
Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 160–169,
Queen Mary University of London, September 2009. c©2009 Association for Computational Linguistics

Speeding Up the Design of Dialogue Applications by Using Database
Contents and Structure Information

L. F. D’Haro, R. Cordoba, J. M. Lucas, R. Barra-Chicote, R. San-Segundo
Speech Technology Group

Dept. of Electronic Engineering
Universidad Politécnica de Madrid, Spain

{lfdharo, cordoba, juanmak, barra, lapiz}@die.upm.es

Abstract

Nowadays, most commercial and research
dialogue applications for call centers are
created using sophisticated and fully-
feature development platforms. Surpris-
ingly, most of them lack of some kind of
acceleration strategy based on an automatic
analysis of the contents or structure of the
backend database. This paper describes our
efforts to incorporate this kind of informa-
tion which continues the work done in
(D’Haro et al, 2006). Our main proposed
strategies are: the generation of automatic
state proposals for defining the dialogue
flow network, the automatic selection of
slots to be requested using mixed-initiative,
the semi-automatic generation of SQL
statements, and the quick generation of the
data model of the application and the con-
nection with the database fields. Subjective
and objective evaluations demonstrate the
advantages of using the accelerations and
their high acceptance, both in our current
proposals and in previous work.

1 Introduction

Currently, the growing demand of automatic dia-
logue services for different domains, user profiles,
and languages has led to the development of a
large number of sophisticated commercial and re-
search platforms that provide all the necessary
components for designing, executing, deploying
and maintaining such services with minimum ef-
fort and with innovative functions that make them
interesting for developers and final users.

In their effort for accelerating the design, most
commercial platforms provide several high-level

tools to build multimodal and multilingual dia-
logue applications using widespread standards
such as VoiceXML, CCXML, J2EE, RCP, SRGS,
etc. In addition, they include state-of-the-art mod-
ules such as speech recognizers, high quality
speech synthesizers, language identification capa-
bilities, etc., that guarantees user satisfaction and
interaction. In addition, they present a very user-
friendly graphical interface that makes easy the
development of very complex dialogues, besides
the incorporation of predefined libraries for typical
dialogues states such as requesting card or social
security numbers, etc., and additional assistants for
debugging, logging and simulate the service.

In contrast to commercial platforms, research or
academic platforms (e.g. CSLU-RAD 1 , Dialog-
Designer2, Olympus3, Trindi-kit 4, etc.) do not nec-
essary incorporate all the above-mentioned fea-
tures; especially because they are limited to the
number of standards that they are able to handle
and to the integration level with other platforms, as
well as the number of capabilities that they can
offer to the users and programmers. However, they
allow more complex dialogue interactions, most of
them are freely available as open source, and using
third party modules it is possible to extend their
functionalities.

Surprisingly, these platforms do not include any
kind of acceleration strategies based on the con-
tents or in the structure of the backend database
that, as we will show, can provide important in-
formation for the design. Next, we will describe
some examples of applications or dialogue systems
that use data mining techniques or heuristic infor-

1 http://cslu.cse.ogi.edu/toolkit/
2 http://spokendialogue.dk/
3 http://www.ravenclaw-olympus.org/
4 http://www.ling.gu.se/projekt/trindi/trindikit/

160

mation extracted from the database contents in or-
der to create automatic dialogue services.

In (Polifroni and Walker, 2006), different data
mining techniques are used to automate the selec-
tion of content data to be used in system initiative
queries and to provide summarized answers. At
runtime, the system automatically selects the at-
tributes to constrain the prompt queries that narrow
down best the interaction flow with the final users.

In (Chung, 2004), the database is used together
with a simulation system in order to generate thou-
sands of unique dialogues that can be used to train
the speech recognizer and the understanding mod-
ule, as well as to diagnose the system behaviour
against problematic user’s interactions or answers.

In (Pargellis et al, 2004), a complete platform to
build voice services where the database contents
change constantly is described. At runtime, the
system retrieves information that the user is inter-
ested in according to his personal profile. In addi-
tion, the system is able to create automatically dy-
namic speech grammars and prompts, as well as
the dialogue flow for presenting information to the
user, or for solving some interaction errors through
predefined dialogue templates.

Finally, (Feng et al, 2003) proposes a very dif-
ferent approach, not using a database but mining
the content of corporate websites for automatically
creating spoken and text-based dialogue applica-
tions for custom care. Although the dialogue flow
is predefined, it is interesting to see that important
knowledge, for the different modules of the dia-
logue system, can also be extracted and used from
a well-designed content.

In this work, we have solved some of the limita-
tions of current platforms by incorporating suc-
cessfully heuristic information into the different
assistants of the platform and allowing them to
collaborate between each other in several ways, as
they collect the information already provided in the
first stages of the design to improve and accelerate
the design in the last stages. This way, the platform
assistants classify which fields of the database
could be relevant for the design, generate different
kinds of automatic proposals according to the de-
sign step, reduce the information displayed to the
designer, and accelerate different typical proce-
dures required to define the application.

The paper is organized as follows: section 2
provides an overview of the overall architecture of
the platform, including a brief description of the

main assistants and layers that makes it up. Section
3 describes previous accelerations in the platform
related with the current work; Sections 4, 5, and 6
describe in detail the new strategies and the assis-
tants that include them. Section 7 describes the
subjective and objective evaluations, and section 8
outlines some conclusions and future work.

2 Platform Architecture

The Application Generation Platform (AGP), cre-
ated during the European project GEMINI, is an
open and modular architecture made up of differ-
ent assistants and tools that simplifies the genera-
tion of multimodal and multilingual dialogue ap-
plications with a high adaptability to different
kinds of services (see Figure 4 in Appendix A).
The platform consists of three main layers inte-
grated into a common graphical user interface
(GUI) that guides the designer step-by-step and
lets him go back and forth.

In the first layer, called Framework Layer, the
designer specifies global aspects related to the ap-
plication and the data. This layer includes the Data
Model Assistant (DMA), where the database struc-
ture is created, and the Data Connector Model As-
sistant (DCMA), where the application specific
database access functions are created.

The next layer, called Retrieval layer, includes
the State Flow Model Assistant (SFMA) and the
Retrieval Model Assistant (RMA). The former is
used to create the dialogue flow at an abstract
level, by specifying the high-level states of the dia-
logue, plus the slots to ask to the user and the tran-
sitions among states. Then, the later is used to in-
clude all the actions (e.g., variables, loops, if-
conditions, math or string operations, conditions
for making transitions between states, calls to dia-
logs to provide/obtain information to/from the
user) to be done in each state defined previously.

Finally, the third layer, called Dialogs Layer,
contains the assistants that complete the general
flow specifying for each dialogue the details that
are modality and language dependent. For instance,
the prompts and grammars for each language and
modality, the definition of user profiles, the ap-
pearance and contents of the Web pages, the error
treatment for speech recognition errors or Internet
access, the presentation of information on screen or
using speech, etc., are defined. Furthermore, the

161

VoiceXML and xHTML scripts used by the real-
time system are automatically generated.

3 Previous Acceleration Strategies

In (D’Haro et al, 2006) and (D’Haro et al, 2004),
we described several acceleration strategies based
on using the data model structure and applied them
successfully to different assistants of the platform,
with a special emphasis in the assistant for defining
the actions to be done in each dialogue (i.e. RMA).
The data model information was used to:

a.) Create configurable and generic dialogue
proposals for obtaining (called DGet) and for
showing (called DSay) information from/to the
user. In this case, the assistant creates a DGet or
DSay dialogue for each class and attribute defined.

b.) Automatically propose the actions required
for completing the information for each state of the
dialogue flow; basically, the assistant proposes the
dialogues to ask information to the user, the data-
base access functions, and the dialogues to show
information to the user. Figure 1 shows an example
of the proposals for a banking application. In this
example, the designer is editing a dialogue where
given a currency name the system provides its spe-
cific information (buy and sell price, general in-
formation, etc.). Using the proposal window, all
the designer would need to do is to select the cor-
responding DGet in the window
(DGet_CurrencyName_IN_CLASS_Currency),
then the database access function GetCurrencyBy-
Name, and finally the DSays that provide the de-
sired attributes from the currency. In order to pro-
vide these proposals, we use the information of the
relationships between slots and arguments of the
database functions and the attributes and classes in
the data model (section 5 and 6). When there is no
relationship specified, we apply relaxed filters such
as matching in types, similarity in names, or same
number of arguments and slots in the state.

c.) Automate the process of passing information
among actions/dialogues by proposing the vari-
ables that best match the connections or allowing
the creation of new variables when no match ex-
ists. This is a critical aspect of dialogue applica-
tions design. Several actions and states have to be
‘connected’ as they use the information from the
preceding dialogues. In general, most current de-
sign platforms allow the same kind of functional-
ity, offering the user a selectable list of all the

available variables in the dialogue. In other cases,
especially considering the connections with data-
base access functions, some platforms only allow
the designer to define the matching by modifying
by hand the script code. In this acceleration, we
have tried to provide a better solution by automat-
ing the connection through automatic proposals.
The assistant detects the input/output variables re-
quired in each action and offers the most suitable
already defined variable of a compatible type; if
there are more than one variable to show, the assis-
tant sorts them according to the name similarity
between variable and dialogue. If there is no com-
patible variable already defined in the system or
the name proposed is not desired, the assistant al-
lows the creation of a new local/global variable.
Additionally, the assistant includes a window
where all this matching can be edited.

Other accelerations included in this assistant
were the quick creation of mixed-initiative dia-
logues, dialogues with over-answering (that do not
exist in any current dialogue platform) and the
quick definition of dialogue variables.

Figure 1. Example of automatic dialogues and

database access function proposals
In the present work, the new accelerations addi-

tionally exploit the database contents and have
been incorporated into the assistant to define the
data model structure (section 4), into the assistant
for defining the database access functions (section

162

5), and into the assistant to define the states of the
dialogue flow (section 6). The next sections de-
scribe in detail these assistants and accelerations.

4 Strategies Applied to the Data Model
Assistant (DMA)

This assistant helps in the creation of the data
model structure of the service through a visual rep-
resentation of all possible fields to be requested
and presented to the user, which consists of object
oriented classes and attributes. The goal with these
classes and attributes is to provide information to
the next assistants in the platform about which
fields in the database are relevant for the service
and the relationships between tables and fields.

Figure 2. Example of class and attributes

Each class, see Figure 2, can be characterized by
a list of attributes, a description, and optionally a
list of base classes (inheriting their attributes). The
attributes may be: a) of atomic types (e.g., string,
Boolean, float, date, etc., e.g., AvailableBalance),
b) complex objects, obtained by embedding or re-
ferring to an existing class (e.g., AccountHolder),
or c) lists of either atomic type items or complex
objects (e.g., LastTransactionList).

The main acceleration strategies, previously in-
cluded in this assistant, are: a) re-utilization of li-
braries with models created beforehand, which can
be copied totally or partially, or used to create a
new class by mixing them, b) automatic creation of
a class when it is referenced as an attribute inside
another one, and c) definition of classes inheriting
the attributes of a base class. Since this is one of
the first assistants of the platform, a significant
effort was done to accelerate the creation of the
database structure and to include information about
the relationships between the class attributes and
the fields and tables in the database. To start with,

the system generates and analyzes automatically
heuristic information from the database contents.
Then, with this information, the system proposes
full custom classes and attributes that the designer
can use when creating the data structure.

4.1 Extraction of heuristic information

The process is done using an open SQL query to
retrieve information of every table, field and record
in the database. This information includes the
name and number of the tables and fields, and the
number of records for every table. In addition, the
following features for each field are also gener-
ated: a) field type, b) average length, c) number of
empty records, d) language dependent fields, and
e) the proportion of records that are different. This
information is shared among the assistants in order
to simplify the design or to improve the presenta-
tion of information in the posterior assistants. For
instance, they are used for: (a) to accelerate the
creation of the data model structure (section 4.2),
(b) and (e) to unify slots as mixed initiative or not
(see section 6.1), (c) to sort by relevance the attrib-
utes displayed by the wizard when creating the da-
tabase structure (section 4.2), and (d) to not gener-
ate states for these fields in the SFMA since the
dialogue flow in this assistant is language inde-
pendent (section 6.1).

An important issue we found when retrieving
the field type was that sometimes the metadata in-
formation provided by the SQL function was in-
correct due to: a) the driver for accessing the data-
base was only able to return a limited number of
types, e.g. Boolean or dates were mapped as inte-
ger or string types respectively, b) the designer of
the database defined the field using a generic type
such as string or float when the visual inspection of
the records showed that they actually corresponded
to dates or integers, c) there were problems to map
special types such as hyperlinks, binary, etc. into
the types supported by our platform.

In order to solve these problems, we imple-
mented a post-processing step based on using regu-
lar expressions to detect the following types: inte-
gers, floats, dates, strings, Boolean, mixed or
empty fields. In general, the process is to analyze
all non-empty records in a given field and to select
as field type the one with more than the 90% of
occurrences. Exceptions to this rule are: a) a nu-
meric field is considered integer if all its records
are classified as such, if not it is classified as float,

163

b) the empty type is assigned to fields with more
than 95% of empty records.

In order to analyse the performance of the post-
processing step, an objective evaluation was car-
ried out. In this evaluation, twenty-one databases,
most of them available online, were retrieved and
visually inspected field by field. In total, there
were 109 tables (an average of 5 tables per data-
base), 767 fields and 610.506 records, which were
classified by a human evaluator.

In our results, the average recognition was
89.6%, obtaining the best rates for dates, strings,
and numeric quantities, which are the most com-
mon types in most databases. Analyzing in detail
the misrecognitions, 0.9% of floats were incor-
rectly detected as integers due to values such as
2.0, 30.0, etc. which were automatically returned
by the database driver without the decimal part.
Another source of errors was detecting some nu-
meric quantities due to special symbols such as
dashes, percentages, or the euro symbol, which
were incorrectly interpreted as a string type (3.3%
and 1.6%). The major problems occurred for dis-
tinguishing between the String type and what we
called Mixed type (i.e. fields containing: URLs,
emails, long strings, etc.) since they are, in prac-
tice, the same. However, we wanted to separate
them since for a speech recognizer they may be
handled using different strategies (e.g. spelling,
general grammars, etc.). The importance of these
results is that they mean a reduction in the number
of times the designer will need to change the pro-
posed type for a given attribute when creating the
classes (section 4.2).

4.2 Semi-automatic classes proposals

After collecting all the heuristics, the assistant pro-
vides a wizard window that allows the designer to
create the attributes for a new class from the tables
and fields of the database or from already existing
classes in the model. The information of the se-
lected field and table is saved in the definition of
the class attribute allowing future assistants in the
platform to access this information easily (section
5.1 and 6.1). The heuristic information is used to
set automatically the field types in the wizard, al-
though it can be edited by the designer. Besides,
the wizard also proposes automatic alternative
names for the new class and attributes when it de-
tects duplicated names with already defined ones.

Finally, if the number of tables in the database is
too high the designer can select those that will be
really needed during the design, this way reducing
the information displayed on the screen. In addi-
tion, it is also possible to customize the name of
the tables in the database in order to make them
more intuitive to the dialogue designer.

5 Strategies Applied to the Data Connec-
tor Model Assistant (DCMA)

This assistant allows the definition of the proto-
types (i.e. only the input and output parameters) of
the database access functions used in the runtime
system. The advantage of using prototypes is that
their actual implementation is not required during
the design of the dialogue flow.

The main acceleration strategy, previously in-
cluded in this assistant, was the possibility of relat-
ing the input/output arguments to the attributes and
classes of the data model. This information is used
by the retrieval model assistant to create dialogue
proposals and to automatically propose database
access functions for a given dialogue in the design
(section 3). In this work, we have introduced a new
acceleration by incorporating a wizard window that
allows the creation and debugging of the SQL
statements used at run-time.

5.1 Semi-automatic generation of SQL que-
ries

The main motivation behind this wizard window
was to simplify the process of creating the function
prototypes (API), reducing the necessity of learn-
ing a new programming language (SQL), and to
simplify the process of adding the query into the
real-time modules and scripts. The new wizard
semi-automatically creates the SQL statements for
the given prototype and provides a pre-view of the
results that the system would retrieve in the real-
time system (see Figure 5 in Appendix A). This
new acceleration is interesting since currently few
development platforms include such kind of wizard
forcing the designer to use third party software.
Besides, current wizards only provide debugging
tools, nice GUI features or support for many DB
standards, but no automatic query proposals.

In order to automatically create the SQL state-
ment, the assistant uses the input arguments (de-
fined in the function prototype) as constraints for
the WHERE clause, and the information of the

164

output arguments as returned fields for the SE-
LECT clause. The assistant allows the inclusion of
new input or output arguments if the function pro-
totype is not complete or if the designer wants to
test new combinations of arguments.

Finally, the wizard allows the designer to pre-
view the records that the proposed SQL statement
will retrieve at real-time. In order to debug the
query, the designer specifies, using a pop-up win-
dow, the values for the input arguments of the
function to test the query (as acceleration, the wiz-
ard automatically proposes real values retrieved
from the database).

6 Strategies Applied to the State Flow
Model Assistant (SFMA)

This assistant is used to define the dialogue flow at
an abstract level, i.e. specifying only the high-level
states of the dialogue, the slots to be asked to the
user, and the transitions between states, but not the
specific details of each state. The flow is specified
using a state transition network representation that
is common in this kind of platforms and dialogue
modelling. The GUI allows the definition of new
states using wizard-driven steps and a drag-and-
drop interface. An important acceleration strategy
from the previous version is the possibility of
specifying the slots through attributes offered
automatically from the data model. The new accel-
erations are the automatic proposal of the slots to
be requested using system or mixed initiative dia-
logues (section 6.1) and the automatic generation
of proposals of states for defining the dialogue
flow (section 6.2).

6.1 Automatic unification of slots for mixed
initiative

The idea of this acceleration is to allow the system
to propose automatically when two or more slots
must be requested one by one (using directed
forms) or at the same time (using mixed initiative
forms) according to the VoiceXML standard.

This functionality is only available when the
slots to be analyzed have been defined from a table
and field in the backend database. In this case, the
assistant uses the heuristics obtained for the given
fields and applies a set of customizable rules used
to decide which slots can be unified and which
ones cannot. Some examples of the rules applied to
not propose the unification are: a) one of the slots

is defined as a string with an average length greater
than 20 characters, an average number of words
per record greater than 3, and the other slot is an
integer/float number greater than 5 characters. In
this case, the rule avoids the recognition of long
strings, e.g. an address or name, plus the recogni-
tion of long numeric quantities, e.g. phone or ac-
count numbers, b) when two slots are defined as
strings and the sum of the average length of both is
greater than 20 characters; in this case, the system
tries to avoid the recognition of very long sen-
tences. c) there are two numeric slots with a pro-
portion of different values close to one, and the
total number of records of both fields is high (con-
figurable value), then the system determines that
these slots have a large vocabulary and a high
probability of misrecognition. So, in all these
cases, the system decides that it is better to ask one
slot at a time (system initiative). In case there are
more than two slots, the system checks different
combinations of the slots in order to find those that
can be requested at the same time and leaving the
other one to be requested alone.

6.2 Automatic states

In this strategy, the assistant creates automatically
dialogue states that include the slots to be re-
quested to the user. Using the information of the
database structure and the database access func-
tions, the wizard allows the designer to access to
the following state proposals:

Empty states and already created states: The
first one allows the creation of a new empty state,
with no defined slots inside, that the designer can
define completely afterwards. This way, we allow
a top-down design. The second one allows the de-
signer to re-use already defined states.

From attributes with database dependency:
This kind of states is created from any attribute
defined in the database model (DMA) that refers to
a database field only if the attribute has been used
as an input argument of any database access func-
tion. The proposed states contain only one slot and
its name corresponds to the name of the attribute in
the data model. However, the designer can select
several states to create states with multiple slots.

From the database access functions: In this
case, the system analyzes all the defined database
functions containing input arguments defined as
atomic types. Then, the system uses the name of
the function as proposal for the name of the state,

165

and the input arguments as slots for that state. The
assistant allows the designer to select several of
these proposals in order to create more complex
states. For instance, in case there is a database ac-
cess function called convertCurrencies, which re-
ceives three input arguments (i.e. fromCurrency,
toCurrency, and Amount), the system automati-
cally creates a new state proposal called convert-
Currencies that includes these three slots. Apply-
ing similar rules to the ones described in section
6.1 the system would propose to request the first
two at the same time (mixed-initiative) and the
Amount separately (directed forms).

From classes defined in the data model struc-
ture: In this case, the assistant creates a template
that the designer can drag and drop into the work-
space (see Figure 6 in Appendix A). Then, a pop-
up window allows the designer to select the attrib-
utes to be used as slots. The assistant expands
complex attributes (with inheritance and objects)
allowing only the selection of atomic attributes.

7 Evaluation

With the objective of evaluating the performance
of each of the acceleration strategies and assistants
described above, we carried out a subjective and
objective evaluation with 9 developers with differ-
ent experience levels and profiles (4 novices, 3
intermediates, and 2 experts) on designing dia-
logue services. They were requested to fulfil dif-
ferent typical tasks covering each of the proposed
accelerations and assistants to evaluate. Further
details can be obtained in (D’Haro, 2009).

For the subjective evaluation, the participants
were asked to answer a questionnaire that consists
of four questions per assistant and seventeen for
the overall platform, with a range between 1 and
10. This subjective evaluation confirms the de-
signer-friendliness of the assistants, as well as their
usability, since all the assistants obtained a global
score higher than 8.0, which is a nice result. In de-
tail, the DMA and DCMA obtained an 8.3, the
SFMA a 9.0, the RMA an 8.6, and Diagen a 4.5.
Regarding the acceleration strategies, see Figure
3a, the evaluators scored the automatic states with
9.3, the SQL generation and the unification of slots
for mixed initiative with 9.0, and the class propos-
als with 8.9. Regarding the RMA and the accelera-
tions related with the information extracted from
the database (see section 3), the passing of argu-

ments between actions and the proposal of dia-
logue actions obtained a 9.8 and 8.6 respectively.

For the objective evaluation, we collected the
metrics proposed in (Jung et al, 2008): elapsed
time, number of clicks, number of keystrokes, and
number of corrections using the keyboard (key-
stroke errors). We compared our assistants with a
built-in editor called Diagen, created during the
GEMINI project and improved later on by
(Hamerich, 2008), which features fewer accelera-
tions but generates the same information specified
by our assistants. As accelerations, Diagen only
provides default templates that the designer has to
complete and a guided procedure using different
pop-up windows to fulfil the templates. The results
confirm that the design time can be reduced, in
average for all the assistants and tasks, in more
than 45%, the number of keystrokes in 81%, and
the number of clicks in 40%. Especially relevant is
the high reduction (85%) obtained in the RMA
considering that it is the main task in the design.

8 Conclusions and Future Work

In this paper, we have described the main accelera-
tions incorporated into a complete platform for
designing multimodal and multilingual dialogue
applications. The proposed accelerations strategies
are based on using information extracted from the
contents of the backend database. The proposed
accelerations include the creation of automatic
state proposals, the unification of slots to be re-
quested using mixed-initiative dialogues, and the
semi-automatic creation and debugging of SQL
statements for accessing the database, among oth-
ers. Subjective and objective evaluations confirm
that the proposed strategies are useful and contrib-
ute to simplify and accelerate the design.

As future work, we propose the extraction of
new heuristic information, the creation of new
rules for unifying slots for mixed-initiative dia-
logues. Considering the negative values in Figure
3b, we propose to improve the GUI for defining
the connections among states in the SFMA, and to
improve the DCMA by offering new automated
methods for creating the prototypes.

9 Acknowledgements

This work has been supported by ROBONAUTA
(DPI2007-66846-c02-02) and SD-TEAM
(TIN2008-06856-C05-03).

166

Figure 3. Average result for the: a) subjective evaluation for the accelerations, b) objective results

References
Chung, G. 2004. Developing a Flexible Spoken Dialog

System Using Simulation. ACL 2004.

D’Haro. L. F. 2009. Speed Up Strategies for the Crea-
tion of Multimodal and Multilingual Dialogue Sys-
tems. PhD Thesis. Univ. Politécnica de Madrid.

D’Haro, L. F., Cordoba, R., et al. 2008. Language
Model Adaptation for a Speech to Sign Language
Translation System Using Web Frequencies and a
MAP framework. Interspeech 2008, pp. 2119-2202.

D’Haro, L. F., Cordoba, R., et al. 2006. An advanced
platform to speed up the design of multilingual dia-
logue applications for multiple modalities Speech
Communication Vol. 48, Issue 8, pp. 863-887.

D’Haro, L. F., Cordoba, R., et al. 2004. Strategies to
reduce design time in multimodal/multilingual dialog
applications. ICSLP 2004, pp IV-3057–3060.

Feng, J., Bangalore, S., Rahim, M. 2003. WEBTALK:
Mining Websites for Automatically Building Dialog
Systems. ASRU 2003, pp. 168-173.

Hamerich, S. 2008. From GEMINI to DiaGen: Improv-
ing Development of Speech Dialogues for Embedded
Systems. 9th SIGDIAL, pp. 92-95.

Jung, S., Lee, C., et. al. 2008. DialogStudio : A Work-
bench for Data-driven Spoken Dialogue System De-
velopment and Management. Speech Communica-
tions, 50 (8-9), pp. 683-697.

Pargellis, A. N., Kuo, H. J., Lee, C. 2004. An automatic
dialogue generation platform for personalized dia-
logue applications. Speech Communication Vol. 42,
pp. 329-351.

Polifroni, J. and Walker, M. 2006. Learning Database
Content for Spoken Dialogue System Design. LREC
2006, pp. 143-148.

San-Segundo et al. 2008. Speech to sign language trans-
lation system for Spanish. Speech Communication
Vol. 50, pp.1009–1020.

167

Appendix A. Additional Figures

Figure 4. Platform architecture. In yellow colour the assistants with the new accelerations described in

this paper. In pink colour assistants with previous accelerations (section 3)

Figure 5. Wizard for creating and debugging the SQL statements for accessing the backend database.
In the example, the proposed query allows the selection of all account numbers for a given customer

(using his/her authentication code) and type of account (i.e. passbook saving accounts)

168

Figure 6. Workspace for creating the state transition network and pop up window with state proposals.
In the example, the designer creates the state Transaction from the Class_Transaction template (cre-

ated in the DMA, see Figure 2) and selects as slots the TransactionAmount, CreditAccountNumber and
DebitAccountNumber (not shown)

169

