
Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 148–151,
Queen Mary University of London, September 2009. c©2009 Association for Computational Linguistics

Automatic Generation of Information State Update Dialogue Systems that
Dynamically Create Voice XML, as Demonstrated on the iPhone

Helen Hastie, Xingkun Liu and Oliver Lemon

School of Informatics

University of Edinburgh

{hhastie,xliu4,olemon}@inf.ed.ac.uk

Abstract

We demonstrate DUDE1 (Dialogue

and Understanding Development En-

vironment), a prototype development

environment that automatically generates

dialogue systems from business-user

resources and databases. These generated

spoken dialogue systems (SDS) are then

deployed on an industry standard Voice

XML platform. Specifically, the deployed

system works by dynamically generating

context-sensitive Voice XML pages. The

dialogue move of each page is determined

in real time by the dialogue manager,

which is an Information State Update

engine. Firstly, we will demonstrate the

development environment which includes

automatic generation of speech recogni-

tion grammars for robust interpretation of

spontaneous speech, and uses the appli-

cation database to generate lexical entries

and grammar rules. A simple graphical

interface allows users (i.e. developers) to

easily and quickly create and the modify

SDS without the need for expensive

service providers. Secondly, we will

demonstrate the deployed system which

enables participants to call up and speak

to the SDS recently created. We will also

show a pre-built application running on

the iPhone and Google Android phone for

searching for places such as restaurants,

hotels and museums.

1Patent Pending

1 Introduction

With the advent of new mobile platforms such as

the iPhone and Google Android, there is a need for

a new way to interact with applications and search

for information on the web. Google Voice Search

is one such example. However, we believe that

this simple “one-shot” search using speech recog-

nition is not optimal for the user. A service that

allows the user to have a dialogue via their phone

opens up a wider set of possibilities. For exam-

ple, the user may be visiting a foreign city and

would like to have a discussion about the types

of restaurants, their cuisine, their price-range and

even ask for recommendations from the system or

their friends on social networking sites. The Di-

alogue Understanding Development Environment

or DUDE makes this possible by providing a flex-

ible, natural, mixed initiative dialogue using an in-

formation state update dialogue engine (Bos et al.,

2003).

Currently, if a company wishes to deploy such

a spoken dialogue system, they have to employ

a costly service provider with a long turn around

time for any changes to the system, even minor

ones such as a special promotion offer. In addi-

tion, there is steep competition on application sites

such as Google Market Place and Apple App Store

which are populated with very cheap applications.

DUDE’s Development Environment takes existing

business-user resources and databases and auto-

matically generates the dialogue system. This re-

duces development time and, therefore, costs and

opens up the technology to a wider user-base. In

addition, the DUDE environment is so easy to use

that it gives the control back into the business-user

and away from independent services providers.

In this paper, we describe the architecture and

148

technology of the DUDE Development Environ-

ment and then discuss how the deployed system

works on a mobile platform.

2 The DUDE Development Environment

Figure 1 shows the DUDE Development Envi-

ronment architecture whereby the main algorithm

takes the business-user resources and databases as

input and uses these to automatically generate the

spoken dialogue system which includes a Voice

XML generator. Advantages of using business-

user resources such as Business Process Mod-

els (BPM) (Williams, 1967) include the fact that

graphical interfaces and authoring environments

are widely available (e.g. Eclipse). In addition,

business-user resources can contain a lot of addi-

tional information as well as call flow including

context, multi-media and multiple customer inter-

actions.

Figure 1: The DUDE Architecture

2.1 Spoken Dialogue System Generation

Many sophisticated research systems are devel-

oped for specific applications and cannot be eas-

ily transferred to another, even very similar task or

domain. The problem of components being do-

main specific is especially prevalent in the core

area of dialogue management. For example MIT’s

Pegasus and Mercury systems (Seneff, 2002) have

dialogue managers (DM) that use approximately

350 domain-specific hand-coded rules each. The

sheer amount of labour required to construct sys-

tems prevents them from being more widely and

rapidly deployed. We present a solution whereby

BPMs and related authoring tools are used to spec-

ify domain-specific dialogue interactions which

are combined with domain-general dialogue man-

agers. Specifically, the DM consults the BPM to

determine what task-based steps to take next, such

as asking for price range after establishing pre-

ferred cuisine type. General aspects of dialogue,

such as confirmation and clarification strategies,

are handled by the domain-general DM. Values

for constraints on transitions and branching in the

BPM, for example “present insurance offer if the

user is business-class”, are compiled into domain-

specific parts of the Information State. XML for-

mat is used for BPMs, and they are compiled into

finite state machines consulted by the spoken dia-

logue system. The domain-general dialogue man-

ager was mostly abstracted from the TALK system

(Lemon et al., 2006).

Using DUDE, developers do not have to write

a single line of grammar code. There are three

types of grammars: (1) a core grammar, (2) a

grammar generated from the database and BPM,

and (3) dynamically generated grammars created

during the dialogue. The core grammar (1) was

developed to cover basic information-seeking in-

teractions. In addition (2), the system com-

piles relevant database entries and their proper-

ties into the appropriate “slot-filling” parts of a

SRGS GRXML (Speech Recognition Grammar

Specification) grammar for each specific BPM

node. Task level grammars are used to allow a

level of mixed initiative, for example, if the sys-

tem asks “what type of cuisine?” the user can

reply with cuisine and also any other slot type,

such as, “cheap Italian”. The dynamically gen-

erated grammars (3), such as for restaurants cur-

rently being recommended, minimizes grammar

size and makes the system more efficient. In ad-

dition to the above-mentioned grammars, devel-

opers are able to provide task spotter phrases and

synonyms reflecting how users might respond by

using the DUDE Development Environment. If

these are not already covered by the existing gram-

mar, DUDE automatically generates rules to cover

them.

The generated SRGS GRXML grammars are

used to populate the Voice XML pages and conse-

quently used by the Voice XML Platform Speech

recogniser. In this case, we deploy our system to

the Voxeo Platform (http://www.voxeo.com). As

well as the W3C standard SRGS GRXML, DUDE

is able to generate alternative grammar specifica-

tions such as SRGS ABNF (Augmented Backus-

Naur Form), JSGF ABNF (Java Speech Grammar

Format) and Nuance’s GSL (Grammar Specifica-

149

Figure 2: Example: using the DUDE Development Environment to define spotter phrases and other

information for the different BPM tasks

tion Language).

2.2 The Development Environment

As mentioned above, the DUDEDevelopment En-

vironment can be used to define system prompts

and add task spotter phrases and synonyms to the

grammars. Figure 2 shows the GUI with the BPM

on the left hand side and the properties pane for

the restaurants task on the right hand side. In this

pane the developer can define the system prompt,

the information to be presented to the user and the

spotter phrases. Here the developer is associating

the phrases “restaurants, restaurant, somewhere to

eat....” with the restaurant task. This means that

if the user says “I want somewhere to eat”, the

restaurant part of the BPM will be triggered. Note

that multi-word phrases may also be defined. The

defined spotters are automatically compiled into

the grammar for parsing and speech recognition.

By default all the lexical entries for answer-types

for the subtasks will already be present as spotter

phrases. DUDE checks for possible ambiguities,

for example if “pizza’ is a spotter for both cui-

sine type for a restaurant task and food type for a

shopping task, the system uses a clarification sub-

dialogue to resolve them at runtime.

Figure 3 shows the developer specifying the re-

quired linguistic information to automate the cui-

sine subtask of the restaurants task. Here the de-

veloper specifies the system prompt “What type

of cuisine do you want?” and a phrase for im-

plicit confirmation of provided values, e.g. “a [X]

restaurant”, where [X] is a variable that will be

replaced with the semantics of the speech recogni-

tion hypothesis for the user input. The developer

also specifies here the answer type that will resolve

the system prompt. There are predefined answer-

types extracted from the databases, and the devel-

oper can select and/or edit these, adding phrases

and synonyms. In addition, they have the ability

to define their own answer-types.

Figure 3: Example: using the DUDE Develop-

ment Environment to define prompts, answer sets,

and database mappings for the cuisine subtask

150

3 Deployment of the Generated Spoken

Dialogue System

The second part of the demonstration shows

a pre-built multimodal application running on

the iPhone (http://www.apple.com) and Google

Android phone (http://code.google.com//android).

This application allows the user to have a dialogue

about places of interest using The List website

(http://www.list.co.uk). Figure 4 shows screen-

shots of the iPhone, firstly with The List home-

page and then a page with content on Bar Roma,

an “italian restaurant in Edinburgh” as requested

by the user through spoken dialogue.

Figure 4: DUDE-generated iPhone List Applica-

tion pushing relevant web content

Figure 5 shows the architecture of this system

whereby the DUDE server runs the spoken dia-

logue system (as outputted from the DUDEDevel-

opment Environment). This system dynamically

generates Voice XML pages whose dialogue move

and grammar is determined by the Information

State Update Dialogue Model. These Voice XML

pages are sent in real time to the Voice XML plat-

form (in our case Voxeo) which the user talks to by

placing a regular phone call. In addition, DUDE

communicates the relevant URL via a server con-

nection.

4 Summary

This paper describes a demonstration of the

DUDE Development Environment and its result-

ing spoken dialogue systems as deployed on a mo-

bile phone, specifically the iPhone and Google

Android. With the emergence of web-enabled

smart-phones, a new and innovative interactive

method is needed that combines web-surfing and

Figure 5: Architecture of deployed DUDE Appli-

cation on a mobile phone (e.g. the iPhone)

dialogue in order to get the user exactly the infor-

mation required in real time.

5 Acknowledgement

This project is funded by a Scottish Enterprise

Proof of Concept Grant (project number 8-ELM-

004). We gratefully acknowledge The List for giv-

ing us data for our prototype application.

References

Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi
Oka. 2003. DIPPER: Description and Formalisa-
tion of an Information-State Update Dialogue Sys-
tem Architecture. In 4th SIGdial Workshop on Dis-
course and Dialogue, pages 115–124, Sapporo.

Adam Cheyer and David Martin. 2001. The Open
Agent Architecture. Journal of Autonomous Agents
and Multi-Agent Systems, 4(1/2):143–148.

Oliver Lemon, Kallirroi Georgila, James Henderson,
and Matthew Stuttle. 2006. An ISU dialogue sys-
tem exhibiting reinforcement learning of dialogue
policies: generic slot-filling in the TALK in-car sys-
tem. In Proceedings of EACL, pages 119–122.

Stephanie Seneff. 2002. Response Planning and Gen-
eration in the Mercury Flight Reservation System.
Computer Speech and Language, 16.

S Williams. 1967. Business process modeling im-
proves administrative control. Automation, pages
44–50.

151

