general, a greater number of hidden layers
is needed to achieve a good performance in a
character-based language model. We can conclude
that for applications which aim at higher recall
for abusive language detection, lower hidden lay-
ers (e.g., 50) can provide a sufficient performance.
However, it should be noted that the more inten-
sive training done in the char2 experiment does not
improve upon the 68 F-1 score in char1.

The C2V experiments had the worst perfor-
mance of all three metrics with the best perfor-
mance resulting in an F-1 score of 66 using a
300-dimensional vector and a 10 word window
(d300w10) while still improving upon the previ-
ous approach using paragraph2vec (Djuric et al.,

2015b). As one would expect, decreasing the di-
mensionality of the embedding and the context
window results in a loss of performance of as
much as 18 F-1 score points (d100w5). However,
based on our experiments (not included in the Ta-
ble), increasing the window size over 10 causes
a significant drop in performance. This is due to
the fact that most of the comments are rather short
(usually under ten tokens) and thus any increase in
window length would have no positive impact.

Finally, we performed a manual error analysis
of the cases where the character-based approaches
and the token-based approaches differed. Natu-
rally, the character-based approaches fared best in
cases with irregular normalization or obfuscation
of words. For instance, strings with a mixture of
letters and digits (i.e., “ni9”) were caught more
readily by the character based methods. There
were cases where none of the approaches and
methods correctly detected the abuse, usually be-
cause the specific trigger words were rare or be-
cause the comment was nuanced.

We do note that there are many different types
of online communities, and that in communities
with little to no moderation, character and word
n-grams may perform similarly since the writ-
ers may not feel it necessary to obfuscate their
words. However, in the many communities where
authors are aware of standards, the task becomes
much more challenging as authors intentional ob-
fuscate in a myriad of creative ways (Laboreiro
and Oliveira, 2014).

5 Conclusions

In this paper, we have made focused contribu-
tions into the task of abusive language detection.
Specifically, we showed the superiority of sim-
ple character-based approaches over the previous
state-of-the-art, as well as token-based ones and
two deep learning approaches. These light-weight
features, when coupled with the right methods,
can save system designers and practitioners from
writing many regular expressions and rules as in
(Sood et al., 2012; Xiang et al., 2012). For future
work, we are planning to adapt C2V to the charac-
ter level.
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Cernocký, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model. In
11th Annual Conference of the International Speech
Communication Association (Interspeech), pages
1045–1048.

Tomas Mikolov, Stefan Kombrink, Anoop Deoras,
Lukar Burget, and Jan Honza Cernocky. 2011.
Rnnlm - recurrent neural network language model-
ing toolkit. IEEE Automatic Speech Recognition
and Understanding Workshop, December.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S.
Corrado, and Jeff Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.
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Abstract

The goal of our research is to support full-
fledged dialogue between a user and a sys-
tem that transforms the user queries into
visualizations. So far, we have collected
a corpus where users explore data via vi-
sualizations; we have annotated the corpus
for user intentions; and we have developed
the core NL-to-visualization pipeline.

1 Introduction

Visualization, even in its simplest forms, remains
a highly effective means for converting large vol-
umes of raw data into insight. Still, even with the
aid of robust visualization software, e.g. Tableau1

and ManyEyes (Viegas et al., 2007), especially
novices face challenges when attempting to trans-
late their questions into appropriate visual encod-
ings (Heer et al., 2008; Grammel et al., 2010).
Ideally, users would like to tell the computer what
they want to see, and have the system intelligently
create the visualization. However, existing sys-
tems (Cox et al., 2001; Sun et al., 2013; Gao et
al., 2015) do not offer two-way communication,
or only support limited types of queries, or are not
grounded in how users explore data.

Our goal is to develop Articulate 2, a full-
fledged conversational interface that will automat-
ically generate visualizations. The contributions
of our work so far are: a new corpus unique in
its genre;2 and a prototype system, which is able
to process a sequence of requests, create the cor-
responding visualizations, position them on the
screen, and manage them.

1http://www.tableau.com/
2The corpus will be released at the end of the project.

2 Related Work

Much work has focused on the automatic gen-
eration of visual representations, but not via NL
(Feiner, 1985; Roth et al., 1994; Mackinlay et al.,
2007). Likewise, much work is devoted to multi-
modal interaction with visual representations (e.g.
(Walker et al., 2004; Meena et al., 2014)), but
not to automatically generating those visual repre-
sentations. Systems like AutoBrief (Green et al.,
2004) focus on producing graphics accompanied
by text; or on finding the appropriate graphics to
accompany existing text (Li et al., 2013).

(Cox et al., 2001; Reithinger et al., 2005) were
among the first to integrate a dialogue interface
into an existing information visualization system,
but they support only a small range of questions.
Our own Articulate (Sun et al., 2013) maps NL
queries to statistical visualizations by using very
simple NLP methods. When DataTone (Gao et
al., 2015), the closest to our work, cannot resolve
an ambiguity in an NL query, it presents the user
with selection widgets to solve it. However, only
one visualization is presented to the user at a given
time, and previous context is lost. (Gao et al.,
2015) compares DataTone to IBM Watson Ana-
lytics,3 that allows users to interact with data via
structured language queries, but does not support
dialogic interaction either.

3 A new corpus

15 subjects, 8 male and 7 female, interacted with a
remote Data Analysis Expert (DAE) who assists
the subject in an exploratory data analysis task:
analyze crime data from 2010-2014 to provide
suggestions as to how to deploy police officers in
four neighborhoods in Chicago. Each session con-
sisted of multiple cycles of visualization construc-

3http://www.ibm.com/analytics/watson-analytics/
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DAE Communication Types
1. Greeting
2. Clarification
3. Correction
4. Specified data not found
5. Can do that
6. Cannot do that
7. Done

Table 1: DAE Communication Types

tion, interaction and interpretation, and lasted be-
tween 45 and 90 minutes.

Subjects were instructed to ask spoken ques-
tions directly to the DAE (they knew the DAE
was human, but couldn’t make direct contact4).
Users viewed visualizations and limited commu-
nications from the DAE on a large, tiled-display
wall. This environment allowed analysis across
many different types of visualizations (heat maps,
charts, line graphs) at once (see Figure 1).

Figure 1: A subject examining crime data.

The DAE viewed the subject through two high-
resolution, direct video feeds, and also had a mir-
rored copy of the tiled-display wall on two 4K dis-
plays. The DAE generated responses to questions
using Tableau, and used SAGE2 (Marrinan et al.,
2014), a collaborative large-display middlewear,
to drive the display wall. The DAE could also
communicate via a chat window, but confined her-
self to messages of the types specified in Table 1.
Apart from greetings, and status messages (sorry,
it’s taking long) the DAE would occasionally ask
for clarifications, e.g. Did you ask for thefts or bat-
teries. Namely, the DAE never responded with a
message, if the query could be directly visualized;
neither did the DAE engage in multi-turn elicita-
tions of the user requirements. Basically, the DAE
tried to behave like a system with limited dialogue
capabilities would.

Table 2 shows summary statistics for our data,
that was transcribed in its entirety. So far, we

4In a strict Wizard-of-Oz experiment, the subjects would
not have been aware that the DAE is human.

Words Utterances Directly Actionable Utts.
38,105 3,179 490

Table 2: Corpus size

have focused on the type of requests subjects pose.
Since no appropriate coding scheme exists, we de-
veloped our own. Three coders identified the
directly actionable utterances, namely, those ut-
terances5 which directly affect what the DAE is
doing. This was achieved by leaving an utter-
ance unlabelled or labeling it with one of 10 codes
(κ = 0.84 (Cohen, 1960) on labeling an utterance
or leaving it unlabeled; κ = 0.74 on the 10 codes).
The ten codes derive from six different types of
actionable utterances, which are further differenti-
ated depending on the type of their argument. The
six high-level labels are: requests to create new vi-
sualizations (8%, e.g. Can I see number of crimes
by day of the week?), modifications to existing vi-
sualizations (45%, Umm, yeah, I want to take a
look closer to the metro right here, umm, a little bit
eastward of Greektown); window management in-
structions (12.5%, If you want you can close these
graphs as I won’t be needing it anymore); fact-
based questions, whose answer doesn’t necessar-
ily require a visualization (7%, During what time
is the crime rate maximum, during the day or the
night?); requests for clarification (20.5%, Okay, so
is this statistics from all 5 years? Or is this for
a particular year?); expressing preferences (7%,
The first graph is a better way to visualize rather
than these four separately).

Three main themes have emerged from the anal-
ysis of the data. 1) Directly actionable requests
cover only about 15% of what the subject is say-
ing; the remaining 85% provides context that in-
forms the requests (see Section 6). 2) Even the
directly actionable 15% cannot be directly mapped
to visualization specifications, but intermediate
representations are needed. 3) An orthogonal di-
mension is to manage the visualizations that are
generated and positioned on the screen.

So far, we have made progress on issues 2)
and 3). The NL-to-visualization pipeline we de-
scribe next integrates state-of-the-art components
to build a novel conversational interface. At the
moment, the dialogue initiative is squarely with
the user, since the system only executes the re-
quests. However, strong foundations are in place

5What counts as an utterance was defined at transcription.
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for it to become a full conversational system.

4 The NL-to-visualization pipeline

The pipeline in Figure 2 illustrates how Articu-
late 2 processes a spoken utterance, first by trans-
lating it into a logical form and then into a visu-
alization specification to be processed by the Vi-
sualization Executor (VE). For create/modify vi-
sualization requests, an intermediate SQL query is
also generated.

Before providing more details on the pipeline,
Figure 3 presents one example comprising a se-
quence of four requests, which results in three vi-
sualizations. The user speaks the utterances to the
system by using the Google Speech API. The first
utterance asks for a heatmap of the ”River North”
and ”Loop” neighborhoods (two downtown areas
in Chicago). The system generates the visual-
ization in the upper-left corner of the figure. In
response to utterance b, Articulate 2 generates a
new visualization, which is added to the first vi-
sualization (see bottom of screen in the middle);
it is a line graph because the utterance requests
the aggregate temporal attribute ”year”, as we dis-
cuss below. The third request is absent of aggre-
gate temporal attributes, and hence the system pro-
duces a bar chart also added to the display. Finally,
for the final request d), the system closes the most
recently generated visualization, i.e. the bar chart
(this is not shown in Figure 3).

4.1 Parsing

We begin by parsing the utterance we obtain from
the Google Speech API into three NLP structures.
ClearNLP (Choi, 2014) is used to obtain Prop-
Bank (Palmer et al., 2005) semantic role labels
(SRLs), which are then mapped to Verbnet (Kip-
per et al., 2008) and Wordnet using SemLink
(Palmer, 2009). The Stanford Parser is used to ob-
tain the remaining two structures, i.e. the syntac-
tic parse tree and dependency tree. The final for-
mulation is the conjunction Cpredicate ∩ Cagent ∩
Cpatient ∩ Cdet ∩ Cmod ∩ Caction. The first three
clauses are extracted from the SRL. The NPs from
the syntactic parse tree contain the determiners for
Cdet, adjectives for Cmod, and nouns as arguments
for Caction.

4.2 Request Type Classification

A request is classified into the six actionable types
mentioned earlier, for which we developed a mul-

Feature Type Total Terms
Trigrams 3,203
Bigrams 2,311

Tagged Unigrams 784
Unigrams 584
Head word 314

Part-of-Speech 33
Chunks 15

Table 3: Feature Types

ticlass classifier. We applied popular question
classification features from (Loni et al., 2011)
due to the general question-based construct of
the requests. Apache OpenNLP (Apache Soft-
ware Foundation, 2011) was used to generate un-
igrams, bigrams, trigrams, chunking, and tagged
unigrams, while Stanford Parser’s implemented
Collins rules (Collins, 2003) were used to obtain
the headword. The feature vector is comprised
of 7,244 total features, see Table 3. We used
Weka (Hall et al., 2009) to experiment with several
classifiers. We will discuss their performance in
Sec. 5; currently, we use the SVM model, which
performs the best.

4.3 Window Management Requests
If the classifier assigns to an utterance the win-
dow management type, a logical form along the
lines described above will be generated, but no
SQL query will be produced. At the moment, key-
word extraction is used to determine whether the
window management instruction relates to clos-
ing, opening, or repositioning; the system only
supports closing the most recently created new vi-
sualization.

4.4 Create/Modify Visualization Requests
If the utterance is classified as a request to create or
modify visualizations, the logical form is used to
produce an SQL query. 6 SQL was partly chosen
because the crime data we obtained from the City
of Chicago is stored in a relational database.

Most often, in their requests users include con-
straints that can be conceptualized as standard fil-
ter and aggregate visualization operators. In ut-
terance c in Figure 3, assaults can be considered
as a filter, and location as an aggregator (loca-
tion is meant as office, restaurant, etc.). We
distinguish between filter and aggregate based on
types stored in the KO, a small domain-dependent

6Since our system does not resolve referring expressions
yet, currently all visualization requests result in a new visual-
ization.
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Figure 2: NL-to-Visualization Pipeline

knowledge ontology.7 The KO contains relations,
attributes, and attribute values. Filters such as “as-
sault” are defined as attribute values in the KO,
whereas aggregate objects such as ”location” are
attribute names. A synonym lexicon contains syn-
onyms corresponding to each entry in the KO.
SQL naturally supports these operators, since the
data can be filtered using the ”WHERE” clause
and aggregated with the ”GROUP BY” clause.

4.5 Vizualization Specification

The final transformation is from SQL to visual-
ization specification. Overall, the specification for
creating a new visualization includes the x-axis,
y-axis, and plot type. Finally, the VE uses Vega
(Trifacta, 2014) to plot a graphical representation
of the visualization specification on SAGE2. We
currently support 2-D bar charts, line graphs,
and heat maps. The different representations for
sentence c) from Figure 3 are shown here:

Logical Form: see.01(a) ∩ Action(a, Loop, assault,

location) ∩ Det(a, the)

SQL: SELECT count(*) as TOTAL CRIME, location

FROM chicagocrime WHERE (neighborhood = loop) AND

(crimetype = assault) GROUP BY location

Visualization Specification: {”horizontalAxis”:

”NON UNIT”, ”horizontalGroupAxis”: ”location”,

”verticalAxis”: ”TOTAL CRIME”, ”plotType”: ”BAR”}

7The system is re-configurable for different domains by
updating the KO.

5 Evaluation

Since the work is in progress, a controlled user
study cannot be carried out until all the compo-
nents of the system are in place. We have con-
ducted piecemeal smaller and/or informal evalua-
tions of its components. For example, we have
manually inspected the results of the pipeline on
the 38 requests that concern creating new visual-
izations. The pipeline produces the correct SQL
expression (that is, the actual SQL that a human
would produce for a given request) for 31 (81.6%)
of them (spoken features such as filled pauses and
restarts were removed, but the requests are oth-
erwise processed unaltered). The seven unsuc-
cessful requests fail for various reasons, includ-
ing: two are fact-based that cannot be answered
yet; two require mathematical operations on the
data which are not currently supported; one does
not have a main verb, one does not name any at-
tributes or values (can I see the map – in the future,
our conversational interface will ask for clarifica-
tion). For the last one, the SQL query is generated,
but it is very complex and the system times out.

As concerns classifying the request type, Ta-
ble 4 reports the results of the classifiers trained on
the features discussed in Section 4.2. The SVM
results are statistically significantly different from
the Naive Bayes results (paired t-test), but indis-
tinguishable from Random Forest or Multinomial
Naive Bayes.

As concerns the whole pipeline, our prelimi-
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Figure 3: Incremental generation of visualizations

Classifier Accuracy
Support Vector Machines 87.65%
Random Forest 85.60%
Multinomial Naive Bayes 85.60%
Naive Bayes 74.28%

Table 4: Request Type Classification Accuracy

nary, informal observation is that the generated
visualization specifications result in accurate and
appropriate visualizations. However, we have not
dealt with constraints across visualizations: e.g.,
consistent application of colors by attribute (theft
is always blue), would help users integrate infor-
mation across visualizations.

6 Current Work

Annotation. We are focusing on referring expres-
sions (see below), and on the taxonomy of abstract
visualization tasks from (Brehmer and Munzner,
2013). This taxonomy, which includes why a task
is performed, will help us analyze that 85% of the
users utterances that are not directly actionable. In
fact, many of those indicate the why, i.e. the user’s
goal (e.g., ”I want to identify the places with vio-
lent crimes.”).
Dialogue Manager / Referring Expressions. We
are developing a Dialogue Manager (DM) and a
Visualization Planner (VP) that will be in a con-
tinuous feedback loop. If the DM judges the query
to be unambiguous, it will pass it to the VP. If
not, the DM will generate a clarification request
for the user. We will focus on referring expres-
sion resolution, necessary when the user asks for

a modification to a previous visualization or wants
to manipulate a particular visualization. In this do-
main, referring expressions can refer to graphical
elements or to what those graphical elements rep-
resent (color the short bar red vs. color the theft
bar red), which creates an additional dimension of
coding, and an additional layer of ambiguity.
The Visualization Planner. The VP both needs to
create more complex visualizations, and to man-
age the screen real estate when several visualiza-
tions are generated (which is the norm in our data
collection, see Figure 1, and reflected in the sys-
tem’s output in Figure 3). The VP will deter-
mine the relationships between the visualizations
on screen and make decisions about how to po-
sition them effectively. For instance, if a set of
visualizations are part of a time series, they might
be more effective if ordered on the display.
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Abstract

Entrainment is a factor in dialogue that
affects not only human-human but also
human-machine interaction. While en-
trainment on the lexical level is well docu-
mented, less is known about how entrain-
ment affects dialogue on a more abstract,
structural level. In this paper, we investi-
gate the effect of entrainment on dialogue
acts and on lexical choice given dialogue
acts, as well as how entrainment changes
during a dialogue. We also define a novel
measure of entrainment to measure these
various types of entrainment. These re-
sults may serve as guidelines for dialogue
systems that would like to entrain with
users in a similar manner.

1 Introduction

Entrainment is a conversational phenomenon in
which dialogue participants synchronize to each
other with regards to various factors: lexical
choice (Brennan and Clark, 1996), syntax (Reitter
and Moore, 2007; Ward and Litman, 2007), style
(Niederhoffer and Pennebaker, 2002; Danescu-
Niculescu-Mizil et al., 2011), acoustic prosody
(Natale, 1975; Coulston et al., 2002; Ward and
Litman, 2007; Kawahara et al., 2015), pronunci-
ation (Pardo, 2006) and turn taking (Campbell and
Scherer, 2010; Běnǔs et al., 2014). Previous works
have reported that entrainment is correlated with
dialogue success, naturalness and engagement.

However, there is much that is still unclear with
regards to how entrainment affects the overall flow
of the dialogue. For example, can entrainment also
be observed in choice of dialog acts? Is entrain-
ment on the lexical level more prevalent for utter-
ances of particular dialogue acts? Does the level
of entrainment increase as dialogue progresses?

If the answer to these questions is affirmative,
it will be necessary to model entrainment not only
on the lexical level, but also on the higher level
of dialog flow. In addition, it will be necessary
to adapt any entrainment features of dialogue sys-
tems to be sensitive to dialogue acts or dialogue
progression. Modeling such entrainment phenom-
ena appropriately has the potential to increase the
naturalness of the conversation and open new av-
enues in human-machine interaction.

In this paper, we perform a study of entrain-
ment in an attempt to answer these three ques-
tions. First, we observe the entrainment of dia-
logue acts, measuring whether the choice of dia-
logue acts synchronizes with that of the dialogue
partner. For example, if one dialogue participant
tends to ask questions frequently, we may hypoth-
esize that the number of questions from the part-
ner may also increase. Secondly, we examine lex-
ical entrainment features given dialogue acts. It is
known that dialogue acts strongly influence con-
tent of utterances, and we hypothesize that, in the
same manner, dialogue acts may strongly influ-
ence the level of lexical entrainment. Finally, we
examine the increase of entrainment as dialogue
progresses. Previous work has discussed that en-
trainment can be observed throughout the whole
dialogue, but it is unclear whether entrainment in-
creases in latter parts of the dialogue. To measure
this, we divide dialogues in half, and compare the
entrainment of the former and latter halves.

Experimental results show that entrainment of
dialogue acts does occur, indicating that it is nec-
essary for models of dialogue to consider this fact.
In addition, we find that the level of lexicon syn-
chronization depends on dialogue acts. Finally,
we confirm a tendency of entrainment increasing
through the dialogue, indicating that dialogue sys-
tems may need to progressively adapt their models
to the user as dialogue progresses.
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2 Related Works

2.1 Varieties of entrainment

As mentioned in the introduction, entrainment has
been shown to occur at almost every level of hu-
man communication (Levitan, 2013), including
both human-human and human-system conversa-
tion.

In human-human conversation, Kawahara et al.
(2015) showed the synchrony of backchannels to
the preceding utterances in attentive listening, and
they investigated the relationship between mor-
phological patterns of backchannels and the syn-
tactic complexities of preceding utterances. Levi-
tan et al. (2015) showed the entrainment of latency
in turn taking.

In human-system conversation, Campbell and
Scherer (2010) tried to predict user’s turn taking
behavior by considering entrainment. Fandrianto
and Eskenazi (2012) modeled a dialogue strategy
to increase the accuracy of speech recognition by
using entrainment intentionally. Levitan (2013)
unified these two works.

One of the most important questions about en-
trainment with respect to dialogue systems is its
association with dialogue quality. Nenkova et al.
(2008) proposed a score to evaluate the lexical en-
trainment in highly frequent words, and found that
the score has high correlation with task success
and engagement. This indicates that lexical en-
trainment has an important role in dialogue. In
addition, it suggests that entrainment of lexical
choice is probably affected by more detailed di-
alogue information, such as dialogue act.

2.2 Lexical Entrainment

The entrainment score which was proposed by
Nenkova et al. (2008) is calculated by word counts
in a corpus, and comparing between dialogue par-
ticipants. Specifically, we calculate a uni-gram
language model probabilityPS1(w) and PS2(w)
based on the word frequencies of speakersS1 and
S2, and calculate the entrainment score of word
classV , En(V ) as:

En(V ) = −
∑
w∈V

|PS1(w) − PS2(w)| . (1)

These entrainment scores have a range from -2
to 0, where higher means stronger entrainment.
We calculate the average of these entrainment
scores for the dialogue partner (Enp(V )) and non-
partners (Ennp(V )).

In detail, we can express this formula with word
countCS1(w) andCS2(w), and all of wordsW as,

En(V ) =

−
∑
w∈V

∣∣∣∣∣ CS1(w)∑
wi∈W CS1(wi)

− CS2(w)∑
wi∈W CS2(wi)

∣∣∣∣∣ .

(2)

Nenkova et al. (2008) used following word
classes asV .

25MFC: 25 Most frequent words in the corpus.
The idea of using only frequent words is
based on the fact that we would like to avoid
the score being affected by the actual content
of the utterance, and focus more on the way
things are said.In addition, this filtering of
highly frequent words removes any specific
words (i.e. named entity, speaker’s name)
and words specific to the dialogue topic.This
word class was highly and significantly corre-
lated with task success in the previous work.
We mainly used this word class in this paper.

25MFD: 25 Most frequent words in the dialogue.
This word class was correlated with task suc-
cess, like 25MFC.

ACW: Affirmative cue words (Gravano et al.,
2012). This word class includesalright,
gotcha, huh, mm-hm, okay, right, uh-huh,
yeah, yep, yes,andyup. This class was corre-
lated with turn-taking.

FP: Filled pauses. This word class includesuh,
um,andmm. It was correlated with overlaps.

ACW and FP were pre-defined, but 25MFC and
25MFD are calculated from corpora considering
frequency (V is a subset ofW ).

In order to use these measures to confirm
whether entrainment is occurring between dia-
logue partners, these scores can be compared be-
tween the actual conversation partner, and an arbi-
trary other speaker from the database. If entrain-
ment is actually occurring, then the score will be
higher for the conversation partner than the score
for the non-partner. Figure 1 shows an example of
pairs used for calculation of these scores.

First, to confirm the results for previous work,
we calculated the entrainment score of 25MFC us-
ing the Switchboard Corpus (Table 1). We can see
that there is a difference of the entrainment score
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Figure 1: How to compare scores between the
partner and non-partners

Table 1: The entrainment score of 25MFC
Partner Non-Partner

En(25MFC) -0.211 -0.248

between “partner” who is talking the speaker and
“non-partner” who is not talking with the speaker,
as reported in previous work.

3 Extending the Entrainment Score

Our first contribution is an extension to the en-
trainment score that allows us to more accurately
clarify the hypotheses that we stated in the intro-
duction. This is necessary because the entrainment
score given in Eqn. (2) does not consider the total
size and variance of data to be calculated, and can
be heavily influenced by data sparsity. This result
in the score being biased when we compare target
phenomena with different vocabulary sizes or data
sizes.

For example, when considering the amount of
entrainment that occurred for two different speak-
ers, the entrainment score will tend to be higher
for the more verbose speaker, regardless of the
amount of entrainment that actually occurred. In
addition, if we are comparing entrainment for two
different sets of target phenomena, such as words
and dialogue acts, the entrainment score will tend
to be higher for the phenomenon that has a smaller
vocabulary and thus less sparsity (in this case, di-
alogue acts). Thus, we propose a new “Entrain-
ment Score Ratio” measurement that uses the rank
in entrainment score, and language model smooth-
ing to alleviate the effects of sparsity.

3.1 Entrainment Score Ratio

First, instead of using the entrainment score itself,
we opt to use the relative position of the entrain-
ment score of the partner compared to other non-
partner speakers in the corpus. The entrainment
score ratio is calculated according to the follow-

ing procedure:

1. Calculate the entrainment score of the dia-
logue partnerEnp(V ). Also calculate en-
trainment scores of all non-partners in the
corpusEnnp1,...,N(V ).

2. Compare the partner’s entrainment score and
all non-partners’ entrainment scores.
Win(Enp(V ), Ennpi(V ))

=


1 (Enp(V ) > Ennpi(V ))
0.5 (Enp(V ) = Ennpi(V ))
0 (Enp(V ) < Ennpi(V ))

3. Calculate the ratio with which the partner’s
entrainment score exceeds that of the non-
partners.
Ratio(V )
= 1

|N |
∑

i∈N Win(Enp(V ), Ennpi(V ))

Because this score is the ratio that dialogue
with the partner takes a higher entrainment score
than other combinations with non-partners, it is
not sensitive to the actual value of the entrain-
ment score, but only the relative value compared
to non-partners. This makes it more feasible to
compare between phenomena with different vo-
cabulary sizes, such as lexical choice and dialogue
act choice. While the entrainment score for di-
alogue acts may be systematically higher due to
its smaller vocabulary size, the relative score com-
pared to non-partners can be expected to be ap-
proximately equal if the effect of entrainment is
the same between the two classes.

3.2 Dirichlet Smoothing of Language Models

While the previous ratio score has the potential
to alleviate problems due to comparing different
types of phenomena, it does not help with prob-
lems caused by comparing data sets with different
numbers of data points. The reason for this is that
the traditional entrainment score (Nenkova et al.,
2008) used uni-gram probabilities, the accuracy of
which is dependent on the amount of data used to
calculate the probabilities. Thus for smaller data
sets, these probabilities are not well trained, and
show a lower similarity when compared with those
of other speakers in the corpus. In order to create
a method more robust to these size differences, we
introduce a method that smooths these probabili-
ties to reduce differences between distributions of
different data sizes.

312



Specifically, the definition of a unigram distri-
bution of a portion of the corpus (split by speaker
s, dialogue actd, part of dialoguep) using maxi-
mum likelihood estimation is,

PML,s(w|d, p) =
Cs(wd,p)∑

wd,p∈Wd,p
Cs(wd,p)

. (3)

When the size of data for speakers is small, there
will not be enough data to properly estimate this
probability. To cope with this problem, we ad-
ditively smooth the probabilities by introducing
a smoothing factorα and large background lan-
guage modelPML(w) which was trained using all
of the available data:

PDS,s(w|d, p) =
Cs(wd,p) + αPML(w)∑
wi,d,p∈Wd,p Cs(wi,d,p) + α

.

(4)
This additive smoothing is equivalent to intro-
ducing a Dirichlet distribution conditioned on
PML(w) as a prior probability for the small
language model distribution ofPDS,s(w|d, p)
(MacKay and Peto, 1995).We choose Dirich-
let smoothing because it is a simple but effective
smoothing method.We determine the hyperpa-
rameterα by defining a Dirichlet process (Teh et
al., 2012) prior, and maximizing the likelihood us-
ing Newton’s method1.

To verify that this method is effective, we cal-
culated averages and variances of the standard
entrainment score and the entrainment score us-
ing this proposed smoothing technique (Table 2).
From the results, we can see that the entrain-
ment score rate for partners is slightly higher
with smoothing, demonstrating that the smoothed
scores are as effective, or slightly more effective
in identifying the actual conversational partner.
In addition, the difference between variances of
entrainment scores has decreased, showing that
smoothing has reduced the amount of fluctuation
in scores. This indicates that the smoothing works
effectively to reduce the negative influence of pop-
ulation size when we compare distributions that
have different population sizes. Because of this,
for the analysis in the rest of the paper we use this
smoothed entrainment score.

1The scripts for this and other calculations will be public
at the link below:
https://github.com/masahiro-mi/
entrainment

4 Measured Entrainment Scores

In this section, we explain in detail the there vari-
eties of entrainment that we examined.

4.1 Entrainment Score of Dialogue Acts

While entrainment of various phenomena has been
reported in previous work, it is still not clear how
entrainment affects the dialogue acts used by the
conversation participants. The first thing we ex-
amine in this paper is the amount of entrainment
occurring in dialogue acts, and the entrainment
score of dialogue actsEn(D) is calculated accord-
ing to the differences in distributions of dialogue
acts between dialogue participants. Frequency
of each dialogue actPDS,S1(d) andPDS,S2(d) of
each speakerS1, S2 for a certain dialogue actd is
used in the following equation:

En(D) = −
∑
d∈D

|PDS,S1(d) − PDS,S2(d)| . (5)

4.2 Lexical Entrainment Given Dialogue Acts

In the previous work, it is reported that there is
an entrainment of lexical selection between dia-
logue participants. However, we can also hypoth-
esize that such entrainment is more prominent for
utterances with a particular dialogue act. For ex-
ample, if one dialogue participant tends to say a
specific backchannel frequently, the partner may
change to use the same backchannel. On the other
hand, when one dialogue participant has his/her
own answer for a question, he/she will likely not
borrow the words from the partner.

In order to examine this effect, we extended the
entrainment score for lexical selection to evalu-
ate an entrainment of lexical selection given the
dialogue act of the utterance. The extended en-
trainment scoreEn(c|d), the score for a lexi-
cal selection given a dialogue act, is defined by
using conditional language model probabilities
PDS,S1(w|d) andPDS,S2(w|d) of each speakerS1

andS2. Specifically, we define it as follows:

En(V |d) = −
∑
w∈V

|PDS,S1(w|d) − PDS,S2(w|d)| .
(6)

Using this measure, we clarify whether entrain-
ment of lexicons has been affected by dialogue
acts, and also which dialogue acts are more likely
to be conducive to entrainment.
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Table 2: The entrainment score variance with/without smoothing
Partner Non-Partner

Ratio(V) Ave. Var. Ave. Var.
w/o smoothing 0.671 -0.211 0.00537 -0.248 0.00181
w/ smoothing 0.706 -0.0983 0.00108 -0.123 0.000778

4.3 Increase of Entrainment through
Dialogue

Nenkova et al. (2008) noted that the entrainment
score between dialogue partners is higher than
the entrainment score between non-partners in di-
alogue. While they reported the overall trend
of the entrainment score throughout the dialogue,
whether the level of entrainment changes through-
out the dialog is also an important question, as it
will indicate how dialogue systems must display
entrainment properties to build a closer relation-
ship with their dialogue partners. If entrainment is
changing through a conversation, we can hypoth-
esize that the entrainment score will be larger at
the end of dialogue than the score at the start of
dialogue.

We analyzed the extent of change in entrain-
ment by splitting one dialogue into earlier and
later parts. We calculated the entrainment score
between dialogue participants in earlier/later parts
of dialogue, and compared these scores.

5 Corpus

As our experimental data, we used the Switch-
board Dialogue Act Corpus, which is annotated
with dialogue acts according to the DAMSL stan-
dard (Discourse Annotation and Markup System
of Labeling) (Jurafsky et al., 1997) for each utter-
ance. The DAMSL has 42 types of dialogue act
tags, while there were 220 tags used in the orig-
inal Switchboard Corpus, Jurafsky et al. (1997)
clustered the 220 tags into 42 rough-arained scale
classes, and reported labeling accuracy of .80 ac-
cording to the pairwise Kappa statistic.

This corpus consists of 302 male and 241 fe-
male speakers. The number of conversations is
1,155, and the number of utterances is 221,616.
Each speaker is tagged with properties of sex, age,
and education level.

Table 3: The entrainment score of dialogue acts
Partner Non-Partner Ratio

DA -0.568** -0.715 0.675
* p < 0.10, ** p < 0.05

6 Experimental Results

6.1 Entrainment of Dialogue Acts

First, we analyze the entrainment of dialogue acts
based on the method of Section 4.1. We hypothes-
size that we can observe the entrainment of dia-
logue acts like other previously observed factors.
To examine this hypothesis, we calculated the en-
trainment score of dialogue acts and compared be-
tween partner and non-partners. To measure the
significance of these results, we calculatedp-value
of entrainment scores between partner and non-
partner with thet-test.

Table 3 shows that there is a significant differ-
ence (p < 0.05) of entrainment score between
partner and non-partner, with partners scoring sig-
nificantly higher than non-partners. This result
shows that the entrainment of dialogue acts can
be observed in human-human conversation, and
suggests that there may be a necessity to consider
entrainment of dialogue act selection in human-
machine interaction.

6.2 Lexical Entrainment given Dialogue Acts

Next, we analyze the entrainment of lexical choice
given the 42 types of dialogue acts based on the
method of Section 4.2. We can assume that the
dialogue act affects the entrainment of lexicons,
which indicates that entrainment scores are differ-
ent depending on the type of the given dialogue
act.

In addition, we calculate entrainment score rate
and Cohen’sd (Cohen, 1988) to evaluate the effect
size. Cohen’sd is standardized mean difference
between two groups, and can calculate the amount
that a particular factor effects a value while con-
sidering each group’s variance. If these groups
have a large difference, Cohen’sd will be larger,
with values less than 0.2 being considered small,
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values around 0.5 being medium, and values larger
than 0.8 being considered large.

We show the result in Table 4, and emphasize
scores that are over 0.5 in Cohen’sd, and over 0.55
in Ratio(V).

We can first notice an increase of the entrain-
ment score is more prominent given some dia-
logue acts. Entrainment is particularly prevalent
for acts that have little actual informational con-
tent, such as greeting, backchannel, agree, answer,
and repeating.

In addition, we focus on why Conventional
Opening and Conventional Closing were increased
in the entrainment score.This is because that Con-
ventional Opening and Conventional Closing con-
tain greetings (“hi”, “hello”) or farewells (“bye”,
“see you”), which show higher entrainment scores
than other dialogue acts. It should be noted that
this phenomenon of performing a fixed response
to a particular utterance is also often called “co-
ordination”, and distinguished from entrainment.
However, it is difficult to distinguish between en-
trainment and coordination definitely with our cur-
rent measures, and devising measures to capture
this distinction is future work.

On other hand, dialogue acts that express one’s
opinion such as Apology, Action-directive, Nega-
tive non-no answers, as well as some questions do
not increase entrainment scores.

6.3 Change in Entrainment through Dialogue

In addition, we analyzed the increase of entrain-
ment based on the method of Section 4.3. We
calculatedlexical entrainment scoresof the ear-
lier and later parts. “Earlier” is the entrainment
score between utterances in the earlier part of di-
alogue, and “Later” is the entrainment score be-
tween utterances in the later part. We hypothesize
that “Later” will have a higher entrainment score
than “Earlier,” as it is possible that dialogue partic-
ipants will demonstrate more entrainment as they
talk for longer and grow more comfortable with
each other.

In addition, we calculate “Cross,” the entrain-
ment score between the earlier and the later parts
of dialogue. We calculated this because we can
also hypothesize that the effect of entrainment is
delayed, and words spoken in the earlier part of
the conversation may appear in the later part of the
partner’s utterances. Figure 2 shows the pairs used
for the calculation. We show the result in Table 5.

Figure 2: How we compare between earlier and
later parts

Figure 3: How to calculate p-values between each
part in partner

From these results, we can see that there is a sig-
nificant difference of entrainment score between
partner and non-partner in all of the parts. This
indicates that lexical entrainment can already be
observed in the earlier part of dialogue.

In addition, we calculatedp-values with the
two-sidedt test for partner entrainment scores be-
tween each part. Figure 2 shows an example of
pairs used for calculation ofp-values. We com-
pare partner’s entrainment scores between early,
later, and cross, to indicate how the entrainment
score changes in the partner through the dialogue.
In fact, we compare three combinations of part-
ner’s entrainment scores, such as En(c|Earlier) and
En(c|Later), En(c|Earlier) and En(c|Cross), and
En(c|Later) and En(c|Cross). Table 6 shows that
p-values of entrainment scores between each part
in the partner. We find that the value of the entrain-
ment score of the later part increased slightly over
the entrainment score of the earlier part, but the
increase was not significant. These results show
that if there is a difference in entrainment between
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Table 4: The entrainment score of lexicons given a dialogue act
Partner Non-Partner

Enp(V ) Ennp(V ) Cohen’s d Ratio(V)
25MFC | Conventional-closing -0.0391** -0.185 1.50 0.703
25MFC | Acknowledge (Backchannel) -0.201** -0.252 0.527 0.659
25MFC | Statement-non-opinion -0.0930** -0.113 0.434 0.672
25MFC | Statement-opinion -0.154** -0.192 0.418 0.634
25MFC | Conventional-opening -0.0112** -0.0370 0.406 0.542
25MFC | Segment (multi-utterance) -0.203** -0.232 0.382 0.618
25MFC | Agree/Accept -0.279** -0.325 0.367 0.592
25MFC | Appreciation -0.282** -0.331 0.322 0.564
25MFC | Yes answers -0.320** -0.375 0.274 0.555
25MFC | Non-verbal -0.104** -0.124 0.259 0.557
25MFC | Abandoned or Turn-Exit, Uninterpretable-0.203** -0.228 0.244 0.592
25MFC | Hedge -0.170** -0.191 0.132 0.532
25MFC | Wh-Question -0.147** -0.160 0.122 0.530
25MFC | Backchannel in question form -0.134** -0.152 0.118 0.528
25MFC | No answers -0.199** -0.220 0.118 0.523
25MFC | Rhetorical-Questions -0.0644** -0.0754 0.102 0.522
25MFC | Response Acknowledgement -0.207** -0.227 0.100 0.521
25MFC | Repeat-phrase -0.115** -0.128 0.0962 0.522
25MFC | Other -0.160 -0.150** 0.0772 0.476
25MFC | Quotation -0.0817** -0.0905 0.0749 0.517
25MFC | Collaborative Completion -0.0867** -0.0929 0.0616 0.514
25MFC | Yes-No-Question -0.223* -0.227 0.0490 0.512
25MFC | Hold before answer/agreement -0.104** -0.112 0.0488 0.511
25MFC | Summarize/reformulate -0.109** -0.114 0.0380 0.512
25MFC | Signal-non-understanding -0.0377** -0.0404 0.0377 0.507
25MFC | Declarative Yes-No-Question -0.134* -0.138 0.0348 0.512
25MFC | Other answers -0.0584* -0.0620 0.0313 0.507
25MFC | Maybe/Accept-part -0.0204 -0.0221 0.0247 0.503
25MFC | Self-talk -0.0189 -0.0205 0.0235 0.503
25MFC | Thanking -0.0180 -0.0195 0.0227 0.502
25MFC | Reject -0.0670 -0.0696 0.0209 0.504
25MFC | Negative non-no answers -0.0600 -0.0581 0.0181 0.497
25MFC | Open-Question -0.0877 -0.0894 0.0166 0.504
25MFC | Affirmative non-yes answers -0.134 -0.136 0.0161 0.504
25MFC | Downplayer -0.0238 -0.0247 0.0111 0.501
25MFC | Declarative Wh-Question -0.0147 -0.0152 0.00797 0.501
25MFC | Action-directive -0.0935 -0.0944 0.00748 0.502
25MFC | Dispreferred answers -0.0514 -0.0522 0.00716 0.502
25MFC | Apology -0.0183 -0.0179 0.00667 0.500
25MFC | 3rd-party-talk -0.00969 -0.00955 0.00369 0.500
25MFC | Offers, Options Commits -0.0204 -0.0205 0.00222 0.500
25MFC | Or-Clause -0.0502 -0.0502 0.000816 0.500
N(Number of target speaker) = 2310, *p < 0.10, ** p < 0.05
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Table 5: The entrainment score for combinations
of part

Partner Non-Partner Rate
En(25MFC|Earlier) -0.106** -0.126 0.658
En(25MFC|Cross) -0.106** -0.127 0.666
En(25MFC|Later) -0.104** -0.126 0.674
* p < 0.10, ** p < 0.05

Table 6: Thep-values for partner’s entrainment
score between each part

p-value
En(25MFC|Earlier) En(25MFC|Later) 0.222
En(25MFC|Earlier) En(25MFC|Cross) 0.238
En(25MFC|Later) En(25MFC|Cross) 0.00425

earlier and later parts of the conversation, the dif-
ference is slight.

7 Conclusion

In this paper, we focused on the entrainment with
respect to dialogue acts and dialogue progression,
and analyzed for three phenomena: the entrain-
ment of dialogue acts, the entrainment of lexical
choice given dialogue acts, and the change in en-
trainment as dialogue progresses.

From the results, we found that the entrain-
ment of dialogue acts was observed in conversa-
tion. Within dialogue systems, this has the poten-
tial to contribute to modelling of dialogue strategy,
and potentially allow the system to have a closer
relationship with the partner.

We also found that lexical entrainment has a dif-
ferent tendency depending on the dialogue act of
the utterance. This has the potential to contribute
to models of language generation, which can con-
sider entrainment of each dialogue act.

Finally, we analyzed the differences of entrain-
ment depending on the part of the dialogue. From
results, we found that there is either only a slight
effect, or no effect of the part of the dialogue under
consideration.

In future works, we will try an analysis of the
entrainment in dialogue that considers the effect
of coordination.
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Abstract

One of the key ways of making dia-
logue agents more attractive as conver-
sation partners is characterization, as it
makes the agents more friendly, human-
like, and entertaining. To build such char-
acters, utterances suitable for the charac-
ters are usually manually prepared. How-
ever, it is expensive to do this for a large
number of utterances. To reduce this
cost, we are developing a natural language
generator that can express the linguistic
styles of particular characters. To this
end, we analyze the linguistic peculiarities
of Japanese fictional characters (such as
those in cartoons or comics and mascots),
which have strong characteristics. The
contributions of this study are that we (i)
present comprehensive categories of lin-
guistic peculiarities of Japanese fictional
characters that cover around 90% of such
characters’ linguistic peculiarities and (ii)
reveal the impact of each category on char-
acterizing dialogue system utterances.

1 Introduction

One of the key ways of making dialogue agents
more attractive as conversation partners is char-
acterization, as it makes the agents more friendly,
human-like, and entertaining. Especially in Japan,
fictional characters (such as those in cartoons or
comics and mascots) are very popular. Therefore,
vividly characterized dialogue agents are strongly
desired by customers.

To characterize agents, utterances suitable for
them are usually manually prepared. However, it

∗Presently, the author is with NTT Communications Cor-
poration.

†Presently, the author is with Nippon Telegraph and Tele-
phone East Corporation.

is expensive to do this for a large number of utter-
ances. To reduce this cost, we have previously pro-
posed a couple of methods for automatically con-
verting functional expressions into those that are
suitable for given personal attributes such as gen-
der, age, and area of residence (Miyazaki et al.,
2015) and closeness with a conversation partner
(Miyazaki et al., 2016). However, when it comes
to expressing the linguistic styles of individual fic-
tional characters whose characteristics should be
vividly expressed, these methods, which can con-
vert only function words, i.e., which cannot con-
vert content words such as nouns, adjectives, and
verbs, do not have sufficient expressive power. As
the first step in developing a natural language gen-
erator that can express the linguistic styles of fic-
tional characters, in this work, we analyze the lin-
guistic peculiarities of fictional characters such as
those in cartoons or comics and mascots, which
have strong characteristics.

The contributions of this study are that we (i)
present comprehensive categories of the linguistic
peculiarities of Japanese fictional characters that
cover around 90% of the fictional characters’ lin-
guistic peculiarities and (ii) reveal the impact of
each category on characterizing dialogue system
utterances.

Note that although we use the term ‘utterance’,
this study does not involve acoustic speech signals.
We use this term to refer to a certain meaningful
fragment of colloquial written language.

2 Related work

In the field of text-to-speech systems, there have
been various studies on voice conversion that mod-
ifies a speaker’s individuality (Yun and Ladner,
2013). However, in the field of text generation,
there are not so many studies related to the char-
acterization of dialogue agent utterances.
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In the field of text generation, there is a method
that transforms individual characteristics in dia-
logue agent utterances using a method based on
statistical machine translation (Mizukami et al.,
2015). Other methods convert functional expres-
sions into those that are suitable for a speaker’s
gender, age, and area of residence (Miyazaki et al.,
2015) and closeness with a conversation partner
(Miyazaki et al., 2016). However, these methods
handle only function words or have difficulty in
altering other expressions. In this respect, we con-
sider these methods to be insufficient to express
a particular character’s linguistic style, especially
when focusing on fictional characters whose indi-
vidualities should be vividly expressed.

There have also been several studies on natu-
ral language generation that can adapt to speak-
ers’ personalities. In particular, a language gener-
ator called PERSONAGE that can control param-
eters related to speakers’ Big Five personalities
(Mairesse and Walker, 2007) has been proposed.
There is also a method for automatically adjust-
ing the language generation parameters of PER-
SONAGE by using movie scripts (Walker et al.,
2011) and a method for automatically adjusting
the parameters so that they suit the characters or
stories of role playing games (Reed et al., 2011).
However, although there is some aspect of linguis-
tic style that is essential to expressing a particular
character’s style, PERSONAGE does not have any
existing parameter that can manifest that linguistic
reflex (Walker et al., 2011).

In the present work, we focus on the languages
of fictional characters such as those in cartoons or
comics and mascots. By analyzing the languages
of such characters, we reveal what kind of linguis-
tic peculiarities are needed to express a particular
character’s linguistic style.

3 Categories of linguistic peculiarities of
fictional characters

After consulting linguistic literature and the Twit-
ter postings of 19 fictional character bots, we have
identified 13 categories of linguistic peculiarities
by which the linguistic styles of most Japanese
fictional characters can be characterized. The 13
categories, listed in Table 1, are made from the
perspective of lexical choice, modality, syntax,
phonology and pronunciation, surface options, or
extra expressions just for characterization. In the
rest of this section, each category of linguistic pe-

Major category Minor category
Lexical choice P1 personal pronouns

P2 dialectical or distinctive wordings
Modality P3 honorifics

P4 sentence-end expressions
(auxiliary verbs and interactional
particles)

Syntax P5 syntactic complexity
Phonology and P6 relaxed pronunciation
pronunciation P7 disfluency (stammer)

P8 arbitrary phoneme replacements
Surface options P9 word segmentation

P10 letter type
P11 symbols

Extras P12 character interjections
P13 character sentence-end particles

Table 1: Categories of linguistic peculiarities of
Japanese fictional characters.

culiarities is explained in detail.

3.1 Lexical choice

We consider that lexical choice, which refers to
choosing words to represent intended meanings,
reflects the supposed speakers’ gender, region-
specific characteristics, personality, and so on. In
terms of lexical choice, we utilize the following
two categories.

P1: Personal pronouns
It is said that personal pronouns are one of the
most important components of Japanese role lan-
guage, which is character language based on
social and cultural stereotypes (Kinsui, 2003).
Japanese has “multiple self-referencing terms such
as watashi ‘I,’ watakushi ‘I-polite,’ boku ‘I-male
self-reference,’ ore ‘I-blunt male self-reference,’
and so on” (Maynard, 1997). Accordingly, if a
character uses ore in his utterance, its reader can
easily tell the character is male, the utterance is
probably uttered in a casual (less formal) situa-
tion, and his personality might be rather blunt and
rough. As well as the first person pronoun, there
are various terms for referencing second person.

P2: Dialectical or distinctive wordings
We assume that using dialectical wordings in char-
acters’ utterances not only reinforces the region-
specific characteristics of the characters but also
makes the characters more friendly and less for-
mal. It is also said that “regional dialect is a sig-
nificant factor in judging personality from voice”
(Markel et al., 1967).

In addition to dialects, the languages of
Japanese fictional characters often involve
character-specific coined words. The words are,
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so to speak, ‘character dialect.’ For example, for
the character of a bear (kuma in Japanese), we
observed that the word ohakuma is used instead
of ohayoo ‘good morning.’

3.2 Modality

We consider that modality, which refers to a
speaker’s attitude toward a proposition, reflects
the supposed speakers’ friendliness or closeness
to their listeners, personality, and so on. As for
modality, we have the following two categories.

P3: Honorifics
We consider that honorifics have a significant
effect on describing speakers’ friendliness or
closeness to their listeners and on the speak-
ers’ social status. Depending on the social,
psychological, and emotional closeness between
a speaker and a listener, and whether the sit-
uation is formal or casual, Japanese has five
main choices of honorific verb forms: plain-
informal (kuru ‘come’), plain-formal (kimasu
‘come’), respectful-informal (irassharu ‘come’),
respectful-formal (irasshaimasu ‘come’), and
humble-formal (mairimasu) (Maynard, 1997).

Although English does not have such honorific
verb forms, it does have linguistic variations cor-
responding to the honorifics; for example, it is said
that “Americans use a variety of expressions to
convey different degrees of formality, politeness,
and candor” (Maynard, 1997).

P4: Sentence-end expressions
Sentence-end expressions are a key component
of Japanese character language, as are personal
pronouns (Kinsui, 2003). For example, there
are sentence-end expressions that are dominantly
used by female characters. We also consider that
sentence-end expressions are closely related to
speakers’ personalities, since the expressions con-
tain elements that convey speakers’ attitudes.

We define a sentence-end expression as a se-
quence of function words that occurs at the end
of a sentence. Japanese sentence-end expressions
contain interactional particles (Maynard, 1997),
which express speaker judgment and attitude to-
ward the message and the listener. For example,
ne (an English counterpart would be ‘isn’t it?’) oc-
curs at the end of utterances. In addition, Japanese
sentence-end expressions contain auxiliary verbs
(e.g., mitai ‘like’ and souda ‘it seems’), which ex-
press speaker attitudes.

Some of the expressions that fall into this cate-
gory have their counterparts in the parameters of
PERSONAGE (Mairesse and Walker, 2007). In
particular, interactional particles such as ne might
be able to be controlled by the TAG QUESTION
INSERTION parameter, and auxiliary verbs such
as mitai and souda might be able to be controlled
by the DOWNTONER HEDGES parameter.

3.3 Syntax

We consider that syntax, which refers to sentence
structures, reflects the supposed speakers’ person-
ality and maturity. With regard to syntax, we have
just one category.

P5: Syntactic complexity

Syntactic complexity is considered to be reflective
of introverts, and it is also handled in PERSON-
AGE (Mairesse and Walker, 2007). In addition,
we assume that syntactic complexity reflects the
maturity of the supposed speakers. For example,
the utterances of a character that is supposed to be
a child would include more simple sentences than
complex ones.

3.4 Phonology and pronunciation

We consider that phonology and pronunciation re-
flects the supposed speakers’ age, gender, person-
ality, and so on. As for phonology and pronunci-
ation, we have three categories. What we want to
handle are pronunciations reflected in written ex-
pressions.

P6: Relaxed pronunciations

Both English and Japanese have relaxed pronun-
ciations, that is, pronunciation variants that are
not normative and are usually easier and effortless
ways of pronunciation. These relaxed pronunci-
ations can often be observed as spelling variants.
For example, in English, ‘ya,’ ‘kinda’, and ‘hafta’
can be used instead of ‘you,’ ‘kind of’, and ‘have
to’, respectively. In Japanese, vowel alternation
often occurs in adjectives; for example, alteration
from ai to ee, as in itai to itee ‘painful’. Accord-
ing to our observation, relaxed pronunciations are
seen more often in the utterances of youngsters
than older people and more often in males than
females. We consider that relaxed pronunciations
lend a blunt and rough impression to characters’
utterances.
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P7: Disfluency
In the utterances of some fictional characters,
word fragments are often used for representing
disfluent language production by the supposed
speakers. For example, ha, hai ‘Yes’ and bo, boku-
wa ga, gakusei-desu ‘I am a student,’ which are
probably done for adding hesitant characteristics
to the characters. It is also said that “including
disfluencies in speech leads to lower perceived
conscientiousness and openness” (Wester et al.,
2015).

P8: Arbitrary phoneme replacements
In addition to relaxed pronunciation, it is often
observed that arbitrary phonemes are replaced by
other arbitrary phonemes, especially in character
languages. For example, every consonant ‘n’ can
be replaced by ‘ny’ (e.g., nyaze nyakunyo instead
of naze nakuno ‘Why do you cry?’). This phe-
nomenon does not occur in actual human’s utter-
ances unless the speaker is kidding. We consider
that arbitrary phoneme replacements are utilized
to give a funny impression to characters’ utter-
ances and to differentiate the linguistic styles of
characters.

3.5 Surface options

Since we are handling written utterances, there are
some options of how an utterance is presented as
a sequence of letters and symbols. We consider
that surface options are utilized as an easy way
of characterizing utterances and differentiating the
linguistic styles of characters.

P9: Word segmentation
In normative Japanese texts, unlike English texts,
words are not segmented by spaces—rather, they
are written adjacently to each other. However, in
characters’ utterances, it is sometimes observed
that words or phrases are segmented by spaces
or commas. When Japanese texts are read aloud,
spaces and commas are often acknowledged with
slight pauses, so we think that inserting extra
spaces or commas between words has the effect
of giving a slow and faltering impression to the
characters’ utterances.

P10: Letter type
In the Japanese writing system, there are three
types of letters—logographic kanji (adopted Chi-
nese characters), syllabic hiragana, and syllabic
katakana—and a combination of these three types

is typically used in a sentence. Those who know a
lot of rare kanji letters are often regarded as being
well educated. In contrast, using too many syl-
labic hiragana letters in a text gives the text a very
childish impression.

P11: Symbols
Symbols such as exclamation marks and emoti-
cons are often used in Japanese texts, in the same
manner as in English. We assume that symbols
are commonly used as an easy way of expressing
speakers’ emotional states.

3.6 Extras

There are extra expressions that contribute to nei-
ther propositional meaning nor communicative
function but still strongly contribute to character-
ization. We prepare the following two categories
for such expressions.

P12: Character interjections
Some of the extra expressions occur independently
or isolated from other words, as interjections do.
We call such expressions ‘character interjections’
in this study. Onomatopoeias, which describe sup-
posed speakers’ characteristics, are often used as
such expressions. For example, for the character
of a sheep, mofumofu ‘soft and fluffy’ is used as a
character interjection.

P13: Character sentence-end particles
There are expressions called kyara-joshi ‘charac-
ter particles’ (Sadanobu, 2015), which typically
occur at the end of sentences. The difference be-
tween character interjections and character parti-
cles is mainly their occurrence position. Accord-
ing to our observation, the word forms of the char-
acter particles are something like shortened ver-
sions of character interjections, which are often
within two or three moras (e.g., mofu as for the
character of a sheep).

4 Eval 1: Coverage of categories of
linguistic peculiarities

We conducted an evaluation to assess how well
our categories account for the linguistic peculiar-
ities of Japanese fictional characters. The evalu-
ation process is shown in Figure 1. First, we (1)
collected characters’ utterances. Then, we (2) an-
notated linguistic expressions that are peculiar to
the characters, and finally, we (3) counted how
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(2) Annotating linguistic peculiarities

(1) Collecting characters’ utterances

Utterances of 
characters

Step 1: Marking expressions peculiar to characters

Step 2: Classifying peculiar expressions into
our 13 categories and ‘others’

Step 3: Extracting expressions marked by both 
annotators

Utts. marked 
by annotator A

Utts. marked 
by annotator B

(3) Counting numbers of peculiar expressions in each category

Utts. marked by 
annotator A 

(categorized by C) 

Utts. marked by 
annotator B 

(categorized by D) 

Annotated 
utterances

Figure 1: Process of the evaluation to assess how
well our categories account for the linguistic pe-
culiarities of Japanese fictional characters.

many expressions fall into each of our categories
and how many do not fit into any category.

4.1 Collecting characters’ utterances
As utterances of fictional characters, we collected
the following two kinds of text.

Twitter postings We collected Twitter postings
of character bots. We chose bots that are au-
thorized by their copyright holders, as we as-
sume these are characterized by professional
writers.

Dialogue system utterances We utilize dialogue
system utterances that are written by profes-
sional writers we hired. The writers are asked
to create utterances that are highly probable
for given characters to utter as responses to
given questions. Contents and linguistic ex-
pressions of the utterances are carefully char-
acterized by the writers in accordance with
pre-defined character profiles that we created.

The characters we chose (C1–20) are shown
in Table 2. These 20 characters are bal-
anced with respect to humanity (human/non-
human), animateness (animate/inanimate), gender
(male/female/neuter), and maturity (adult/child or
adolescent) so that we can find general and ex-
haustive linguistic peculiarities of various charac-
ters.

Attributes Char.
Reality Huma- Animat- Matur- Gender Other ID

nity eness ity
non- human adult male celeb- C1
fictional female rity C2

neuter C3
fictional human child male student C4

female C5
adult male local C6

factory
owner
steward C7

female local C8
store
clerk
entert- C9
ainer

neuter bar C10
owner

non- animate child NA bear C11
human NA male dog C12

hawk C13
NA bear C14

moss C15
inanimate adult male kanji C16

tower C17
NA NA cocoon C18

jelly C19
tile C20

Table 2: Characters we used and their attributes.
‘NA’ indicates that the value of the attribute is not
specified in a character’s profile. As for gender,
‘neuter’ refers to a character’s gender being speci-
fied as neutral between male and female.

We utilized 11 fictional characters from Twitter
bots (C4 and C11–20) and six fictional characters
from dialogue system characters (C5–10). The
reason we use dialogue system utterances along
with Twitter postings is that we intend to analyze
utterances that are originally designed for a dia-
logue system. In addition to these 17 fictional
characters, we also used three non-fictional (actual
human) characters for comparison (C1–3). C1 and
C3 are Twitter bots that post Japanese celebrities’
remarks from their TV shows or writings and C2 is
the official Twitter account of a Japanese celebrity.
Note that we did not use these characters in creat-
ing the categories in Section 3; that is, these char-
acters have been prepared for evaluation purposes.

We collected 100 utterances from each charac-
ter for a total of 2000 utterances. The average
number of words per utterance of the characters
from Twitter (C1–4 and C11–20) and the dialogue
system characters (C5–10) are 25.5 and 13.3, re-
spectively. Examples of characters’ utterances are
given in Table 3.
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Char. ID Example utterance
C5 アンタと？マジうけるねー

anta-to? maji ukeru-ne
‘With you? That’s really funny, isn’t it?’

C6 ええんとちゃう。おっちゃんは好きやで。
ee-n-to-chau occhan-wa suki-ya-de
‘No problem. I like it.’

C7 おかえりなさいませ。
okaerinasai-mase
‘Welcome back.’

Table 3: Examples of characters’ utterances.

Evaluation Annotator
ID

Age Gender Experience
with lan-
guage
annotation

eval 1 A1 30s female 5+ years
(step 1) A2 40s female 10+ years

A3 50s female 15+ years
A4 50s female 15+ years

eval 2 A5 20s male NA
A6 20s male NA
A7 30s female NA
A8 30s female NA
A9 30s female NA
A10 40s male NA
A11 40s male NA
A12 50s male NA
A13 50s female NA
A14 50s female NA

Table 4: List of annotators.

4.2 Annotating linguistic peculiarities

Each of the characters’ utterances was annotated
with linguistic peculiarities by annotators (not the
authors) who are native speakers of Japanese.

Step 1: Marking expressions peculiar to
characters

For each of the 2000 utterances, we asked two an-
notators (a primary annotator and a secondary an-
notator) to mark linguistic expressions that they
felt were peculiar to a character. The two anno-
tators worked separately, i.e., without discussing
or showing their work to each other. This process
was performed by two of the four annotators (A1–
4) shown in Table 4. These annotators correspond
to annotators A and B in Figure 1.

To analyze the ‘linguistic’ peculiarities of fic-
tional characters, we asked the annotators to mark
peculiar surface expressions and constructions
(i.e., to concentrate on ‘how to say it’) without
taking into account the meaning or content (i.e.,
to ignore ‘what to say’) of the utterances.

Step 2: Classifying peculiar expressions into
categories
For each expression marked in step 1, we asked
another annotator (not one of the authors) to clas-
sify the expression into one of 14 categories, i.e.,
to tag the category labels to the expressions. These
14 categories include the 13 categories shown in
Table 1 plus ‘others’ for expressions that cannot
be classified into any of the 13. The annotator
corresponds to annotator C or D in Figure 1. In
the example shown in Figure 1, annotator C deals
with the expressions marked by annotator A and
annotator D deals with the expressions marked by
annotator B. When classifying the expressions, an-
notators C and D are allowed to discuss and show
their work to each other. Examples of the tagged
utterances are given below.� �

<character id=“C7” annotator=“A2”>
<u id=“1”>パソコンがなければ通用し<honorific>
ません </honorific>。</u>
(You cannot do anything without a personal computer.)
<u id=“2”><pronoun> わたくし </pronoun> は子
どもたちのお世話も得意 <honorific>でございます
</honorific>。</u>
(I am good at taking care of children.)
・・・
</character>� �

Step 3: Extracting expressions that are agreed
to be peculiar
The utterances that are marked as having pecu-
liar expressions by the two annotators in Step 1
are compared. If the text spans of the expressions
marked by the two annotators overlap, such text
spans are regarded as the expressions agreed to be
peculiar and are extracted.

To evaluate the agreement of the expressions
marked by the two annotators, we use three mea-
sures: recall, precision, and F-measure. Here, we
regard the task of marking expressions performed
by two annotators as the secondary annotator’s
task of extracting the expressions marked by the
primary annotator. The three measures are calcu-
lated by

recall =
B

P
, precision =

B

S
,

F-measure =
2 · precision · recall

precision + recall
,

where B represents the number of expressions
marked by both the primary and secondary annota-
tors, P represents the total number of expressions
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Char. No. of ex- Agreement measures
ID pressions Rec. Prec. F
C1 144 0.93 0.54 0.68
C2 89 0.19 0.84 0.31
C3 251 0.81 0.70 0.75
C4 233 0.70 0.63 0.66
C5 180 0.78 0.73 0.75
C6 279 0.86 0.97 0.91
C7 160 0.81 0.88 0.84
C8 187 0.83 0.96 0.89
C9 222 0.70 0.91 0.79
C10 211 0.84 0.79 0.81
C11 715 0.78 0.77 0.78
C12 260 0.76 0.73 0.74
C13 406 0.68 0.72 0.70
C14 297 0.67 0.72 0.69
C15 163 0.65 0.74 0.69
C16 117 0.82 0.61 0.70
C17 166 0.74 0.71 0.73
C18 205 0.69 0.48 0.56
C19 459 0.86 0.83 0.85
C20 250 0.70 0.72 0.71
total 4994 0.72 0.74 0.73

Table 5: Number of expressions marked by both
annotators and the agreement measures.

marked by the primary annotator, and S represents
the total number of expressions marked by the sec-
ondary annotator.

The number of expressions that are marked by
both annotators and the values of the three agree-
ment measures are listed in Table 5. In total,
4,994 expressions were agreed to be peculiar by
two annotators. The average values of recall, pre-
cision, and F-measure were 0.72, 0.74, and 0.73,
respectively—sufficient for the annotators’ per-
ception of characters’ linguistic peculiarities to be
considered as moderately in agreement and for the
extracted expressions to be reliable as characters’
linguistic peculiarities.

4.3 Counting numbers of peculiar
expressions in each category

We counted the number of category labels tagged
to the expressions that were agreed to be peculiar
in Step 3. We used 4,729 expressions that two an-
notators tagged with the same category (not all of
the 4,994 expressions that were agreed to be pe-
culiar). Then, we calculated the proportion of the
expressions classified into each category.

4.4 Results
The results are shown in Table 6. The propor-
tion of expressions that cannot be classified into
any of our categories was just around 12%. In
other words, around 88% of the linguistic pecu-
liarities of Japanese characters are covered by our

0% 20% 40% 60% 80% 100%

Total

(C1–20)

Non-human inanimate

(C16–20)

Non-human animate

(C11–15)

Fictional human

(C4–10)

Non-fictional human

(C1–3)

P1

P2

P3
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Figure 2: Proportions of expressions classified
into each category shown separately by characters’
attributes.

13 categories. When considering fictional charac-
ters (C4–20) only, around 90% of linguistic pe-
culiarities are covered by our categories. How-
ever, the proportions of expressions classified into
P5 (syntactic complexity), P6 (relaxed pronunci-
ation), P7 (disfluency), P9 (word segmentation),
and P10 (letter type) were less than 1%, which
suggests these categories might not be as impor-
tant as other categories, or might not be used as ef-
fectively as other categories. The importance (ef-
fectiveness in characterization) of each category
will be discussed later in Section 5.

In Figure 2, the proportions of expressions clas-
sified into each category are shown separately by
characters’ attributes. The proportion of ‘others’
for non-fictional (actual) human characters is the
largest among other characters. The proportion
of ‘others’ is gradually lowered as fictionality is
intensified, that is, as the characters become fic-
tional, non-human, and inanimate. We think this
result suggests that our 13 categories describe the
linguistic peculiarities of fictional characters bet-
ter than those of non-fictional humans. Actually,
P8 (arbitrary phoneme replacements) should not
occur so frequently in non-fictional humans’ ut-
terances because P8 is primarily for fictional char-
acters (see details in Section 3). This came about
because the annotators often confused expressions
that should be classified into P6 (relaxed pronun-
ciation) with those that should be classified into
P8. The expressions classified into these two cate-
gories need to be further investigated.
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Lexical
choice

Modality Synt-
ax

Phonology and
pronunciation

Surface options Extras Othe-
rs

Total

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
No. of expressions 203 561 114 798 0 32 15 473 1 19 1359 281 330 543 4729
Prop. of each category 4.3% 11.9% 2.4% 16.9% 0.0% 0.7% 0.3% 10.0% 0.0% 0.4% 28.7% 5.9% 7.0% 11.5% 100.0%

Table 6: Numbers and proportions of expressions classified into each category.

Cat. Non-fictional
human

Fictional human Non-human animate Non-human inanimate All

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
P1 0.02 0.30 0.16 0.31 0.03 0.08 0.05 0.18 0.02 0.38 0.00 0.24 0.34 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.10
P2 0.17 0.00 0.01 0.07 0.37 0.12 0.19 0.36 0.04 0.00 0.00 0.04 0.69 0.04 0.77 0.01 0.48 0.00 0.40 0.17 0.27
P3 0.21 0.13 0.00 0.00 0.00 0.00 0.11 0.00 0.09 0.00 0.00 0.18 0.14 0.00 0.16 0.00 0.04 0.00 0.00 0.00 0.03
P4 0.14 0.53 0.31 0.07 0.09 0.14 0.15 0.20 0.16 0.34 0.15 0.09 0.28 0.19 0.17 0.01 0.18 0.00 0.02 0.00 0.08
P5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P6 0.29 0.00 0.02 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
P7 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05
P8 0.05 0.00 0.22 0.10 0.10 0.19 0.00 0.06 0.27 0.09 0.60 0.16 0.17 0.02 0.01 0.00 0.05 0.06 0.00 0.07 0.09
P9 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
P10 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.13 0.00 0.00 0.17 0.00 0.13 0.00 0.00 0.18 0.00 0.00 0.00 0.06
P11 0.00 0.00 0.00 0.15 0.03 0.00 0.00 0.00 0.10 0.09 0.00 0.09 0.40 0.24 0.01 0.23 0.15 0.23 0.45 0.19 0.04
P12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.20 0.07
P13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.34 0.11 0.00 0.00 0.00 0.84 0.00 0.35 0.62 0.00 0.22
other 0.45 0.16 0.01 0.20 0.25 0.12 0.23 0.13 0.04 0.07 0.10 0.20 0.17 0.44 0.06 0.10 0.06 0.06 0.07 0.02 0.04

Table 7: Correlation ratio (η) between the existence of a category and the average score of character
appropriateness among ten annotators.

5 Eval 2: Relations between categories
and character appropriateness

The second evaluation is for revealing the charac-
terizing effects of each category.

5.1 Preparation: Assessing character
appropriateness of utterances

For each of the 2000 utterances collected in Sec-
tion 4.1, we asked ten annotators (A5–14, listed
in Table 4) to assess the appropriateness of the
utterances as those uttered by particular charac-
ters. The assessment was done on a five-point
scale from 1 (very inappropriate; seeming like a
different character’s utterance) to 5 (very appro-
priate; expressing the character’s typical linguistic
characteristics).

5.2 Evaluation method

To evaluate the relationships between the cate-
gories of linguistic peculiarities and linguistic ap-
propriateness for the given characters, we calcu-
lated the correlation ratio (η) between the exis-
tence of a category and the average score of char-
acter appropriateness among ten annotators. We
consider that a high correlation ratio between the
existence of a category and the score of character
appropriateness tells us how effectively the cate-
gory invokes humans’ perceptions of the linguistic

style of a particular character. We use correlation
ratio because it can be applied to calculate correla-
tion between categorical data (nominal scale) and
interval scale, i.e., the categories of linguistic pe-
culiarities and the average score of character ap-
propriateness in this case. To be precise, the score
of character appropriateness in a five-point scale is
not an interval scale but an ordinal scale. However,
we treat the five-point scale as an interval scale for
convenience.

5.3 Results

The correlation ratios between the existence of the
categories and the average scores of character ap-
propriateness among ten annotators are shown in
Table 7. The correlation ratios are shown by char-
acter and the top three η values of each character
are written in bold.

When considering all characters, category P2
(dialectical or distinctive wordings) showed the
best correlation ratio, P13 (character sentence-end
particles) was the second, and P1 (personal pro-
nouns) was the third. As for P2, since it ranked in
the top three categories for 11 of 20 characters, we
consider that using dialectical or distinctive word-
ings is the most general and effective way of char-
acterizing utterances.

In addition to these top three categories across
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all characters, we consider that P4 (sentence-end
expressions) is an important characteristic of hu-
man characters because it ranked in the top three
categories for seven of ten human characters. Al-
though P4 did not show as high a correlation ratio
as the other categories as a whole, we consider that
it has a strong effect on characterizing utterances,
especially for human characters.

As for non-human characters, P11 (symbols)
showed a comparatively high correlation ratio in
addition to the categories mentioned above. We
suppose that symbols such as exclamation marks
and emoticons are used as an easy and effective
way of characterizing utterances, especially when
handling non-human characters.

Overall, we found that most of our 13 categories
of characters’ linguistic peculiarities contribute to
character appropriateness to some extent. In other
words, most of the categories had some effect on
characterizing the utterances of Japanese fictional
characters.

Note that there are possibilities that the score of
character appropriateness is affected by other fac-
tors than the existence of a category—such as the
capability of a character creator’s use of linguis-
tic expressions that belong to our proposed cate-
gories, or a particular annotator’s like or dislike of
a particular category of linguistic expressions. To
reduce such possibilities as much as we can, we
used various characters and utilized various anno-
tators, which are listed in Tables 2 and 4 respec-
tively, and refrained from making conclusions of
this evaluation by only looking at the result of a
single character or a single annotator.

6 Conclusion and future work

With the aim of developing a natural language
generator that can express a particular character’s
linguistic style, we analyzed the linguistic pecu-
liarities of Japanese fictional characters. Our con-
tributions are as follows:

• We presented comprehensive categories of the
linguistic peculiarities of Japanese fictional
characters.

• We revealed the relationships between our pro-
posed categories of linguistic peculiarities
and the linguistic appropriateness for the
characters.

These contributions are supported by the exper-
imental results, which show that our proposed cat-

egories cover around 90% of the linguistic pecu-
liarities of 17 Japanese fictional characters (around
88% when we include actual human characters)
and that the character appropriateness scores and
the existence of our categories of linguistic pecu-
liarities are correlated to some extent.

As future work, we intend to develop a natu-
ral language generator that can express the lin-
guistic styles of particular characters on the basis
of the 13 categories presented in this paper. To
this end, we are first going to build a system that
has 13 kinds of modules to convert linguistic ex-
pressions, such as a module to convert utterances
without honorifics into those with honorifics (cor-
responds to category P3), a module to convert ut-
terances without relaxed pronunciations into those
with relaxed pronunciations (corresponds to cate-
gory P6), and so on, and that can combine arbi-
trary kinds of modules to express various linguis-
tic styles. After we build such a generator, we will
evaluate its performance in the characterization of
dialogue system utterances.
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Abstract

Understanding situated dialogue requires
identifying referents in the environment to
which the dialogue participants refer. This
reference resolution problem, often in a
complex environment with high ambigu-
ity, is very challenging. We propose an
approach that addresses those challenges
by combining learned semantic structure
of referring expressions with dialogue his-
tory into a ranking-based model. We eval-
uate the new technique on a corpus of
human-human tutorial dialogues for com-
puter programming. The experimental re-
sults show a substantial performance im-
provement over two recent state-of-the-art
approaches. The proposed work makes a
stride toward automated dialogue in com-
plex problem-solving environments.

1 Introduction

The content of a situated dialogue is very closely
related to the environment in which it happens
(Grosz and Sidner, 1986). As dialogue systems
move toward assisting users in increasingly com-
plex tasks, these systems must understand users’
language within the environment of the tasks. To
achieve this goal, dialogue systems must perform
reference resolution, which involves identifying
the referents in the environment that the user refers
to (Iida et al., 2010; Liu et al., 2014; Liu and Chai,
2015; Chai et al., 2004). Imagine a dialogue sys-
tem that assists a novice student in solving a pro-
gramming problem. To understand a question or
statement the student poses, such as, “Should I use
the 2 dimensional array?”, the system must link
the referring expression “the 2 dimensional array”
to an object1 in the environment.

1The word “object” has a technical meaning within the
domain of object-oriented programming, which is the domain

This process is illustrated in Figure 1, which
shows an excerpt from a corpus of tutorial dia-
logue situated in an introductory computer pro-
gramming task in the Java programming language.
The arrows link referring expressions in the sit-
uated dialogue to their referents in the environ-
ment. To identify the referent of each referring
expression, it is essential to capture the semantic
structure of the referring expression of the object
it refers to, such as “the 2 dimensional array” con-
tains two attributes, “2 dimensional” and “array”.
At the same time, the dialogue history and the his-
tory of user task actions (such as editing the code)
play a key role. To disambiguate the referent of
“my array”, temporal information is needed: in
this case, the referent is a variable named arra,
which is an array that the student has just created.

Reference resolution in situated dialogue is
challenging because of the ambiguity inherent
within dialogue utterances and the complexity of
the environment. Prior work has leveraged dia-
logue history and task history information to im-
prove the accuracy of reference resolution (Iida et
al., 2010; Iida et al., 2011; Funakoshi et al., 2012).
However, these prior approaches have employed
relatively simple semantic information from the
referring expressions, such as a manually created
lexicon, or have operated within an environment
with a limited set of pre-defined objects. Besides
reference resolution in situated dialogue, there is
also a research direction in which machine learn-
ing models are used to learn the semantics of
noun phrases in order to map noun phrases to ob-
jects in a related environment (Kennington and
Schlangen, 2015; Liang et al., 2009; Naim et al.,
2014; Kushman et al., 2014). However, these prior
approaches operated at the granularity of single

of the corpus utilized in this work. However, we follow the
standard usage of “object” in situated dialogue (Iida et al.,
2010), which for programming is any portion of code in the
environment.
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Tutor: 
Tutor: 
 
… 

 
 
Tutor: 
… 
 
 
Student: 
 
Tutor: 
 
Student: 

table = new int[10][5]; 
that is where they initialize the size of the 2 
dimensional array 

… 

[student adds line of code: 
arra = new int[s.length()];] 

great! 
… 
[student adds line of code: 
new2=Integer.parseInt(parse1);] 

does my array look like it is set up correctly 
now 
umm...... in the for loop, what should you be 
storing in the array? 

:) 
 

	

                        
 
        setTitle("Postal Code Generator"); 
        setDefaultCloseOperation(EXIT_ON_CLOSE); 
        setVisible(true); 
        
        table = new int[10][5]; 
        initTable(); 
    } 
 
    /** 
     * Extract the individual digits stored in the ZIP code 
     * and store their values as private data 
     */ 
    private void extractDigits() { 
  //You must complete this method!! 
     String s = Integer.toString(zipCode); 
     String parse1; 
     Char num; 
     int arra[]; 
     int new2; 
     arra = new int[s.length()]; 
      
     for(int i=0, i<s.length(); i++) 
     { 
      num=s.charAt(i); 
      parse1=""+num; 
      new2=Integer.parseInt(parse1); 
      arra[i]=num; 
     } 
      

Dialogue and task history Environment 

Figure 1 Excerpt of tutorial dialogue illustrating reference resolution. Referring expressions are shown
in bold italics.2

spoken utterances not contextualized within a dia-
logue history, and they too focus on environments
with a limited number (and a pre-defined set) of
objects. As this paper demonstrates, these prior
approaches do not perform well in situated dia-
logues for complex problem solving, in which the
user creates, modifies, and removes objects from
the environment in unpredictable ways.

To tackle the problem of reference resolu-
tion in this type of situated dialogue, we pro-
pose an approach that combines semantics from
a conditional-random-field-based semantic parser
along with salient features from dialogue history
and task history. We evaluate this approach on
the JavaTutor corpus, a corpus of textual tutorial
dialogue collected within an online environment
for computer programming. The results show that
our approach achieves substantial improvement
over two existing state-of-the-art approaches, with
existing approaches achieving 55.2% accuracy at
best, and the new approach achieving 68.5% accu-
racy.

2Typos and syntactic errors are shown as they appear in
the original corpus.

2 Related Work

The work in this paper is informed by research in
coreference resolution for text as well as reference
resolution in situated dialogue and multi-modal
environments. This section describes related work
in those areas.

The classic reference resolution problem for
discourse aims to resolve coreference relation-
ships within a given text (Martschat and Strube,
2015; McCarthy and Lehnert, 1995; Soon et al.,
2001). Effective approaches for discourse cannot
be directly applied to the problem of linking re-
ferring expressions to their referents in a rich situ-
ated dialogue environment, because the informa-
tion embedded within the environment plays an
important role in understanding the referring rela-
tionships in the situated dialogue. Our approach
combines referring expressions’ semantic infor-
mation along with dialogue history, task history,
and a representation of the environment in which
the dialogue is situated.

Reference resolution in dialogue has been in-
vestigated in recent years. Some of the previous
work focuses on reference resolution in a multi-
modal setting (Chai et al., 2004; Liu et al., 2014;
Liu et al., 2013; Krishnamurthy and Kollar, 2013;
Matuszek et al., 2012). For this problem re-
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searchers have used multimodal information, in-
cluding vision, gestures, speech, and eye gaze, to
contribute to the problem of reference resolution.
Given that the focus of these works is on employ-
ing rich multimodal information, the research is
usually conducted on a limited number of objects,
and typically uses spatial relationship between ob-
jects as constraints to solve the reference resolu-
tion problem. We conduct reference resolution in
an environment with a dynamic number of refer-
ents and there is no obvious spatial relationship
between the objects.

More closely related work to our own involves
reference resolution in dialogue situated within a
collaborative game (Iida et al., 2010; Iida et al.,
2011; Funakoshi et al., 2012). To link referring
expressions to one of the seven gamepiece ob-
jects, they encoded dialogue history and task his-
tory, and our proposed approach leverages these
features as well. However, in contrast to our com-
plex problem-solving domain of computer pro-
gramming, their domain has a small number of
possible referents, so they used a manually cre-
ated lexicon to extract semantic information from
referring expressions. Funakoshi et al. (2012)
went further, using Bayesian networks to model
the relationship between referents and words used
in referring expressions. That model is based on
a hand-crafted concept dictionary and distribution
over different referents. This approach cannot be
directly applied to a dialogue with a dynamic en-
vironment because it is not possible to manually
define the distribution over all possible referents
beforehand, since objects in the environment are
not known before they are created. So we chose
Iida et al.’s work (2010) as one of the two most
recent approaches to compare with.

Another closely related research direction in-
volves reference resolution in physical environ-
ments (Kennington and Schlangen, 2015; Kush-
man et al., 2014; Naim et al., 2014; Liang et al.,
2009). Although not within situated dialogue per
se (because only one participant speaks), these
lines of investigation have produced approaches
that link natural language noun phrases to objects
in an environment, such as a set of objects of dif-
ferent type and color on a table (Kennington and
Schlangen, 2015) or a variable in a mathemati-
cal formula (Kushman et al., 2014). Some of
these learn the mapping relationship by learning
the semantics of words in the referring expressions

(Kennington and Schlangen, 2015; Liang et al.,
2009) with referring expression-referent pairs as
input. Most recently, Kennington and Schlangen
(2015) used a word-as-classifier approach to learn
word semantics to map referring expressions to a
set of 36 Pentomino puzzle pieces on a table. We
implement their word-as-classifier approach and
compare it with our novel approach.

3 Reference Resolution Approach

This section describes a new approach to refer-
ence resolution in situated dialogue. It links each
referring expression from the dialogue to a most
likely referent object in the environment. Our ap-
proach involves three main steps. First, referring
expressions from the situated dialogue are seg-
mented and labeled according to their semantic
structure. Using a semantic segmentation and la-
beling approach we have previously developed (Li
and Boyer, 2015), we use a conditional random
field (CRF) for this joint segmentation and label-
ing task, and the values of the labeled attributes
are then extracted (Section 3.1). The result of
this step is learned semantics, which are attributes
of objects expressed within each referring expres-
sion. Then, these learned semantics are utilized
within the novel approach reported in this paper.
As Section 3.2 describes, dialogue and task history
are used to filter the objects in the environment to
build a candidate list of referents, and then as Sec-
tion 3.3 describes, a ranking-based classification
approach is used to select the best matching refer-
ent.

For situated dialogue we define Et as the state
of the environment at time t. Et consists of all
objects present in the environment. Importantly,
the objects in the environment vary along with the
dialogue: at each moment, new objects could be
created (|Et| > |Et−1|), and existing objects could
be removed (|Et| < |Et−1|) because of the task
performed by the user.

Et = {oi|oi is an object in the environment at time t}

We assume that all of the objects oi are observ-
able in the environment. For example, in situ-
ated dialogues about programming, we can find
all of the objects and extract their attributes using
a source code parser. Then, reference resolution
is defined as finding a best-matching oi in Et for
referring expression RE.
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3.1 Referring Expression Semantic
Interpretation

In situated dialogues, a referring expression may
contain rich semantic information about the ref-
erent, especially when the context of the situated
dialogue is complex. Approaches such as domain-
specific lexicons are limited in their ability to ad-
dress this complexity, so we utilize a linear-chain
CRF to parse the semantic structure of the refer-
ring expression. This more automated approach
can also potentially avoid the manual labor re-
quired in creating and maintaining a lexicon.

In this approach, every object within the envi-
ronment must be represented according to its at-
tributes. We treat the set of all possible attributes
of objects as a vector, and for each object oi in
the environment we instantiate and populate an at-
tribute vector Att V eci. For example, the attribute
vector for a two-dimensional array in a computer
program could be [CATEGORY = ‘array, DIMEN-
SION = ‘2, LINE = ‘30, NAME = ‘table, ...]. We
ultimately represent Et = {oi} as the set of all
attribute vectors Att V eci, and for a referring ex-
pression we aim to identify Att V ecj , the actual
referent.

Since a referring expression describes its refer-
ents either implicitly or explicitly, the attributes
expressed in it should match the attributes of its
referent. We segment referring expressions and la-
bel the semantics of each segment using the CRF
and the result is a set of segments, each of which
represents some attribute of its referent. This pro-
cess is illustrated in (Figure 2 (a)). After segment-
ing and labeling attributes in the referring expres-
sions, the attribute values are extracted from each
semantic segment using regular expressions (Fig-
ure 2 (b)), e.g., value 2 is extracted from 2 di-
mensional to fill in the ARRAY DIM element in an
empty Att V ec. The result is an attribute vector
that represents the referring expression.

3.2 Generating a List of Candidate Referents

Once the referring expression is represented as an
object attribute vector as described above, we wish
to link that vector to the closest-matching object
in the environment. Each object is represented by
its own attribute vector, and there may be a large
number of objects in Et. Given a referring expres-
sion Rk, we would like to trim the list to keep only
those objects that are likely to be referent for Rk.

There are two desired criteria for generating the

Figure 2 Semantic interpretation of referring ex-
pressions.

list of candidate referents. First, the actual ref-
erent must be in the candidate list. At the same
time, the candidate list should be as short as pos-
sible. We can pare down the set of all objects
in Et by considering focus of attention in dia-
logue. Early approaches performed reference res-
olution by estimating each dialogue participant’s
focus of attention (Lappin and Leass, 1994; Grosz
et al., 1995). According to Ariel’s accessibility
theory (Ariel, 1988), people tend to use more pre-
cise descriptions such as proper names in refer-
ring expressions for referents in long term mem-
ory, and use less precise descriptions such as pro-
nouns for referents in short term memory. In a
precise description, there is more semantic infor-
mation, while in a more vague description like a
pronoun, there is less semantic information. Thus,
these two sources of information, semantics and
focus of attention, work together in identifying a
referent.

Our approach employs this idea in the process
of candidate referent selection by tracking the fo-
cus of attention of the dialogue participants from
the beginning of the dialogue through dialogue
history and task history, as has been done in prior
work we use for comparison within our experi-
ments (Iida et al., 2010). We also use the learned
semantics of the referring expression (represented
as the referring expression’s attribute vector) as fil-
tering conditions to select candidates.

The candidate generation process consists of
three steps.

1. Candidate generation from dialogue history
DH .

DH =< Od, Td >

Here, Od =< o1
d, o

2
d, ..., o

m
d > is a se-

quence of objects that were mentioned since
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the beginning of the dialogue. Td =<
t1d, t

2
d, ..., t

m
d > is a sequence of timestamps

when corresponding objects were mentioned.
All of the objects in Et that were ever men-
tioned in the dialogue history, {oi|oi ∈
DH & oi ∈ Et}, will also be added into the
candidate list.

2. Candidate generation from task history TH .
Similarly, TH =< Ob, Tb >, which is all of
the objects in Et that were ever manipulated
by the user, will be added into the candidate
list.

3. Candidate generation using learned seman-
tics, which are the referent’s attributes. Given
a set of attributes extracted from a referring
expression, all objects in Et with one of the
same attribute values will be added into the
candidate list. The attributes are considered
separately to avoid the case in which a single
incorrectly extracted attribute could rule out
the correct referent. Table 1 shows the algo-
rithm used in this step.

Given a referring expression Rk, whose at-
tribute vector Att V eck has been extracted.
for each element atti of Att V eck

if atti is not null
for each o in Et

if atti == o.atti
add o into candidate list Ck

Table 1 Algorithm to select candidates using
learned semantics

3.3 Ranking-based classification

With the list of candidate referents in hand, we em-
ploy a ranking-based classification model to iden-
tify the most likely referent. Ranking-based mod-
els have been shown to perform well for refer-
ence resolution problems in prior work (Denis and
Baldridge, 2008; Iida et al., 2010). For a given
referring expression Rk and its candidate referent
list Ck = {o1, o2, ..., oNk

}, in which each oi is an
object identified as a candidate referent, we com-
pute the probability of each candidate oi being the
true referent of Rk, p(Rk, oi) = f(Rk, oi), where
f is the classification function. (Note that our ap-
proach is classifier-agnostic. As we describe in

Section 5, we experimented with several differ-
ent models.) Then, the candidates are ranked by
p(Rk, oi), and the object with the highest proba-
bility is taken as the referent of Rk.

4 Corpus

Human problem solving represents a highly com-
plex domain that poses great challenges for refer-
ence resolution. We evaluate our new reference
resolution approach on a corpus of human-human
textual dialogue in the domain of computer pro-
gramming (Boyer et al., 2011). In each dialogue,
a human tutor assisted a student remotely using
typed dialogue as the student completed given
programming tasks in the Java programming lan-
guage. The programming tasks involved array ma-
nipulation and control flow, which are challenging
for students with little programming experience.
Students’ and tutors’ view of the task were syn-
chronized in real time. At the beginning of each
problem-solving session students were provided a
framework of code to fill in, which is around 200
lines initially. The corpus contains 45 tutoring ses-
sions, 4857 utterances in total, 108 utterances for
each session on average. We manually annotated
the referring expressions in the dialogue and their
referents in the corresponding Java code for six
dialogues from the corpus (346 referring expres-
sions). These six sessions contain 758 utterances.
The dialogues focus on the details of solving the
programming problems, with very little social or
off-task talk. Figure 1 shows an excerpt of this
dialogue.

5 Experiments & Result

To evaluate the new approach, we performed a set
of experiments that compare our approach with
two state-of-the-art approaches.

5.1 Semantic Parsing

The referring expressions were extracted from the
tutorial dialogues and their semantic segments and
labels were manually annotated. A linear-chain
CRF was trained on that data and used to per-
form referring expression segmentation and label-
ing (Li and Boyer, 2015). The current paper re-
ports the first use of that learned semantics ap-
proach for reference resolution.

Next, we proceeded to extract the attribute val-
ues, a step that our previous work did not address.
For the example shown in Figure 2 (b), from the
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learned semantic structure, we may know that 2
dimensional refers to the dimension of the array,
the attribute ARRAY DIM. (In the current domain
there are 14 attributes that comprise the generic
attribute vector V , such as ARRAY DIM, NUM,
and CATEGORY.) To actually extract the attribute
values, we use regular expressions that capture our
three types of attribute values: categorical, nu-
meric, and strings. For example, the value type
of CATEGORY is categorical, like method or vari-
able. Its values are taken from a closed set. NAME
has values that are strings. LINE NUMBER’s
value is numeric. For categorical attributes, we
add the categorical attribute values into the se-
mantic tag set of the CRF used for segmenta-
tion. In this way, the attribute values of categori-
cal attributes will be generated by the CRF. For at-
tributes with text string values, we take the whole
surface string of the semantic segment as its at-
tribute value. The accuracy of the entire seman-
tic parsing pipeline is 93.2% using 10-fold cross-
validation. The accuracy is defined as the percent-
age of manually labeled attribute values that were
successfully extracted from referring expressions.

5.2 Candidate Referent Generation

We applied the approach described in Section 3.2
on each session to generate a list of candidate ref-
erents for each referring expression. In a program,
there could be more than one appearance of the
same object. We take all of the appearances of
the same object to be the same, since they all re-
fer to the same artifact in the program. The aver-
age number of generated candidates for each refer-
ring expression was 44.8. The percentage of refer-
ring expressions whose actual referents were in the
generated candidate list, or ’“hit rate” is 90.5%,
based on manual tagging. This performance in-
dicates that the candidate referent list generation
performs well.

A referring expression could be a pronoun,
such as “it” or “that”, which does not contain at-
tribute information. In previous reference reso-
lution research, it was shown that training sep-
arate models for different kinds of referring ex-
pressions could improve performance (Denis and
Baldridge, 2008). We follow this idea and split the
dataset into two groups: referring expressions con-
taining attributes, REatt, (270 referring expres-
sions), and referring expressions that do not con-
tain attributes, REnon (76 referring expressions).

The candidate generation approach performed
better for the referring expressions without at-
tributes (hit rate 94.7%), compared to referring ex-
pressions with attributes (hit rate 89.3%). Since
the candidate list for referring expressions without
attributes relies solely on dialogue and task his-
tory, 94.7% of those referents had been mentioned
in the dialogue or manipulated by the user previ-
ously. For referring expressions with attribute in-
formation, the generation of the candidate list also
used learned semantic information. Only 70.0% of
those referents had been mentioned in the dialogue
or manipulated by the user before.

5.3 Identifying Most Likely Referent

We applied the approach described in section 3.3
to perform reference resolution on the corpus of
tutorial dialogue. The data from the six manually
labeled Java tutoring sessions were split into a
training set and a test set. We used leave-one-
dialogue-out cross validation (which leads to six
folds) for the reference resolution experiments. In
each fold, annotated referring expressions from
one of the tutoring sessions were taken as the test
set, and data from the other five sessions were
the training set. We tested logistic regression,
decision tree, naive Bayes, and neural networks
as classifiers to compute the p(Rk, oi) for each
(referring expression, candidate) pair for the
ranking-based model. The features provided to
each classifier are shown in Table 2.

To evaluate the performance of the new ap-
proach, we compare against two other recent ap-
proaches. First, we compare against a ranking-
based model that uses dialogue history and task
history features (Iida et al., 2010). This model
uses semantics from a domain-specific lexicon in-
stead of a semantic parser. (As described in Sec-
tion 2, their work was extended by Funakoshi et
al. (2012), but that work relies upon a handcrafted
probability distribution of referents to concepts,
which is not feasible in our domain since it has
no fixed set of possible referents.) Therefore, we
compare against their 2010 approach, implement-
ing it in a way that creates the strongest possible
baseline: we built a lexicon directly from our man-
ually labeled semantic segments. First, we split all
of the semantic segments into groups by their tags.
Then, for each group of segments, any token that
appeared twice or more was added into the lexi-
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Learned Semantic Features (SF)
SF1: whether RE has CATEGORY attribute

SF2: whether RE.CATEGORY == o.CATEGORY

SF3: whether RE has RE.NAME

SF4: whether RE.NAME == o.NAME

SF5: RE.NAME ≈ o.NAME

SF6: RE.VAR TYPE exist

SF7: RE.VAR TYPE == o.VAR TYPE

SF8: RE.LINE NUMBER exist

SF9: RE.LINE NUMBER == o.LINE NUMBER

SF10: RE.ARRAY DIMENSION exist

SF11: RE.ARRAY DIMENSION ==
o.ARRAY DIMENSION

SF12: CATEGORY of o

Dialogue History (DH) Features
DH1: whether o is the latest mentioned object

DH2: whether o was mentioned in the last 30 seconds

DH3: whether o was mentioned in the last [30, 60] seconds

DH4: whether o was mentioned in the last [60, 180] sec-
onds

DH5: whether o was mentioned in the last [180, 300] sec-
onds

DH6: whether o was mentioned in the last [300, 600] sec-
onds

DH7: whether o was mentioned in the last [600, infinite]
seconds

DH8: whether o was never mentioned from the beginning

DH9: String matching between o and RE

Task History (TH) Features
TH1: whether o is the most recent object manipulated

TH2: whether o was manipulated in the last 30 seconds

TH3: whether o was manipulated in the last [30, 60] sec-
onds

TH4: whether o was manipulated in the last [60, 180] sec-
onds

TH5: whether o was manipulated in the last [180, 300]
seconds

TH6: whether o was manipulated in the last [300, 600]
seconds

TH7: whether o was manipulated in the last [600, infinite]
seconds

TH8: whether o was never manipulated from the beginning

TH9: whether o is in the current working window

Table 2 Features used for segmentation and label-
ing.

con. Although the necessary data to do this would
not be available in a real application of the tech-
nique, it ensures that the lexicon for the baseline
condition has good coverage and creates a high
baseline for our new approach to compare against.
Additionally, for fairness of comparison, for each

semantic feature used in our model, we extracted
the same feature using the lexicon. There were
three kinds of attribute values in the domain: cat-
egorical, string, and numeric (as described in Sec-
tion 5.1). We extracted categorical attribute values
using the appearance of tokens in the lexicon. We
used regular expressions to determine whether a
referring expression contains the name of a candi-
date referent. We also used regular expressions to
extract attribute values from referring expressions,
such as line number. We also provided the Iida
baseline model (2010) with a feature to indicate
string matching between referring expressions and
candidate referents, since this feature was captured
in our model as an attribute.

We also compared our approach against a
very recent technique that leveraged a word-as-
classifier approach to learn semantic compatibility
between referring expressions and candidate ref-
erents (Kennington and Schlangen, 2015). To
create this comparison model we used a word-as-
classifier to learn the semantics of referring ex-
pressions instead of CRF. This weakly supervised
approach relies on co-appearance between words
and object’s attributes. We then used the resulting
semantic compatibility in a ranking-based model
to select the most likely referent.

The three conditions for our experiment are as
follows.

• Iida Baseline Condition: Features including
dialogue history, task history, and semantics
from a handcrafted lexicon (Iida et al.,
2010).

• Kennington Baseline Condition: Features
including dialogue history, task history,
and learned semantics from a word-
as-classifier model (Kennington and
Schlangen, 2015).

• Proposed approach: Features including dia-
logue history, task history, and learned se-
mantics from CRF.

Within each of these experimental conditions,
we varied the classifier used to compute p(Rk, oi),
testing four classifiers: logistic regression (LR),
decision tree (DT), naive Bayes (NB), and neural
network (NN). The neural network has one hidden
layer and the best-performing number of percep-
trons was 100 (we experimented between 50 and
120).
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To measure the performance of the reference
resolution approaches, we analyzed accuracy, de-
fined to be the percent of referring expressions
that were successfully linked to their referents.
We chose accuracy for our metric following stan-
dard practice (Iida et al., 2010; Kennington and
Schlangen, 2015) because it provides an overall
measure of the number of (Rk, oi) pairs that were
correctly identified. For the rare cases in which
one referring expression referred to multiple refer-
ents, the output referent of the algorithm was taken
as correct if it selected any of the multiple refer-
ents.

The results are shown in Table 3. We focus on
comparing the results on referring expressions that
contain attribute information, shown in the table
as REFATT . REFATT accounts for 78% of all
of the cases (270 out of 346). Among the three
approaches, our proposed approach outperformed
both prior approaches. Compared to the Iida 2010
approach which achieved a maximum of 55.2%
accuracy, our approach achieved 68.5% accuracy
using a neural net classifier, and this difference
is statistically significant based on the results of
a Wilcoxon signed-rank test (n = 6; p = 0.046).
Our approach outperformed the Kennington 2015
approach even more substantially, as its best per-
formance was 46.3% accuracy (p = 0.028). Intu-
itively, the better performance of our model com-
pared to the Iida approach is due to its ability to
more accurately model referring expressions’ se-
mantics. Compared to a lexicon, semantic parsing
finds optimal segmentation for a referring expres-
sion, while a lexicon approach extracts different
attribute information from referring expressions
separately. Note that our approach and the Iida
2010 approach achieved the same performance on
REFNON referring expressions. Since these re-
ferring expressions do not contain attribute infor-
mation, these two approaches used the same set of
features.

Interestingly, the model using a word-as-
classifier approach to learn the semantic compati-
bility between referring expressions and referent’s
attributes performs the worst. We believe that the
reason for this poor performance is mainly from
the way it performs semantic compositions. It
cannot learn structures in referring expressions,
such as that 2 dimensional is a segment, dimen-
sional represents the type of the attribute, and 2 is
the value of the attribute. The word-as-classifier

model cannot deal with this complex semantic
composition.

The results reported above relied on learned se-
mantics. We also performed experiments using
manually labeled, gold-standard semantics of re-
ferring expressions. The result in Table 4 shows
that ranking-based models have the potential to
achieve a considerably better result, 73.6%, with
more accurate semantic information. Given the
85.3% agreement between two human annotators,
the model performs very well, since the semantics
of whole utterances in situated dialogue also play a
very important role in identifying a given referring
expression’s referent.

experimental
condition

f(Rk, oi)
classi-
fier

accuracy

REFATT REFNON

LR 0.500 0.440
Iida DT 0.537 0.453
2010 NB 0.466 0.413

NN 0.552 0.373
LR 0.4627 0.3867

Kennington DT 0.3769 0.3333
2015 NB 0.3209 0.4000

NN 0.4216 0.4000
LR 0.631 0.440

Our DT 0.631 0.453
approach NB 0.493 0.413

NN 0.685 0.373

Table 3 Reference resolution results.

models accuracy
REFATT REFNON

LR + SEM gold 0.684 0.429
DT + SEM gold 0.643 0.429
NB + SEM gold 0.511 0.377
NN + SEM gold 0.736 0.325

Table 4 Reference resolution results with gold se-
mantic labels.

6 Conclusion

Dialogue systems need to move toward supporting
users in increasingly complex tasks. To do this ef-
fectively, accurate reference resolution is crucial.
We have presented a new approach that applies
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learned semantics to reference resolution in situ-
ated dialogue for collaborative tasks. The exper-
iments with human-human dialogue on a collab-
orative programming task showed a tremendous
improvement using semantic information that was
learned with a CRF-based semantic parsing ap-
proach compared to the previous state-of-art ap-
proaches. The accuracy was improved substan-
tially, from 55.2% to 68.5%.

There are several important future research di-
rections in reference resolution for situated dia-
logues. First, models should incorporate more se-
mantic information from discourse structure and
utterance understanding besides semantics from
referring expressions. This is illustrated by the
observation that the reference resolution accuracy
using gold-standard semantic information from re-
ferring expressions is still substantially lower than
the agreement rate between human annotators.
Another research direction that holds promise is
to use an unsupervised approach to extract seman-
tic information from referring expressions. It is
hoped that this line of investigation will enable
rich natural language dialogue interactions to sup-
port users in a wide variety of complex situated
tasks.
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Maiorano, Steven J.. 2001. Text and Knowledge
Minding for Coreference Resolution. Proceedings
of the second meeting of the North American Chap-
ter of the Association for Computational Linguistics
on Language technologies. (NAACL-HLT ), 1-8.

Heeman, Peter a. and Hirst, Graeme. 1995. Collab-
orating on Referring Expressions. Computational
Linguistics, 21, 351-382.

Huwel, Sonja and Wrede, Britta. 2006. Spon-
taneous Speech Understanding for Robust Multi-
modal Human-robot Communication. Proceedings
of the COLING/ACL, 391-398.

Iida, Ryu and Kobayashi, Shumpei and Tokunaga,
Takenobu. 2010. Incorporating Extra-linguistic In-
formation into Reference Resolution in Collabora-
tive Task Dialogue. Proceedings of the 48th Annual

337



Meeting of the Association for Computational Lin-
guistics, 1259-1267.

Iida, Ryu and Yasuhara, Masaaki and Tokunaga,
Takenobu. 2011. Multi-modal Reference Reso-
lution in Situated Dialogue by Integrating Linguis-
tic and Extra-Linguistic Clues. Proceedings of the
5th International Joint Conference on Natural Lan-
guage Processing (IJCNLP 2011), 84-92.

Kennington, Casey and Schlangen, David. 2015. Sim-
ple Learning and Compositional Application of Per-
ceptually Grounded Word Meanings for Incremental
Reference Resolution. Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing, 292-301.

Krishnamurthy, Jayant and Kollar, Thomas. 2013.
Jointly Learning to Parse and Perceive: Connecting
Natural Language to the Physical World. Associa-
tion for Computational Linguistics, 193-206.

Kruijff, Geert-Jan M and Lison, Pierre and Benjamin,
Trevor. 2010. Situated dialogue processing for
human-robot interaction. Cognitive Systems Mono-
graphs, 8, 311-364.

Kushman, Nate and Artzi, Yoav and Zettlemoyer, Luke
and Barzilay, Regina. 2014. Learning to Automat-
ically Solve Algebra Word Problems. Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics, 271-281.

Lappin, Shalom and Leass, Herbert J.. 1994. An Algo-
rithm for Pronominal Anaphora Resolution. Com-
putational Linguistics, 535-561.

Li, Xiaolong and Boyer, Kristy Elizabeth. 2015. Se-
mantic Grounding in Dialogue for Complex Prob-
lem Solving. Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics and Human Language
Technology (NAACL HLT), 841-850.

Liang, Percy and Jordan, Michael I and Klein, Dan.
2009. Learning Semantic Correspondences with
Less Supervision. Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, 91–99.

Liu, Changsong and Chai, Joyce Y. 2015. Learning to
Mediate Perceptual Differences in Situated Human-
Robot Dialogue. Proceedings of AAAI 2015, 2288-
2294.

Liu, Changsong and She, Lanbo and Fang, Rui and
Chai, Joyce Y. 2014. Probabilistic Labeling for
Efficient Referential Grounding Based On Collab-
orative Discourse. Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), 13-18.

Liu, Changsong and Fang, Rui and She, Lanbo and
Chai, Joyce. 2013. Modeling Collaborative Refer-
ring for Situated Referential Grounding. Proceed-
ings of the 14th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, 78–86.

Manning, Christopher D and Bauer, John and Finkel,
Jenny and Bethard, Steven J. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit.
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, 55-60.

Martschat, Sebastian and Strube, Michael. 2015. La-
tent Structures for Coreference Resolution. Trans-
actions of the Association for Computational Lin-
guistics, 3, 405-418.

Matuszek, Cynthia and FitzGerald, Nicholas and
Zettlemoyer, Luke and Liefeng, Bo and Fox, Di-
eter. 2012. A Joint Model of Language and Per-
ception for Grounded Attribute Learning. Proceed-
ings of the 29th International Conference on Ma-
chine Learning, 1671-1678.

McCarthy, Joseph F. and Lehnert, Wendy G.. 1995.
Using Decision Trees for Coreference Resolution.
Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI), 1-5.

Naim, I and Song, Yc and Liu, Q and Kautz, H and
Luo, J and Gildea, D. 2014. Unsupervised Align-
ment of Natural Language Instructions with Video
Segments. Proceedings of AAAI 2014, 1558-1564.

Ponzetto, Simone Paolo and Strube, Michael. 2006.
Exploiting Semantic Role Labeling, WordNet and
Wikipedia for Coreference Resolution. Proceedings
of the Main Conference on Human Language Tech-
nology Conference of the North American Chap-
ter of the Association of Computational Linguistics,
192-199.

Soon, Wee Meng and Ng, Hwee Tou and Lim, Daniel
Chung Yong. 2001. Incorporating Extra-linguistic
Information into Reference Resolution in Collabora-
tive Task Dialogue. Computational Linguistics, 27,
521-544.

VanLehn, Kurt and Jordan, P W and Rosé, C P and
Bhembe, D and Bottner, M and Gaydos, A and
Makatchev, M and Pappuswamy, U and Ringenberg,
M and Roque, A. 2002. The Architecture of Why2-
Atlas: A Coach for Qualitative Physics Essay Writ-
ing. Proceedings of the Sixth International Confer-
ence on Intelligent Tutoring System, 2363, 158-167.

338



Proceedings of the SIGDIAL 2016 Conference, pages 339–349,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

Training an adaptive dialogue policy for interactive learning of visually
grounded word meanings

Yanchao Yu
Interaction Lab

Heriot-Watt University
y.yu@hw.ac.uk

Arash Eshghi
Interaction Lab

Heriot-Watt University
a.eshghi@hw.ac.uk

Oliver Lemon
Interaction Lab

Heriot-Watt University
o.lemon@hw.ac.uk

Abstract

We present a multi-modal dialogue sys-
tem for interactive learning of perceptually
grounded word meanings from a human
tutor. The system integrates an incremen-
tal, semantic parsing/generation frame-
work - Dynamic Syntax and Type Theory
with Records (DS-TTR) - with a set of vi-
sual classifiers that are learned through-
out the interaction and which ground the
meaning representations that it produces.
We use this system in interaction with a
simulated human tutor to study the ef-
fects of different dialogue policies and ca-
pabilities on accuracy of learned mean-
ings, learning rates, and efforts/costs to the
tutor. We show that the overall perfor-
mance of the learning agent is affected by
(1) who takes initiative in the dialogues;
(2) the ability to express/use their confi-
dence level about visual attributes; and (3)
the ability to process elliptical and incre-
mentally constructed dialogue turns. Ulti-
mately, we train an adaptive dialogue pol-
icy which optimises the trade-off between
classifier accuracy and tutoring costs.

1 Introduction

Identifying, classifying, and talking about objects
or events in the surrounding environment are key
capabilities for intelligent, goal-driven systems
that interact with other agents and the external
world (e.g. robots, smart spaces, and other auto-
mated systems). To this end, there has recently
been a surge of interest and significant progress
made on a variety of related tasks, including gen-
eration of Natural Language (NL) descriptions of
images, or identifying images based on NL de-
scriptions (Karpathy and Fei-Fei, 2014; Bruni et

Figure 1: Example dialogues & interactively
agreed semantic contents.
al., 2014; Socher et al., 2014; Farhadi et al., 2009;
Silberer and Lapata, 2014; Sun et al., 2013).

Our goal is to build interactive systems that can
learn grounded word meanings relating to their
perceptions of real-world objects – this is differ-
ent from previous work such as e.g. (Roy, 2002),
that learn groundings from descriptions without
any interaction, and more recent work using Deep
Learning methods (e.g. (Socher et al., 2014)).

Most of these systems rely on training data of
high quantity with no possibility of online error
correction. Furthermore, they are unsuitable for
robots and multimodal systems that need to con-
tinuously, and incrementally learn from the envi-
ronment, and may encounter objects they haven’t
seen in training data. These limitations are likely
to be alleviated if systems can learn concepts, as
and when needed, from situated dialogue with hu-
mans. Interaction with a human tutor also enables
systems to take initiative and seek the particular
information they need or lack by e.g. asking ques-
tions with the highest information gain (see e.g.
(Skocaj et al., 2011), and Fig. 1). For example, a
robot could ask questions to learn the colour of a
“square” or to request to be presented with more
“red” things to improve its performance on the
concept (see e.g. Fig. 1). Furthermore, such sys-
tems could allow for meaning negotiation in the
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form of clarification interactions with the tutor.
This setting means that the system must be

trainable from little data, compositional, adaptive,
and able to handle natural human dialogue with
all its glorious context-sensitivity and messiness
– for instance so that it can learn visual concepts
suitable for specific tasks/domains, or even those
specific to a particular user. Interactive systems
that learn continuously, and over the long run from
humans need to do so incrementally, quickly, and
with minimal effort/cost to human tutors.

In this paper, we first outline an implemented
dialogue system that integrates an incremental, se-
mantic grammar framework, especially suited to
dialogue processing – Dynamic Syntax and Type
Theory with Records (DS-TTR1 (Kempson et al.,
2001; Eshghi et al., 2012)) with visual classi-
fiers which are learned during the interaction, and
which provide perceptual grounding for the ba-
sic semantic atoms in the semantic representations
(Record Types in TTR) produced by the parser
(see Fig. 1, Fig. 2 and section 3).

We then use this system in interaction with a
simulated human tutor, to test hypotheses about
how the accuracy of learned meanings, learning
rates, and the overall cost/effort for the human tu-
tor are affected by different dialogue policies and
capabilities: (1) who takes initiative in the dia-
logues; (2) the agent’s ability to utilise their level
of uncertainty about an object’s attributes; and
(3) their ability to process elliptical as well as in-
crementally constructed dialogue turns. The re-
sults show that differences along these dimensions
have significant impact both on the accuracy of the
grounded word meanings that are learned, and the
processing effort required by the tutors.

In section 4.3 we train an adaptive dialogue
strategy that finds a better trade-off between clas-
sifier accuracy and tutor cost.

2 Related work

In this section, we will present an overview of vi-
sion and language processing systems, as well as
multi-modal systems that learn to associate them.
We compare them along two main dimensions: Vi-
sual Classification methods: offline vs. online and
the kinds of representation learned/used.
Online vs. Offline Learning. A number of im-
plemented systems have shown good performance
on classification as well as NL-description of

1Download from http://dylan.sourceforge.net

novel physical objects and their attributes, either
using offline methods as in (Farhadi et al., 2009;
Lampert et al., 2014; Socher et al., 2013; Kong et
al., 2013), or through an incremental learning pro-
cess, where the system’s parameters are updated
after each training example is presented to the sys-
tem (Furao and Hasegawa, 2006; Zheng et al.,
2013; Kristan and Leonardis, 2014). For the inter-
active learning task presented here, only the latter
is appropriate, as the system is expected to learn
from its interactions with a human tutor over a pe-
riod of time. Shen & Hasegawa (2006) propose
the SOINN-SVM model that re-trains linear SVM
classifiers with data points that are clustered to-
gether with all the examples seen so far. The clus-
tering is done incrementally, but the system needs
to keep all the examples so far in memory. Kristian
& Leonardis (2014), on the other hand, propose
the oKDE model that continuously learns categor-
ical knowledge about visual attributes as probabil-
ity distributions over the categories (e.g. colours).
However, when learning from scratch, it is unre-
alistic to predefine these concept groups (e.g. that
red, blue, and green are colours). Systems need to
learn for themselves that, e.g. colour is grounded
in a specific sub-space of an object’s features. For
the visual classifiers, we therefore assume no such
category groupings here, and instead learn individ-
ual binary classifiers for each visual attribute (see
section 3.1 for details).

Distributional vs. Logical Representations.
Learning to ground natural language in percep-
tion is one of the fundamental problems in Arti-
ficial Intelligence. There are two main strands of
work that address this problem: (1) those that learn
distributional representations using Deep Learn-
ing methods: this often works by projecting vector
representations from different modalities (e.g. vi-
sion and language) into the same space in order
to be able to retrieve one from the other (Socher
et al., 2014; Karpathy and Li, 2015; Silberer and
Lapata, 2014); (2) those that attempt to ground
symbolic logical forms, obtained through seman-
tic parsing (Tellex et al., 2014; Kollar et al., 2013;
Matuszek et al., 2014) in classifiers of various en-
tities types/events/relations in a segment of an im-
age or a video. Perhaps one advantage of the latter
over the former method, is that it is strictly com-
positional, i.e. the contribution of the meaning of
an individual word, or semantic atom, to the whole
representation is clear, whereas this is hard to say
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about the distributional models. As noted, our
work also uses the latter methodology, though it is
dialogue, rather than sentence semantics that we
care about. Most similar to our work is probably
that of Kennington & Schlangen (2015) who learn
a mapping between individual words - rather than
logical atoms - and low-level visual features (e.g.
colour-values) directly. The system is composi-
tional, yet does not use a grammar (the composi-
tions are defined by hand). Further, the ground-
ings are learned from pairings of object references
in NL and images rather than from dialogue.

What sets our approach apart from others is:
a) that we use a domain-general, incremental se-
mantic grammar with principled mechanisms for
parsing and generation; b) Given the DS model
of dialogue (Eshghi et al., 2015), representations
are constructed jointly and interactively by the tu-
tor and system over the course of several turns
(see Fig. 1); c) perception and NL-semantics are
modelled in a single logical formalism (TTR); d)
we effectively induce an ontology of atomic types
in TTR, which can be combined in arbitrarily
complex ways for generation of complex descrip-
tions of arbitrarily complex visual scenes (see e.g.
(Dobnik et al., 2012) and compare this with (Ken-
nington and Schlangen, 2015), who do not use a
grammar and therefore do not have logical struc-
ture over grounded meanings).

3 System Architecture

We have developed a system to support an
attribute-based object learning process through
natural, incremental spoken dialogue interaction.
The architecture of the system is shown in Fig. 2.
The system has two main modules: a vision mod-
ule for visual feature extraction, classification, and
learning; and a dialogue system module using DS-
TTR. Below we describe these components indi-
vidually and then explain how they interact.

3.1 Attribute-based Classifiers used

Yu et. al (2015a; 2015b) point out that neither
multi-label classification models nor ‘zero-shot’
learning models show acceptable performance on
attribute-based learning tasks. Here, we instead
use Logistic Regression SVM classifiers with
Stochastic Gradient Descent (SGD) (Zhang, 2004)
to incrementally learn attribute predictions.

All classifiers will output attribute-based label
sets and corresponding probabilities for novel un-

seen images by predicting binary label vectors.
We build visual feature representations to learn
classifiers for particular attributes, as explained in
the following subsections.

3.1.1 Visual Feature Representation
In contrast to previous work (Yu et al., 2015a;
Yu et al., 2015b), to reduce feature noise through
the learning process, we simplify the method of
feature extraction consisting of two base feature
categories, i.e. the colour space for colour at-
tributes, and a ‘bag of visual words’ for the object
shapes/class.

Colour descriptors, consisting of HSV colour
space values, are extracted for each pixel and then
are quantized to a 16×4×4 HSV matrix. These de-
scriptors inside the bounding box are binned into
individual histograms. Meanwhile, a bag of vi-
sual words is built in PHOW descriptors using a
visual dictionary (that is pre-defined with a hand-
made image set). These visual words will be
calculated using 2x2 blocks, a 4-pixel step size,
and quantized into 1024 k-means centres. The
feature extractor in the vision module presents a
1280-dimensional feature vector for a single train-
ing/test instance by stacking all quantized features,
as shown in Figure 2.

3.2 Dynamic Syntax and Type Theory with
Records

Dynamic Syntax (DS) a is a word-by-word incre-
mental semantic parser/generator, based around
the Dynamic Syntax (DS) grammar framework
(Cann et al., 2005) especially suited to the frag-
mentary and highly contextual nature of dialogue.
In DS, dialogue is modelled as the interactive and
incremental construction of contextual and seman-
tic representations (Eshghi et al., 2015). The con-
textual representations afforded by DS are of the
fine-grained semantic content that is jointly nego-
tiated/agreed upon by the interlocutors, as a re-
sult of processing questions and answers, clar-
ification requests, corrections, acceptances, etc.
We cannot go into any further detail due to lack
of space, but proceed to introduce Type Theory
with Records, the formalism in which the DS
contextual/semantic representations are couched,
but also that within which perception is modelled
here.

Type Theory with Records (TTR) is an ex-
tension of standard type theory shown to be use-
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Figure 2: Architecture of the teachable system

ful in semantics and dialogue modelling (Cooper,
2005; Ginzburg, 2012). TTR is particularly well-
suited to our problem here as it allows information
from various modalities, including vision and lan-
guage, to be represented within a single semantic
framework (see e.g. Larsson (2013); Dobnik et al.
(2012) who use it to model the semantics of spatial
language and perceptual classification).

In TTR, logical forms are specified as record
types (RTs), which are sequences of fields of the
form [ l : T ] containing a label l and a type T . RTs
can be witnessed (i.e. judged true) by records of
that type, where a record is a sequence of label-
value pairs [ l = v ]. We say that [ l = v ] is of type
[ l : T ] just in case v is of type T .

R1 :

 l1 : T1
l2=a : T2
l3=p(l2) : T3

 R2 :
[

l1 : T1
l2 : T2′

]
R3 : []

Figure 3: Example TTR record types

Fields can be manifest, i.e. given a singleton
type e.g. [ l : Ta ] where Ta is the type of which
only a is a member; here, we write this using the
syntactic sugar [ l=a : T ]. Fields can also be de-
pendent on fields preceding them (i.e. higher) in
the record type (see Fig. 3).

The standard subtype relation v can be defined
for record types: R1 v R2 if for all fields [ l : T2 ]
in R2, R1 contains [ l : T1 ] where T1 v T2. In Fig-
ure 3, R1 v R2 if T2 v T2′ , and both R1 and R2 are
subtypes of R3. This subtyping relation allows se-
mantic information to be incrementally specified,
i.e. record types can be indefinitely extended with
more information/constraints. For us here, this
is a key feature since it allows the system to en-

code partial knowledge about objects, and for this
knowledge (e.g. object attributes) to be extended
in a principled way, as and when this information
becomes available.

3.3 Integration
Fig. 2 shows how the various parts of the system
interact. At any point in time, the system has ac-
cess to an ontology of (object) types and attributes
encoded as a set of TTR Record Types, whose in-
dividual atomic symbols, such as ‘red’ or ‘square’
are grounded in the set of classifiers trained so far.

Given a set of individuated objects in a scene,
encoded as a TTR Record, the system can utilise
its existing ontology to output a Record Type
which maximally characterises the scene (see e.g.
Fig. 1). Dynamic Syntax operates over the same
representations, they provide a direct interface be-
tween perceptual classification and semantic pro-
cessing in dialogue: this representation acts not
only as (1) the non-linguistic (here, visual) context
of the dialogue for the resolution of e.g. definite
reference and indexicals (see (Hough and Purver,
2014)); but also as (2) the logical database from
which the system can generate utterances (descrip-
tions), ask, or answer questions about the objects -
Fig. 4 illustrates how the semantics of the answer
to a question is retrieved from the visual context
through unification (this uses the standard sub-
type checking operation within TTR).

Conversely, for concept learning, the DS-TTR
parser incrementally produces Record Types (RT),
representing the meaning jointly established by
the tutor and the system so far. In this domain,
this is ultimately one or more type judgements, i.e.
that some scene/image/object is judged to be of a
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Figure 4: Question Answering by the system

particular type, e.g. in Fig. 1 that the individuated
object, o1 is a red square. These jointly negoti-
ated type judgements then go on to provide train-
ing instances for the classifiers. In general, the
training instances are of the form, 〈O,T 〉, where
O is an image/scene segment (an object or TTR
Record), and T , a record type. T is then decom-
posed into its constituent atomic types T1 . . . Tn,
s.t.
∧

Ti = T - where
∧

is the so called meet
operation corresponding to type conjunction. The
judgements O : Ti are then used directly to train
the classifiers that ground the Ti.

4 Experimental Setup

As noted in the introduction, interactive systems
that learn continuously, and over the long run from
humans need to do so incrementally; as quickly as
possible; and with as little effort/cost to the human
tutor as possible. In addition, when learning takes
place through dialogue, the dialogue needs to be
as human-like/natural as possible.

In general, there are several different dialogue
capabilities and policies that a concept-learning
agent might adopt, and these will lead to differ-
ent outcomes for the accuracy of the learned con-
cepts/meanings, learning rates, and cost to the tu-
tor – with trade-offs between these. Our goal in
this paper is therefore an experimental study of
the effect of different dialogue policies and capa-
bilities on the overall performance of the learn-
ing agent, which, as we describe below is a mea-
sure capturing the trade-off between accuracy of
learned meanings and the cost of tutoring.

Design. We use the dialogue system outlined
above to carry out our main experiment with a
2 × 2 × 2 factorial design, i.e. with three fac-
tors each with two levels. Together, these fac-
tors determine the learner’s dialogue behaviour:
(1) Initiative (Learner/Tutor): determines who
takes initiative in the dialogues. When the tu-
tor takes initiative, s/he is the one that drives the
conversation forward, by asking questions to the
learner (e.g. “What colour is this?” or “So this
is a ....” ) or making a statement about the at-
tributes of the object. On the other hand, when
the learner has initiative, it makes statements, asks
questions, initiates topics etc. (2) Uncertainty
(+UC/-UC): determines whether the learner takes
into account, in its dialogue behaviour, its own
subjective confidence about the attributes of the
presented object. The confidence is the proba-
bility assigned by any of its attribute classifiers
of the object being a positive instance of an at-
tribute (e.g. ‘red’) - see below for how a confi-
dence threshold is used here. In +UC, the agent
will not ask a question if it is confident about the
answer, and it will hedge the answer to a tutor
question if it is not confident, e.g. “T: What is
this? L: errm, maybe a square?”. In -UC, the
agent always takes itself to know the attributes of
the given object (as given by its currently trained
classifiers), and behaves according to that assump-
tion. (3) Context-Dependency (+CD/-CD): de-
termines whether the learner can process (pro-
duce/parse) context-dependent expressions such
as short answers and incrementally constructed
turns, e.g. “T: What is this? L: a square”, or “T:
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Figure 5: Example dialogues in different conditions

So this one is ...? L: red/a circle”. This setting can
be turned off/on in the DS-TTR dialogue model.

Tutor Simulation and Policy To run our experi-
ment on a large-scale, we have hand-crafted an In-
teractive Tutoring Simulator, which simulates the
behaviour of a human tutor2. The tutor policy is
kept constant across all conditions. Its policy is
that of an always truthful, helpful and omniscient
one: it (1) has complete access to the labels of
each object; and (2) always acts as the context of
the dialogue dictates: answers any question asked,
confirms or rejects when the learner describes an
object; and (3) always corrects the learner when it
describes an object erroneously.

Dependent Measures We now go on to describe
the dependent measures in our experiment, i.e. that
of classifier accuracy/score, tutoring cost, and the
overall performance measure which combines the
former two measures.

Confidence Threshold To determine when the
agent takes themselves to be confident in an at-
tribute prediction, we use confidence-score thresh-
olds. It consists of two values, a base threshold
(e.g. 0.5) and a positive threshold (e.g. 0.9).

If the confidences of all classifiers are under the
base threshold (i.e. the learner has no attribute la-
bel that it is confident about), the agent will ask
for information directly from the tutor via ques-
tions (e.g. “L: what is this?”).

On the other hand, if one or more classifiers
score above the base threshold, then the positive
threshold is used to judge to what extent the agent

2The experiment involves hundreds of dialogues, so run-
ning this experiment with real human tutors has proven too
costly at this juncture, though we plan to do this for a full
evaluation of our system in the future.

trusts its prediction or not. If the confidence score
of a classifier is between the positive and base
thresholds, the learner is not very confident about
its knowledge, and will check with the tutor, e.g.
“L: is this red?”. However, if the confidence score
of a classifier is above the positive threshold, the
learner is confident enough in its knowledge not to
bother verifying it with the tutor. This will lead to
less effort needed from the tutor as the learner be-
comes more confident about its knowledge. How-
ever, since a learning agent that has high confi-
dence about a prediction will not ask for assistance
from the tutor, a low positive threshold would re-
duce the chances that allow the tutor to correct the
learner’s mistakes. We therefore tested different
fixed values for the confidence threshold and this
determined a fixed 0.5 base threshold and a 0.9
positive threshold were deemed to be the most ap-
propriate values for an interactive learning process
- i.e. these values preserved good classifier accu-
racy while not requiring much effort from the tutor
- see below Section 4.3 for how an adaptive pol-
icy was learned that adjusts the agent’s confidence
threshold dynamically over time.

4.1 Evaluation Metrics
To test how the different dialogue capabilities and
strategies affect the learning process, we consider
both the cost to the tutor and the accuracy of the
learned meanings, i.e. the classifiers that ground
our colour and shape concepts.

Cost The cost measure reflects the effort needed
by a human tutor in interacting with the sys-
tem. Skocaj et. al. (2009) point out that a com-
prehensive teachable system should learn as au-
tonomously as possible, rather than involving the
human tutor too frequently. There are several pos-
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Table 1: Tutoring Cost Table
Cin f Cack Ccrt Cparsing Cproduction

1 0.25 1 0.5 1

sible costs that the tutor might incur, see Table 1:
Cin f refers to the cost of the tutor providing infor-
mation on a single attribute concept (e.g. “this is
red” or “this is a square”); Cack is the cost for a
simple confirmation (like “yes”, “right”) or rejec-
tion (such as “no”); Ccrt is the cost of correction
for a single concept (e.g. “no, it is blue” or “no, it
is a circle”). We associate a higher cost with cor-
rection of statements than that of polar questions.
This is to penalise the learning agent when it confi-
dently makes a false statement – thereby incorpo-
rating an aspect of trust in the metric (humans will
not trust systems which confidently make false
statements). And finally, parsing (Cparse) as well
as production (Cproduction) costs for tutor are taken
into account: each single word costs 0.5 when
parsed by the tutor, and 1 if generated (produc-
tion costs twice as much as parsing). These exact
values are based on intuition but are kept constant
across the experimental conditions and therefore
do not confound the results reported below.

Learning Performance As mentioned above,
an efficient learner dialogue policy should con-
sider both classification accuracy and tutor effort
(Cost). We thus define an integrated measure – the
Overall Performance Ratio (Rper f ) – that we use to
compare the learner’s overall performance across
the different conditions:

Rper f =
∆Acc
Ctutor

i.e. the increase in accuracy per unit of the cost, or
equivalently the gradient of the curve in Fig. 4c.
We seek dialogue strategies that maximise this.

Dataset The dataset used here is comprised of
600 images of single, simple handmade objects
with a white background (see Fig.1)3. There are
nine attributes considered in this dataset: 6 colours
(black, blue, green, orange, purple and red) and 3
shapes (circle, square and triangle), with a relative
balance on the number of instances per attribute.

4.2 Evaluation and Cross-validation
In each round, the system is trained using 500
training instances, with the rest set aside for test-

3All data from this paper will be made freely available.

ing. For each training instance, the system inter-
acts (only through dialogue) with the simulated
tutor. Each dialogue about an object ends either
when both the shape and the colour of the object
are discussed and agreed upon, or when the learner
requests to be presented with the next image (this
happens only in the Learner initiative conditions).
We define a Learning Step as comprised of 10
such dialogues. At the end of each learning step,
the system is tested using the test set (100 test in-
stances).

This process is repeated 20 times, i.e. for 20
rounds/folds, each time with a different, random
500-100 split, thus resulting in 20 data-points for
cost and accuracy after every learning step. The
values reported below, including those on the plots
in Fig. 6a, 6b and 6c, correspond to averages
across the 20 folds.

4.3 Learning an Adaptive Policy for a
Dynamic Confidence Threshold

In the experiment presented above, the learning
agent’s positive confidence threshold was held
constant, at 0.9. However, since the confidence
threshold itself becomes more reliable as the agent
is exposed to more training instances, we further
hypothesised that a threshold that changes dynam-
ically over time should lead to a better trade-off

between classification accuracy and cost for the
tutor, i.e. a better Overall Performance Ratio (see
above). For example, lower positive thresholds
may be more appropriate at the later stages of
training when the agent is already performing well
with attribute classifiers which are more reliable.
This leads to different dialogue behaviours, as the
learner takes different decisions as it encounters
more training examples.

To test this hypothesis we further trained and
evaluated an adaptive policy that adjusts the learn-
ing agent’s confidence threshold as it interacts
with the tutor (in the +UC conditions only).
This optimization used a Markov Decision Pro-
cess (MDP) model and Reinforcement Learning4,
where: (1) the state space was determined by vari-

4A reviewer points out that one can handle uncertainty
in a more principled way, possibly with better results, using
POMDPs. Another reviewer points out that the policy learned
is only adapting the confidence threshold, and not the other
conditions (uncertainty, initiative, context-dependency). We
point out that we are addressing both of these limitations in
work in progress, where we feed each classifier’s outputted
confidence level as a continuous feature in a (continuous
space) MDP for full dialogue control.
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(a) Accuracy (b) Tutoring Cost

(c) Overall Performance

Figure 6: Evolution of Learning Performance

ables for the number of training instances seen so
far, and the agent’s current confidence threshold
(2) the actions were either to increase or decrease
the confidence threshold by 0.05, or keep it the
same; (3) the local reward signal was directly
proportional to the agent’s Overall Performance
Ratio over the previous Learning Step (10 train-
ing instances, see above); and (4) the SARSA al-
gorithm (Sutton and Barto, 1998) was chosen for
learning, with each episode defined as a complete
run through the 500 training instances.

5 Results

Fig. 5 shows example interactions between the
learner and the tutor in some of the experimental
conditions. Note how the system is able to deal
with (parse and generate) utterance continuations
as in T+UC+CD, short answers as in L+UC+CD,
and polar answers as in T + UC + CD.

Fig. 6a and 6b plot the progression of aver-
age Accuracy and (cumulative) Tutoring Cost for
each of the 8 conditions in our main experiment,

as the system interacts over time with the tutor
about each of the 500 training instances. The
ninth curve in red (L+UC(Adaptive)+CD) shows
the same for the learning agent with a dynamic
confidence threshold using the policy trained us-
ing Reinforcement Learning (section 4.3) - the lat-
ter is only compared below to the dark blue curve
(L+UC+CD). As noted in passing, the vertical
axes in these graphs are based on averages across
the 20 folds - recall that for Accuracy the system
was tested, in each fold, at every learning step, i.e.
after every 10 training instances.

Fig. 6c, on the other hand, plots Accuracy
against Tutoring Cost directly. Note that it is to
be expected that the curves should not terminate
in the same place on the x-axis since the different
conditions incur different total costs for the tutor
across the 500 training instances. The gradient of
this curve corresponds to increase in Accuracy per
unit of the Tutoring Cost. It is the gradient of the
line drawn from the beginning to the end of each
curve (tan(β) on Fig. 4c) that constitutes our main
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evaluation measure of the system’s overall perfor-
mance in each condition, and it is this measure for
which we report statistical significance results:

A between-subjects Analysis of Variance
(ANOVA) shows significant main effects of Ini-
tiative (p < 0.01; F = 448.33), Uncertainty
(p < 0.01; F = 206.06) and Context-Dependency
(p < 0.05; F = 4.31) on the system’s over-
all performance. There is also a significant
Initiative×Uncertainty interaction (p < 0.01; F =

194.31).
Keeping all other conditions constant

(L+UC+CD), there is also a significant main
effect of Confidence Threshold type (Con-
stant vs. Adaptive) on the same measure
(p < 0.01; F = 206.06). The mean gradient of the
red, adaptive curve is actually slightly lower than
its constant-threshold counter-part blue curve -
discussed below.

6 Discussion

Tutoring Cost As can be seen on Fig. 6b, the cu-
mulative cost for the tutor progresses more slowly
when the learner has initiative (L) and takes its
confidence into account in its behaviour (+UC) -
the grey, blue, and red curves. This is so because a
form of active learning is taking place: the learner
only asks a question about an attribute if it isn’t
confident enough already about that attribute. This
also explains the slight decrease in the gradients
of the curves as the agent is exposed to more and
more training instances: its subjective confidence
about its own predictions increases over time, and
thus there is progressively less need for tutoring.

Accuracy On the other hand, the L+UC curves
(grey and blue) on Fig. 6a show the slowest in-
crease in accuracy and flatten out at about 0.76.
This is because the agent’s confidence score in the
beginning is unreliable as the agent has only seen
a few training instances: in many cases it doesn’t
query the tutor or have any interaction whatsoever
with it and so there are informative examples that
it doesn’t get exposed to. In contrast to this, the
L+UC(adaptive)+CD curve (red) achieves much
better accuracy.

Comparing the gradients of the curves on Fig.
6c shows that the overall performance of the agent
on the gradient measure is significantly better than
others in the L+UC conditions (recall the signif-
icant Initiative × Uncertainty interaction). How-
ever, while the agent with an adaptive thresh-

old (red/L+UC(adaptive)+CD) achieves slightly
lower overall gradient than its constant threshold
counter-part (blue/L+UC+CD), it achieves much
higher Accuracy overall, and does this much faster
in the first 1000 units of cost (roughly the total
cost in L+UC+CD condition). We therefore con-
clude that the adaptive policy is more desirable.
Finally, the significant main effect of Context-
Dependency on the overall performance is ex-
plained by the fact in the +CD conditions, the
agent is able to process context-dependent and
incrementally constructed turns, leading to less
repetition, shorter dialogues, and therefore better
overall performance.

7 Conclusion and Future work

We have presented a multi-modal dialogue system
that learns grounded word meanings from a hu-
man tutor, incrementally, over time, and employs
a dynamic dialogue policy (optimised using Rein-
forcement Learning). The system integrates a se-
mantic grammar for dialogue (DS), and a logical
theory of types (TTR), with a set of visual classi-
fiers in which the TTR semantic representations
are grounded. We used this implemented sys-
tem to study the effect of different dialogue poli-
cies and capabilities on the overall performance
of a learning agent - a combined measure of ac-
curacy and cost. The results show that in order
to maximise its performance, the agent needs to
take initiative in the dialogues, take into account
its changing confidence about its predictions, and
be able to process natural, human-like dialogue.

Ongoing work further uses Reinforcement
Learning to learn complete, incremental dialogue
policies, i.e. which choose system output at the
lexical level (Eshghi and Lemon, 2014). To deal
with uncertainty this system takes all the classi-
fiers’ outputted confidence levels directly as fea-
tures in a continuous space MDP.
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Abstract

Much of the user-generated content on so-
cial media is provided by ordinary people
telling stories about their daily lives. We
develop and test a novel method for learn-
ing fine-grained common-sense knowl-
edge from these stories about contingent
(causal and conditional) relationships be-
tween everyday events. This type of
knowledge is useful for text and story un-
derstanding, information extraction, ques-
tion answering, and text summarization.
We test and compare different methods for
learning contingency relation, and com-
pare what is learned from topic-sorted
story collections vs. general-domain sto-
ries. Our experiments show that us-
ing topic-specific datasets enables learning
finer-grained knowledge about events and
results in significant improvement over the
baselines. An evaluation on Amazon Me-
chanical Turk shows 82% of the relations
between events that we learn from topic-
sorted stories are judged as contingent.

1 Introduction

The original idea behind scripts as introduced by
Schank was to capture knowledge about the fine-
grained events of everyday experience, such as
opening a fridge enabling preparing food, or the
event of getting out of bed being triggered by
an alarm going off (Schank and Abelson, 1977;
Mooney and DeJong, 1985) This idea has moti-
vated previous work exploring whether common-
sense knowledge about events can be learned from
text, however, only a few learn from data other
than newswire (Hu et al., 2013; Manshadi et
al., 2008; Beamer and Girju, 2009). News ar-
ticles (obviously) cover newsworthy topics such

Camping Trip

We packed all our things on the night before Thu (24
Jul) except for frozen food. We brought a lot of things
along. We woke up early on Thu and JS started packing
the frozen marinatinated food inside the small cooler... In
the end, we decided the best place to set up the tent was
the squarish ground that’s located on the right. Prior to
setting up our tent, we placed a tarp on the ground. In
this way, the underneaths of the tent would be kept clean.
After that, we set the tent up.

Storm

I don’t know if I would’ve been as calm as I was without
the radio, as the hurricane made landfall in Galveston at
2:10AM on Saturday. As the wind blew, branches thud-
ded on the roof or trees snapped, it was helpful to pinpoint
the place... A tree fell on the garage roof, but it’s minor
damage compared to what could’ve happened. We then
started cleaning up, despite Sugar Land implementing a
curfew until 2pm; I didn’t see any policemen enforcing
this. Luckily my dad has a gas saw (as opposed to elec-
tric), so we helped cut up three of our neighbors’ trees.
I did a lot of raking, and there’s so much debris in the
garbage.

Figure 1: Excerpts of two stories in the blogs cor-
pus on the topics of Camping Trip and Storm.

as bombing, explosions, war and killing so the
knowledge learned is limited to those types of
events.

However, much of the user-generated content
on social media is provided by ordinary people
telling stories about their daily lives. These stories
are rich with common-sense knowledge. For ex-
ample, the Camping Trip story in Fig. 1 contains
implicit common-sense knowledge about contin-
gent (causal and conditional) relations between
camping-related events, such as setting up a tent
and placing a tarp. The Storm story contains im-
plicit knowledge about events such as the hurri-
cane made landfall, the wind blew, a tree fell. Our
aim is to learn fine-grained common-sense knowl-
edge about contingent relations between everyday
events from such stories. We show that the fine-
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grained knowledge we learn is simply not found
in publicly available narrative and event schema
collections (Chambers and Jurafsky, 2009; Bala-
subramanian et al., 2013).

Personal stories provide both advantages and
disadvantages for learning common-sense knowl-
edge about events. An advantage is that they tend
to be told in chronological order (Swanson and
Gordon, 2009), and temporal order between events
is a strong cue to contingency (Prasad et al., 2008;
Beamer and Girju, 2009). However, their structure
is more similar to oral narrative than to newswire
(Rahimtoroghi et al., 2014; Swanson et al., 2014).
Only about a third of the sentences in a personal
narrative describe actions,1 so novel methods are
needed to find useful relationships between events.

Another difference between our work and prior
research is that much of the work on narrative
schemas, scripts, or event schemas characterize
what is learned as “collections of events that tend
to co-occur”. Thus what is learned is not eval-
uated for contingency (Chambers and Jurafsky,
2008; Chambers and Jurafsky, 2009; Manshadi et
al., 2008; Nguyen et al., 2015; Balasubramanian
et al., 2013; Pichotta and Mooney, 2014). Histori-
cally, work on scripts explicitly modeled causality
(Lehnert, 1981; Mooney and DeJong, 1985) inter
alia. Our work is motivated by Penn Discourse
Treebank (PDTB) definition of CONTINGENCY

that has two types: CAUSE and CONDITION, and
is more similar to approaches that learn specific
event relations such as contingency or causality
(Hu et al., 2013; Do et al., 2011; Girju, 2003; Riaz
and Girju, 2010; Rink et al., 2010; Chklovski and
Pantel, 2004). Our contributions are as follows:

• We use a corpus of everyday events for learn-
ing common-sense knowledge focusing on
the contingency relation between events. We
first use a subset of the corpus including
general-domain stories. Next, we produce
a topic-sorted set of stories using a semi-
supervised bootstrapping method to learn
finer-grained knowledge. We use two dif-
ferent datasets to directly compare what is
learned from topic-sorted stories as opposed
to a general-domain story corpus (Sec. 2);

• We develop a new method for learning con-
tingency relations between events that is tai-
lored to the “oral narrative” nature of blog

1The other two thirds provide scene descriptions and de-
scriptions of the thoughts or feelings of the narrator.

stories. We apply Causal Potential (Beamer
and Girju, 2009) to model the contingency re-
lation between two events. We directly com-
pare our method to several other approaches
as baselines (Sec. 3). We also identify topic-
indicative contingent event pairs from our
topic-specific corpus that can be used as
building blocks for generating coherent event
chains and narrative schema for a particular
theme (Sec. 4.3);

• We conduct several experiments to evaluate
the quality of the event knowledge learned
in our work that indicate our results are con-
tingent and topic-related. We directly com-
pare the common-sense knowledge we learn
with the Rel-grams collection and show that
what we learn is not found in available cor-
pora (Sec. 4).

We release our contingent event pair collections
for each topic for future use of other research
groups 2.

2 A Corpus of Everyday Events

Our dataset is drawn from the Spinn3r corpus of
millions of blog posts (Burton et al., 2009; Gor-
don and Swanson, 2009; Gordon et al., 2012). We
hypothesize that personal stories are a valuable re-
source to learn common-sense knowledge about
relations between everyday events and that finer-
grained knowledge can be learned from topic-
sorted stories (Riaz and Girju, 2010) that share a
particular theme, so we construct two different sets
of stories:
General-Domain Set. We created a random
subset from the Spinn3r corpus from personal
blog domains: livejournal.com, wordpress.com,
blogspot.com, spaces.live.com, typepad.com, trav-
elpod.com. This set consists of 4,200 stories not
selected for any specific topic.
Topic-Specific Set. We produced a dataset by fil-
tering the corpus using a bootstrapping method
to create topic-specific sets for topics such as go-
ing camping, being arrested, going snorkeling or
scuba diving, visiting the dentist, witnessing a ma-
jor storm, and holiday activities associated with
Thanksgiving and Christmas (see Table 1).

We apply AutoSlog-TS, a semi-supervised
algorithm that learns narrative event-patterns
to bootstrap a collection of stories on the same

2https://nlds.soe.ucsc.edu/everyday events
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Topic Events

Camping
Trip

camp(), roast(dobj:marshmallow), hike(),
pack(), fish(), go(dobj:camp), grill(),
put(dobj:tent , prt:up), build(dobj:fire)

Storm restore(), lose(dobj:power), rescue(),
evacuate(), flood(), damage(), sustain(),
survive(), watch(dobj:storm)

Christmas
Holidays

open(dobj:present), wrap(), , celebrate()
sing(), play(), exchange(dobj:gift),
snow(), buy(), decorate(dobj:tree)

Snorkeling
and Scuba
Diving

see(dobj:fish), swim(), snorkel(),
sail(), surface(), dive(), dart(),
rent(dobj:equipment), enter(dobj:water),
see(dobj:turtle)

Table 1: Some topics and examples of their in-
dicative events.

theme (Riloff, 1996). These patterns, developed
for information extraction, search for the syntactic
constituent with the designated word as its head.
For example, consider the example in the first
row of Table 2: NP-Prep-(NP):CAMPING-IN. This
pattern looks for a Noun Phrase (NP) followed
by a Preposition (Prep) where the head of the NP
is CAMPING and the Prep is IN. Our algorithm
consists of the following steps for each topic:

1. Hand-labeling: We manually labeled a small
set (∼ 200-300) of stories on the topic.
2. Generating Event-Patterns: Given hand-
labeled stories on a topic (from Step 1), and a
random set of stories that are not relevant to that
topic, AutoSlog-TS learns a set of syntactic tem-
plates (case frame templates) that distinguish the
linguistic patterns characteristic of the topic from
the random set. For each pattern it generates fre-
quency and conditional probability which indicate
how strongly the pattern is associated with the
topic.

Table 2 shows examples of such patterns that we
have learned for two different topics. We call them
indicative event-patterns for each topic. Table 1
shows examples of the indicative event-patterns
for different topics. They are mapped to our event
representation described in Sec 3, e.g., the pattern
(subj)-ActVB-Dobj:WENT-CAMPING in Table 2 is
mapped to go(dobj:camp).
3. Parameter Tuning: We use the frequency
and probability generated by AutoSlog-TS and ap-
ply a threshold for filtering to select a subset of
indicative event-patterns strongly associated with
the topic. In this step we aim to find optimal val-

Topic Event-Pattern (Case Frame) Examples

Camping NP-Prep-(NP):CAMPING-IN
Trip NP-Prep-(NP):HIKE-TO

(subj)-ActVB-Dobj:WENT-CAMPING
NP-Prep-(NP):TENT-IN

Storm (subj)-ActVp-Dobj:LOST-POWER
(subj)-ActVp:RESTORED
(subj)-AuxVp-Dobj:HAVE-DAMAGE
(subj)-ActVp:EVACUATED

Table 2: Examples of narrative event-patterns
(case frames) learned from corpus.

ues for frequency and probability thresholds de-
noted as f-threshold and p-threshold respectively.
We divided the hand-labeled data from Step 1 into
train and development sets and designed a clas-
sifier based on our bootstrapping method: if the
number of event-patterns extracted from a post is
more than a certain number (n-threshold), it is la-
beled as positive and otherwise it is labeled as neg-
ative meaning that it is not related to the topic.
We repeated the classification for several combi-
nations of different values for each of the three pa-
rameters and measured the precision, recall and f-
measure. We selected the optimal values for the
thresholds that resulted in high precision (above
0.9) and average recall (around 0.4). We compro-
mised on a lower recall to achieve a high precision
to establish a highly accurate bootstrapping algo-
rithm. Since bootstrapping is performed on a large
set of stories, a low recall stills result in identifying
enough stories per topic.

4. Bootstrapping: We use the patterns learned
in previous steps as indicative event-patterns for
the topic. The bootstrapping algorithm processes
each story, using AutoSlog-TS to extract lexico-
syntactic patterns. Then it counts the indicative
event-patterns in the extracted patterns, and labels
the blog as a positive instance for that topic if the
count is above the n-threshold value for that topic.

The manually labeled dataset includes 361
Storm and 299 Camping Trip stories. After one
round of bootstrapping the algorithm identified
971 additional Storm and 870 more Camping Trip
stories. The bootstrapping method is not evaluated
separately, however, the results in Sec. 4.2 indicate
that using the bootstrapped data considerably im-
proves the accuracy of the contingency model and
enhances extracting topic-relevant event knowl-
edge.
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3 Learning Contingency Relation
between Narrative Events

In this section we describe our representation of
events in narratives and our methods for modeling
contingency relationship between events.

3.1 Event Representation

In previous work different representations have
been proposed for the event structure such as sin-
gle verb and verb with two or more arguments.
Verbs are used as a central indication of an event in
a narrative. However, other entities related to the
verb also play a strong role in conveying the mean-
ing of the event. In (Pichotta and Mooney, 2014) it
is shown that the multi-argument representation is
richer than the previous ones and is capable of cap-
turing interactions between multiple events. We
use a representation that incorporates the Particle
of the verb in the event structure in addition to the
Subject and the Direct Object and define an event
as a verb with its dependency relations as follows:

Verb Lemma (subj:Subject Lemma,
dobj:Direct Object Lemma, prt:Particle)

Table 3 shows example sentences describing an
event from the Camping topic along with their
event structure. The examples show how includ-
ing the arguments often change the meaning of an
event. In Row 1 the direct object and particle are
required to completely understand the event in this
sentence. Row 2 shows another example where
the verb have cannot implicate what event is hap-
pening and the direct object oatmeal is needed to
understand what has occurred in the story.

We parse each sentence and extract every verb
lemma with its arguments using Stanford depen-
dencies (Manning et al., 2014). For each verb, we
extract the nsubj, dobj, and prt dependency rela-
tions if they exist, and use their lemma in the event
representation. To generalize the event represen-
tations, we use the types identified by Stanford’s
Named Entity Recognizer and map each argument
to its named entity type if available, e.g., in Row
3 of Table 3, the Lost Valley River Campground
is represented by its type LOCATION. We use ab-
stract types for named entities such as PERSON,
ORGANIZATION, TIME and DATE. We also repre-
sent each pronoun by the abstract type PERSON,
e.g. Row 5 in Table 3.

# Sentence→ Event Representation

1 but it wasn’t at all frustrating putting up the tent and
setting up the first night→ put (dobj:tent, prt:up)

2 The next day we had oatmeal for breakfast
→ have (subj:PERSON, dobj:oatmeal)

3 by the time we reached the Lost River Valley Camp-
ground, it was already past 1 pm
→ reach (subj:PERSON, dobj:LOCATION)

4 then JS set up a shelter above the picnic table
→ set (subj:PERSON, dobj:shelter, prt:up)

5 once the rain stopped, we built a campfire using the
firewoods→ build (subj:PERSON, dobj:campfire)

Table 3: Event representation examples from
Camping Trip topic.

3.2 Causal Potential Method
We define a contingent event pair as a sequence of
two events (e1, e2) such that e1 and e2 are likely to
occur together in the given order and e2 is contin-
gent upon e1. We apply an unsupervised distribu-
tional measure called Causal Potential to induce
the contingency relation between two events.

Causal Potential (CP) was introduced
by Beamer and Girju (2009) as a way to
measure the tendency of an event pair to encode
a causal relation, where event pairs with high
CP have a higher probability of occurring in a
causal context. We calculate CP for every pair of
adjacent events in each topic-specific dataset. We
used a 2-skip bigram model which considers two
events to be adjacent if the second event occurs
within two or less events after the first one.

We use skip-2 bigram in order to capture the
fact that two related events may often be sepa-
rated by a non-essential event, because of the oral-
narrative nature of our data (Rahimtoroghi et al.,
2014). In contrast to the verbs that describe an
event (e.g., hike, climb, evacuate, drive), some
verbs describe private states such as as belong, de-
pend, feel, know. We filter out clauses that tend
to be associated with private states (Wiebe, 1990).
A pilot evaluation showed that this improves the
results.

Equation 1 shows the formula for calculating
Causal Potential of a pair consisting of two events:
(e1, e2). Here P denotes probability and P (e1 →
e2) is the probability of e2 occurring after e1 in
the adjacency window which is equal to 3 due to
the skip-2 bigram model. P (e2|e1) is the condi-
tional probability of e2 given that e1 has been seen
in the adjacency window. This is equivalent to the

353



Event-Bigram model described in Sec. 3.3.

CP (e1, e2) = log
P (e2|e1)
P (e2)

+ log
P (e1 → e2)
P (e2 → e1)

(1)
To calculate CP, we need to compute event

counts from the corpus and thus we need to define
when two events are considered equal. The sim-
plest approach is to define two events to be equal
when their verb and arguments exactly match.
However, with a close look at the data this ap-
proach does not seem adequate. For example, con-
sider the following events:

go (subj:PERSON, dobj:camp)
go (subj:family, dobj:camp)
go (dobj:camp)

They encode the same action although their rep-
resentations do not exactly match and differ in
the subject. Our intuition is that when we
count the number of events represented as go

(subj:PERSON, dobj:camp) we should also in-
clude the count of go (dobj:camp). To be able
to generalize over the event structure and take into
account these nuances, we consider two events to
be equal if they have the same verb lemma and
share at least one argument other than the subject.

3.3 Baseline Methods

Our previous work on modeling contingency re-
lations in film scripts data compared Causal Po-
tential to methods used in previous work: Bigram
event models (Manshadi et al., 2008) and Point-
wise Mutual Information (PMI) (Chambers and
Jurafsky, 2008) and the evaluations showed that
CP obtains better results (Hu et al., 2013). In this
work, we use CP for inducing contingency rela-
tion between events and apply three other models
as baselines for comparison:
Event-Unigram. This method will produce a dis-
tribution of normalized frequencies for events.
Event-Bigram. We calculate the bigram proba-
bility of every pair of adjacent events using skip-2
bigram model using the Maximum Likelihood Es-
timation (MLE) from our datasets:

P (e2|e1) =
Count(e1, e2)

Count(e1)
(2)

Event-SCP. We use the Symmetric Conditional
Probability between event tuples (Rel-grams) used

Label Rel-gram Tuples

Contingent & Strongly Relevant 7 %
Contingent & Somewhat Relevant 0 %
Contingent & Not Relevant 35 %

Total Contingent 42 %

Table 4: Evaluation of Rel-gram tuples on AMT.

in (Balasubramanian et al., 2013) as another base-
line method. The Rel-gram model is the most rele-
vant previous work to our method and outperforms
the previous state of the art on generating narrative
event schema. This metric combines bigram prob-
ability considering both directions:

SCP (e1, e2) = P (e2|e1)× P (e1|e2) (3)

Like Event-Bigram, we used MLE for estimating
Event-SCP from the corpus.

4 Evaluation Experiments

We conducted three sets of experiments to evalu-
ate different aspects of our work. First, we com-
pare the content of our topic-specific event pairs
to current state of the art event collections to show
that the fine-grained knowledge we learned about
everyday events does not exist in previous work
focused on the news genre. Second, we run an au-
tomatic evaluation test, modeled after the COPA
task (Roemmele et al., 2011), on a held-out test set
to evaluate the event pair collections that we have
extracted from both General-Domain and Topic-
Specific datasets, in terms of contingency rela-
tions. We hypothesize that the contingent event
pairs can be used as basic elements for generating
coherent event chains and narrative schema. So, in
the third part of the experiments, we extract topic-
indicative contingent event pairs from our Topic-
Specific dataset and run an experiment on Ama-
zon Mechanical Turk (AMT) to evaluate the top N
pairs with respect to their contingency relation and
topic-relevance.

4.1 Comparison to Rel-gram Tuple
Collections

We chose Rel-gram tuples (Balasubramanian et
al., 2013) for comparison since it is the most rel-
evant previous work to us: they generate pairs
of relational tuples of events, called Rel-grams
using co-occurrence statistics based on Symmet-
ric Conditional Probability described in Sec 3.3.
Additionally, the Rel-grams are publicly available
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through an online search interface3 and their eval-
uations show that their method outperforms the
previous state of the art on generating narrative
event schema.

However, their work is focused on news articles
and does not consider the causal relation between
events for inducing event schema. We compare
the content of what we learned from our topic-
specific corpus to the Rel-gram tuples to show that
the fine-grained type of knowledge that we learn
is not found in their events collection. We also ap-
plied the co-occurrence statistics that they used on
our data as a baseline (Event-SCP) for comparison
to our method and present the results in Sec. 4.2.

In this experiment we compare the event pairs
extracted from our Camping Trip topic to the Rel-
gram tuples. The Rel-gram tuples are not sorted by
topic. To find tuples relevant to Camping Trip, we
used our top 10 indicative events and extracted all
the Rel-gram tuples that included at least one event
corresponding to one of the Camping Trip indica-
tive events. For example, for go(dobj:camp), we
pulled out all the tuples that included this event
from the Rel-grams collection. The indicative
events for each topic were automatically gener-
ated during the bootstrapping using AutoSlog-TS
(Sec. 2).

Then we applied the same sorting and filtering
methods presented in the Rel-grams work and re-
moved any tuple with frequency less than 25 and
sorted the rest by the total symmetrical conditional
probability. These numbers are publicly available
as a part of the Rel-grams collection. We evaluated
the top N = 100 tuples of this list using the Me-
chanical Turk task described later in Sec. 4.3. The
evaluation results presented in Table 4 show that
42% of the Rel-gram pairs were labeled as con-
tingent by the annotators and only 7% were both
contingent and topic-relevant. We argue that this is
mainly due to the limitations of the newswire data
which does not contain the fine-grained everyday
events that we have extracted from our corpus.

4.2 Automatic Two-Choice Test

For evaluating our contingent event pair collec-
tions we have automatically generated a set of
two-choice questions along with the answers,
modeled after the COPA task (Roemmele et al.,
2011). We produced questions from held-out test
sets for each dataset. Each question consists of

3http://relgrams.cs.washington.edu:10000/relgrams

Topic Dataset # Docs

Camping Hand-labeled held-out test 107
Trip Hand-labeled train (Train-HL) 192

Train-HL + Bootstrap (Train-HL-
BS)

1,062

Storm Hand-labeled held-out test 98
Hand-labeled train (Train-HL) 263
Train-HL + Bootstrap (Train-HL-
BS)

1,234

Table 5: Number of stories in the train and test sets
from topic-specific dataset.

Model Accuracy

Event-Unigram 0.478
Event-Bigram 0.481
Event-SCP (Rel-gram) 0.477
Causal Potential 0.510

Table 6: Automatic two-choice test results for
General-Domain dataset.

one event and two choices. The question event is
one that occurs in the test data. One of the choices
is an event adjacent to the question event in the
document. The other choice is an event randomly
selected from the list of all events occurring in the
test set. The following is an example of a question
from the Camping Trip test set:

Question event: arrange (dobj:outdoor)
Choice 1: help (dobj:trip)
Choice 2: call (subj:PERSON)

In this example, arrange (dobj:outdoor) is fol-
lowed by the event help (dobj:trip) in a doc-
ument from the test set and call (subj:PERSON)

was randomly generated. The model is supposed
to predict which of the two choices is more likely
to have a contingency relation with the event in
the question. We argue that a strong contingency
model should be able to choose the correct answer
(the one that is adjacent to the question event) and
the accuracy achieved on the test questions is an
indication of the model’s robustness.

For the General-Domain dataset, we split the
data into train (4,000 stories) and held-out test
(200 stories) sets. For each topic-specific set,
we divided the hand-labeled data into a train
(Train-HL) and held-out test, and created a second
train set consisting of Train-HL and the data col-
lected by bootstrapping (Train-HL-BS) as shown
in Table 5. We automatically created a question
for every event occurring in the test data which
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Topic Model Train Dataset Accuracy

Camping Event-Unigram Train-HL-BS 0.507
Trip Event-Bigram Train-HL-BS 0.510

Event-SCP Train-HL-BS 0.508
Causal Potential Train-HL 0.631
Causal Potential Train-HL-BS 0.685

Storm Event-Unigram Train-HL-BS 0.510
Event-Bigram Train-HL-BS 0.523
Event-SCP Train-HL-BS 0.516
Causal Potential Train-HL 0.711
Causal Potential Train-HL-BS 0.887

Table 7: Automatic two-choice test results for
Topic-Specific dataset.

1 go (nsubj:PERSON)→ go (dobj:trail , prt:down)
2 find (nsubj:PERSON , dobj:fellow)→ go (prt:back)
3 see (nsubj:PERSON , dobj:gun)→ see (dobj:police)
4 come (nsubj:PERSON)→ go (nsubj:PERSON)
5 go (prt:out)→ find (nsubj:PERSON , dobj:sconce)
6 go (nsubj:PERSON)→ see (dobj:window, prt:out)
7 go (nsubj:PERSON)→ walk (dobj:bit , prt:down)
8 go (nsubj:PERSON) → go (nsubj:PERSON ,

dobj:rafting)

Figure 2: Examples of event pairs with high CP
scores extracted from General-Domain stories.

resulted in 3,123 questions for General-Domain
data, 2,058 for the Camping and 2,533 questions
for the Storm topic.

For each dataset, we applied the baseline meth-
ods and Causal Potential model on the train sets to
learn contingent event pairs and tested the pair col-
lections on the questions generated from held-out
test set. We extracted about 418K contingent event
pairs from General-Domain train set, 437K from
Storm Train-HL-BS and 630K pairs from Camp-
ing Trip Train-HL-BS set using Causal Potential
model. We used our automatic test approach to
evaluate these event pair collections. The results
for General-Domain and Topic-Specific datasets
are shown in Table 6 and Table 7 respectively.

The Causal Potential model trained on Train-
HL-BS dataset achieved accuracy of 0.685 on
Camping Trip and 0.887 on Storm topic which is
significantly stronger than all the baselines. Our
experiments indicate that having more training
data collected by bootstrapping improves the accu-
racy of the model in predicting contingency rela-
tion between events. Additionally, the Causal Po-
tential results on Topic-Specific dataset is signif-
icantly stronger than General-Domain narratives
indicating that using a topic-sorted dataset im-
proves learning causal knowledge about events.

Label Camping Storm

Contingent & Strongly Relevant 44 % 33 %
Contingent & Somewhat Relevant 8 % 20 %
Contingent & Not Relevant 30 % 24 %

Total Contingent 82 % 77 %

Table 8: Results of evaluating indicative contin-
gent event pairs on AMT.

Fig. 2 shows some examples of event pairs with
high CP scores extracted from general-Domain
set. In the following section we extract topic-
indicative contingent event pairs and show that
Topic-Specific data enables learning of finer-
grained event knowledge that pertain to a partic-
ular theme.

4.3 Topic-Indicative Contingent Event Pairs
We identify contingent event pairs that are highly
indicative of a particular topic. We hypothesize
that these event pairs serve as building blocks of
coherent event chains and narrative schema since
they encode contingency relation and correspond
to a specific theme. We evaluate the pairs on Ama-
zon Mechanical Turk (AMT).

To identify event sequences that have a strong
correlation to a topic (topic-indicative pairs) we
applied two filtering methods. First, we selected
the frequent pairs for each topic and removed the
ones that occur less than 5 times in the corpus.
Second, we used the indicative event-patterns
for each topic and extracted the pairs that at
least included one of these patterns. Indicative
event-patterns are automatically generated during
the bootstrapping using AutoSlog-TS and mapped
to their corresponding event representation as
described in Sec. 2. Then we used the Causal
Potential scores from our contingency model for
ranking the topic-indicative event pairs to identify
the highly contingent ones. We sorted the pairs
based on the Causal Potential score and evaluated
the top N pairs in this list.

Evaluations and Results. We evaluate the indica-
tive contingent event pairs using human judgment
on Amazon Mechanical Turk (AMT). Narrative
schema consists of chains of events that are related
in a coherent way and correspond to a common
theme. Consequently, we evaluate the extracted
pairs based on two main criteria:

• Contingency: Two events in the pair are
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Topic Label > 2 : Contingent & Strongly Topic-Relevant Label < 1 : Not Contingent

Camping person - pack up→ person - go - home person - pick up - cup→ person - swim
Trip person - wake up→ person - pack up - backpack pack up - tent→ check out - video

person - head→ hike up person - play→ person - pick up - sax
climb→ person - find - rock pack up - material→ switch off - projector
person - pack up - car→ head out person - pick up - photo→ person - swim

Storm wind - blow - transformer→ power - go out restore - community→ hurricane - bend
tree - fall - eave→ crush boil→ tree - fall - driveway
Ike - blow→ knock down - limb clean up - person→ people - come out
air - push - person→ person - fall out blow - sign→ person - sit
hit - location→ evacuate - person person - rock - way→ bottle - fall

Table 9: Examples of event pairs evaluated on AMT.

likely to occur together in the given order and
the second event is contingent upon the first
one.

• Topic Relevance: Both events strongly cor-
respond to the specified topic.

We have designed one task to assess both crite-
ria since if an event pair is not contingent, it cannot
be used in narrative schema for not satisfying the
required coherence (even if it is topic-relevant).
We asked the AMT annotators to rate each pair
on a scale of 0-3 as follows:

0: The events are not contingent.
1: The events are contingent but not rel-
evant to the specified topic.
2: The events are contingent and some-
what relevant to the specified topic.
3: The events are contingent and
strongly relevant to the specified topic.

To ensure that the Amazon Mechanical Turk
annotations are reliable, we designed a Qualifi-
cation Type which requires the workers to pass
a test before they can annotate our pairs. If the
workers score 70% or more on the test they will
qualify to do the main task. For each topic we
created a Qualification test consisting of 10 event
pairs from that topic that were annotated by two
experts. To make the events more readable for the
annotators we used the following representation:

Subject - Verb Particle - Direct Object

For example, hike(subj:person, dobj:trail,

prt:up) is mapped to person - hike up -

trail. For each topic we evaluated top N = 100
event pairs and assigned 5 workers to rate each
one. We generated a gold standard label for each

pair by averaging over the scores assigned by the
annotators and interpreted the average as follows:

Label >2: Contingent & strongly topic-relevant.
Label = 2: Contingent & somewhat topic-
relevant.
1 ≤ Label < 2: Contingent & not topic-relevant.
Label < 1: Not contingent.

To assess the inter-annotator reliability we cal-
culated kappa between each worker and the major-
ity of the labels assigned to each pair. The average
kappa was 0.73 which indicates substantial agree-
ment. The results in Table 8 show that 52% of the
Camping Trip and 53% of the Storm pairs were la-
beled as contingent and topic-relevant by the anno-
tators. The results also indicate that our model is
capable of identifying event pairs with strong con-
tingency relations: 82% of the Camping Trip pairs
and 77% of the Storm pairs were marked as con-
tingent by the workers. Examples of the strongest
and weakest pairs evaluated on Mechanical Turk
are shown in Table 9. By comparison to Fig. 2,
we can see that we can learn finer-grained type
of events knowledge from topic-specific stories as
compared to general-domain corpus.

5 Discussion and Conclusions

We learned fine-grained common-sense knowl-
edge about contingent relations between every-
day events from personal stories written by ordi-
nary people. We applied a semi-supervised boot-
strapping approach using event-patterns to create
topic-sorted sets of stories and evaluated our meth-
ods on a set of general-domain narratives as well
as two topic-specific datasets. We developed a
new method for learning contingency relations be-
tween events that is tailored to the “oral narrative”
nature of the blog stories. Our evaluations indi-
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cate that a method that works well on the news
genre does not generate coherent results on per-
sonal stories (comparison of Event-SCP baseline
with Causal Potential).

We modeled the contingency (causal and con-
ditional) relation between the events from each
dataset using Causal Potential and evaluated on
the questions automatically generated from a held-
out test set. The results show significant improve-
ment over the Event-Unigram, Event-Bigram,
and Event-SCP (Rel-grams method) baselines on
Topic-Specific stories: 25% improvement of ac-
curacy on Camping Trip and 41% on Storm topic
compared to Bigram model. In our future work,
we plan to explore existing topic-modeling algo-
rithms to create a broader set of topic-sorted cor-
pora for learning contingent event knowledge.

Our experiments show that most of the fine-
grained contingency relations we learn from nar-
rative events are not found in existing narrative
and event schema collections induced from the
newswire datasets (Rel-grams). We also extracted
indicative contingent event pairs from each topic
and evaluated them on Mechanical Turk. The eval-
uations show that 82% of the relations between
events that we learn from topic-sorted stories are
judged as contingent. We publicly release the ex-
tracted pairs for each topic. In future work, we
plan to use the contingent event pairs as building
blocks for generating coherent event chains and
narrative schema on several different themes.
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Abstract

Studies on laughter in dialogue have pro-
posed resolving what laughter is about by
looking at what laughter follows. This
paper investigates the sequential relation
between the laughter and the laughable.
We propose a semantic/pragmatic ac-
count treating laughter as a gestural event
anaphor referring to a laughable. Data
from a French and Chinese dialogue cor-
pus suggest a rather free time alignment
between laughter and laughable. Laughter
can occur (long) before, during, or (long)
after the laughable. Our results chal-
lenge the assumption that what laughter
follows is what it is about, and thus ques-
tion claims which rely on this assumption.

1 Introduction

Studies about laughter in interaction have been
mainly focused on the acoustic or perceptual fea-
tures, and often observations of the events preced-
ing to it have been the base for claims concerning
what laughter is about. (Provine, 1993) made a
claim that has been subsequently adopted in much
of the literature: laughter is, for the most part, not
related to humour, because it is found to most fre-
quently follow banal comments. Similar reasoning
has been adopted by several other studies on the
kind of situations that elicit laughter. The deduc-
tion process in these studies rely on an important
yet untested assumption: what laughter follows is
what it is about. Our paper investigates this as-
sumption. We first briefly discuss previous stud-
ies on laughter in interaction; we then argue for
a semantic/pragmatic account in which we treat
laughter as a gestural event anaphora referring to
a laughable. We present a corpus study of laugh-
ables and evaluate our results against previous pro-
posals.

1.1 Studies on what laughter is about

In (Provine, 1993), the researcher observed nat-
ural conversations, and “when an observer heard
laughter, she recorded in a notebook the com-
ment immediately preceding the laughter and if
the speaker and/or the audience laughed, the gen-
der, and the estimated age of the speaker and the
audience [...]. A laugh episode was defined as
the occurrence of audible laughter and included
any laughter by speaker or audience that followed
within an estimated 1 s of the initial laugh event.
The laugh episode included the last comment by a
speaker if it occurred within an estimated 1 s pre-
ceding the onset of the initial laughter. A laugh
episode was terminated if an estimated 1 s passed
without speaker or audience laughter, or if either
the speaker or the audience spoke.”. They found
that “Only about 10-20% of episodes were esti-
mated by the observers to be humorous” (Provine,
1993), and thus derived the conclusion which is
now widely adopted in the literature: laughter
is, for the most part, not related to humour but
about social interaction. An additional conclusion
based on this study is that laughter never interrupts
speech but “punctuates” it occurring exclusively at
phrase boundaries.

Similarly, (Vettin and Todt, 2004) used exclu-
sively timing parameters – i.e., what precedes and
what follows the laugh (within a threshold of 3s) –
to distinguish 6 different contexts (see table 1) for
laughter occurrence to support claims about situa-
tions that elicit laughter.

1.2 Weaknesses

In (Provine, 1993), the author assumed that laugh-
ter always immediately follows the laughable. Not
only do the methods described above provide im-
precise data (timing information was estimated
during observation), it prevents the possibility of
recording any data where laughter does not follow
the laughable. In addition, even when the com-
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Conversational
Parter

A participant’s laughter occurring immediately (up to 3s) after a
complete utterance of their conversational partner

Participant The participant laughed immediately (up to 3s) after his/her own
complete utterance

Short confirma-
tion

Participan’s laughter immediately (up to 3s) after a confirming
’mm’, ’I see’ or something comparable by himself or his conver-
sational partner

Laughter Participant’s laughter after a conversational partner’s laughter. With
an interval of less than 3s

Before utterance Participant’s laughter after a short pause (at least 3s) in conversation,
but immediately (up to 500ms) before an utterance by him/herself

Situation Laughter occurring during a pause in conversation (at least 3s), not
followed by any utterance. The laughter is attibuted to the general
situation and not to an utterance

Table 1: Vetting and Todt, 2004 - Context classification

ment that immediately precedes laughter is the
actual trigger for a laugh, and it is not “amus-
ing” in itself (i.e. it is a “banal comment”), it
doesn’t necessarily entail that the laughable is not
humourous. The funniness might arise from the
“banal comment” in relation to the previous utter-
ance, the context of the interaction, shared experi-
ences between the speakers, world knowledge and
cultural conventions. For example, in (1) “what’s
funny” resides in the implicit content that the ut-
terance refers to. In (2), the preceding utterance is
funny only in relation to the context.

(1) A: Do you remember that time?
B and A: < laughter/ >.
Laughable= the enriched denotation of ‘that time’.

(2) (Context: the speakers are discussing the plan of an
imagined shared apartment, and they have already
planned two bathrooms).
A: I want another bathroom. B: < laughter/ >
Laughable= “I want another bathroom”

(Vettin and Todt, 2004) is methodologically
more precise than (Provine, 1993), and they al-
low for the possibility that in addition to laughter
occurring after the laughable, a laughter may pre-
cede an utterance, or occur during an exophoric
situation. However, this analysis excludes laugh-
ters that occur in the middle of or overlaps with
an utterance, and it uses exclusively timing pa-
rameters to determine what laughter is about (as
illustrated in figure 1). For example, whether a
laugh is considered to be about the preceding ut-
terance or about the following utterance is decided
purely on the difference in the length of gaps with
the two utterances. Crucially, the conclusion is
also drawn assuming an adjacency relationship be-
tween laughter and laughable.

2 Laughter as an event anaphor

We argue that previous studies have ignored
analysing the laughable because they did not at-
tempt to integrate their account with an explicit

semantic/pragmatic module on the basis of which
content is computed.1 The sole recent exception
to this, as far as we are aware, is the account of
(Ginzburg et al., 2015), which sketches an infor-
mation state–based account of the meaning and
use of laughter in dialogue.

Taking this as a starting point, we argue that
laughter is a gestural event anaphor, whose mean-
ing contains two dimensions: one dimension about
the arousal and the other about the trigger or
the laughable. In line with (Morreall, 1983) we
think that laughter effects a “positive psychologi-
cal shift”, and the “arousal” dimension signals the
amplitude in the shift.2. The positive psycholog-
ical shift is triggered by an appraisal of an event
- the laughable l, and the second dimension com-
municates the type of the appraisal. (Ginzburg et
al., 2015) propose two basic types of meaning in
the laughable dimension: the person laughing may
express her perception of the laughable l as being
incongruous, or just that l is enjoyable (playful).
We propose that in addition, certain uses of laugh-
ter in dialogue may suggest the need for a third
possible type: expressing that l is a socially close
ingroup situation.

2.1 Formal treatment of laughter

Here we sketch a formal semantic and pragmatic
treatment of laughter. On the approach developed
in KoS (Ginzburg, 2012), information states com-
prise a private part and the dialogue gameboard
that represents information arising from publi-
cized interactions. In addition to tracking shared
assumptions/visual space, Moves, and QUD, the
dialogue gameboard also tracks topoi and en-
thymemes that conversational participants exploit
during an interaction (e.g., in reasoning about
rhetorical relations.). Here topoi represent general
inferential patterns (e.g., given two routes choose

1This is not the case for some theories of humour, e.g.,
that due to (Raskin, 1985), who offers a reasonably explicit
account of incongruity emanating from verbal content with-
out, however, attempting to offer a theory of laughter in con-
versation.

2The amplitudes in the shift depend on both the trigger
itself and on the individual current information/emotional
state. It is important to point out that laughter does not signal
that the speaker’s current emotional state is positive, merely
that there was a shift which was positive. The speaker could
have a very negative baseline emotional state (being very sad
or angry) but the recognition of the incongruity in the laugh-
able or its enjoyment can provoke a positive shift (which
could be very minor) The distinction between the overall
emotional state and the direction of the shift explains why
laughter can be produced when one is sad or angry.
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the shortest one) represented as functions from
records to record types, and enthymemes are in-
stances of topoi (e.g., given that the route via Wal-
nut street is shorter than the route via Alma choose
Walnut street). An enthymeme belongs to a topos
if its domain type is a subtype of the domain type
of the topos.

(Ginzburg et al., 2015) posit distinct, though
quite similar lexical entries for enjoyment and in-
congruous laughter. For reasons of space in (3)
we exhibit a unified entry with two distinct con-
tents. (3) associates an enjoyment laugh with the
laugher’s judgement of a proposition whose situ-
ational component l is active as enjoyable; for in-
congruity, a laugh marks a proposition whose situ-
ational component l is active as incongruous, rel-
ative to the currently maximal enthymeme under
discussion. (3) makes appeal to a notion of an ac-
tive situation. This pertains to the accessible sit-
uational antecedents of a laughter act, given that
(Ginzburg et al., 2015) proposed viewing laughter
as an event anaphor. However, given the existence
of a significant amount of speech laughter, as we
discuss below, this notion apparently needs to be
rethought somewhat, viewing laughter in gestural
terms. This requires interfacing the two channels,
a problem we will not address here, though see
(Rieser, 2015) for a recent discussion in the con-
text of manual gesture.

(3)

phon : laughterphontype

dgb-params :



spkr : Ind
addr : Ind
t : TIME
c1 : addressing(spkr,addr,t)
MaxEud = e : (Rec)RecType

p =

[
sit = l
sit-type = L

]
: prop

c2 : ActiveSit(l)


contentenjoyment = Enjoy(spkr,p) : RecType
contentincongruity = Incongr(p,e,τ ) : RecType


The dialogue gameboard parameters utilised in

the account of (Ginzburg et al., 2015) are all
‘informational’ or utterance related ones. How-
ever, in order to deal with notions such as arousal
and psychological shift, one needs to introduce
also parameters that track appraisal (see e.g.,

(Scherer, 2009)). For current purposes, we men-
tion merely one such parameter we dub pleas-
antness that relates to the appraisal issue—in
Scherer’s formulation—Is the event intrinsically
pleasant or unpleasant?. We assume that this pa-
rameter is scalar in value, with positive and neg-
ative values corresponding to varying degrees of
pleasantness or unpleasantness.

This enables us to formulate conversational
rules of the form ‘if A laughs and pleasantness is
set to k, then reset pleasantness to k + θ(α)’, where
α is a parameter corresponding to arousal.

2.2 Research questions

The study is part of a broader project where we
analyse laughter using a multi-layered scheme
and propose a semantic/ pragmatic account of the
meaning and effects of laughter. The focus of the
current study is the positioning of laughter in rela-
tion to its laughable.

Our account suggests that resolving the laugh-
able is crucial for deriving the content of a laugh-
ter event. We hypothesize that laughter is not al-
ways adjacent to its laughable. Rather, the sequen-
tial distribution between laughter and laughable is
somewhat free, illustrated in Figure 2. We hypoth-
esize that laughter can occur before, during and
after the laughable, and that it is possible for inter-
vening materials to occur between a laughter event
and its laughable.

Figure 1: Temporal misalignment speech stream, laughter and laughable

In more detail, we make the following hypothe-
ses in relation to our research questions:

Q1: Does laughter always follow its laughable?

–If not, does laughter-laughable alignment
differ among different types of laughters?

We hypothesize that laughter can occur be-
fore, during or after the laughable; laughter
and laughable should not have a one-to-one
relationship: one laughable can be the refer-
ent of several laughter events.

–More specifically, laughter-laughable align-
ment may vary depending on at least the
source of the laughable (self or partner) and
whether it is speech laugh or laughter bouts.
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Q2: Does laughter interrupt speech?

We hypothesize that laughter can occur both at
utterance boundaries and at utterance-medial
position.

Q3: Is laughter-laughable alignment pattern lan-
guage specific?

We hypothesize that language/culture influence
alignment and thus predict to find differences
between, in this case, French and Chinese.

3 Material and method

3.1 Corpus

We analyzed a portion of the DUEL corpus
(Hough et al., 2016a) The corpus consists of 30
dyads (10 per language)/ 24 hours of natural, face-
to-face, loosely task-directed dialogue in French,
Mandarin Chinese and German. Each dyad con-
versed in three tasks which in total lasted around
45 minutes. The three tasks used were:

1. Dream Apartment: the participants are told
that they are to share a large open-plan apart-
ment, and will receive a large amount of
money to furnish and decorate it. They dis-
cuss the layout, furnishing and decoration de-
cisions;

2. Film Script: The participants spend 15 min-
utes creating a scene for a film in which
something embarrassing happens to the main
character;

3. Border control: one participant plays the
role of a traveller attempting to pass through
the border control of an imagined country,
and is interviewed by an officer. The trav-
eller has a personal situation that disfavours
him/her in this interview. The officer asks
questions that are general as well as spe-
cific. In addition, the traveller happens to be
a parent-in-law of the officer.

The corpus is transcribed in the target language
and glossed in English. Disfluency, laughter,
and exclamations are annotated. The current pa-
per presents analysis of laughter in two dyads in
French and Chinese (3 tasks x 2 pairs x 2 lan-
guages).

3.2 Audio-video coding of laughter

Coding was conducted by the first and second au-
thors and by 2 trained, but naı̈ve to the aim of the
study, masters students: each video was observed
until a laugh occurred. The coder detected the ex-
act onset and offset in Praat (Boersma and others,
2002), and conducted a multi-layer analysis as ex-
plained shortly. A laugh was identified referring
to the same criteria used in (Nwokah et al., 1994),
based on the facial expression and vocalization de-
scriptions of laughter elaborated by (Apte, 1985)
and (Ekman and Friesen, 1975). Following (Ur-
bain and Dutoit, 2011) we counted laughter offset
(final laughter in-breath inhalation) as part of the
laughter event itself, thus resulting in laughter tim-
ings longer than other authors (Bachorowski and
Owren, 2001; Rothgänger et al., 1998).

All laughter events were categorised according
to different parameters: formal and contextual as-
pects, semantic meaning and functions (see Table
2). The formal and contextual level analysis in-
clude whether a laughter overlaps speech (speech
laugh), whether it co-occurs with or immediately
follows a partner’s laughter (dyadic/ antiphonal
laughter), and its position in relation to the laugh-
able. The semantic meaning level analysis include
perceived arousal and whether it contains an el-
ement of incongruity could be identified by the
coders. The function analysis codes the effect
of laughter on the interaction, and distinguishes
whether the effect is cooperative, i.e., promotes in-
teraction (e.g. showing enjoyment, smoothing) or
non-cooperative, i.e., in some way disaffects in-
teraction (e.g., mocking or evade questions). Due
to space constraints and current focus, we do not
provide a detailed explanation of the multi-level
laughter coding scheme, for which see (Mazzoc-
coni et al., 2016). Reliability was assessed by hav-
ing a masters student as a second coder for 10%
of the material observed. Percentage agreements
between the two coders for French and Chinese
data averaged respectively 87% and 87.76, with
an overall Krippendorff α (Krippendorff, 2012)
across all tiers of 0.672 and 0.636.

For the main analysis, we include in our analy-
sis both laughter and speech laughter (Nwokah et
al., 1999). In the current study we restrict our ob-
servations about the aspects pertaining to the form,
to the contextual distribution and positioning of a
laugh in relation to others’ laughter, the laughable
and laugher’s herself speech.
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Figure 2: Laughter coding parameters

3.3 Identifying laughables
We consider as the laughable the event which, af-
ter appraisal, produces a positive psychological
shift in the laugher. We distinguish three different
kinds of laughable types: described events, met-
alinguistic stimuli and exophoric events. We also
mark whether they originated from the laugher
him/herself or by the partner.

(4) Described event A: il y a (un: + un) de mes potes?
idiot comme il est, qui (< p = pose > po- < /p >
qui pose) un steak sur le rebord (de: + du) balcon?
B:< laughter/ >. < laughspeech > ils sont bizarres
tes potes < /laughspeech >

(Translation) A: There is (one + one) of my buddies,
stupid as he is, who put a steak on the border of the:
of the balcony B: < laughter/ >. < laughspeech >
you have weird buddies < /laughspeech >

Laughable= “who put a steak on the border of the bal-
cony”: described event

(5) Metalinguistic stimuli B: Alors je viens pour
{euh} avoir mon passeport? pour Inra:schabella?
< laughter/ >

(Translation) B: So I’m here for, euh, having my pass-
port? for Inraschabella? < laughter/ >

Laughable= “Inraschabella” (linguistic form, laugh af-
ter laugher’s speech)

(6) Exophoric event The examiner is asking A to
move the arms because of technical issues A: move-
ment arms mimicking a robot B: < laughter/ > A:
< laughter/ >

Laughable=the way A moved his arms: exophoric
event

3.4 Audio-video coding of laughable
Every time a laugh was identified, coders would
mark on the Praat TextGrid, based on personal in-
ference, the laughable the laugh would refer to.

The time boundaries were marked, the content
(whether verbal or not) was annotated and an in-
dex was assigned in order to map laughter (or mul-
tiple laughters) and laughable. Laughables were
classified according to three main categories: de-
scribed, metalinguistic and exhophoric event. Re-
liability of type assignement was assessed by hav-
ing a masters student as a second coder for 10% of
the material observed. Percentage agreements be-
tween the two coders for French and Chinese aver-
aged 92.5% with a Krippendorff α (Krippendorff,
2012) of 0.77.

4 Results

In our data sample (summarized in Table2), laugh-
ter is very frequent, constituting 17% of the con-
versation duration in French and 7.2% in Chinese.
Each laughable is ”laughed about” more than once
(1.7 times in French and 1.4 times in Chinese).

French Chinese
Dialogue.dur 77min 85min
mean utterance.dur 1.8sec 1.5sec
No. laughter 436 221
laughter.dur 1.9s (sd .97) 1.4s (se .53)
No. laughable 256 158
laughable.dur 2.7s (sd 1.5) 2.8s (sd 2.1)
No.laughter per laughable 1.7 1.4

Table 2: Data summary

4.1 Does laughter always follow the
laughable?

To investigate the time alignment between laugh-
ter and laughable, we calculated “start of laugh-
ter minus start of laughable”, “end of laughter mi-
nus end of laughable”, and “start of laughter mi-
nus end of laughable”. If laughter always follow
the laughable, all three measurements should be
above zero. This was not the case. In both Chi-
nese and French, on average, laughter starts dur-
ing rather than after the laughable, and finishes af-
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ter the laughable. In general, laughs in Chinese are
more likely to overlap with the laughable than in
French. The distribution varies over a wide range.
Table 3 summarizes the gaps between the bound-
aries of laughter and laughable, and figure 3 plots
specifically the gap between the end of the laugh-
able and the start of laughter. They show that it
is common for laughs to start before, during and
after the laughable. When a laugh has no overlap
with its laughable, they are not always adjacent to
each other (average utterance duration is under 2
seconds while the gap can be up to 10 seconds).
In the following example, the first two instances
of speech laugh refer to a laughable in a later ut-
terance.

(7) 那 个 老 师(要 他+要 求 小 诗) 用“不 约 而 同”造
句 子, 后 来 小 明< laughspeech >就 想 了 一
想< /laughspeech >, 然后说呃说呃这样吧?
< laughspeech >(我 就+小 诗)< /laughspeech >
就想了想说,呃:呃:我在路上碰见一个美女,然后我
就问她,约吗?< laughspeech > 然后美女说, 滚,我
们不约儿童< /laughspeech >.

(Translation) B: The teacher asked Xiaoshi to make
a sentence with ”bu yue er tong” (coinciden-
tally together). Xiaoshi < laughspeech > then
< laughspeech/ > thought about it, and said, uh,
< laughspeech > (I + Xiaoshi) < laughspeech/ >
thought about it and said, uh, uh I saw a pretty girl in
the street, and I asked her ”shall we go for a date?”, and
< laughspeech > the girl said “shouldn’t date chil-
dren” < laughspeech/ >. (note: “shouldn’t date chil-
dren” is phonologically identical to ”incidentally to-
gether”)

Laughable= “the girl said ‘shouldn’t date children’ ”

Based on whether laughter occurs entirely
outside or overlapping with the laughable, we
grouped the laughters into 4 alignment cate-
gories: “before”, “overlap”, “immediately after”
and “other after” (see figure 4). We found that in
both languages, laughters that immediately follow
(within 0.3s) the laughable constitute 30% . There
are more overlapping laughters in Chinese than in
French (χ2(1)=6.9, p= .008).

Fr Ch
(in seconds) mean sd range mean sd range
start.L-start.LB 2.2 2.4 -9.4 -13.7 1.3 2.3 -19.6 - 9.6
end.L-end.LB 1.4 2.3 -12.8 - 11.6 0.5 2.6 -24.6 - 5.2
start.L-end.LB -0.5 2.3 -13.9 - 8.4 -0.9 2.6 -25.1 - 3.0

Table 3: Time alignment of laughter (“L”) and laughable (“LB”)

4.2 Does laughter-laughable alignment differ
among different “types” of laughables
and laughters?

Our analysis mainly focuses on the distinction be-
tween self and partner produced laughables, and

Figure 3: Gap between laughable and laughter

Figure 4: laughters before, after or overlapping with laughable

between speech laugh and laughter bouts, pre-
sented separately below. Due to space constraints,
the effect of the rest of the tiers are not discussed.

4.2.1 Self vs. partner produced laughables
We coded whether the laughables are described
events, meta-linguistic, or exophoric events. In
our corpus described events are the common-
est (92% in French and 89% in Chinese), fol-
lowed by exophoric laughables (7% in French
and 10%). Metalinguistic (1% in both languages)
laughables are rare, so we grouped them with de-
scribed events in the current analysis. On aver-
age, there are more self-produced than partner-
produced laughables, supporting the idea that
speakers laugh more often than the audience. In-
terestingly, 3% of the laughables are jointly pro-
duced (one person finishing the other’s sentence,
or both saying roughly the same thing at the same
time) (see (8)). With the former two categories,
we also coded whether the laughable is produced
by the laugher or her partner, which allow us to
compare our results with studies of “speaker” or
“audience” laughter.

(8) (totally overlapping turns are italicized)

B: c’est une personne qui est aux toilettes
dans < laughter > des toilettes publiques A:
< laughter > X ah: oui: oui un mec qui parle a
cute‘ < laughter/ > B: dans < laughter > des
toilettes publiques voila sauf que l’autre il est au
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telephone et l’autre il lui croit qu’il parle . C’est genant
< laughter/ >

(Translation) B: it is a person who is in the bathroom
in < laughter > in public bathroom A:< laughter >
Ah yes yes a guy who is talking in the next stall
< laughter/ > B: in < laughter > in public bath-
room exactly but the other is on the phone and the other
thinks he is speaking with him. That’s embarrassing
< laughter/ >

Laughable= “exactly but the other is on the phone and
the other thinks he is speaking with him”

We found that laughters about a partner-
produced laughable start later than those about a
self-produced laughable, but still the average start-
ing time is before the end of the laughable. With
partner-produced laughables, the average gap be-
tween the end of laughable and start of laughter is
-0.02s in French and -0.3s in Chinese, while with
self-produced laughables, the average gap is -0.7s
in French and -1.3s in Chinese.

4.2.2 Speech laugh vs. laughter bouts
Laughter frequently overlaps with speech. 36%
of laughter events in French and 47% of laughter
events in Chinese contain speech laughter. Speech
laughter is on average 0.3 seconds longer than
stand alone laughter bouts. Speech laughs over-
lap with the laughable more than laughter bouts.
52% of speech laughters in French and 70% in
Chinese overlap with the laughables. In compar-
ison, 33% of laughter bouts in French and 34%
in Chinese overlap with the laughable. The rea-
son why speech laugh more often overlap with the
laughables is likely to do with the difference in
function between speech laugh and laughter bouts.
Laughters that mark an upcoming laughable most
frequently overlaps with speech, and these laugh-
ter events are also ones that tend to stretch until
the middle or the end of the laughable. A more
detailed analysis of the function/effect of laughter
is reported in (Mazzocconi et al., 2016).

Notice that not all speech laughs overlap with
the laughable, suggesting that often, laughter
that co-occurs with speech is not about the co-
occurring speech (47.8% in French and 30% in
Chinese). In the following example, speaker B
says that she’ll take the bigger bedroom, and
laughs. Speaker A joins the laughter but starts a
new utterance.

(9) B: okay. les chambres maintenant A:alo:rs F euh:
bon évidemment F euh: B: je prends la plus grande
< laughter/ > A: c’est là < laughter > où il y a un
problème t’vois < /laughter >

(Translation) B: okay. the bedrooms now A: well
euh: well obviously euh: B: I take the bigger one
< laughter/ > A: It’s there < laughspeech > where
there is a problem you see < /laughspeech >

Laughable= “je prends la plus grande”

4.3 Does laughter interrupt speech?

We investigated whether laughter occurs at
utterance-medial positions when one party is
speaking, and when the partner is speaking.

Does laughter interrupt partners’ utter-
ances? Yes. We found that 51.8% of laughter
bouts in French and 56.7% of laughter bouts in
Chinese start during the partner’s utterances (not
necessarily laughables), for example:

(10) B: pour faire un mur de son quoi < laughspeech > en
fait c’est une < english > ra:ve < /english > notre
appartement < /laughspeech > A: < laughter/ >

(Translation) B: to create a sound barrier which
< laughspeech > in fact it is a rave, our apartment
< /laughspeech > A:< laughter/ >

Laughable= “in fact it is a rave, our apartment”

Does laughter interrupt one’s own utter-
ances?

We found 14 laughter bouts (5%) in French and
12 (8.6%) in Chinese that occurred in utterance-
medial positions. These proportions are sta-
tistically higher than zero: French χ2(1)=12.3,
p=.0004; Chinese χ2(1)=10.5, p=.001. Most of
these interruptions at not at phrase boundaries. For
example:

(11) 那你之前有没有啊:.有过什么... < laughter/ >
< laughter >犯罪记录吗?

(Translation) Do you have, uh, have any
< laughter/ > criminal records?

Laughable= “criminal records”

5 Discussion

The aim of the current study was to deepen the
little research available on the relation between
laughter, laughable and speech in natural conver-
sation, starting from the observation of their tem-
poral sequence and alignment. We investigated
three questions: whether laughter always follows,
or at least is adjacent to its laughable, as is com-
monly assumed; whether this sequential alignment
differ depending on differeht “types” of laughters;
and whether laughter always punctuates speech.
Our main findings are:
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1. Time alignment between laughter and laugh-
able is rather free.
— Laughter and laughable does not have a
one-to-one relationship. A laughable can be
referred to by more than one laughters.
— Contrary to popular belief, only 30% of
laughters occur immediately after the laugh-
able. Laughters frequently start during the
laughable (more so with “speaker” laughter
than “audience“ laughter).
— Laughters can occur long before or long
after the laughable, and not be adjacent to
their laughable.
— Between 30 to 50 percent of speech laughs
do not overlap with the laughable, suggesting
that frequently laughs are not about the co-
occurring speech.
If looking just at laughter bouts, about 40%
occur immediately after the laughable.

2. Laughter-laughable alignment may differ de-
pending on the different “types” of laugh-
able and laughter. Specifically, laughters
about a partner-produced laughable (audi-
ence laughter) start later than those about a
self-produced laughable (speaker laughter).
Speech laughs occur earlier than laughter
bouts, and overlaps more with the laughable.

3. Comparing Chinese and French, the majority
of the patterns are similar, except that in Chi-
nese, laughs are more likely to overlap with
the laughable than in French. This provides
an initial indication that while certain aspects
of laughter behaviour are influenced by cul-
ture/language, generally we use laughter sim-
ilarly in interaction. 3

4. Laughter does interrupt speech: we often
laugh when others are speaking (half of all
laughter bouts) and occasionally we insert
stand-alone laughters mid-sentence (less than
10%). Moreover, very frequently laughter
overlaps speech (around 40% of all laugh-
ters).

The relatively free alignment between laughter
and speech seems analogous at a first approxima-
tion to the relation between manual gesture and
speech (Rieser, 2015). We propose to consider

3Of course a caveat to this conclusion is the small number
of speakers for each language. We will expand the study with
more speakers and more genres of interaction.

laughter as a verbal gesture, having an indepen-
dent channel from speech, with which it commu-
nicates through an interface.

5.1 Is laughter rarely about funny stimuli?

Our results discredit the method of inferring what
the laughter is about by looking at the elements
that immediately precede or follow it. Therefore,
previous conclusions using this method should be
revisited (Provine, 1993; Provine, 1996; Provine,
2001; Provine and Emmorey, 2006; Vettin and
Todt, 2004). One such conclusion is that because
they follow “banal comments”, laughter is mostly
about not about funny stimuli. We have shown
that the logic does not hold, as very often, those
preceding “banal comments” are not the laugh-
ables. And even if they are, the “funniness” or
incongruity may reside between the laughable and
something else, e.g., the context of occurrence,
world knowledge, cultural norms, experiences, in-
formational and intentional states shared between
interlocutors. For example, in the following ex-
change, the exchange seems rather banal, but in
fact, they are laughing about the exophoric situa-
tion that they are acting.

(12) A: Oh comment allez-vous? < laughter/ > B: ça va
et toi? tu vas bien? A : très bien merci:

(Translation) A: Oh how are you? < laughter/ > B:
fine and you? are you ok? A: very well thanks

Laughable= exophoric situation (they started acting)

Exactly what proportion of laughables contain
funny incongruity is a topic for further research.
For now, our results questions the validity of ex-
isting proposals on this score.

5.2 Laughter Punctuating Speech?

It has been suggested (notably by Provine) that
laughter bouts almost never (0.1%) disrupt phrases
but punctuate them (Provine, 1993; Provine, 1996;
Provine, 2001). He explains this finding on the ba-
sis of an organic constraint: laughter and speech
share the same vocal apparatus and speech has
“priority access”. Curiously enough, Provine has
always excluded speech-laughs from his investi-
gations, without any justification. A more recent
study on laughter in deaf ASL signers (Provine
and Emmorey, 2006) showed that signers rarely
laugh during their own utterances, where no com-
petition for the same channel of expression is
present. Provine and Emmory conclude that the

367



punctuation effect of laughter holds even for sign-
ers, and possibly is not a simple physical con-
straint that determines the placement of laughter
in dialogues, but due to a higher order linguistic
ordered structure (Provine, 2006).

On the surface, their findings in speakers and
signers are similar: speakers do not stop mid-
sentence to insert a laugh, and signers do not laugh
while signing a sentence. However, this “simi-
larity” may be a difference in disguise. We have
shown that speakers frequently overlap laughter
and speech. If it were indeed true that signers do
not laugh while signing, it raises the question why
speech laughter is common for speakers but rare
for signers. (Provine and Emmory, 2006) hypoth-
esised that the placement of laughter in dialogue is
controlled by a higher linguistic ordered structure,
where laughter is secondary to language. There-
fore, even when the two don’t occur in competing
channels, e.g., for signers, laughter still only oc-
curs at phrase boundaries.

We argue for a different explanation. Assum-
ing speech laughter data (laughter that overlaps
utterances) were not excluded in the ASL study
as they were in spoken dialogue studies, in deaf
signers, since the laughter is perceived only vi-
sually and involves marked facial movements, it
would interfere with the perception of the message
conveyed by language. In sign languages, body
and face movements constitute important com-
municative elements at all linguistic levels from
phonology to morphology, semantics, syntax and
prosody (Liddell, 1978; Campbell, 1999). Despite
the fact that emotional facial expressions can over-
lap with linguistic facial movements (Dachkovsky
and Sandler, 2009), a laugh, implying a signifi-
cant alteration of facial configuration (see identifi-
cation of a laughter episode) could be excessively
disruptive for the message aimed to be conveyed.
While in verbal language the laughter signal can
be completely fused in the speech as a paralinguis-
tic feature (Crystal, 1976) and used in a sophisti-
cated manner to enrich and facilitate communica-
tion, (Nwokah et al., 1999) report that not even
from an acoustic perspective is laughter secondary
to speech: when co-occurring the laugh indeed
does not resemble the speech spectral patterns nor
does the speech resemble the laughter ones, but
together they create a new idiosyncratic pattern.
Laughter is fully meaningful and communicative
in itself, universally across cultures, and the emo-

tional components that it carries are not secondary
to speech or trivial.

6 Conclusion and future work

Our study provides the first systematic analysis of
laughables, and demonstrates the existence of a
corpus, the DUEL corpus (Hough et al., 2016b) in
which less than a third of the laughs immediately
follow their referents. Instead, the laugh can oc-
cur before, during or after the laughable with wide
time ranges. In addition, laughter does “interrupt”
speech: we frequently start laughing in the middle
of an utterance of the interlocutor or of ourselves
(often speech-laugh). Our results challenge the as-
sumption that what laughter follows is what it is
about, and thus question previous claims based on
this assumption.

In future work, we will study to what extent
laughter-laughable alignment differs by the func-
tion/effect of laughter, and what the limit is for the
“free” alignment. This work may be useful for di-
alogue systems which allows a computer agent to
generate laughter at appropriate times depending
on the type and location of the laughable.
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Abstract

This paper addresses the problem of how
to build interview systems that users are
willing to use. Existing interview dia-
logue systems are mainly focused on ob-
taining information from users, thus they
just repeatedly ask questions. We pro-
pose a method for improving user impres-
sions by engaging in small talk during
interviews. The system performs frame-
based dialogue management for interview-
ing and generates small talk utterances af-
ter the user answers the system’s ques-
tions. Experimental results using a text-
based interview dialogue system for diet
recording showed the proposed method
gives a better impression to users than in-
terview dialogues without small talk. It
is also found that generating too many
small talk utterances makes user impres-
sions worse because of the system’s low
capability of continuously generating ap-
propriate small talk utterances.

1 Introduction

Our goal is to build dialogue systems that can ob-
tain information from users. In this paper, we call
such systemsinterview dialogue systems. An ex-
ample is a dialogue system that interviews a user
about what he/she ate and drank. The information
obtained by the system is expected to be used for
health care.

Although interviews have not been as popular as
database search and reservations as applications of
dialogue systems, they have commercial potential
(Stent et al., 2006). Interview dialogue systems
would be useful not only because they save hu-
man labor but also because users are expected to
disclose their personal information to automated

systems more often than to human-operated sys-
tems (Lucas et al., 2014).

We propose a method for dialogue management
for such a dialogue system. Although several in-
terview dialogue systems have been developed so
far, most of them put their focus mainly on obtain-
ing information, repeating questions and making
mechanical dialogues. It might be acceptable if
the user is expected to use the system only once,
like a system for an opinion poll. However, such a
strategy is not acceptable for systems like the one
for diet recording, because users might not want to
use such a system every day.

In human-human conversations, participants
sometimes try to obtain information from another
participant while enjoying the chat. If a system
can engage in such kinds of conversation, a user
may be willing to use it. However, the capa-
bility of even state-of-the-art chat systems is not
good enough to chat for a long time. They some-
times cause dialogue breakdowns for various rea-
sons (Higashinaka et al., 2015).

Our proposed dialogue management method
mainly engages in an interview dialogue and
sometimes insertssmall talk utterances.1 In this
paper, a small talk utterance means an utterance
that is not directly related to the task of the
dialogue but makes the dialogue smoother and
friendly. Examples of small talk utterances are ut-
terances telling impression (e.g., “It sounds very
nice”) and self-disclosures (e.g., “That’s my fa-
vorite food.”). We expect that generating small
talk utterances will enable users to enjoy using the
system and they will want to use the system again.

Using the proposed method, we built an inter-
view dialogue system for diet recording and con-

1We use the termutterancerather thansentenceeven
though we deal with only text-based dialogue systems in this
paper, because sentences used in those systems are more col-
loquial.
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ducted a user study to investigate the effectiveness
of the small talk utterances. We found that the
small talk utterances give the user a better impres-
sion but it was suggested that generating too many
small talk utterances increases the possibility of
generating unnatural utterances, resulting in bad
impressions.

This paper is organized as follows. Section 2
surveys related work, and Section 3 proposes the
method for dialogue management. Section 4 ex-
plains in detail the interview dialogue systems for
diet recording as an implementation of the pro-
posed method. Section 5 shows the experimental
evaluation results before concluding the paper in
Section 6.

2 Related Work

Although interviews have not been popular appli-
cations of dialogue systems, several systems have
been developed so far.

One of the earliest systems is MORE (Kahn et
al., 1985), which can elicit knowledge for diag-
nosis from human experts. It uses a number of
heuristic rules to generate questions to human ex-
perts. Although the paper does not clearly state
how it understands user replies, it does not seem to
perform complicated language processing. Stent
et al. (2006) built a spoken dialogue system for
interview-based surveys for rating college courses.
They showed dialogue epiphenomena can be used
to learn more than the system asks. Johnston et
al. (2013) built a spoken dialogue system for gov-
ernment and social scientific surveys. They are
concerned with confirmation strategies for reduc-
ing errors in the surveys. Skantze et al. (2012) use
robot behaviors for increasing the reply rate in sur-
vey interviews. All these systems focus on obtain-
ing information from users. They are suitable to
be used once but it is not clear whether users want
to continuously use them.

On the contrary,chat-oriented dialogue sys-
tems, which can engage in small talk, have been
built so that users will enjoy conversations with
them (Wallace, 2008; Wilks et al., 2011; Hi-
gashinaka et al., 2014). It has been tried to com-
bine chat-oriented dialogue systems with task-
oriented dialogue systems (Traum et al., 2005;
Nakano et al., 2006; Lee et al., 2006). Recent
commercial dialogue systems such as Siri (Belle-
garda, 2013) also have functionality for engaging
in small talk.

Incorporating small talk into interview dialogue
systems has been considered as well, since small
talk is known to be effective in buildingrapport
(Bickmore and Picard, 2005), they are expected
to increase the rate that the user honestly answers
the questions. For example, Conrad et al. (2015)
showed that small talk in survey interviewing to
increase the users’ comprehension and engage-
ment. Bickmore and Cassell (2005) also used
small talk to increase trust. Unlike those studies
whose aim is to obtain more information from the
users, we focus on how to give better impressions
to the users. In addition, while both Conrad et
al. (2015) and Bickmore and Cassell (2005) con-
ducted Wizard-of-Oz based studies, we take into
account that it is inevitable for systems to gener-
ate inappropriate utterances.

3 Proposed Method

There are two possible dialogue management
strategies for engaging in both interview dialogues
and chat-oriented dialogues. One is to deal with
chat as the primary strategy and sometimes invoke
an interview dialogue to ask questions to the users.
This strategy is taken by some of the previously
built dialogue systems that integrate task-oriented
dialogues and chat-oriented dialogues (Nakano et
al., 2006; Lee et al., 2006). The other strategy is to
deal with interviewing as the primary strategy and
chat as the secondary strategy.

In the former approach, since the capability of
the current chat-oriented dialogue systems is not
good enough to always generate utterances that
match the dialogue context (Higashinaka et al.,
2015), engaging in chat for many turns might
make the user’s impression worse.

We therefore take the latter approach. Our
method systematically asks questions for the inter-
view based on frame-based (Bobrow et al., 1977;
Goddeau et al., 1996), agenda-based (Bohus and
Rudnicky, 2009), or other kinds of dialogue man-
agement. Then when the user replies to the sys-
tem’s questions, it may start small talk by choos-
ing one of the small talk utterances stored in a
database. After several turns, it goes back to the
interview. When to start small talk and when to
finish are determined by heuristic rules or proba-
bilistic rules learned from a corpus. By this strat-
egy, even if small talk does not go well, the sys-
tem can go back to the interview and evolve the
dialogue.
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Figure 1: Architecture for the interview dialogue system for diet recording

4 Implementation: An Interview
Dialogue System for Diet Recording

Based on the proposed method, we have devel-
oped a Japanese text-based interview dialogue sys-
tem that asks the user what he/she ate and drank
the day before. Figure 1 shows the architecture of
the system.

Note that the goal of the system is to obtain
rough information of what the user had each day.
We assume the information is used to know the
tendency of the user’s dietary habits. Obtaining
detailed dietary records so that it can be used for
nutritional guidance is out of the scope of our re-
search.

4.1 Knowledge Base

Our system assumes most users have meals with
typical meal compositions for Japanese. For ex-
ample, lunch can consist of a one-dish meal and
soup, or it can consist ofshushoku(side dish
mainly containing carbohydrates), a couple of
okazu(main or side dish containing few carbo-
hydrates), and soup. Each kind of food can be
one of these categories; for example, steamed rice
and bread areshushoku, and sandwiches and tacos
are one-dish meals. We call these categoriesfood
groups. The system has a knowledge base that
contains a list of foods for each food group as
shown in Table 1.

4.2 Understanding User Utterances

The language understanding module first performs
a morphological analysis using MeCab (Kudo et

al., 2004) to segment the input text into words and
get their part-of-speech information.

It then determines the type of the user utterance.
The type is eithergreeting, affirmative utterance
(including replies to system questions), ornega-
tive utterance. The number of types is small be-
cause, in interview dialogues, user utterances have
small variations. An utterance telling the food and
drink the user had is an affirmative utterance. This
utterance type classification is done by LR (Logis-
tic Regression), which uses bag-of-words features.
We used LIBLINEAR (Fan et al., 2008) for the
implementation of LR.

It then performs semantic content extraction,
that is, obtaining five kinds of information,
namely, food and drink, ingredient, food group,
amount of food, and time of having food. This is
done by CRF (Conditional Random Fields) using
the IOB2 tagging framework (Hahn et al., 2011).
For the CRF, we used commonly used features
such as unigram and bigram of the surface form,
original form and part of speech of the word. We
used CRFsuite (Okazaki, 2007) for the implemen-
tation of CRF.

These statistical models for LR and CRF were
trained on 5,630 utterances. This set was ar-
tificially created by randomly changing content
words in 563 sentences manually written by de-
velopers.

4.3 Dialogue Management for Interviewing

Dialogue management for interviewing is based
on a frame. Slots of the frame are compositions
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Food group Examples instances # of instances
shushoku(side dish mainly containing carbohydrates) steamed rice, bread, cereal 20
okazu(main or side dish containing few carbohydrates)Hamburg steak, fried shrimp, grilled fish 106
soup corn soup,misosoup 18
one-dish meal sandwich, noodle soup, pasta, rice bowl 78
drink orange juice, coffee 32
dessert cake, pancake, jelly 16
confectionery chocolate, donut 34
total 304

Table 1: Content of the knowledge base



breakfast:

 composition:


one-dish-meal: –
shushoku: steamed rice
okazu: –
soup: misosoup
· · ·


amount: small



lunch :

 composition:


one-dish-meal: ramen(noodle soup)
shushoku: –
okazu: –
soup: –
· · ·


amount: large


supper: · · ·



Figure 2: A snapshot of the frame

for each meal (breakfast, lunch, supper) and the
amount of each food. Figure 2 shows a snapshot
of the frame.

The frame is updated each time the user makes
an utterance, based on its language understanding
result. When there is food or drink in the under-
standing result, the system needs to know its group
so that it can fill the appropriate slot of the frame.
For example, when the user says he/she had steak
for supper, the system needs to know if it is an
okazu(main or side dish) so that it can fill the
“okazu” slot of the “composition” slot of the “sup-
per” slot. This is done using the food list in each
food group in the knowledge base. If the food is
not in the food and drink list, the system estimates
its food group and requests confirmation from the
user as will be explained in Section 4.4. Slot val-
ues can be a set of food and drink. So if the user
says he/she had a steak and a salad, theokazuslot
value is the set of “steak” and “salad”.

The system-utterance selection is done with
manually written rules. The system asks what the
user ate and drank in order. This is because in
human-human dialogues we collected in advance,
participants asked what the other participant had
in a particular order. In addition the system asks
the user brief descriptions of the food, and then
asks the composition in detail. For example, when

asking about breakfast, the system asks first “what
did you have for breakfast?” and then asks de-
tailed questions such as “what else did you have?”
and “what did you have forshushoku?” When the
frame satisfies conditions for each meal (breakfast,
lunch, and supper), the system moves to asking
about the next meal, and then finishes after obtain-
ing information about all meals. In this process,
constraints on slot values are considered; for ex-
ample, if theone-dish-mealslot value is not empty,
the system does not ask aboutshushoku, because
people do not tend to have both one-dish meals
andshushokuin one meal. The system’s questions
are not always the same; they are randomly chosen
from a variety of candidate expressions.

This frame representation is not perfect in that
it cannot represent meal compositions that are not
typical for Japanese users. Some users may have
more than three meals in one day. Augmenting the
system to deal with a variety of meal composition
is among our future work.

Even if the system cannot understand the user’s
answer perfectly, the system moves the dialogue
forward so that the dialogue does not get stuck.

4.4 Acquiring Food Groups

When the recognized food is not in the database,
to estimate its group, we used a method proposed
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S: What did you have for breakfast?
U: I hadnatto-gohan(steamed rice with fermented

soybeans).
S: Isnatto-gohananokazuor shushoku?
U: It’s a shushoku.

Figure 3: Example dialogue for food group acqui-
sition

by Otsuka et al. (2013). Although they used both
a model trained from a food database and Web
search results, we only used the former. It esti-
mates the group of the food as one of the seven
groups in Table 1 and asks a question such as “Is
osuimono(Japanese broth soup) soup?”. This is
done by logistic regression, which uses the bag of
words, unigram and bigram of characters as fea-
tures, the type of characters used in Japanese (hi-
ragana, katakana, Chinese characters, and alpha-
bet). The amount of training data consists of 863
expressions.

The system does not always ask back to the user
only the top estimation result. It sometimes gen-
eratesn-ary questions usingn-best estimation re-
sults. For example, a binary question “Is sweet
roll a confectionery or a one-dish meal?” can be
asked. This is because the top estimation result
is not always correct. In addition,n-ary questions
are sometimes easy to understand because the user
does not know the list of food groups in advance
and he/she may not understand whatshushokure-
ally means. How many candidates are used in the
question is decided based on posterior probabili-
ties but we omit the detailed explanation because
it is not really related to the main topic of this pa-
per.

The dialogue management for acquiring the
group of a food is performed separately from the
management for interview dialogues; that is, when
the food name that the user says is not in the
database, the control moves to the food group ac-
quisition dialogue managers, and after obtaining
the food group, the control moves back to the in-
terview dialogue manager. Figure 3 shows a trans-
lation of an example food group acquisition dia-
logue.

4.5 Generating Small Talk Utterances

Small talk utterances are selected from a prede-
fined list based on the type and the content of the
preceding user utterance. When the user utterance
is affirmative, negative utterances are avoided as

Type #
showing empathy 26
telling impression of that the amount is large 22
telling impression of that the amount is small 50
asking a question 6
self-disclosure 2
backchannel 6
telling impression of the user’s negative answer 7
reaction to individual food 323
Total 442

Table 2: The number of small talk utterance can-
didates for each type

candidates for small talk utterances. For example,
the following utterances can be chosen.

It’s my favorite food! (self-disclosure)
Great! (showing empathy)
Is it tasty? (asking a question)

When the user utterance is negative, utterances
showing impression of the user’s negative answer,
such as ”It lowers my spirit...”, “Let’s go to eat
something you like!” are selected.

In addition, when a specific food is included in
the preceding user utterance, small talk utterances
corresponding to the food are chosen. For exam-
ple, if the user utterance includes “tiramisu”, ut-
terances such as “Tiramisu means ‘cheer me up’
in Italian.” can be chosen.

When the amount of a meal is mentioned by
the user, a small talk utterance showing an impres-
sion of the amount is chosen. For example, if the
user says that the amount is large (e.g., “I ate too
much”), an utterance such as “Please be careful
about your health!” is chosen.

We constructed the predefined list of small talk
utterances by asking our colleagues and 100 peo-
ple recruited through a crowdsourcing site to list
them, obtaining 442 utterances in total. The num-
ber of utterances for each type is shown in Table 2.

4.6 Response Selection

The response selection module needs to select one
utterance from many candidates for questions and
small talk utterances. Although learning a strategy
for selecting appropriate system utterances from
a corpus is among our future work, the current
system adopts a very simple heuristic rule. First
it decides if it asks questions or generates small
talk utterances. If the number of small talk utter-
ances generated after the previous system question
is smaller thanN , which is set in advance, it gen-
erates a small talk utterance, and otherwise it asks
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N = 0 (no small talk utterances)

S: What did you have for lunch?
U: I had okonomiyaki (Japanese pancake) for

lunch.
S: Did you have any other food for lunch?
U: No, I didn’t have any other food.
S: How much did you have for lunch yesterday?
U: I had only a small amount.

N = 1 (one small talk utterance)

S: What did you have for breakfast yesterday?
U: Shoku-pan(sliced bread) and corn soup.
S: Those are good!
U: I agree.
S: What else did you have for breakfast yesterday?

N = 3 (three small talk utterances)

S: What did you have for lunch yesterday?
U: I had a Hamburg steak.
S: You had a Hamburg steak, did you?
U: Yes, it was a Hamburg steak.
S: Do you like Hamburg steaks?
U: Yes, I like them very much.
S: Actually I had a Hamburg steak.
U: Really? Was it tasty?
S: What else did you have for lunch yesterday?

Figure 4: Example dialogues
(S means the system and U means the user)

Favored condition Frequency
NO 67
ONE 46
TWO 107
THREE 270
TWO-CONSECUTIVE 65
THREE-CONSECUTIVE 45
Total 600

Table 3: Result of questionnaire survey on the
number of small talk utterances

a question. Small talk utterances are randomly se-
lected from the candidates but repeating the same
small talk utterance within theN turns is avoided.

4.7 Example Dialogues

Figure 4 shows translations of example dialogues
collected in the user study to be described in Sec-
tion 5 with N being zero (no small talk utter-
ances), one, and three. A longer example can be
found in the appendix.

5 User Study

To investigate the effectiveness of the small talk
utterances, we conducted a user study.

5.1 Compared Conditions

In this user study, to evaluate the effectiveness of
generating small talk utterances, we compared the

following three conditions:

NO-STU: The system does not generate any
small talk utterances (N = 0 in Section 4.6.
This is the baseline condition),

1-STU: The system generates one small talk ut-
terance after the user replies to the system
question for diet recording (N = 1), and

3-STU: The system generates three small talk ut-
terances (three turns) after the user replies to
the system question for diet recording (N =
3).

We have chosen these for the following rea-
son. First, we conducted a preliminary question-
naire survey to 100 people via crowdsourcing.
We showed each participant six sets of dialogues.
Each set includes six dialogues each of which has
one system question, the user’s reply, one of the
following, and another system question:

NO: nothing,

ONE: small talk containing one system turn,

TWO: small talk containing two system turns,

THREE: small talk containing three system turns,

TWO-CONSECUTIVE: one system turn having
two consecutive small talk utterances and the
user’s reaction, and

THREE-CONSECUTIVE: one system turn having
three consecutive small talk utterances and
the user’s reaction.

These dialogues were created by the authors based
on the functionality of the implemented interview
dialogue system. Each participant is asked which
he/she likes the best among the six dialogues for
each set. Table 3 shows the result. We found the
participants liked THREE best.

We also found, however, increasing the number
of small talk utterances does not give a better im-
pression to the participants in the trial use of the
system. This is probably because the second and
third small talk utterances need to react to the user
responses to the first small talk utterance and it is
difficult to generate utterances appropriate in the
context. On the contrary, the dialogues we showed
in the above questionnaire survey did not include
any inappropriate utterances, thus the participant
must have chosen THREE.
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ID Adjective pair
Q1 system responses

are meaningful
↔ system responses

are meaningless
Q2 fun ↔ not fun
Q3 natural ↔ unnatural
Q4 warm ↔ cold
Q5 want to talk to the

system again
↔ don’t want to talk to

the system again
Q6 lively ↔ not lively
Q7 simple ↔ complicated

Table 4: Survey items

We therefore used 1-STU in addition to 3-STU
in the user study. We also used NO-STU which
was dealt with as the baseline.

5.2 Experimental Method

We asked 100 participants recruited through a
crowdsourcing site to evaluate the system with dif-
ferent conditions after engaging in the dialogues.
We did not collect their personal profiles such as
gender and age. The participants accessed the di-
alogue server to engage in dialogues with the sys-
tem with the three conditions. The order of the
conditions was random. The participants were
asked to evaluate the dialogue by rating seven
items on a 5-point Likert-scale after finishing the
dialogue with the system with each condition. The
system finished the dialogue if the number of turns
reached 33. For a technical reason, the maximum
number of system turns of the dialogue is 34.

When analyzing the evaluation data, we ex-
cluded those of eight participants whose dialogues
were interrupted due to system problems and who
repeated the same utterances many times. The av-
erage number of system turns in the dialogues with
the NO-STU system, the 1-STU system, and the
3-STU system were respectively 16.5, 23.4, and
30.8.

5.3 Language Understanding Performance

We first evaluated the performance of the language
understanding module. We randomly extracted
1,000 user utterances and their understanding re-
sults from the collected dialogue logs. We found
that the utterance types of the91.7% of utterances
are correctly classified and the semantic contents
from the84.8% of utterances were perfectly ex-
tracted.

We also evaluated food group estimation by in-
vestigating randomly chosen 200 food group ac-
quisition dialogues. The accuracy of the food
group estimation was84.0%, when we consider

the estimation result is correct if one of the candi-
dates the system provided to the user was correct.

5.4 User Impressions

Figure 5 shows the user evaluation results. First,
for “simplicity”, NO-STU is the best, followed by
1-STU. This is reasonable because the total num-
ber of turns becomes smaller when a lower number
of small talk utterances are generated.

As for the remaining survey items, we found the
1-STU got significantly higher scores for “fun”,
“warmth” “want-to-talk-again” and “liveliness”
than NO-STU. In addition it is not worse than NO-
STU for the other items. This shows small talk
utterances improve the impressions of the system.

However, scores of 3-STU are better than those
of NO-STU only for “warmth” and “liveliness”
and not better than for any items than 1-STU, In
addition the “naturalness” scores of 3-STU are
significantly lower than those of NO-STU and 1-
STU. We discuss this below.

5.5 Discussion

The scores for 3-STU are not good probably be-
cause, as we already discussed in Section 5.1, in-
creasing the number of small talk utterances raises
the possibility of generating unnatural system ut-
terances. We confirmed this by manually investi-
gating the frequency of inappropriate small talk ut-
terances. We randomly chose five participants and
checked their dialogue in 3-STU, and intuitively
judged if the small talk utterances are inappropri-
ate considering both the utterance content and the
dialogue context. We found that 27 out of 33 first
system utterances in the small talk (82%) were ap-
propriate, but that only 18 of 32 (56%) second ut-
terances and 8 of 29 (28%) third utterances were
appropriate. We guess this is why 3-STU gives a
worse impression to the participants.

We found that the participants are split into two
groups depending on the scores for “naturalness”
and “liveliness” as shown in Figure 6. Although
we have not figured out the exact cause of this,
we suspect this is because the expectations of the
participants to the ability of the system are dif-
ferent. By looking at the free-form descriptions
of impressions of the participants, the participants
who scored low in “naturalness” wrote impres-
sions such as “not interesting” and “can’t respond
well”, but the participants who scored high wrote
impressions such as “It’s fun to think how to speak
in order to be understood by the system” and “It’s
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fun to chat with the robot”2. That is, those who
scored high in “naturalness” did not seem to have
high expectations in the ability of the dialogue sys-
tem. Based on this observation, finding a method
for decreasing user expectations is expected to be
effective to improve their impressions.

2The chat display shows an illustration of a robot.

6 Concluding Remarks

Interviewing is one of the promising applica-
tions of dialogue systems technology although not
many studies have been conducted so far. This
paper proposed to generate small talk utterances
to improve user impressions of interview dialogue
systems. Based on the proposal, we implemented
a Japanese text-based interview dialogue system
for diet recording.

The results of a user study showed that small
talk utterances give a better impression to users but
suggested that generating too many small talk ut-
terances increases the possibility of generating un-
natural utterances, making the users’ impressions
worse.

The user study presented in this paper was based
on crowdsourcing. So there can be bias in user at-
tributes such as gender and age. In addition, al-
though our long-term goal is to build interview di-
alogue systems that users are willing to repeatedly
use, the participants used the system only once in
the user study. We are planning to conduct another
user study to investigate how generating small talk
utterances affects the continuous use of the system
by recruiting a variety of participants.

The current system uses a fixed number of small
talk utterances. We are planning to incorporate
a strategy for flexibility selecting utterances from
candidates for questions and small talk utterances
depending on the context and user reactions. Such
a strategy will be learned from the corpus that
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we collected in the user study described in Sec-
tion 5. Furthermore, taking a deep-learning-based
approach to utterance selection (Lowe et al., 2015)
is one possibility if we can obtain enough training
data.

Finally, we plan to investigate how well the re-
sults of this study can be applied to interview dia-
logue systems in other domains.
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Appendix: An Example Dialogue of the
1-STU system

Agent Translation Original utterance in Japanese∗

S: Let me start an interview. What did you have
for breakfast yesterday?

Kore kara intabŷu o hajime masu; Kin̂o no asa
wa nani o tabe mashita ka?

U: I had cereal. Siriaru desu
S: I want to eat it, too. Watashi mo tabe tai desu
U: You do. Sô desu ka
S: What else did you have for breakfast yesterday? Kinô no cĥoshoku de hoka ni nani o tabe

mashita?
U: I didn’t have any other food. Tabete nai desu
S: How much did you have for breakfast yester-

day?
Kinô no cĥoshoku wa dore kurai tabe mashita
ka?

U: I had a normal amount. Futŝuryô desu
S: How much do you think you had for breakfast

yesterday?
Kinô no cĥoshoku no rŷo wa dore kurai datta to
omoi masu ka?

U: A normal amount. Futŝu desu
S: Sorry, I couldn’t understand the answer. Please

type in just “yes”. [This request is for moving
the dialogue forward.]

Sumimasen. Konôotô wa ninshiki deki masen
deshita; Hai to dake nyûryoku shite kudasai.

U: Yes. Hai
S: What did you have for lunch yesterday? Kinô no cĥushoku, nani o meshiagari mashita?
U: I hadyakisoba(Japanese stir-fried noodles). Yakisoba desu
S: Isyakisobaa one-dish meal? Yakisoba wa ippin mono desu ka?
U: Yes. Hai
S: Well, you hadyakisoba. Hê yakisoba dattan desu ne
U: Yes, I did. Sôdesu yo
S: What else did you have for lunch yesterday? Kinô no cĥushoku de hoka ni meshiagatta mono

wa ari masu ka?
U: Nothing. Nai desu
S: How much do you think you had for lunch yes-

terday?
Kinô no chushoku no rŷo wa dorekurai datta to
omoi masu ka?

U: A proper amount. Teki ryô desu
S: Can you tell me what you had for supper yes-

terday?
Kinô no ŷushoku ni tabeta mono o oshiete ku-
dasai

U: I had curry and rice Karê desu
S: I want to eat it! Tabe tai desu!
U: I see! Sokka!
S: What else did you have for supper yesterday? Kinô no ŷushoku de kar̂e igai ni meshiagatta

mono wa ari masu ka?
U: Nothing. Naidesu
S: Did you have a lot for supper yesterday? Kinô no ŷushoku wa gattsuri tabe mashita ka?
U: A lot. [Semantic content extraction failed.] Gattsuri desu
S: How much did you have? Dorekurai tabemashita ka?
U: A lot. Gattsuri desu
S: This interview is finished. Thank you. Kono intabŷu wa sĥuryô desu. Arigat̂o goza-

imasu
∗ Note that the user and the system used Japanese characters for interaction.
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Abstract

In this work, we focus on automatically
recognizing social conversational strate-
gies that in human conversation con-
tribute to building, maintaining or some-
times destroying a budding relationship.
These conversational strategies include
self-disclosure, reference to shared ex-
perience, praise and violation of social
norms. By including rich contextual fea-
tures drawn from verbal, visual and vocal
modalities of the speaker and interlocutor
in the current and previous turn, we can
successfully recognize these dialog phe-
nomena with an accuracy of over 80% and
kappa ranging from 60-80%. Our findings
have been successfully integrated into an
end-to-end socially aware dialog system,
with implications for virtual agents that
can use rapport between user and system
to improve task-oriented assistance.

1 Introduction and Motivation

People pursue multiple conversational goals in di-
alog (Tracy and Coupland, 1990). Contributions
to a conversation can be divided into those that ful-
fill propositional functions, contributing informa-
tional content to the dialog; those that fulfill inter-
actional functions, managing the conversational
interaction; and those that fulfill interpersonal
functions, managing the relationship between the
interlocutors (Cassell and Bickmore, 2003; Fetzer,
2013). In the category of talk that fulfills interper-
sonal goals are conversational strategies - units of
discourse that are larger than speech acts (in fact, a
single conversational strategy can span more than
one turn in conversation), and that can achieve so-
cial goals.

In this paper, we propose a technique to auto-
matically recognize conversational strategies. We
demonstrate that these conversational strategies
are most effectively recognized when verbal (lin-
guistic), visual (nonverbal) and vocal (acoustic)
features are all taken into account (and, in a demo
paper published in this volume, we demonstrate
that the results here can be effectively integrated
into an end-to-end socially-aware dialog system).

As naturalistic interactions with dialog systems
increasingly become a part of people’s daily lives,
it is important for these systems to advance their
capabilities of not only conveying information and
achieving smooth interaction, but also managing
long-term relationships with people by building
intimacy (Pecune et al., 2013) and rapport (Zhao
et al., 2014), not just for the sake of companion-
ship, but as an intrinsic part of successfully fulfill-
ing collaborative tasks.

Rapport, or the feeling of harmony and connec-
tion with another, is an important aspect of human
interaction, with powerful effects in domains such
as education (Ogan et al., 2012; Sinha and Cassell,
2015a; Sinha and Cassell, 2015b) and negotiation
(Drolet and Morris, 2000). The central theme of
our work is to develop a dialog system that can fa-
cilitate such interpersonal rapport with users over
interactions in time. Taking a step towards this
goal, our prior work (Zhao et al., 2014) has devel-
oped a dyadic computational model that explains
how interlocutors manage rapport through use of
specific conversational strategies to fulfill the in-
termediate goals that lead to rapport - face man-
agement, mutual attentiveness, and coordination.

Foundational work by (Spencer-Oatey, 2008)
conceptualizes the interpersonal nature of face as
a desire to be recognized for one’s social value and
individual positive traits. Face-boosting strate-
gies such as praise serve to create increased self-
esteem in the individual and increased interper-
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sonal cohesiveness or rapport in the dyad (Zhao
et al., 2014). (Spencer-Oatey, 2008) also posits
that over time, interlocutors intend to increase co-
ordination by adhering to behavior expectations,
which are guided by sociocultural norms in the ini-
tial stages of interaction and by interpersonally de-
termined norms afterwards. In these later stages,
general norms may be purposely violated to ac-
commodate the other’s behavioral expectations.

Meanwhile, in the increasing trajectory of in-
terpersonal closeness, referring to shared expe-
rience allows interlocutors to increase coordina-
tion by indexing common history and differentiat-
ing in-group and out-group individuals (Tajfel and
Turner, 1979) (cementing the sense that the two
are part of a group in ways that similar phenomena
such as ”referring to shared interests” do not ap-
pear to). To better learn about the other person mu-
tual attentiveness plays an important role (Tickle-
Degnen and Rosenthal, 1990). We have seen in
our own corpora that mutual attentiveness is ful-
filled by leading one’s interlocutors to provide in-
formation about themselves through the strategy
of eliciting self-disclosure. As the relationship
proceeds and social distance decreases, these self-
disclosures become more intimate in nature.

Motivated by this theoretical rationale and our
prior empirical findings concerning the relation-
ship between these conversational strategies and
rapport (Sinha et al., 2015), in the current work,
our goals are twofold: Our theoretical question is
to understand the nature of conversational strate-
gies in greater detail, by correlating them with as-
sociated observable verbal, vocal and visual cues
(section 5). Our methodological question is then
to use this understanding to automatically recog-
nize these conversational strategies by leveraging
statistical machine learning techniques (section 6).

We believe that the answers to these questions
can contribute important insights into the nature
of human dialog. By the same token, we believe
this work to be crucial if we wish to develop a
socially-aware dialog system that can identify con-
versational strategy usage in real-time, assess its
impact on rapport, and then produce an appropri-
ate next conversational strategy as a follow-up to
maintain or increase rapport in the service of im-
proving the system’s ability to support the user’s
goals. (Papangelis et al., 2014).

2 Related Work

Below we describe related work that focuses on
computational modeling of social conversational
phenomena. For instance, (Wang et al., 2016) de-
veloped a model to measure self-disclosure in so-
cial networking sites by deploying emotional va-
lence, social distance between the poster and other
people and linguistic features such as those iden-
tified by the Linguistic Inquiry and Word Count
program (LIWC) etc. While the features used here
are quite interesting, this study relied only on the
verbal aspects of talk, while we also include vocal
and visual features.

Interesting prior work on quantifying social
norm violation has taken a heavily data-driven fo-
cus (Danescu-Niculescu-Mizil et al., 2013b; Wang
et al., 2016). For instance, (Danescu-Niculescu-
Mizil et al., 2013b) trained a series of bigram lan-
guage models to quantify the violation of social
norms in users’ posts on an online community by
leveraging cross-entropy value, or the deviation of
word sequences predicted by the language model
and their usage by the user. Another kind of so-
cial norm violation was examined by (Riloff et
al., 2013), who developed a classifier to identify
a specific type of sarcasm in tweets. They utilized
a bootstrapping algorithm to automatically extract
lists of positive sentiment phrases and negative sit-
uation phrases from given sarcastic tweets, which
were in turn leveraged to recognize sarcasm in an
SVM classifier. Experimental results showed the
adequacy of their approach.

(Wang et al., 2012) investigated the different
social functions of language as used by friends
or strangers in teen peer-tutoring dialogs. This
work was able to successfully predict impolite-
ness and positivity in the next turn of the dia-
log. Their success with both annotated and au-
tomatically extracted features suggests that a dia-
log system will be able to employ similar analy-
ses to signal relationships with users. Other work,
such as (Danescu-Niculescu-Mizil et al., 2013a)
has developed computational frameworks to auto-
matically classify requests along a scale of polite-
ness. Politeness strategies such as requests, grati-
tude and greetings, as well as their specialized lex-
icons, were used as features to train a classifier.

In terms of hedges or indirect language,
(Prokofieva and Hirschberg, 2014) proposed a pre-
liminary approach to automatic detection, relying
on a simple lexical-based search. Machine learn-
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ing methods that go beyond keyword searches are
a promising extension, as they may be able to bet-
ter capture language used to hedge as a function of
contextual usage.

However, a common limitation of the above
work is its focus on only the verbal modality, while
studies have shown conversational strategies to be
associated with specific kinds of nonverbal behav-
iors. For instance, (Kang et al., 2012) discov-
ered that head tilts and pauses were the strongest
nonverbal cues to interpersonal intimacy. Unfor-
tunately, here too only one modality was exam-
ined. While nonverbal behavioral correlates to in-
timacy in self-disclosure were modeled, the ver-
bal and vocal modalities of the conversation was
ignored. Computational work has also modeled
rapport using only nonverbal information (Huang
et al., 2011). In what follows we describe our
approach to modeling social conversational phe-
nomena, which relies on verbal, visual and vocal
content to automatically recognize conversational
strategies. Our models are trained on a peer tutor-
ing corpus, which gives us the opportunity to look
at conversational strategies as they are used in both
a task and social context.

3 Study Context

Reciprocal peer tutoring data was collected from
12 American English-speaking dyads (6 friends
and 6 strangers; 6 boys and 6 girls), with a mean
age of 13 years, who interacted for 5 hourly ses-
sions over as many weeks (a total of 60 sessions,
and 5400 minutes of data), tutoring one another
in algebra (Yu et al., 2013). Each session began
with a period of getting to know one another, af-
ter which the first tutoring period started, followed
by another small social interlude, a second tutor-
ing period with role reversal between the tutor and
tutee, and then the final social time.

Prior work demonstrates that peer tutoring is an
effective paradigm that results in student learning
(Sharpley et al., 1983), making this an effective
context to study dyadic interaction with a concrete
task outcome. Our student-student data, in addi-
tion, demonstrates that a tremendous amount of
rapport-building takes place during the task of re-
ciprocal tutoring (Sinha and Cassell, 2015b).

4 Ground Truth

We assessed our automatic recognition of conver-
sational strategies against this corpus annotated

for those strategies (as well as other educational
tutoring phenomena not discussed here). Inter-
rater reliability (IRR) for the conversational strat-
egy annotations, computed via Krippendorff’s al-
pha, was 0.75 for self-disclosure, 0.79 for refer-
ence to shared experience, 1.0 for praise and 0.75
for social norm violation. IRR for visual behavior
was 0.89 for eye gaze, 0.75 for smile count (how
many smiles occur), 0.64 for smile duration and
0.99 for head nod. Below we discuss the defini-
tions of each conversational strategy and nonver-
bal behavior that was annotated.

4.1 Coding Conversational Strategies

Self-Disclosure (SD): Self-disclosure refers to the
conversational act of revealing aspects of one-
self (personal private information) that otherwise
would not be seen or known by the person being
disclosed to (or would be difficult to see or know).
A lot of psychological literature talks about the
ways people reveal facts about themselves as ways
of building relationships, but we are the first to
look at the role of self-disclosure during social and
task interactions by the same dyad, particularly for
adolescents engaged in reciprocal peer tutoring.
We coded for two sub-categories: (1) revealing
the long-term aspects of oneself that one may feel
are deep and true (e.g, “I love my pets”), (2) re-
vealing one’s transgressive (forbidden or socially-
unacceptable) behaviors or actions, which may be
a way of attempting to make the interlocutor feel
better by disclosing one’s flaws (e.g, “I suck at lin-
ear equations”).

Referring to Shared Experience (SE): We dif-
ferentiate between shared experience - an experi-
ence that the two interlocutors engage in or share
with one another at the same time (such as ”that
facebook post Cecily posted last week was wild!”)
- from shared interests (such as ”you like Xbox
games too?). Shared experiences may index a
shared community membership (even if a com-
munity of two), which can in turn build rapport.
We coded for shared experiences (e.g, going to the
mall together last week).

Praise (PR): We annotated both labeled praise
(an expression of a positive evaluation of a spe-
cific attribute, behavior or product of the other;
e.g, “great job with those negative numbers”), and
unlabeled praise (a generic expression of posi-
tive evaluation, without a specific target;e.g, “Per-
fect”).
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Violation of Social Norms (VSN): Social norm
violations are behaviors or actions that go against
general socially acceptable and stereotypical be-
haviors. In a first pass, we coded whether an ut-
terance was a social norm violation. In a second
pass, if a social norm violation, we differentiated:
(1) breaking the conversational rules of the exper-
iment (e.g. off-task talk during tutoring session,
insulting the experimenter or the experiment, etc);
(2) face threatening acts (e.g. criticizing, teasing,
or insulting, etc); (3) referring to one’s own or the
other person’s social norm violations or general
social norm violations (e.g. referring to the need to
get back to focusing on work, or to the other per-
son being verbally annoying etc). Social norms
are culturally-specific, and so we judged a social
norm violation by the impact it had on the listener
(e.g. shock, specific reference to the behavior as
a violation, etc.). Social norm violations may sig-
nal that a dyad is becoming closer, and no longer
feels the need to adhere to the norms of the larger
community.

4.2 Coding Visual Behaviors

Eye Gaze: Gaze for each participant was anno-
tated individually. Front facing video for the in-
dividual participant was supplemented with a side
camera view when needed. Audio was turned off
so that words didn’t influence the annotation. We
coded (1) Gaze at the partner (gP), (2) Gaze at
one’s own worksheet (gO), (3) Gaze at partner’s
worksheet (gN), (4) Gaze elsewhere (gE).

Smile: A smile is defined by the elongation
of the participant’s lips and rising of their cheeks
(smiles will often be asymmetric). It is often ac-
companied by creases at the corner of the eyes.
Smiles have three parameters: rise, sustain, and
decay (Hoque et al., 2011). We annotated a smile
from the beginning of the rise to the end of the
decay.

Head Nod: We coded temporal intervals of
head nod rather than individual nod - the begin-
ning of the head moving up and down until the
moment the head came to rest.

5 Understanding Conversational
Strategies

Our first objective, then, was to understand the
nature of different conversational strategies (dis-
cussed in section 4) in greater detail. Towards
this end, we first under-sampled the non-annotated

examples of self disclosure, shared experience,
praise and social norm violation in order to create
a balanced dataset of utterances. The utterances
chosen to reflect the non-annotated cases were ran-
domly selected. We made sure to have a similar
average utterance length for all annotated and non-
annotated cases, to prevent conflation of results
due to lower or higher opportunities for detection
of multimodal features. The final corpus (selected
from 60 interaction sessions) comprised of 1014
self disclosure and 1014 non-self disclosure, 184
shared experience and 184 non-shared experience,
167 praise and 167 non-praise, 7470 social norm
violation and 7470 non-social norm violation.

Second, we explored observable verbal and vo-
cal behaviors of interest that could potentially be
associated with different conversational strategies,
assessing whether the mean value of these fea-
tures were significantly higher in utterances with
a particular conversational strategy label than in
ones with no label (two-tailed correlated samples
t-test). Bonferroni correction was used to correct
the p-values with respect to the number of fea-
tures, because of multiple comparisons involved.
Finally, for all significant results (p <0.05), we
also calculated effect size via Cohen’s d to test for
generalizability of results.

Third, for visual behaviors like smile, eye gaze,
head nod, we binarized these features by denoting
their presence (1) or absence (0) in one clause. If
an individual shifts gaze during a particular spoke
conversational strategy, we might have multiple
types of eye gaze represented. We performed �2

test to see whether the appearance of visual anno-
tations were independent of whether the utterance
belonged to a particular conversational strategy or
not. For all significant �2 test statistics, odds ratio
(o) was computed to explore co-occurrence like-
lihood. Majority of the features discussed in the
subsequent sub-sections were drawn from qualita-
tive observations and note-taking, during and after
the formulation of our coding manuals.

5.1 Verbal

We used Linguistic Inquiry and Word Count
(LIWC 2015) (Pennebaker et al., 2015) to quan-
tify verbal cues of interest that were semanti-
cally associated with a broad range of psycholog-
ical constructs and could be useful in distinguish-
ing conversational strategies. The input to LIWC
were conversational transcripts that had been tran-
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scribed and segmented into syntactic clauses.

Self-disclosure: We observed personal con-
cerns of students (sum of words identified as
belonging to categories of work, leisure, home,
money, religion and death etc) to be significantly
higher, than in non self-disclosure utterances with
a moderate effect size (d=0.44), signaling that
students referred significantly more to their per-
sonal concerns during self-disclosure. Next, due
to the fact that self-disclosures are often likely
to comprise of emotional expressions when re-
vealing one’s likes and dislikes (Sparrevohn and
Rapee, 2009), we used the LIWC dictionary to
capture words representative of negative emotions
(d=0.32) and positive emotion words (d=0.18).
Also, to formalize the intuition that when people
reveal themselves in an authentic or honest way,
they are more personal, humble, and vulnerable,
the standardized LIWC summary variable of Au-
thenticity (d=1.16) was taken into account. Fi-
nally, as expected, we found self-disclosure utter-
ances had significantly higher usage of first person
singular pronouns (d=1.62).

Reference to shared experience: We looked
at three LIWC categories: (1) Affiliation drive,
which comprises words signaling a need to af-
filiate such as ally, friend, social etc (d=0.92),
(2) Time Orientation words, which capture past
(mostly in ROE) , present (mostly in RIE) and
future focus and comprises words such as ago,
did, talked, today, is, now, may, will, soon etc
(d=0.95). Such words are not only used by inter-
locutors to index commonality within a time frame
(Enfield, 2013), but also to signal an increased
need for affiliation with the conversational partner,
perhaps to indicate common ground(Clark, 1996),
(3) First person plural such as we, us, our etc. In
line with expectations, this feature had high effect
size (d=0.93), since interlocutors focused on both
themselves and the conversational partner.

Praise: We looked at positive emotions
(d=2.55), since praise is one form of verbal per-
suasion that increases the interlocutor’s confidence
and boosts self efficacy (Bandura, 1994). Most
of the praise utterances in our dataset were not
very specific or directed at the tutee’s performance
or effort. Also, the LIWC standardized sum-
mary variable of Emotional Tone from LIWC was
considered for the sake of completeness, which
puts positive emotion and negative emotion di-
mensions into a single summary variable, such

that the higher the number, the more positive the
tone (d=3.56).

Social norm violation: We looked at different
categories of off-task talk from LIWC, such as so-
cial processes comprising words related to friends,
family, male and female references (d=0.78), bio-
logical processes comprising words belonging to
the categories of body, health etc (d=0.30) and per-
sonal concerns (d=0.24). The effect sizes across
these categories ranged from moderate to low.
Next, we looked at usage of swearing words like
fuck, damn, shit etc and found low effect size
(d=0.13) for this category in utterances of social
norm violation. For the LIWC category of anger
(words such as hate, annoyed etc), the effect size
was moderate (d=0.27).

In our qualitative analysis of social norm viola-
tion utterances, we had discovered interactions of
students to be reflective of need for power, mean-
ing attention to or awareness of relative status in
a social setting (perhaps this could be a result of
putting one student in the tutor role). We for-
malized this intuition from the LIWC category of
power drive that comprises words such as supe-
rior etc (d=0.18). Finally, based on prior work
(Kacewicz et al., 2009) that found increased use
of first-person plural to be a good predictor of
higher status, and increased use of first-person sin-
gular to be a good predictor of lower status, we
posited that when students violated social norms,
they were more likely to freely make statements
that involved others. However, the effect size for
first-person plural usage in utterances of social
norm violation was negligible (d=0.07). Table 2
in the appendix provides complete set of results.

5.2 Vocal

In our qualitative observations, we noticed the
variations of both pitch and loudness when inter-
locutors used different conversational strategies.
We were thus motivated to explore the mean dif-
ference of those low-level vocal descriptors as
differentiators among the different conversational
strategies. By using Open Smile (Eyben et al.,
2010), we extracted two sets of basic features -
for loudness features, pcm-loudness and its delta
coefficient were tested; for pitch-based features,
jitterLocal, jitterDDP, shimmerLocal, F0final and
also their delta coefficients were tested. pcm-
loudness represents the loudness as the normalised
intensity raised to a power of 0.3. F0final is the
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smoothed fundamental frequency contour. Jitter-
Local is the frame-to-frame pitch period length
deviations. JitterDDP is the differential frame-to-
frame jitter. ShimmerLocal is the frame-to-frame
amplitude deviations between pitch periods.

Self-disclosure: We found a moderate effect
size for pcm-loudness-sma-amean (d=0.26). De-
spite often becoming excited when disclosing
things that they loved or liked, sometimes students
also seemed to hesitate and spoke at a lower pitch
when they revealed a transgressive act. However,
the effect size for pitch was negligible. One po-
tential reason for our results not aligning with hy-
pothesis could be consideration of utterances with
annotations of enduring states as well as transgres-
sive acts together.

Reference to shared experience: We
found a moderate negative effect size for the
shimmerLocal-sma-amean (d=-0.32).

Praise: We found negative effect size for loud-
ness (d=-0.51), meaning the speakers spoke in a
lower voice when praising the interlocutor (mostly
the tutee). We also found positive and moderate
effect sizes for jitterLocal-sma-amean (d=0.45)
and shimmerLocal-sma-amean (d=0.39).

Social norm violation: We found high ef-
fect sizes for pcm-loudness-sma-amean (d=0.72)
and F0final-sma-amean (d=0.61) and interest-
ingly, negative effect sizes for jitter (d=-0.09) and
shimmer (d=-0.16). One potential reason could be
that when student violate social norms, their be-
haviors are likely to become outliers compared to
their normative behaviors. In fact, we noticed us-
age of “joking” tone of voice (Norrick, 2003) and
pitch different than usual, to signal a social norm
violation. When the content of the utterance was
unaccepted by the social norms, students also tried
to lower down their voice, which could be a way of
hedging these violations. Table 2 in the appendix
provides complete set of results.

5.3 Visual
Computing the odds ratio o involved compar-
ing the odds of occurrence of a non-verbal
behavior for a pair of categories of a sec-
ond variable (whether an utterance was a spe-
cific conversational strategy or not). Overall,
we found that that smile and gaze were sig-
nificantly more likely to occur in utterances
of self-disclosure (o(Smile)=1.67, o(gP)=2.39,
o(gN)=0.498, o(gO)=0.29, o(gE)=2.8) compared
to a non self-disclosure utterance. A similar

trend was observed for reference to shared expe-
rience (o(Smile)=1.75, o(gP)=3.02, o(gN)=0.58,
o(gO)=0.31, o(gE)=4.19) and social norm vi-
olation (o(Smile)=3.35, o(gP)=2.75, o(gN)=0.8,
o(gO)=0.47, o(gE)=1.67) utterances, compared to
utterances that did not belong to these categories.

The high odds ratio for gP in these results sug-
gests that an interlocutor was likely to gaze at their
partner when using specific conversational strate-
gies, signaling attention towards the interlocutor.
The extremely high odds ratio for smiling behav-
iors during a social norm violation is also inter-
esting. However, for praise utterances, we did
not find all kinds of gaze and smile to be more
likely to occur than non-praise utterances. Only
gazing at partner (o(gP)=0.44) or their worksheet
(o(gN)=4.29) or gazing elsewhere (o(gE)=0.30)
were among the non-verbals that were signifi-
cantly greatly present in praise utterances. Table
3 in the appendix provides complete set of results
for the speaker (as discussed above) and also for
the listener.

6 Machine Learning Modeling

In this section, our objective was to build a compu-
tational model for conversational strategy recogni-
tion. Towards this end, we first took each clause,
or the smallest units that can express a complete
proposition, as the prediction unit. Next, three sets
of features were used as input. The first set f1

comprised verbal (LIWC), vocal and visual fea-
tures of the speaker, informed from the qualita-
tive and quantitative analysis as discussed above.
While LIWC features helped in categorization of
words used during usage of a particular conversa-
tional strategy, they did not capture contextual us-
age of words within the utterance. Thus, we also
added bigrams, part of speech bigrams and word-
part of speech pairs from the speaker’s utterance.

In addition to the speaker’s behavior, we also
added two sets of interlocutor behavior to capture
the context around usage of a conversational strat-
egy. The feature set f2 comprised visual behaviors
of the interlocutor (listener) in the current turn.
The feature set f3 comprised verbal (bigrams, part
of speech bigrams and word-part of speech pairs),
vocal and visual features of the interlocutor in the
previous turn.

Finally, early fusion was applied on these mul-
timodal features (by concatenation) and L2 regu-
larized logistic regression with 10-fold cross val-
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idation was used as the machine learning algo-
rithm, with rare threshold for feature extraction
being set to 10 and performance evaluated using
accuracy and kappa1 measures. The following ta-
ble shows our comparison with other standard ma-
chine learning algorithms such as Support Vector
Machine (SVM) and Naive Bayes (NB), where we
found Logistic Regression (LR) to perform bet-
ter in recognition of the four conversational strate-
gies. In next sub-section, we therefore denote the
feature weights derived from logistic regression in
brackets to offer interpretability of results.

Conversational Strategy LR SVM NB

Self-disclosure
Acc=0.85 Acc=0.84 Acc=0.83
 = 0.7  = 0.68  = 0.65

Shared Experience
Acc=0.84 Acc=0.82 Acc=0.79
 = 0.67  = 0.64  = 0.59

Praise
Acc=0.91 Acc=0.90 Acc=0.88
 = 0.81  = 0.80  = 0.76

Social Norm Violation
Acc=0.80 Acc=0.78 Acc=0.73
 = 0.61  = 0.55  = 0.47

Table 1: Comparative Performance Evaluation us-
ing Accuracy (Acc) and Kappa () for Logistic
Regression (LR), Support Vector Machine (SVM)
and Naive Bayes (NB)

6.1 Results and Discussion

Self-Disclosure: We could successfully identify
self-disclosure from non self-disclosure utterances
with an accuracy of 85% and a kappa of 70%.
The top features from feature set f1 predictive of
speakers disclosing themselves included gazing at
partner (0.44), head nodding (0.24) and not gaz-
ing at their own worksheet (-0.60) or the inter-
locutor’s worksheet (-0.21). Head nod is a way
to emphasize what one is saying (Poggi et al.,
2010), while gazing at the partner signals one’s
attention. Higher usage of first person singular
by the speaker (0.04) was also positively predic-
tive of self-disclosure in the utterance. The top
features from feature set f2 predictive of speak-
ers disclosing included listener behaviors such as
head nodding (0.3) to communicate their attention
(Schegloff, 1982), gazing elsewhere (0.12) or at
the speaker (0.09) instead of gazing at their own
worksheet (-0.89) or the speaker’s worksheet (-
0.27). The top features from feature set f3 pre-
dictive of speakers disclosing included no smiling

1The discriminative ability over chance of a predictive
model, for the target annotation, or the accuracy adjusted for
chance

(-0.30),no head nodding (-0.15) and lower loud-
ness in voice (-0.11) from the interlocutor in the
last turn.

Reference to shared experience: We achieved
an accuracy of 84% and kappa of 67% for predic-
tion. The top features from feature set f1 predic-
tive of speakers referring to shared experience in-
cluded not gazing at own worksheet (-0.66), part-
ner’s worksheet (-0.40) or at the partner (-0.22),
no smiling (-0.18) and having lower shimmer in
voice (-0.26). Instead, words signaling affiliation
drive (0.07) and time orientation (0.06) from the
speaker were deployed to index shared experience.
The top features from feature set f2 predictive of
speakers using shared experience included listener
behaviors such as smiling (0.53) perhaps to indi-
cate appreciation towards the content of the talk,
or encourage the speaker to go on (Niewiadom-
ski et al., 2010). Besides, the listener gazing else-
where (0.50) or at the speaker (0.47), and neither
gazing at own worksheet (-0.45) nor head nod-
ding (-0.28) had strong predictive power. The top
features from feature set f3 predictive of speakers
using shared experience included lower loudness
in voice (-0.58), smiling (0.47), gazing elsewhere
(0.59), at own worksheet (0.27) or at the partner
(0.22) but not at partner’s worksheet (-0.40) from
the interlocutor in the last turn.

Praise: For praise, our computational model
achieved an accuracy of 91% and kappa of 81%.
The top features from feature set f1 predictive of
speakers using praise included gazing at partner’s
worksheet (0.68) indicative of directing attention
to the partner’s (perhaps the tutee’s) work, smiling
(0.51), perhaps to mitigate the potential embarass-
ment of praise (Niewiadomski et al., 2010) and
head nodding (0.35) with a positive tone of voice
(0.04), perhaps to emphasize the praise. The top
features from feature set f2 predictive of speak-
ers using praise included listener behaviors such
as head nodding (0.45) for backchanneling and ac-
knowledgement and not gazing at partner’s work-
sheet (-1.06), elsewhere (-0.5) or at the partner (-
0.49). The top features from feature set f3 pre-
dictive of speakers using praise included smiling
(0.51), lower loudness in voice (-0.91) and over-
lap (-0.66) from the interlocutor in the last turn.

Violation of Social Norm: We achieved an ac-
curacy of 80% and kappa of 61% for prediction.
The top features from feature set f1 predictive of
speakers violating social norms included smiling
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(0.40), gazing at partner (0.45) but not head nod-
ding (-0.389). (Keltner and Buswell, 1997) intro-
duced a remedial account of embarrassment, em-
phasizing that smiles signal awareness of a so-
cial norm being violated and serve to provoke for-
giveness from the interlocutor, in addition to be-
ing a hedging indicator. (Kraut and Johnston,
1979) posited that smiling evolved from primate
appeasement displays and is likely to occur when a
person has violated a social norm. The top features
from feature set f2 predictive of speakers violating
social norms included listener behaviors such as
smiling (0.54), gazing at own worksheet (0.32) or
at the partner’s (0.14). The top features from fea-
ture set f3 predictive of speakers violating social
norms included high loudness (0.86) and jitter in
voice (0.50), lower shimmer in voice (-0.53), gaz-
ing at own worksheet (0.49) and no head nodding
(-0.31) from the interlocutor in the last turn.

6.2 Implications
We began this paper indicating our interest in bet-
ter understanding conversational strategies in and
of themselves, and in employing automatic recog-
nition of conversational strategies to improve in-
teractive systems. With respect to this first goal,
because the current approach takes into account
verbal, vocal and visual behaviors, it can iden-
tify regularities in social interaction processes that
have not been identified by earlier work. This be-
comes especially important as automatic behav-
ioral analysis increasingly develops new real-time
metrics to predict other kinds of conversational
strategies related to interpersonal dynamics like
politeness, sarcasm etc, that are not easily cap-
tured by observer-based labeling. Similar benefits
may accrue in other areas of automated human be-
havior understanding.

With respect to interactive systems, these find-
ings are applicable to building virtual peer tutors
in whom rapport improves learning gains as it does
for human-human tutors, training military person-
nel and police to build rapport with the commu-
nities in which they work, and trustworthy dialog
systems for clinical decision support (DeVault et
al., 2013). Improved understanding of conversa-
tional strategy response pairs can help us better es-
timate the level of rapport at a given point in a di-
alog (Sinha et al., 2015; Zhao et al., 2016), which
means that for the design of interactive systems,
our work could help improve the capability of a
natural language understanding module to capture

user’s interpersonal goals, such as those of build-
ing, maintaining or destroying rapport.

More broadly, understanding of these particu-
lar ways of talking may also help us in build-
ing artificially intelligent systems that exhibit and
evoke behaviors not just as conversationalists, but
also as confidants to whom we can relay personal
and emotional information with the expectation of
acknowledgement, empathy and sympathy in re-
sponse (Boden, 2010). These social strategies im-
prove the bond between interlocutors which, in
turn, can improve the efficacy of their collabora-
tion. Efforts to experimentally generate interper-
sonal closeness (Aron et al., 1997) to achieve pos-
itive task and social outcomes depend on advances
in moving beyond behavioral channels in isolation
and leveraging the synergy and complementarity
provided by multimodal human behaviors.

7 Conclusion
In this work, by performing quantitative analysis
of our peer tutoring corpus followed by machine
learning modeling, we learnt the discriminative
power and generalizability of verbal, vocal and vi-
sual behaviors from both the speaker and listener,
in distinguishing conversational strategy usage.

We found that interlocutors usually accompany
the disclosure of personal information with head
nods and mutual gaze. When faced with such self-
disclosure listeners, on the other hand, often nod
and avert their gaze . When the conversational
strategy of reference to shared experience is used,
speakers are less likely to smile, and more likely to
avert their gaze (Cassell et al., 2007). Meanwhile,
listeners smile to signal their coordination. When
speakers praise their partner, they direct their gaze
to the interlocutor’s worksheet, smile and nod with
a positive tone of voice. Meanwhile, listeners sim-
ply smile, perhaps to mitigate the embarrassment
of having been praised.

Finally, speakers tend to gaze at their partner
and smile when they violate a social norm, without
nodding. The listener, faced with a social norm vi-
olation, is likely to smile extensively (once again,
most likely to mitigate the face threat of social
norm violations such as teasing or insults). Over-
all, these results present an interesting interplay
of multimodal behaviors at work when speakers
use conversational strategies to fulfil interpersonal
goals in a dialog.

These results have been integrated into a real-
time end-to-end socially aware dialog system
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(SARA)2 described in (Matsuyama et al., 2016) in
this same volume. SARA is capable of detecting
conversational strategies, relying on the conversa-
tional strategies detected in order to accurately es-
timate rapport between the interlocutors, reason-
ing about how to respond to the intentions behind
those particular behaviors, and generating appro-
priate social responses as a way of more effec-
tively carrying out her task duties. To our knowl-
edge, SARA is the first socially-aware dialog sys-
tem that relies on visual, verbal, and vocal cues
to detect user social and task intent,and generates
behaviors in those same channels to achieve her
social and task goals.

8 Limitations and Future Work
We acknowledge some methodological limitations
in the current work. In the current work we under-
sampled the negative examples in order to make a
balanced dataset. For future work, we will work
with corpora that have a more natural distribu-
tion and deal with the sparsity of the phenomena
through machine learning methods. This will im-
prove applicability to a real-time system where
conversation strategies are likely to be less fre-
quent than in our training dataset. Moreover, in
current work, we looked at individual modalities
in isolation initially, and fused them later via a
simple concatenation of feature vectors. Includ-
ing sequentially occurring features may better ex-
ploit correlation and dependencies between fea-
tures from different modalities. As a next step, we
have thus started to investigate the impact of tem-
poral ordering of verbal and visual behaviors that
lead to increased rapport (Zhao et al., 2016).

In terms of future work, one concrete exam-
ple of an application area where we are beginning
to apply these findings is the domain of learning
technologies. While we know from research on
dialog-based intelligent tutoring systems that con-
versations with such computer systems help stu-
dents learn (Graesser, 2016), we also know that
those students who are academically challenged,
perhaps because under-represented in the fields
they are trying to learn (Robinson et al., 2005),
are most likely to need a social component to their
learning interactions. Hence a major critique of
existent intelligent tutoring systems is that they
serve to fulfil only the task-goal of the interaction.
Traditionally (DMello and Graesser, 2013), this is
instantiated via an expectation and misconception

2sociallyawarerobotassistant.net

tailored dialog directed towards the portions of
learning content where student under-performance
is noted, and simply blended with some motiva-
tional scaffolding.

Despite significant advances in such conversa-
tional tutoring systems (Rus et al., 2013), we be-
lieve that future systems that provide intelligent
support for tutoring via dialog should support the
social as well as task nature of natural peer tutor-
ing. Because learning does not happen in a cul-
tural or social void, it is important to think about
how we can leverage dialog, the natural modality
of pedagogy, to foster supportive relationships that
make learning challenging, engaging and mean-
ingful 3.

We have also begun to use the social con-
versational strategies described here to comple-
ment the curriculum script in a traditional tu-
toring dialogue comprising knowledge-telling or
knowledge-building utterances, shallow or deep
question asking, hints and other forms of feed-
back. We believe this is a step towards building
SCEM-sensitive (social, cognitive, emotional and
motivational) tutors (Graesser et al., 2010), and to-
wards more accurate computational models of hu-
man interaction that will need to underlie those
new kinds of intelligent tutors.

Dialog systems that can recognize and use con-
versational strategies such as self-disclosure, ref-
erence to shared experience, and violation of so-
cial norms, are also part of a new genre of dialog
system that departs from the rigid repetitive nat-
ural language generation templates of the olden
days, and that can learn to speak with style. It
is conceivable that contemporary corpus-based ap-
proaches to NLG that introduce stylistic variation
into a dialog (Wen et al., 2015) may one day learn
on the user’s own conversational style, and entrain
to it. In a system like that, real-time recognition
of conversational strategies like that demonstrated
here could play an essential role.
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Conversational Strategy Verbal/Vocal(Speaker) t-test value Mean value Effect Size

1. Self-Disclosure

LIWC Personal Concerns t(1013)=7.06*** SD=4.13, NSD=1.58 d=0.44
LIWC Positive Emotion t(1013)=2.98** SD=7.61, NSD=5.50 d=0.18
LIWC Negative Emotion t(1013)=5.51*** SD=5.62, NSD=2.22 d=0.32
LIWC First Person Singular t(1013)=25.87*** SD=20.12, NSD=7.77 d=1.62
LIWC Authenticity t(1013)=18.59*** SD=66.71, NSD=34.07 d=1.16
pcm-loudness-sma-amean t(1013)=4.11*** SD=0.64, NSD=0.59 d=0.26

2. Shared Experience

LIWC Affiliation Drive t(183)=6.22*** SE=4.64, NSE=0.77 d=0.92
LIWC Time Orientation t(183)=6.47*** SE=24.89, NSE=15.02 d=0.95
LIWC First Person Plural t(183)=6.29*** SE=3.99, NSE=0.48 d=0.93
shimmerLocal-sma-amean t(183)=-2.21* SE=0.18, NSE=0.194 d=0.32

3. Praise

LIWC Positive Emotion t(166)=16.48*** PR=55.63, NPR=4.56 d=3.56
LIWC Emotional Tone t(166)=22.96*** PR=91.1, NPR=33.5 d=2.55
pcm-loudness-sma-amean t(166)=-3.33*** PR=0.5, NPR=0.6 d=-0.51
jitterLocal-sma-amean t(166)=2.93* PR=0.1, NPR=0.07 d=0.45
shimmerLocal-sma-amean t(166)=2.56* PR=0.2, NPR=0.18 d=0.39

4. Social Norm Violation

LIWC Social Processes t(7469)=33.98*** VSN=17.35, NVSN=6.45 d=0.78
LIWC Biological Processes t(7469)=12.95*** VSN=4.21, NVSN=1.38 d=0.30
LIWC Personal Concerns t(7469)=10.61*** VSN=2.61, NVSN=1.33 d=0.24
LIWC Swearing t(7469)=5.85*** VSN=0.49, NVSN=0.11 d=0.13
LIWC Anger t(7469)=11.64*** VSN=1.19, NVSN=0.20 d=0.27
LIWC Power Drive t(7469)=7.83*** VSN=1.99, NVSN=1.14 d=0.18
LIWC First Person Plural t(7469)=3.23** VSN=0.85, NVSN=0.64 d=0.07
pcm-loudness-sma-amean t(7469)=31.24*** VSN=0.69, NVSN=0.56 d=0.72
F0final-sma-amean t(7469)=26.6*** VSN=231.09, NVSN=206.99 d=0.61
jitterLocal-sma-amean t(7469)=-4.09*** VSN=0.083, NVSN=0.087 d=-0.09
shimmerLocal-sma-amean t(7469)=-7.02*** VSN=0.1818, NVSN=0.1897 d=-0.16

Table 2: Complete Statistics for presence of numeric verbal and vocal features in Self-Disclosure
(SD)/Non-Self Disclosure (NSD), Shared Experience (SE)/Non-Reference to Shared Experience (NSE),
Praise (PR)/Non-Praise (NPR) and Violation of Social Norms (VSN)/Non-Violation of Social Norms
(NVSN). Effect size assessed via Cohen’s d. Significance: ***:p < 0.001, **:p < 0.01, *:p < 0.05

Conversational Strategy Visual (Speaker) - �2 test value - Odds Ratio Visual (Listener) - �2 test value - Odds Ratio

1. Self-Disclosure

Smile - �2(1,1013)=20.67*** - o=1.67 Smile - �2(1,1013)=18.63*** - o=1.63
Gaze (gP) - �2(1,1013)=93.04*** - o=2.39 Gaze (gP) - �2(1,1013)=131.34*** - o=2.84
Gaze (gN) - �2(1,1013)=35.1*** - o=0.49 Gaze (gN) - �2(1,1013)=73.23*** - o=0.38
Gaze (gO) - �2(1,1013)=173.88*** - o=0.29 Gaze (gO) - �2(1,1013)=152.12*** - o=0.31
Gaze (gE) - �2(1,1013)=120.77*** - o=1.8 Gaze (gE) - �2(1,1013)=78.92*** - o=2.37

2. Shared Experience

Smile - �2(1,183)=4.73* - o=1.75 Smile - �2(1,183)=7.53** - o=2.07
Gaze (gP) - �2(1,183)=25.37*** - o=3.02 Gaze (gP) - �2(1,183)=33.36*** - o=3.59
Gaze (gN) - �2(1,183)=3.73* - o=0.58 Gaze (gN) - �2(1,183)=17.68*** - o=0.32
Gaze (gO) - �2(1,183)=27.87*** - o=0.31 Gaze (gO) - �2(1,183)=16.55*** - o=0.41
Gaze (gE) - �2(1,183)=38.13*** - o=4.19 Gaze (gE) - �2(1,183)=32.45*** - o=3.92

3. Praise

Gaze (gP) - �2(1,166)=9.94*** - o=0.44 Gaze (gP) - �2(1,166)=14.22*** - o=0.39
Gaze (gN) - �2(1,166)=37.52*** - o=4.29 Gaze (gN) - �2(1,166)=15.19*** - o=0.33
Gaze (gO) - N.S Gaze (gO) - �2(1,166)=24.23*** - o=3.30
Gaze (gE) - �2(1,166)=14.44*** - o=0.30 Gaze (gE) - �2(1,166)=9.77** - o=0.39

4. Social Norm Violation

Smile - �2(1,7469)=871.73*** - o=3.35 Smile - �2(1,7469)=869.29*** - o=3.37
Gaze (gP) - �2(1,7469)=911.89*** - o=2.75 Gaze (gP) - �2(1,7469)=609.06*** - o=2.27
Gaze (gN) - �2(1,7469)=34.82*** - o=0.8 Gaze (gN) - �2(1,7469)=239.22*** - o=0.55
Gaze (gO) - �2(1,7469)=515.26*** - o=0.47 Gaze (gO) - �2(1,7469)=110.48*** - o=0.70
Gaze (gE) - �2(1,7469)=195.17*** - o=1.67 Gaze (gE) - �2(1,7469)=12.38** - o=1.14
Head Nod - �2(1,7469)=8.06** - o=0.77 Head Nod - �2(1,7469)=44.51*** - o=0.56

Table 3: Complete Statistics for presence of binary non-verbal features in Self-Disclosure (SD), Shared
Experience (SE), Praise (PR) and Violation of Social Norms (VSN). Odds ratio signals how much more
likely is a non-verbal behavior likely to occur in conversational strategy utterances compared to non-
conversational strategy utterances. Significance: ***:p < 0.001, **:p < 0.01, *:p < 0.05

.
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Abstract

In this study, we present our neural ut-
terance ranking (NUR) model, an utter-
ance selection model for conversational
dialogue agents. The NUR model ranks
candidate utterances with respect to their
suitability in relation to a given context
using neural networks; in addition, a di-
alogue system based on the model con-
verses with humans using highly ranked
utterances. Specifically, the model pro-
cesses word sequences in utterances and
utterance sequences in context via recur-
rent neural networks. Experimental re-
sults show that the proposed model ranks
utterances with higher precision relative
to deep learning and other existing meth-
ods. Furthermore, we construct a conver-
sational dialogue system based on the pro-
posed method and conduct experiments on
human subjects to evaluate performance.
The experimental result indicates that our
system can offer a response that does
not provoke a critical dialogue breakdown
with a probability of 92% and a very natu-
ral response with a probability of 58%.

1 Introduction

The study of conversational dialogue systems
(also known as non-task-oriented or chat-oriented
dialogue systems) has a long history. To con-
struct such systems, rule-based methods have long
been used (Weizenbaum, 1966; Colby, 1981; Wal-
lace, 2008); however, construction and mainte-
nance costs are very high because these rules are
manually created. Moreover, intuition tells us that
the performance of such systems depends on the
number of established rules, though reports indi-
cate that performance did not improve much even

if the number of rules was doubled (Higashinaka
et al., 2015b), indicating that performance of rule-
based systems is limited.

Recently, the study of statistical-based meth-
ods that use statistical processing with large vol-
umes of web data has become increasingly ac-
tive. The key benefit of this approach is that man-
ual response creation is not necessary; thus, con-
struction and maintenance costs are low; however,
since web data contains noise, this approach has
the potential to output grammatically or seman-
tically incorrect sentences. To tackle this prob-
lem, some studies extract correct sentences as ut-
terances for dialogue systems from web data (In-
aba et al., 2014; Higashinaka et al., 2014)．These
studies focus solely on extraction and do not in-
dicate how replies are generated using extracted
sentences.

In our study, we propose a neural utterance
ranking (NUR) model that ranks candidate utter-
ances by their suitability in a given context using
neural networks. Previously, we proposed an ut-
terance selection model (Koshinda et al., 2015) in
the framework same as that of the NUR model,
which ranks utterances in order of suitability to
given context. In section 4, we experimentally
show that the performance of the NUR model ex-
ceeds that of our previous model.

Our proposed method processes the word se-
quences in utterances and utterance sequences in
context via multiple recurrent neural networks
(RNNs). More specifically, the RNN encodes
both utterances in a given context and candidates
into fixed-length vectors. Such encoding enables
suitable feature extraction for ranking. Next, an-
other RNN receives these utterance-encoded vec-
tors in chronological order, and our proposed NUR
model ranks candidates using the output of this
RNN. Our model considers the order of utterances
in a given context; this architecture makes it pos-
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sible to handle distant semantic relationships be-
tween context and candidates.

2 Related Work

Statistical-based response methods incorporate
two major approaches.

The first approach is the example-based method
(Murao et al., 2003), which searches a large
database of previously recorded dialogue for given
user input selecting an utterance identified as the
most similar. Well-known dialogue systems based
on this approach include Jabberwacky (De An-
geli and Carpenter, 2005) which won the Loebner
prize contesta (i.e., a conversational dialogue sys-
tem competition) in 2005 and 2006. In addition,
Banch and Li. proposed a model based on the vec-
tor space model (Banchs and Li, 2012) and Nio et
al. constructed a dialogue system that uses movie
scripts and Twitter data (Nio et al., 2014). A dis-
advantage of example-based methods is that it is
difficult to consider context. If the implemented
approach searches for user input with context in a
database, it can be difficult to find a suitable con-
text because of the diversity of contexts; in such
cases, system replies become unsuitable. In con-
trast, our NUR model can select responses while
also taking into account a flexible set of contexts.

The second statistical-based response approach
is the machine translation (MT) method. Ritter et
al. first introduced the MT technique into response
generation (Ritter et al., 2011). They used tweet-
reply pairs in Twitter data, regarding a tweet as the
source language sentence and the reply as a target
one in MT. In other words, the MT method trans-
lates user input into system responses. More re-
cently, response generation using neural networks
has been widely studied, most work grounded in
the MT method (Cho et al., 2014; Sordoni et al.,
2015; Shang et al., 2015; Vinyals and Le, 2015).
A problem with this method is that it might gener-
ate utterances containing syntax errors; further, it
tends to generate utterances with broad utility that
frequently appear in training data, e.g., “I don’t
know.” or “I’m OK.” (Li et al., 2016).

Our proposed method is not categorized into ei-
ther of the above two methods. Some hard-to-
classify statistical-based response methods simi-
lar to our model have been proposed, e.g., Shibata
et al. proposed a method that selects a suitable
sentence extracted from webpages as a response

ahttp://www.loebner.net/Prizef/loebner-prize.html

Figure 1: Neural utterance ranking model

to user input (Shibata et al., 2009). Sugiyama et
al. generated responses using templates and de-
pendency structures of sentences gathered from
Twitter (Sugiyama et al., 2013). There are only
few common points, although most of the hard-
to-classify methods use not only dialogue data but
also non-dialogue data such as webpages or nor-
mal tweets (not pairs of tweet reply) on Twitter.

3 Neural Utterance Ranking Model

For our ranking model, we first define sequences
of utterances from the beginning of a dialogue
to a certain point of time in context c =
(u1, u2, . . . , ul) Each ui(i = 1, 2, ..., l) denotes an
utterance in the context, and l denotes the number
of utterances. We assume here that a dialogue sys-
tem and user speak alternately and last utterance ul

is given by the system. We define candidate utter-
ance list ac = (ac

1, a
c
2, . . . , a

c
m) generated depend-

ing on context c, and score tc = (tc1, t
c
2, . . . , t

c
m).

Herein, m denotes the number of candidate utter-
ances. We define utterance ranking to sort given
candidate utterance list ac in order of suitabil-
ity to context c. The correct order is defined by
score tc with sorting based on the model’s output
yac = (y1, y2, . . . , ym) corresponding to ac.

Our proposed utterance ranking model, i.e., the
NUR model illustrated in in Figure 1, receives
context c and candidate utterance list ac, then out-
puts yac . Details of our NUR model are described
below.
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3.1 Utterance Encoding

To extract information from context and candi-
date utterances for suitable utterance selection, our
NUR model utilizes an RNN encoder.

Previous work utilized an RNN encoder for MT
(Kalchbrenner and Blunsom, 2013; Bahdanau et
al., 2015) and response generation in dialogue sys-
tems (Cho et al., 2014; Sordoni et al., 2015; Shang
et al., 2015; Vinyals and Le, 2015). In these stud-
ies, the encoder reads as input a variable-length
word sequence and outputs a fixed-length vec-
tor. Next, another RNN decodes a given fixed-
length vector, producing an objective variable-
length word sequence. Therefore, the encoder has
learned to embed necessary information to gener-
ate objective sentences and place them into vec-
tors. The RNN in our model does not generate
sentences using this RNN decoder approach. Re-
sults of encoding are used for features to rank can-
didate utterances. The RNN encoder in our NUR
model has a similar architecture, but the character-
istics of the output vector are profoundly different,
because our model learns to extract important fea-
tures for utterance ranking.

Our model first converts word sequence w =
(w1, w2, . . . , wn) in an utterance into a distributed
representation of word sequence, i.e., x =
(x1, x2, . . . , xn) which the RNN encoder then
reads. To convert into a distributed representation
here, a neural network for word embedding (as
shown in Figure 1) learns via the skip-gram model
(Mikolov et al., 2013). This network has two lay-
ers, i.e., an input layer that reads a one-hot-vector
representing each word and a certain denomina-
tional hidden layer.

The RNN encoder has two networks, i.e., a for-
ward and a backward network. The forward RNN
reads x at the beginning of a sentence and out-
puts

−→
h = (

−→
h1,
−→
h2, . . . ,

−→
hn) correspond to input

sequence. The backward RNN reads x in reverse,
then outputs

←−
h = (

←−
h1,
←−
h2, . . . ,

←−
hn). By joining

the outputs of these forward and backward RNNs,
we acquire objective encoded utterance vector v =
[
−→
hn;
←−
hn]; note that [x; y]the concatenation of vec-

tors x and y.
In the following experiments, we used two-

layer long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) networks as our RNN
encoders. The effective features extracted from
utterances for candidate ranking are different be-
tween the user and the system. Therefore, our

Figure 2: RNN for ranking utterances

NUR model has two RNN encoders, one for user
utterances, the other for system utterances, as il-
lustrated in Figure 1

3.2 Ranking Candidate Utterances
Another RNN is used to rank candidate utterances,
as illustrated in 2. This RNN has two LSTM layers
and two linear layers; further, we use rectified lin-
ear unit (ReLU) as the activation function. Thus,
this RNN reads encoded utterance sequences and
outputs scores.

3.2.1 Context-Candidate Vector Sequence
To select suitable responses, we not only must
evaluate suitability of utterances based on the last
utterance in the given context, but also must con-
sider prior dialogue. The RNN for ranking utter-
ances in our model reads vector sequences con-
structed by context and candidate utterances in
chronological order, then outputs scores for the
candidate in relation to the context.

Thus, context-candidate vector sequence vc
ai

is
constructed using context vector sequence vc =
(vu1 , vu2 , . . . , vul

), with ith candidate utterance
vector vai defined as follows:

vc
ai

=


([vu1 ; vu2 ], [vu3 ; vu4 ], . . . , [vul

; vc
ai

]),
if l is odd

([0; vu1 ], [vu2 ; vu3 ], . . . , [vul
; vc

ai
]),

if l is even

Here, 0 denotes the zero vector. Our model inputs
user and system utterances at one time so that it
can consider dialogue history in a given context
along with the relevance between candidate utter-
ances and the last response given by a user.

3.2.2 Loss Function in Learning
In cases where a neural network outputs a one-
dimensional value, like our model, the mean

395



squared error (MSE) between training data and
the model’s output is generally used as a loss
function; however, our objective is not to model
scores, but rather for ranking, thus we use the dis-
tance between rank data based on training data and
that based on the model’s outputs as a loss func-
tion. Several methods for modeling rank data have
been proposed, including the Bradley-Terry-Luce
model (Bradley and Terry, 1952; Luce, 1959), the
Mallows model (Mallows, 1957) and the Plackett-
Luce model (Plackett, 1975; Luce, 1959). In our
study, to calculate ranking distance, we selected
the Plackett-Luce model, which has been used in
various ranking models, such as ListNet (Cao et
al., 2007), BayesRank (Kuo et al., 2009), etc.

The Plackett-Luce model transforms a score list
for ranking into a probability distribution wherein
higher scores in the given list are allocated higher
probabilities. Probability of score tci in score list
tc = (tc1, t

c
2, . . . , t

c
m) ranked on the top is calcu-

lated by the Plackett-Luce model as follows:

p(tci ) =
exp(tci )∑m

k=1 exp(tck)

Using the same equation, the output scores of our
NUR model are transformed into probability dis-
tributions. We use cross-entropy between proba-
bility distributions as our loss function.

4 Experiments

We conducted experiments to verify the perfor-
mance of ranking given candidate utterances and
given contexts. For comparison, we also tested a
few baseline methods.

4.1 Datasets
For our experiments, we used dialogue data be-
tween a conversational dialogue system and a user
for both training and test data. We released a
conversational dialogue system called KELDIC
on Twitter (screen name: @KELDIC)b. KELDIC
selects an appropriate response from candidates
extracted by the utterance acquisition method of
(Inaba et al., 2014) using ListNet(Cao et al.,
2007). The utterance acquisition method extracted
suitable sentences for system utterances related
to given keywords from Twitter data by filter-
ing inappropriate sentences. Details of the re-
sponse algorithm of KELDIC is further described
in (Koshinda et al., 2015).

bhttps://twitter.com/KELDIC

We collected training and test data by first col-
lecting pairs of context and candidate utterances
that the system used for reply on Twitter. Next, an-
notators evaluated the suitability of each candidate
utterance in relation to the given context. Here an-
notators must evaluate utterances that were actu-
ally used by the system on Twitter.

Evaluation criterion was based on the Dia-
logue Breakdown Detection Challenge (DBDC)
(Higashinaka et al., 2016). Each system’s utter-
ances were annotated using one of the following
three breakdown labels:

(NB) Not a breakdown It is easy to continue the
conversation.

(PB) Possible breakdown It is difficult to con-
tinue the conversation smoothly.

(B) Breakdown It is difficult to continue the con-
versation.

Annotators evaluated dialogue data on a tool we
prepared. They were first shown a context and 10
candidate utterances, including how KELDIC ac-
tually replied on Twitter, as well as labels for each
candidate. We instructed them to assign at least
one NB label to given candidate utterances. If
there were no suitable candidates for the NB label,
they could optionally add candidate utterances. If
they were still not able to find a suitable response,
we allowed them to skip the evaluation. We re-
cruited annotators on crowd-sourcing site Crowd-
Worksc.

In our evaluation, we regard candidates with
50% or more annotators decided as NB as correct
utterances and others as incorrect.

We used 1581 data points (i.e., 1581 contexts
and 17533 candidate utterances), each evaluated
by three or more annotators. We choose 300 data
points that contained at least one correct candidate
for the given test data; the remaining 1057 data
points were used for training data. Table 1 shows
statistics for our data.

In learning the model, we need scores for can-
didate utterances to define ranking. Score yc

i of
candidate utterance ac

i is calculated as follows:

yc
i = sNB

nNB

N
+ sPB

nPB

N
+ sB

nB

N

N = nNB + nPB + nB

chttps://crowdworks.jp
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Table 1: Statistics of the datasets
Train Test All

Data 1281 300 1581
Utterances in context 1.67 2.04 1.74
Candidates per data 11.12 10.94 11.09
Words per candidate 11.17 10.70 11.08
Num of Annotators 3.97 3.88 3.95

Here, nNB, nPB and nB denote the numbers of
annotators assigned as NB, PB and B, respectively,
and sNB, sPB and sB denote scoring parameters of
NB, PB and B, respectively. In our experiments,
we set (sNB, sPB, sB) = (10.0,−5.0,−10.0).

4.2 Experimental Settings
In the word-embedding neural network of our
NUR model, we used 1000 embedding cells, a
skip-gram window size of five, and learned via
100GB of Twitter data (Other layers were learned
by 1281 data points).

In our encoding and ranking RNNs, we used
LSTM layers with 1000 hidden cells in each layer.
The dropout rate was set to 0.5, and the model was
trained via AdaGrad (Duchi et al., 2011).

To validate our NUR model, we conducted ex-
periments with the following two settings:.

Proposed using limited context 　
To verify the effectiveness of context se-
quence processing by the ranking RNN, this
setting causes our system to only use the last
user utterance as context, discarding the rest.

Proposed using MSE 　
To verify the effectiveness of the Plackett-
Luce model, this setting causes our system to
learn using the MSE of utterance scores in-
stead of the Plackett-Luce model.

We also compared performance to the following
three methods:

BoW + DNN 　
This method ranks candidate utterances using
deep neural networks (DNNs) and bag-of-
words (BoW) features. The DNN consisted
of six layers, excluding input and output lay-
ers optimized by MSE. The input vector is
made by concatenating three BoW vectors,
i.e., candidate utterance, last user utterance in
the given context, and the given context with-
out the last user utterance. In the BoW vector,

Figure 3: MAP over top n candidates

we used 6203 words that occur at least two
times in the training data, thus, the input layer
of the DNN has 18609 cells. Each hidden
layer has 5000 cells, with ReLU as the activa-
tion function, the dropout rate set to 0.5, and
the model trained by AdaGrad (Duchi et al.,
2011). The score for training was the same as
the model proposed in Section 4.1.

KELDIC 　
The second comparative approach used the
output of our KELDIC system. This dialogue
system ranks utterances using ListNet (Cao
et al., 2007) and selects the top-ranked utter-
ance to reply. The feature vector for ranking
is generated from context and candidate ut-
terance. It primarily utilizes n-gram pairs be-
tween utterances in context and candidates as
features.

Random 　
This approach randomly shuffles candidates
and uses them as a ranking list, thus serving
as a baseline for ranking performance.

4.3 Results
To evaluate ranking performance, we used mean
average precision (MAP) and mean reciprocal
rank (MRR) measures. Figure 3 shows MAP re-
sults over the top n ranked candidate utterances,
while Figure 4 shows MRR results. Using the
MAP measure, our proposed method showed the
highest performance as compared to the other
methods. The proposed using limited context and
MSE follow this, suggesting that utterance encod-
ing by RNN is effective to extract features for
ranking.
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Figure 4: Mean Reciprocal Rank

BoW + DNN did not provide strong perfor-
mance results, because it could not handle the
order relation of utterances in context and syn-
tax due to the use of BoW features. KELDIC
showed higher performance than that of Random,
but lower than that of BoW + DNN, because it also
has the problem of context processing and its gen-
eralization capability is lower than that of DNNs.

Here, n = 1 of MAP indicates that the rate of
correct utterance ranked on the top (The maximum
value of n = 1 of MAP is 1.0 because each data
points in the test data contains at least one correct
candidate utterance). Since the top-ranked utter-
ance is selected as a response in dialogue systems,
it was found that our proposed method correctly
replied with a probability of approximately 60%.

Results of MRR (i.e., Figure 4) showed very
similar results, i.e., our proposed method ranked
suitable utterances higher.

Table 2 shows an example of context in the test
data and Table 3 shows candidate utterances to the
context shown in Table 2, plus ranking results for
the applied methods and NB rates of annotations
for candidates. These results indicate that our
proposed method ranked correct utterances higher
and incorrect utterances lower, as desired.

5 Dialogue Experiment

In the previous section, since test data must con-
tain correct candidate utterances, the ability of our
NUR model in terms of actual dialogue is uncer-
tain, thus we developed a conversational dialogue
system based on our proposed method and con-
ducted dialogue experiments with human subjects.

The dialogue format and rules were fully
compliant with the Dialogue Breakdown Detec-
tion Challenge (DBDC) (see (Higashinaka et al.,
2015a)). A dialogue is started by a system utter-
ance, then user and the system communicate with

one another. When a system speaks 11 times, the
dialogue is finished. Therefore, a dialogue con-
tains 11 system and 10 human utterances.

Our dialogue system and subjects chat on our
website; we collected 120 text chat dialogues. An-
notators then labeled 1200 system utterances (ex-
cluding initial greetings) using breakdown labels
NB, PB, and B. We again recruited subjects and
annotators via CrowdWorks.

For comparison, we used DBDC develop-
ment/test datad collected by chatting with a system
based on NTT Docomo’s chat APIe (see (Onishi
and Yoshimura, 2014) . Since the DBDC system
selects a suitable response from large-scale utter-
ance data, the architecture is similar to our model
and therefore suitable as a comparative system.

DBDC data has been annotated by 30 annota-
tors using the breakdown labels and we use them
without any change in this experiment. Therefore,
the annotation rule is same but the annotators are
different between our dialogue data and DBDC
data.

5.1 Dialogue System
A conversational dialogue system based on our
NUR model selects an utterance as a response
from candidates generated by the acquisition
method of (Inaba et al., 2014). The system ex-
tracts nouns from the last user and system ut-
terances, generating candidate utterances related
to nouns. We used approximately one billion
Japanese tweets collected from January through
February 2015 for utterance acquisition. Our NUR
model ranked candidates, and the system used top-
ranked utterances as responses. If there were less
than five acquired utterances, the system retroac-
tively extracted nouns in context one by one to ac-
quire further candidates.

The first utterance in the beginning of a dialogue
was randomly selected from 16 manually created
open question utterances, such as “What is your
favorite website?” or “What kind of part-time job
do you have?”. If the user’s response does not
contain any nouns or the number of acquired utter-
ances is less than five, the system randomly selects
the 16 utterances again.

5.2 Results
Table 4 shows statistics of the data, annotations,
and experimental results. Dialogue data used in

dhttps://sites.google.com/site/dialoguebreakdowndetection/
ehttps://www.nttdocomo.co.jp/service/

398



Table 2: Example context (translated by authors)
Speaker Utterance in context

User 大学行くモチベーションが見た目に如実に表れてる
My motivation to attend college is cosmetically significant.

System わかります。一夜が明け、仕事へのモチベーションはまずまずであるものの
テンションは非常に低いよね
I see. It’s dawn and although I’m downhearted now, my motivation for working is not bad.

User わかる
Sure.

System だよね！普段のテンションが高い分、落ち込んだらとことん落ち込むよ
Indeed! I have high motivation on an average day, but once I get depressed,
things become increasingly worse.

User そうなんだ。落ち込むな元気出せ！
Oh, don’t be so depressed and cheer up!

Table 3: Example candidate utterances with ranking results (translated by authors)
Proposed BoW + DNN KELDIC NB Candidate Utterance

1 6 3 1.00 相当なモチベーションが必要だよ
It requires a considerable degree of motivation.

2 8 6 0.33 独学はモチベーションを保つのが大変だよ
Self-education is difficult to keep me motivated.

3 10 2 0.00 どんなモチベーションでチャリこげばいいよね
What is my motivation to pedal a bicycle?

4 1 8 0.33 勉強へのモチベーションがすごい
My motivation to study is quite good.

5 9 4 0.33 モチベーションには繋がるよ
It’s to be a motivation.

6 4 9 0.00 ポケモンのモチベーションが皆無だよ
I have no motivation to play Pokemon.

7 7 10 0.00 実習のモチベーション保つのって大変だね
It’s hard to stay motivated in practical training.

8 3 5 0.00 東方のモチベーションがすごくなってるよ
0 My motivation to play Touhou games is quite high.

9 5 1 0.00 PCに対するモチベーション低いしやる気でない
My motivation to use a PC is low, and I don’t feel
like doing anything.

10 2 7 0.00 モチベーション低い幹事は良くない
An organizer who has low motivation is bad.

our system were annotated by 34 human annota-
tors. Fleiss’s K measure for our system’s data was
lower than that of the DBDC dataset, but both are
low. “PB + B” indicates that PB and B are treated
as a single label. The table also shows the ratio
of NB, PB, and B labels. These annotation results
indicate that output probabilities of PB and B ut-
terances by our system were significantly lower,
while NB was higher than that of the DBDC sys-
tem (p < 0.01).

The Breakdown ratio (B) and (PB + B) values
are calculated by the labels of majority vote in 34
(proposed) or 30 (DBDC) annotators in each sys-
tem’s utterance. Breakdown ratio (B) is the ra-
tio of the B majority label to all majority labels.
Breakdown ratio (PB + B) is the ratio of PB and B
majority labels (treated as a single label). This in-
dicates that our system can offer a response that
does not provoke a critical dialogue breakdown
with a probability of approximately 90% and a
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Table 4: Statistics of the data and experimental re-
sults (U and S indicate statistics of user and system
utterances, respectively)

Proposed DBDC
Dialogues 120 100
Utterances (U) 1200 1000
Utterances (S) 1320 1100
Words per utterance (U) 9.32 9.43
Words per utterance (S) 8.63 7.17
Vocabularies (U) 1684f 1491
Vocabularies (S) 1386f 1218
Annotators 34 30
NB (Not a breakdown) 57.7% 37.1%
PB (Possible breakdown) 27.0% 32.2%
B (Breakdown) 15.2 % 30.6%
Fleiss’s κ (NB, PB, B) 0.26 0.20
Fleiss’s κ (NB, PB+B) 0.37 0.27
Breakdown ratio (B) 0.08 0.25
Breakdown ratio (PB+B) 0.42 0.71

very natural response with a probability of 60%.
Both breakdown ratios showed significant differ-
ences between our system and the DBDC system
(p < 0.001).

Table 4 also shows the number of words per ut-
terance and the number of vocabularies. These re-
sults are important for system evaluation, because
if a system always use innocuous responses, such
as “I don’t know” or “That’s true”, it is relatively
easy to avoid dialogue breakdown. By these val-
ues, we can find whether a system frequently uses
innocuous responses or not; however, to increase
user satisfaction with a dialogue system, it is im-
portant not only to avoid dialogue breakdown, but
also to offer flexible replies. From Table 4, we
also observe that the number of words per utter-
ance and the number of vocabularies in our system
were bigger than that of the DBDC system, indi-
cating that our system infrequently used innocu-
ous responses and had a good vocabulary for gen-
erating responses. Indeed, our system rarely used
such utterances, but the DBDC system sometimes
used them.

The number of words per utterance by user be-
tween both datasets was almost the same, but the
number of vocabularies by user of the DBDC sys-
tem was lower than that of our system. This
was attributable to the DBDC system’s utterances
that increased the incident of dialogue breakdown.

fcalculated using 100 dialogues

When the DBDC system uses such utterances, the
user responds with formulaic responses, such as
“What do you mean?”. Since the DBDC sys-
tem frequently caused dialogue breakdowns, users
used formulaic replies, and as a result, the number
of vocabularies decreased.

6 Conclusions

In this study, we proposed a new utterance selec-
tion method called the NUR model for conversa-
tional dialogue systems. Our model ranks candi-
date utterances by their suitability in given con-
texts using neural networks. Our proposed model
encodes utterances in context and candidates into
fixed-length vectors, then processes these encoded
vectors in chronological order to rank utterances.
Experimental results showed that our proposed
model ranked utterances more accurately than that
of deep learning and other existing methods. In
addition, we constructed a conversational dialogue
system based on our proposed method and con-
ducted experiments to evaluate its performance via
dialogue with human subjects. By comparing the
dialogue system of DBDC, we found our system
able to conduct conversations more naturally than
DBDC.

The dialogue system used in the experiment ac-
quired topic words from given context in a sim-
ple manner. Because of this, there are some cases
that the system selects inappropriate topics and
fails in changing topics. Thus, future work in-
cludes topic management. Moreover, the sys-
tem is unskilled at answering questions, and it of-
ten provokes dialogue breakdown. It requires a
question-answering method corresponding to con-
versational dialogue systems.
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A Dialogue Example

Table 5 shows example dialogue between our
NUR-based dialogue system and a user. In the
table, NB, PB, and B indicate respective rates of
each label by 34 annotators.
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Table 5: Examples of dialogues by our system (translated by authors)
Speaker NB PB B Utterance
System - - - こんにちは。最近はどんな感じ？

Hello. How have you been recently?
User - - - 鼻炎がひどくてたいへんだよ。

My sinus is really bothering me.
System 100.0% 0.0% 0.0% 鼻炎の人って辛すぎるよ

Sinus victims feel terrible.
User - - - そうなんだよ、くしゃみと鼻水が止まらなんだ。

That’s right. I can’t stop sneezing and have a runny nose.
System 100.0% 0.0% 0.0% くしゃみする時の顔ってやばすぎるよ

A sneezing face looks so terrible.
User - - - なので、マスクは必須アイテムです。

So a mask is an indispensable item
System 85.3% 14.7% 0.0% くしゃみの音が大きいのが悩みだよ

My loud sound of sneezing is more worrying.
User - - - たしかに、マスクじゃ音は止められないね。

I agree that the sound can’t be stopped by a mask.
System 94.1% 5.9% 0.0% くしゃみやばいのは結構辛い

Sneezing is bad for my health
User - - - 鼻炎の薬飲んでみたらどうですか？

Why don’t you try sinus medicine?
System 58.8% 35.3% 5.9% 鼻炎が酷すぎて辛い

My sinus is too terrible.
User - - - そうだよね、ティッシュペーパーがいくらあっても足りな

いよね。
Sure. You never have enough tissue paper, don’t you?

System 61.8% 32.4% 5.9% お腹に不安がありすぎて迂闊に咳やくしゃみも出来ねえ
Because of my concerns about my stomach, I can’t cough and
sneeze.

User - - - やっぱり、医者で鼻炎のおクスリを貰ったらどうですか？
Ideally, why don’t you get medicine from a hospital?

System 58.8% 23.5% 17.6% 風邪っぽいのでクスリ飲むよ
I seem to have a cold, so I’ll take medicine.

User - - - そりゃあ、早く飲んで栄養つけて休んだ方がいいよ。
You should take that, get nutrition and get some rest.

System 73.5% 26.5% 0.0% お腹も弱いんだよね
I also have a weak stomach.

User - - - じゃあ、おかゆでも食べる？
Then would you have rice gruel?

System 91.2% 8.8% 0.0% 味がついたおかゆはおいしい
Flavored rice gruel is delicious.

User - - - はい、たまごを混ぜてお塩で味付けした粥です。
Yes, this rice gruel is flavored with egg and salt.

System 20.6% 44.1% 35.3% 照り焼きチキンとたまごのサンドイッチはおいしい
Chicken teriyaki and egg sandwich is delicious.
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Abstract

We propose a set of generic conversa-
tional strategies to handle possible sys-
tem breakdowns in non-task-oriented di-
alog systems. We also design policies to
select these strategies according to dialog
context. We combine expert knowledge
and the statistical findings derived from
data in designing these policies. The pol-
icy learned via reinforcement learning out-
performs the random selection policy and
the locally greedy policy in both simu-
lated and real-world settings. In addition,
we propose three metrics for conversation
quality evaluation which consider both the
local and global quality of the conversa-
tion.

1 Introduction

Non-task-oriented conversational systems do not
have a stated goal to work towards. Nevertheless,
they are useful for many purposes, such as keep-
ing elderly people company and helping second
language learners improve conversation and com-
munication skills. More importantly, they can be
combined with task-oriented systems to act as a
transition smoother or a rapport builder for com-
plex tasks that require user cooperation. There are
a variety of methods to generate responses for non-
task-oriented systems, such as machine translation
(Ritter et al., 2011), retrieval-based response se-
lection (Banchs and Li, 2012), and sequence-to-
sequence recurrent neural network (Vinyals and
Le, 2015). However, these systems still pro-
duce utterances that are incoherent or inappropri-
ate from time to time. To tackle this problem, we
propose a set of conversational strategies, such as
switching topics, to avoid possible inappropriate
responses (breakdowns). After we have a set of
strategies, which strategy to perform according to

the conversational context is another critical prob-
lem to tackle. In a multi-turn conversation, the
user experience will be affected if the same strat-
egy is used repeatedly. We experimented on three
policies to control which strategy to use given the
context: a random selection policy that randomly
selects a policy regardless of the context, a locally
greedy policy that focuses on local context, and a
reinforcement learning policy that considers con-
versation quality both locally and globally. The
strategies and policies are applicable for non-task-
oriented systems in general. The strategies can
prevent a possible breakdown, and the probabil-
ity of possible breakdowns can be calculated using
different metrics according to different systems.
For example, a neural network generation system
(Vinyals and Le, 2015) can use the posterior prob-
ability to decide if the generated utterance is pos-
sibly causing a breakdown, thus replacing it with a
designed strategy. In this paper, we implemented
the strategies and policies in a keyword retrieval-
based non-task-oriented system. We used the re-
trieval confidence as the criteria to decide whether
a strategy needed to be triggered or not.

Reinforcement learning was introduced to the
dialog community two decades ago (Biermann
and Long, 1996) and has mainly been used in
task-oriented systems (Singh et al., 1999). Re-
searchers have proposed to design dialogue sys-
tems in the formalism of Markov decision pro-
cesses (MDPs) (Levin et al., 1997) or partially
observable Markov decision processes (POMDPs)
(Williams and Young, 2007). In a stochastic envi-
ronment, a dialog system’s actions are system ut-
terances, and the state is represented by the dialog
history. The goal is to design a dialog system that
takes actions to maximize some measure of sys-
tem reward, such as task completion rate or dia-
log length. The difficulty of such modeling lies in
the state representation. Representing the dialog
by the entire history is often neither feasible nor
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conceptually useful, and the so-called belief state
approach is not possible, since we do not even
know what features are required to represent the
belief state. Previous work (Walker et al., 1998)
has largely dealt with this issue by imposing prior
limitations on the features used to represent the ap-
proximate state. In this paper, instead of focus-
ing on task-oriented systems, we apply reinforce-
ment learning to design a policy to select designed
conversation strategies in a non-task-oriented di-
alog systems. Unlike task-oriented dialog sys-
tems, non-task-oriented systems have no specific
goal that guides the interaction. Consequently,
evaluation metrics that are traditionally used for
reward design, such as task completion rate, are
no longer appropriate. The state design in rein-
forcement learning is even more difficult for non-
task-oriented systems, as the same conversation
would not occur more than once; one slightly dif-
ferent answer would lead to a completely different
conversation; moreover there is no clear sense of
when such a conversation is “complete”. We sim-
plify the state design by introducing expert knowl-
edge, such as not repeating the same strategy in a
row, as well as statistics obtained from conversa-
tional data analysis.

We implemented and deployed a non-task-
oriented dialog system driven by a statistical pol-
icy to avoid possible system breakdowns using de-
signed general conversation strategies. We evalu-
ated the system on the Amazon Mechanical Turk
platform with metrics that consider both the local
and the global quality of the conversation. In ad-
dition, we also published the system source code
and the collected conversations 1.

2 Related Work

Many generic conversational strategies have been
proposed in previous work to avoid generating in-
coherent utterances in non-task-oriented conversa-
tions, such as introducing new topics (e.g. “Let’s
talk about favorite foods!” ) in (Higashinaka et al.,
2014), asking the user to explain missing words
(e.g. “What is SIGDIAL?”) (Maria Schmidt and
Waibel, 2015). In this paper, we propose a set
of generic strategies that are inspired by previous
work, and test their usability on human users. No
researcher has investigated thoroughly on which
strategy to use in different conversational contexts.
Compared to task-oriented dialog systems, non-

1www.cmuticktock.org

task-oriented systems have more varied conversa-
tion history, which are thus harder to formulate as
a mathematical problem. In this work, we pro-
pose a method to use statistical findings in con-
versational study to constrain the dialog history
space and to use reinforcement learning for sta-
tistical policy learning in a non-task-oriented con-
versation setting.

To date, reinforcement learning is mainly used
for learning dialogue policies for slot-filling task-
oriented applications such as bus information
search (Lee and Eskenazi, 2012), restaurant rec-
ommendations (Jurčı́ček et al., 2012), and sight-
seeing recommendations (Misu et al., 2010). Re-
inforcement learning is also used for some more
complex systems, such as learning negotiation
policies (Georgila and Traum, 2011) and tutoring
(Chi et al., 2011). Reinforcement learning is also
used in question-answering systems (Misu et al.,
2012). Question-answering systems are very sim-
ilar to non-task-oriented systems except that they
do not consider dialog context in generating re-
sponses. They have pre-existing questions that the
user is expected to go through, which limits the
content space of the dialog. Reinforcement learn-
ing has also been applied to a non-task-oriented
system for deciding which sub-system to choose to
generate a system utterance (Shibata et al., 2014).
In this paper, we used reinforcement learning to
learn a policy to sequentially decide which con-
versational strategy to use to avoid possible system
breakdowns.

The question of how to evaluate conversational
systems has been under discussion throughout the
history of dialog system research. Task comple-
tion rate is widely used as the conversational met-
ric for task oriented systems (Williams and Young,
2007). However, it is not applicable for non-task-
oriented dialog systems which don’t have a task.
Response appropriateness (coherence) is a widely
used manual annotation metric (Yu et al., 2016)
for non-task-oriented systems. However, this met-
ric only focuses on the utterance level conversa-
tional quality and is not automatically computable.
Perplexity of the language model is an automat-
ically computable metric but is hard to interpret
(Vinyals and Le, 2015). In this paper, we propose
three metrics: turn-level appropriateness, conver-
sational depth and information gain, which access
both the local and the global conversation quality
of a non-task-oriented conversation. Information
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gain is automatically quantifiable. We use super-
vised machine learning methods to built automatic
detectors for turn level appropriateness and con-
versational depth. All three of the metrics are gen-
eral enough to be applied to any non-task-oriented
system.

3 Conversational Strategy Design

We implemented ten strategies in total for re-
sponse generation. The system only selects among
Strategy 1-5 if their trigger conditions are meet.
If more than one strategy is eligible, the system
selects the higher ranked strategy. The rank of
the strategies, shown in the following list, is de-
termined via expert knowledge. The system only
selects among Strategy 6-10 if Strategy 1-5 can-
not be selected. This rule reduces the design space
of all policies. We design three different versions
of the surface form for each strategy, so the user
would get a slightly different version every time,
thus making the system seem less robotic.

We implemented these strategies in TickTock
(Yu et al., 2015). TickTock is a non-task-oriented
dialog system that takes typed text as the input
and produces text as output. It performs anaphora
detection and candidate re-ranking with respect
to history similarity to track conversation history.
For a detailed system description, please refer to
(Yu et al., 2016). This version of TickTock took
the form of a web-API, which we put on Amazon
Mechanical Turk platform to collect data from a
large number of users. The system starts the con-
versation by proposing a topic to discuss. The
topic is randomly selected from five designed top-
ics: movies, music, politics, sports and board
games. We track the topic of the conversation
throughout the interaction. Each conversation has
more than 10 turns. Table 1 is an example conver-
sation of TickTock talking with a human user. We
describe the ten strategies with their ranking order
in the following.

1. Match Response (continue): In a keyword-
based system, the retrieval confidence is the
weighted score of all the matching keywords
from the user input and the chosen utterance
from the database. When the retrieval con-
fidence score is higher than a threshold (0.3
in our experiment), we use the retrieved re-
sponse as the system’s output. If the system is
a sequence-to-sequence neural networks sys-
tem, then we select the output of the system

when the posterior probability of the gener-
ated response is higher than a certain thresh-
old.

2. Don’t Repeat (no repeat): When users re-
peat themselves, the system confronts them
by saying:“You already said that!”.

3. Ground on Named Entities (named entity)
A lot of raters assume that TickTock can
answer factual questions, so they ask ques-
tions such as “Which state is Chicago in?”
and “Are you voting for Clinton?”. We use
the Wikipedia knowledge base API to tackle
such questions. We first perform a shallow
parsing to find the named entity in the sen-
tence, and then we search the named entity
in a knowledge base, and retrieve the cor-
responding short description of it. Finally
we design several templates to generate sen-
tences using the obtained short description of
the named entity. The resulting output can
be “Are you talking about the city in Illi-
nois?” and “Are you talking about Bill Clin-
ton, the 42rd president of the United States,
or Hillary Clinton, a candidate for the Demo-
cratic presidential nomination in the 2016
election?”. This strategy is considered one
type of grounding strategy in human conver-
sations. Users feel like they are understood
when this strategy is triggered correctly. In
addition, we make sure we never ground the
same named-entity twice in single conversa-
tion.

4. Ground on Out of Vocabulary Words (oov)
If we find that the user utterance contains a
word that is out of our vocabulary, such as
“confrontational”. Then TickTock will ask:
“What is confrontational?”. We expand our
vocabulary with the new user-defined words
continuously, so we will not ask for ground-
ing on the same word twice.

5. React to Single-word Sentence (short an-
swer) We found that some users type in
meaningless single words such as ‘d’, ‘dd’,
or equations such as ‘1+2=’. TickTock will
reply: “Can you be serious and say things in
a complete sentence?” to deal with such con-
dition.

6. Switch Topic (switch) TickTock proposes a
new topic other than the current topic, such
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as “sports” or “music”. For example: “Let’s
talk about sports.” If this strategy is executed,
we will update the tracked topic to the new
topic introduced.

7. Initiate Activities (initiation) TickTock in-
vites the user to do an activity together. Each
invitation is designed to match the topic of
the current conversation. For example, the
system would ask: “Do you want to see the
latest Star Wars movie together?” when it is
talking about movies with a user.

8. End topics with an open question (end):
TickTock closes the current topic and asks an
open question, such as “ Sorry I don’t know.
Could you tell me something interesting?”.

9. Tell A Joke (joke): TickTock tells a joke such
as: “Politicians and diapers have one thing in
common. They should both be changed reg-
ularly, and for the same reason”. The jokes
are designed with respect to different topics
as well. The example joke is related to the
topic “politics”.

10. Elicit More Information (more): TickTock
asks the user to say more about the current
topic, using utterances such as “ Could we
talk more about that?”.

4 Strategy Design

As a baseline policy, we use a random selection
policy that randomly chooses among Strategies 6-
10 whenever Strategies 1-5 are not applicable. In
the conversations collected using the baseline, we
found that the sentiment polarity of the utterance
has an influence on which strategy to select. Peo-
ple tend to rate the switch strategy more favorably
if there is negative sentiment in the previous utter-
ances. For example:

TickTock: Hello, I really like politics. Let’s talk
about politics.

User: No, I don’t like politics.
TickTock: Why is that?
User: I just don’t like politics.
TickTock: OK, how about we talk about movies?

In another scenario, when all the previous three
utterances are positive, the more strategy (e.g.

Do you want to talk more about that?) is pre-
ferred over the switch strategy (e.g. Do you like
movies?).

We set out to find the optimum strategy given
the context which is the sentiment polarity of the
previous three utterances. We found all the scenar-
ios when Strategy 6-10 are triggered, then we gen-
erate five different versions of the conversations by
replacing the original used strategy with Strategies
6-10. We asked workers on Amazon Mechanical
Turk to rate the strategy’s appropriateness given
three previous utterances. For each conversation,
we collected ratings from three different raters and
used the majority vote as the final rating. Then we
constructed a table of a distribution of the proba-
bility of each strategy with respect to the context.
We collected 10 ratings for each strategy under
each context. We use the Vader (Hutto and Gilbert,
2014) sentiment predictor for automatic sentiment
prediction. The output of the sentiment predictor
is a label with three categories: positive (pos), neg-
ative(neg) and neutral (neu).

We found that the output of the rating task sup-
ports our hypothesis: different strategies are pre-
ferred with respect to different sentiment context.
In Table 3, we show the distribution of appropri-
ateness ratings for Strategy 6-10 in a context when
all the previous utterances are positive. Users rated
the more strategy more appropriate than the end
strategy and the switch strategy. One interesting
observation is that the joke strategy is rated poorly.
We examined the cases in which it is used and
found that the low appropriateness is mostly the
result of being unexpected. The initiation strategy
can be appropriate when the activity fits the pre-
vious content semantically. In another sentiment
context, when there are consecutive negative ut-
terances, the switch strategy and the end strategy
are preferred. We can see that which strategy to
use is heavily dependent on the immediately sen-
timent context of the conversation. Sentiment po-
larity captures some conversational level informa-
tion which is a discriminating factor. We then use
these findings to design the locally greedy policy.
The system chooses the strategy that is rated as the
most appropriate given the context. The context is
the sentiment polarity of previous three utterances.

We conducted another Amazon Mechanical
Turk study to test if sentiment context beyond
three utterances would influence the preferred
strategy. In order to reduce the work load, we
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Turn Participant TickTock
1 I am not sure. What’s on your mind? Well, you know, I’m not sure. Let me tell you something,

politicians and diapers have one thing in common. They
should both be changed regularly, and for the same reason.

2 Wow. That’s funny and insightful. Uhh, I can’t answer this. Can we talk about something
else?

3 How about movies. Have you seen any good movies? Of course. What do you think?
4 I love super hero movies. Have you seen Deadpool? Are you talking about Deadpool,the animation character?
5 Yes, exactly. They made a movie of him. That sounds really interesting.

Table 1: An example conversation with TickTock in the real-world setting

Turn A.L.I.C.E. TickTock
1 When do I do it? I don’t know.
2 That is interesting. Do you want to go to my friend’s party tonight?
3 Sure, just download me to your notebook or PDA and

take me along.
Sounds great. Do you want to play board games together
some time.

4 I like to play the Turing Game. I don’t know how to play it. Is it difficult to play?
5 Interesting gossip. It could be. Possibly.

Table 2: An example conversation of TickTock in the simulated setting

tested one condition: the previous three utterances
are all positive. We provide the complete conver-
sation history of that dialog to the raters. We found
that strategies used most recently are rated less fa-
vorably if used again. This motivates us to include
information that relates to the previous strategy us-
age and a longer history to design policy in the re-
inforcement learning setting.

Strategy App Inter Inapp
switch 0.1 0.3 0.6

initiation 0.2 0.4 0.4
joke 0.1 0.2 0.7
end 0.1 0.3 0.6

more 0.4 0.5 0.1

Table 3: Appropriateness rating distribution when
the recent three utterances are positive.

5 Reinforcement Learning

We model the conversation process as a Markov
Decision Process (MDP)-based problem, so we
can use reinforcement learning to learn a con-
versational policy that makes sequential decisions
by considering the entire context. We used Q-
learning, a model-free method to learn the conver-
sational policy for our non-task-oriented conversa-
tional system.

In reinforcement learning, the problem is de-
fined as (S,A,R, γ, α), where S is the set of states
that represents the system’s environment, in this
case the conversational context. A is a set of ac-
tions available per state. In our setting, the actions

are strategies available. By performing an action,
the agent can move from one state to another. Ex-
ecuting an action in a specific state provides the
agent with a reward (a numerical score), R(s, a).
The goal of the agent is to maximize its total re-
ward. It does this by learning which action is op-
timal to take for each state. The action that is op-
timal for each state is the action that has the high-
est long-term reward. This reward is a weighted
sum of the expected values of the rewards of all
future steps starting from the current state, where
the discount factor γ is a number between 0 and
1 that trades off the importance of sooner versus
later rewards. γ may also be interpreted as the
likelihood to succeed (or survive) at every step.
The algorithm therefore has a function that cal-
culates the quantity of a state-action combination,
Q : S × A → R. The core of the algorithm is a
simple value iteration update. It assumes the old
value and makes a correction based on the new in-
formation at each time step, t. See Equation (1)
for details of the iteration function.

The critical part of the modeling is to design
appropriate states and the corresponding reward
function. We reduce the number of the states by
incorporating expert knowledge and the statistical
findings in our analysis. We used another chatbot,
A.L.I.C.E. 2 as a user simulator in the training pro-
cess. We include features: turn index, times each
strategy was previously executed, and the senti-
ment polarity of previous three utterances. We
constructed the reward table based on the statis-

2http://alice.pandorabots.com/
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Qt+1(st, at)← Qt(st, at) + αt(st, at) ·
(
Rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
(1)

Turn-level appropriateness ∗ 10 + Conversational depth ∗ 100 + round(Information gain, 5) ∗ 30 (2)

tics collected from the previous experiment. In or-
der to make the reward table tractable, we imposed
some of the rules we constructed based on expert
knowledge. For example, if certain strategies have
been used before, then the reward of using it again
is reduced. If the trigger condition of Strategy
1-5 is meet, the system chooses them over Strat-
egy 6-10. This may result in some less optimum
solutions, but reduces the state space and action
space considerably. During the training process,
we constrained the conversation to be 10 turns.
The reward function is only given at the end of
the conversation, it is a combination of the auto-
matic predictions of the three metrics that consider
the conversation quality both locally and globally,
discussed them in detail in the next section. It took
5000 conversations for the algorithm to converge.
We looked into the learned Q table and found that
the policy prefers the strategy that uses less fre-
quently if the context is fixed.

6 Evaluation Metrics

In the learning process of the reinforcement learn-
ing, we use a metric which is a combination of
three metrics: turn-level appropriateness, conver-
sational depth and information gain. Conversa-
tional depth and information gain measure the
quality of the conversation across multiple turns.
Since we use another chatbot as the simulator,
making sure the overall conversation quality is ac-
cessed is critical. All three metrics are related to
each other but cover different aspects of the con-
versation. We used a weighted score of the three
metrics for the learning process, which is shown
in Equation (2). The coefficients are chosen based
on empirical heuristics. We built automatic pre-
dictors for turn-level appropriateness and conver-
sation depth based on annotated data as well.

6.1 Turn-Level Appropriateness
Turn-level appropriateness reflects the coherence
of the system’s response in each conversational
turn. See Table 4 for the annotation scheme. The
inter-annotator agreement between the two experts
is relatively high (kappa = 0.73). We collapse

the “Appropriate” and “Interpretable” labels into
one class and formulate the appropriateness detec-
tion as a binary classification problem. Our de-
signed policies and strategies intend to avoid sys-
tem breakdowns (the inappropriate responses), so
we built this detector to tell whether a system re-
sponse is appropriate or not.

We annotated the appropriateness for 1256
turns. We balance the ratings by generating more
inappropriate examples by randomly pairing two
utterances. In order to reduce the variance of the
detector, we use five-fold cross-validation and a
Z-score normalizer to scale all the features into
the same range. We use early fusion, which sim-
ply concatenates all feature vectors. We use a v-
Support Vector (Chang and Lin, 2011) with a RBF
Kernel to train the detector. The performance of
the automatic appropriateness detector is 0.73 in
accuracy while the accuracy of the majority vote
is 0.5.

We use three sets of features: the strategy
used in the response, the word counts of both the
user’s and TickTock’s utterances, and the utterance
similarity features. The utterance similarity fea-
tures consist of a feature vector obtained from a
word2vec model (Mikolov et al., 2013), the co-
sine similarity score between the user utterance
and the system response, and the similarity scores
between the user response and all the previous
system responses. For the word2vec model, we
trained a 100-dimension model using the collected
data.

6.2 Conversational Depth

Conversational depth reflects the number of con-
secutive utterances that share the same topic. We
design an annotation scheme (Table 5) based on
the maximum number of consecutive utterances
on the same topic. We annotate conversations into
three categories: “Shallow”, “Intermediate” and
“Deep”. The annotation agreement between the
two experts is moderate (kappa = 0.45). Users
manually labeled 100 conversations collected us-
ing TickTock. We collapse “Shallow” and “In-
termediate” into one category and formulate the
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Label Definition Example

Inappropriate (Inapp) Not coherent with the user utterance Participant: How old are you?
TickTock: Apple. .

Interpretable (Inter) Related and can be interpreted Participant: How old are you?
TickTock: That’s too big a question for me to answer.

Appropriate (App) Coherent with the user utterance Participant: How is the weather today?
TickTock: Very good.

Table 4: Appropriateness rating scheme.

Conv. depth Consecutive utterances
Shallow < 6

Intermediate [7, 10]
Deep > 10

Table 5: Conversational depth annotation scheme

problem as a binary classification problem. We
use the same machine learning setting as the turn
level appropriateness predictor. The performance
of the automatic conversational depth detector has
a 72.7% accuracy, while the majority vote base-
line accuracy is 63.6%. The conversational depth
detector has three types of features:

1. The number of dialogue exchanges between
the user and TickTock and the number of
times TickTock uses the continue, switch and
end strategy.

2. The count of a set of keywords in the con-
versation. The keywords are “sense”, “some-
thing” and interrogative pronouns, such as
“when”, “who”, “why”, etc. “Sense” often
occurs in sentence, such as “You are not mak-
ing any sense” and “something” often oc-
curs in sentence, such as “Can we talk about
something else?” or “Tell me something you
are interested in.”. Both of them indicate a
possible change of a topic. Interrogative pro-
nouns are usually involved in questions that
probe users to go deep into the current topic.

3. We convert the entire conversation into a vec-
tor using doc2vec and also include the cosine
similarity scores between adjacent responses
of the conversation.

6.3 Information Gain
Information gain reflects the number of unique
words that are introduced into the conversation
from both the system and the user. We believe

that the more information the conversation has, the
better the conversational quality is. This metric is
calculated automatically by counting the number
of unique words after the utterance is tokenized.

7 Results and Analysis

We evaluate the three policies with respect to
three evaluation metrics: turn-level appropriate-
ness, conversational depth and information gain.
We show the results in the simulated setting in
Table 6 and the real-world setting in Table 7. In
the simulated setting, users are simulated using a
chatbot, A.L.I.C.E.. We show an example sim-
ulated conversion in Table 2. In the real-world
setting, the users are people recruited on Amazon
Mechanical Turk. We collected 50 conversations
for each policy. We compute turn-level appropri-
ateness and conversational depth using automatic
predictors in the simulated setting and use manual
annotations in the real-world setting.

The policy learned via reinforcement learning
outperforms the other two policies in all three
metrics with statistical significance (p < 0.05)in
both the simulated setting and the real-world set-
ting. The percentage of inappropriate turns de-
creases when the policy considers context in se-
lecting strategies. However, the percentage of ap-
propriate utterances is not as high as we hoped.
This is due to the fact that in some situations,
no generic strategy is appropriate. For example,
none of the strategies can produce an appropriate
response for a content-specific question, such as
“What is your favorite part of the movie?” How-
ever, the end strategy can produce a response, such
as: “Sorry, I don’t know, tell me something you
are interested.” This strategy is considered “Inter-
pretable” which in turn saves the system from a
breakdown. The goal of designing strategies and
policies is to avoid system breakdowns, so using
the end strategy is a good choice in such a sit-
uation. These generic strategies are designed to
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Policy Appropriateness Conversational depth Info gain
Random Selection 62% 32% 50.2
Locally Greedy 72% 34% 62.4
Reinforcement Learning 82% 45% 68.2

Table 6: Performance of different policies in the simulated setting

Policy App Inter Inapp Conversational depth Info gain
Random Selection 30% 36% 32% 30% 56.3
Locally Greedy 30% 42% 27% 52% 71.7
Reinforcement Learning 34% 43% 23% 58% 73.2

Table 7: Performance of different policies in the real-world setting.

avoid system breakdowns, so some times they are
not “Appropriate”, but only “Interpretable”.

Both the reinforcement learning policy and the
locally greedy policy outperform the random se-
lection policy with a huge margin in conversa-
tional depth. The reason is that they take context
into consideration in selecting strategies, while the
random selection policy uses the switch strategy
randomly without considering the context. As a
result, it cannot keep the user on the same topic for
long. However, the reinforcement learning policy
only outperforms the locally greedy policy with a
small margin. Because there are cases when the
user has very little interest in a topic, the reinforce-
ment learning policy will switch the topic to sat-
isfy the turn-level appropriateness metric, while
the locally greedy policy seldom selects the switch
strategy according to the learned statistics.

The reinforcement learning policy has the best
performance in terms of information gain. We be-
lieve the improvement mostly comes from using
the more strategy appropriately. The more strategy
elicits more information from the user compared
to other strategies in general.

In Table 2, we can see that the simulated user is
not as coherent as a human user. In addition, the
simulated user is less expressive than a real user,
so the depth of the conversation is generally lower
in the simulated setting than in the real-world set-
ting.

8 Conclusion and Future Work

We design a set of generic conversational strate-
gies, such as switching topics and grounding on
named-entities, to handle possible system break-
downs in any non-task-oriented system. We also
learn a policy that considers both the local and
global context of the conversation for strategy

selection using reinforcement learning methods.
The policy learned by reinforcement learning out-
performs the locally greedy policy and the ran-
dom selection policy with respect to three evalu-
ation metrics: turn-level appropriateness, conver-
sational depth and information gain.

In the future, we wish to consider user’s engage-
ment in designing the strategy selection policy in
order to elicit high quality responses from human
users.

References

Rafael E Banchs and Haizhou Li. 2012. Iris: a chat-
oriented dialogue system based on the vector space
model. In Proceedings of the ACL 2012 System
Demonstrations, pages 37–42. Association for Com-
putational Linguistics.

Alan W Biermann and Philip M Long. 1996. The com-
position of messages in speech-graphics interactive
systems. In Proceedings of the 1996 International
Symposium on Spoken Dialogue, pages 97–100.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Min Chi, Kurt VanLehn, Diane Litman, and Pamela
Jordan. 2011. Empirically evaluating the ap-
plication of reinforcement learning to the induc-
tion of effective and adaptive pedagogical strategies.
User Modeling and User-Adapted Interaction, 21(1-
2):137–180.

Kallirroi Georgila and David R Traum. 2011. Rein-
forcement learning of argumentation dialogue poli-
cies in negotiation. In INTERSPEECH, pages 2073–
2076.

Ryuichiro Higashinaka, Kenji Imamura, Toyomi Me-
guro, Chiaki Miyazaki, Nozomi Kobayashi, Hiroaki

411



Sugiyama, Toru Hirano, Toshiro Makino, and Yoshi-
hiro Matsuo. 2014. Towards an open-domain con-
versational system fully based on natural language
processing. In COLING, pages 928–939.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth International AAAI
Conference on Weblogs and Social Media.
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