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Abstract

Building natural language spoken dialog sys-

tems requires large amounts of human tran-

scribed and labeled speech utterances to reach

useful operational service performances. Fur-

thermore, the design of such complex systems

consists of several manual steps. The User

Experience (UE) expert analyzes and defines

by hand the system core functionalities: the

system semantic scope (call-types) and the di-

alog manager strategy which will drive the

human-machine interaction. This approach is

extensive and error prone since it involves sev-

eral non-trivial design decisions that can only

be evaluated after the actual system deploy-

ment. Moreover, scalability is compromised by

time, costs and the high level of UE know-how

needed to reach a consistent design. We pro-

pose a novel approach for bootstrapping spo-

ken dialog systems based on reuse of existing

transcribed and labeled data, common reusable

dialog templates and patterns, generic language

and understanding models, and a consistent de-

sign process. We demonstrate that our ap-

proach reduces design and development time

while providing an effective system without

any application specific data.

1 Introduction
Spoken dialog systems aim to identify intents of humans,

expressed in natural language, and take actions accord-

ingly, to satisfy their requests (Gorin et al., 2002). In a

natural spoken dialog system, typically, first the speaker’s

utterance is recognized using an automatic speech rec-

ognizer (ASR). Then, the intent of the speaker is identi-

fied from the recognized sequence, using a spoken lan-

guage understanding (SLU) component. This step can

be framed as a classification problem for goal-oriented

call routing systems (Gorin et al., 2002; Natarajan et al.,

2002, among others). Then, the user would be engaged in

a dialog via clarification or confirmation prompts if nec-

essary. The role of the dialog manager (DM) is to interact

in a natural way and help the user to achieve the task that

the system is designed to support.

In our case we only consider automated call routing

systems where the task is to reach the right route in a

large call center, which could be either a live opera-

tor or an automated system. An example dialog from

a telephone-based customer care application is given in

Figure 1. Typically the design of such complex sys-

tems consists of several manual steps, including analy-

sis of existing IVR (Interactive Voice Response) systems,

customer service representative (CSR) interviews, cus-

tomers’ testimonials, CSR training material, and, when

available, human-machine unconstrained speech record-

ings. Based on these heterogeneous requirements, the

User Experience (UE) expert analyzes and defines by

hand the system core functionalities: the system semantic

scope (call-types) and the dialog manager strategy which

will drive the human-machine interaction. Once the UE

expert designs the system, large amounts of transcribed

and labeled speech utterances are needed for building the

ASR and SLU models.

In our previous work, we have presented active and

unsupervised (or semi-supervised) learning algorithms

in order to reduce the amount of labeling effort needed

while building ASR and SLU systems (Tur et al., 2003;

Tur and Hakkani-Tür, 2003; Riccardi and Hakkani-Tür,

2003). There we focus on a single application, and only

the ASR and SLU components. In this study, we aim

to exploit the labeled and transcribed data and common

reusable dialog templates and patterns obtained from

similar previous applications to bootstrap the whole spo-

ken dialog system with ASR, SLU, and DM components.

The organization of this paper is as follows. Sec-



� System: How may I help you?
� User: Hello?
� Call-type: Hello
� System: Hello, how may I help you?
� User: I have a question.
� Call-type: Ask(Info)
� System: OK, What is your question?
� User: I would like to know my account balance.
� Call-type: Request(Account Balance)
� System: I can help you with that. What is your ac-

count number?
� User: ...

Figure 1: An example natural language dialog

tion 2 describes briefly the AT&T Spoken Dialog Sys-

tem, which we use in this study, and its main components,

ASR, SLU, and DM. In Section 3 we present our method

to bootstrap ASR, SLU, and DM for a new application.

Section 4 presents our experiments using real data from a

customer care application.

2 AT&T Spoken Dialog System
Once a phone call is established, the dialog manager

prompts the caller either with a pre-recorded or synthe-

sized greetings message. At the same time, it activates

the top level ASR grammar. The caller speech is then

translated into text and sent to the SLU which replies with

a semantic representation of the utterance. Based on the

SLU reply and the implemented dialog strategy, the DM

engages in a mixed initiative dialog to drive the user to-

wards the goal. The DM iterates the previously described

steps until the call reaches a final state (e.g. the call is

transferred to a CSR, an IVR or the caller hangs up).

2.1 ASR
Robust speech recognition is a critical component of

a spoken dialog system. The speech recognizer uses

trigram language models based on Variable N-gram

Stochastic Automata (Riccardi et al., 1996). The acous-

tic models are subword unit based, with triphone context

modeling and variable number of gaussians (4-24). The

output of the ASR engine (which can be the 1-best or a

lattice) is then used as the input of the SLU component.

2.2 SLU
In a natural spoken dialog system, the definition of “un-

derstanding” depends on the application. In this work,

we focus only on goal-oriented call classification tasks,

where the aim is to classify the intent of the user into

one of the predefined call-types. As a call classification

example, consider the utterance in the previous example

dialog I would like to know my account balance, in a cus-

tomer care application. Assuming that the utterance is

recognized correctly, the corresponding intent or the call-

type would be Request(Account Balance) and the action

would be prompting for the account number and then

telling the balance to the user or routing this call to the

Billing Department.

Classification can be achieved by either a knowledge-

based approach which depends heavily on an expert writ-

ing manual rules or a data-driven approach which trains
a classification model to be used during run-time. In our

current system we consider both approaches. Data-driven

classification has long been studied in the machine learn-

ing community. Typically these classification algorithms

try to train a classification model using the features from

the training data. More formally, each object in the train-

ing data, � � � � 	 , is represented in the form 
 � � 	 � � � 	 � ,

where � � 	 � � 	 is the feature set and the � � 	 � � 	 is the

assigned set of classes for that object for the application�
. In this study, we have used an extended version of a

Boosting-style classification algorithm for call classifica-

tion (Schapire, 2001) so that it is now possible to develop

hand written rules to cover low frequent classes or bias

the classifier decision for some of the classes. This is

explained in detail in Schapire et al. (2002). In our previ-

ous work, we have used rules to bootstrap the SLU mod-

els for new applications when no training data is avail-

able (Di Fabbrizio et al., 2002).

Classification is employed for all utterances in all di-

alogs as seen in the sample dialog in Figure 1. Thus all

the expressions the users can utter are classified into pre-

defined call-types before starting an application. Even the

utterances which do not contain any specific information

content get a special call-type (e.g. Hello). So, in our case

objects, � 	 are utterances and classes, � 	 , are call-types

for a given application
�
.

In the literature, in order to determine the application-

specific call-types, first a “wizard” data collection is per-

formed (Gorin et al., 1997). In this approach, a human,

i.e. wizard, acts like the system, though the users of the

system do not know about this. This method turned out

to be better than recording user-agent (human-human) di-

alogs, since the responses to machine prompts are found

to be significantly different than responses to humans, in

terms of language characteristics.

2.3 DM

In a mixed-initiative Spoken Dialog System, the Dia-

log Manager is the key component responsible for the

human-machine interaction. The DM keeps track of the

specific discourse context and provides disambiguation

and clarification strategies when the SLU call-types are
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Figure 2: Dialog Manager Architecture

ambiguous or have associated low confidence scores. It

also extracts other information from the SLU response in

order to complete the information necessary to provide a

service.

Previous work on dialog management (Abella and

Gorin, 1999) shows how an object inheritance hierar-

chy is a convenient way of representing the task knowl-

edge and the relationships among the objects. A for-

mally defined Construct Algebra describes the set of op-

erations necessary to execute actions (e.g. replies to the

user or motivators). Each dialog motivator consists of

a small processing unit which can be combined accord-

ingly to the object hierarchy to build the application. Al-

though this approach demonstrated effective results in

different domains (Gorin et al., 1997; Buntschuh et al.,

1998), it proposes a model which substantially differs

from the call flow model broadly used to specify the

human-machine interaction.

Building and maintaining large-scale voice-enabled

applications requires a more direct mapping between

specifications and programming model, together with au-

thoring tools that simplifies the time consuming imple-

mentation, debugging, and testing phases. Moreover, the

DM requires broad protocols and standard interfaces sup-

port to interact with modern enterprise backend systems

(e.g. databases, http servers, email servers, etc.). Alter-

natively, VoiceXML (vxm, 2003) provides the basic in-

frastructure to build spoken dialog system, but the lack of

SLU support and offline tools compromises the use in a

data-driven classification applications.

Our approach proposes a general and scalable frame-

work for Spoken Dialog Systems. Figure 2 depicts the

logical DM framework architecture. The Flow Controller
(FC) implements an abstraction of pluggable dialog strat-

egy modules. Different algorithms can be implemented

and made available to the DM engine. Our DM provides

three basic algorithms. Traditional call routing systems

are better described in terms of ATNs (Augmented Tran-

sition Networks) (Bobrow and Fraser, 1969). ATNs are

attractive mechanisms for dialog specification since they

are (a) an almost direct translation of call flow specifica-

tions, (b) easy to augment with specific mixed-initiative

interactions, (c) practical to manage extensive dialog con-

text. Complex knowledge-based tasks could be syntheti-

cally described by a variation of knowledge trees. Plan-

based dialogs are effectively defined by rules and con-

straints.

The FC provides a synthetic XML-based language

to author the appropriate dialog strategy. Dialog strat-

egy algorithms are encapsulated using object oriented

paradigms. This allows dialog authors to write sub-

dialogs with different algorithms, depending on the na-

ture of the task and use them interchangeably and ex-

changing variables through the local and global contexts.

A complete description of the DM is out of the scope of

this publication and will be covered elsewhere. We will

focus our attention on the ATN module which is the one

used in our experiments. The ATN engine operates on

the semantic representation provided by the SLU and the

current dialog context to control the interaction flow.

3 Bootstrapping a Spoken Dialog System
This section describes how we bootstrap the main compo-

nents of a spoken dialog system, namely the ASR, SLU,

and DM. For all modules, we assume no data from the

application domain is available.

3.1 Unsupervised Learning of Language Models
State-of-the-art speech recognition systems are generally

trained using in-domain transcribed utterances, prepa-

ration of which is labor intensive and time-consuming.

In this work, we re-train only the statistical language

models, and use an acoustic model trained using data

from other applications. Typically, the recognition accu-

racy improves by adding more data from the application

domain to train statistical language models (Rosenfeld,

1995).

In our previous work, we have proposed active and un-

supervised learning techniques for reducing the amount

of transcribed data needed to achieve a given word ac-

curacy, for automatic speech recognition, when some

data (transcribed or untranscribed) is available from the

application domain (Riccardi and Hakkani-Tür, 2003).

Iyer and Ostendorf (1999) have examined various sim-

ilarity techniques to selectively sample out-of-domain

data to enhance sparse in-domain data for statistical lan-

guage models, and have found that even the brute addi-

tion of out-of-domain data is useful. Venkataraman and

Wang (2003) have used maximum likelihood count esti-

mation and document similarity metrics to select a sin-



gle vocabulary from many corpora of varying origins and

characteristics. In these studies, the assumption is that

there is some domain data (transcribed and/or untran-

scribed) available, and its � -gram distributions are used

to extend that set with additional data.

In this paper, we focus on the reuse of transcribed data

from other resources, such as human-human dialogs (e.g.

Switchboard Corpus, (Godfrey et al., 1992)), or human-

machine dialogs from other spoken dialog applications,

as well as some text data from the web pages of the ap-

plication domain. We examine the style and content sim-

ilarity, when out-of-domain data is used to train statis-

tical language models and when no in-domain human-

machine dialog data is available. Intuitively, the domain

web pages could be useful to learn domain-specific vo-

cabulary. Other application data can provide stylistic

characteristics of human-machine dialogs.

3.2 Call-type Classification with Data Reuse
The bottleneck of building reasonably performing classi-

fication models is the amount of time and money spent

for high quality labeling. By “labeling,” we mean assign-

ing one or more predefined label(s) (call-type(s)) to each

utterance.

In our previous work, in order to build call classi-

fication systems in shorter time frames, we have em-

ployed active and unsupervised learning methods to se-

lectively sample the data to label (Tur et al., 2003; Tur

and Hakkani-Tür, 2003). We have also incorporated

manually written rules to bootstrap the Boosting clas-

sifier (Schapire et al., 2002) and used it in the AT&T

HelpDesk application (Di Fabbrizio et al., 2002).

In this study, we aim to reuse the existing labeled data

from other applications to bootstrap a given application.

The idea is forming a library of call-types along with the

associated data and let the UE expert responsible for that

application exploit this information source.

Assume that there is an oracle which categorizes all

the possible natural language sentences which can be ut-

tered in any spoken dialog application we deal with. Let

us denote this set of universal classes with � , such that

the call-type set of a given application is a subset of that,

� � � � . It is intuitive that, some of the call-types will

appear in all applications, some in only one of them, etc.

Thus, we categorize � � into three:

1. Generic Call-types: These are the intents appearing

independent of the application. A typical example

would be a request for talking to a human instead of

a machine. Call this set

� � � 
 �  � �  � � � � � � �

2. Re-usable Call-types: These are the intents which

are not generic but have already been defined for a

previous application (most probably from the same

or similar industry sector) and have already had la-

beled data. Call this set

� � � � 
 �  � �  � � � � # � �

3. Specific Call-types: These are the intents specific

to the application, because of the specific business

needs or application characteristics. Call this set

� $ � � 
 �  � �  (� � � � � � (� * �

Now, for each application
*
, we have

� � � � � - � � � - � $ �

It is up to the UE expert to decide which call-types are

specific or reusable, i.e. the sets � � � and � $ � . Given

that not any two applications are the same, deciding on

whether to reuse a call-type along with its data is very

subjective. There may be two applications including the

intent Request(Account Balance) one from a telecommu-

nications sector, the other from a pharmaceutical sector,

and the wording can be slightly different. For example

while in one case we may have How much is my last
phone bill, the other can be do I owe you anything on the
medicine. Since each classifier can tolerate some amount

of language variability and noise, we assume that if the

names of the intents are the same, their contents are the

same. Since in some cases, this assumption does not hold,

it is still an open problem to selectively sample the por-

tions of data to reuse automatically.

Since � � appears in all applications by definition, this

is the core set of call-types in a new application, � .

Then, if the UE expert knows the possible reusable in-

tents, � � 1 , existing in the application, they can be added

too. The bootstrap classifier can then be trained using the

utterances associated with the call-types, � � 3 � � 1 in

the call-type library. For the application specific intents,

� $ 1 , it is still possible to augment the classifier with a

few rules as described in Schapire et al. (2002). This is

also up to the expert to decide.

Depending on the size of the library or the similarity

of the new application to the existing ones, using this ap-

proach it is possible to cover a significant portion of the

intents. For example, in our experiments, we have seen

that 10% of the responses to the initial prompt is a request

to talk to a human. Using this system, we have the capa-

bility to continue the dialog with the user and getting the

intent before sending them to a human agent.

Using this approach the application begins with a rea-

sonably well working understanding component. One

can also consider this as a more complex wizard, depend-

ing on the bootstrap model.



Another advantage of maintaining a call-type library

and exploiting them by reuse is that automatically ensures

consistency in labeling and naming. Note that the design

of call-types is not a well defined procedure and most of

the time, it is up to the expert. Using this approach it is

possible to discipline the art of call-type design to some

extent.

After the system is deployed and real data is collected,

then the application specific or other reusable call-types

can be determined by the UE expert to get a complete

picture.

3.3 Bootstrapping the Dialog Manager with Reuse

Mixed-initiative dialogs generally allow users to take

control over the machine dialog flow almost at any time

of the interaction. For example, during the course of a

dialog aiming to a specific task, a user may utter a new

intention (speech act) and deviate from the previously

stated goal. Depending on the nature of the request, the

DM strategy could either decide to shift to the differ-

ent context (context shift) or re-prompt providing addi-

tional information. Similarly, other dialog strategy pat-

terns such as correction, start-over, repeat, confirmation,
clarification, contextual help, and the already mentioned

context shift, are recurring features in a mixed-initiative

system.

Our goal is to derive some overall approach to dialog

management that would define templates or basic dialog

strategies based on the call-type structure. For the spe-

cific call routing task described in this paper, we general-

ized dialog strategy templates based on the categorization

of the call-type presented in 3.2 and on best practice user

experience design.

Generic call-types, such as Yes, No, Hello, Goodbye,
Repeat, Help, etc., are domain independent, but are han-

dled in most reusable sub-dialogs with the specific dia-

log context. When detected in any dialog turn, they trig-

ger context dependent system replies such as informative

prompts (Help), greetings (Hello) and summarization of

the previous dialog turn using the dialog history (Repeat).
In this case, the dialog will handle the request and resume

the execution when the information has been provided.

Yes and No generic call-types are used for confirmation if

the system is expecting a yes/no answer or ignored with

a system re-prompt in other contexts.

Call-types are further categorized as vague and con-
crete. A request like I have a question will be classified

as vague Ask(Info) and will generate a clarification ques-

tion: OK. What is your question? Concrete call-types cat-

egorize a clear routing request and they activate a confir-

mation dialog strategy when they are classified with low

confidence scores. Concrete call-type can also have asso-

ciated mandatory or optional attributes. For instance, the

concrete call-type Request(Account Balance) requires a

mandatory attribute AccountNumber (generally captured

by the SLU) to complete the task.

We generalized sub-dialogs to handle the most com-

mon call- type attributes (telephone number, account

number, zip code, credit card, etc.) including a dialog
container that implements the optimal flow for multiple

inputs. A common top level dialog handles the initial

open prompt requests. Reusable dialog templates are im-

plemented as ATNs where the actions are executed when

the network arcs are traversed and passed as parameters

at run-time. Disambiguation of multiple call-types is not

supported. We only consider the top scoring call-type as-

suming that multiple call-types with high confidence are

rare events.

4 Experiments and Results

For our experiments, we selected an application from the

pharmaceutical domain to bootstrap. We have evaluated

the performances of the ASR language model, call clas-

sifier, and dialog manager as described below.

4.1 Speech Recognition Experiments

To bootstrap a statistical language model for ASR, we

used human-machine spoken language data from two pre-

vious AT&T VoiceTone spoken dialog applications (App.

1 (telecommunication domain) and App. 2 (medical in-

surance domain)). We also used some data from the ap-

plication domain web pages (Web). Table 1 lists the sizes

of these corpora. “App. Training Data” and “App. Test

Data” correspond to the training and test data we have

for the new application and are used for controlled ex-

periments. We also extended the available corpora with

human-human dialog data from the Switchboard corpus

(SWBD) (Godfrey et al., 1992).

Table 2 summarizes some style and content features

of the available corpora. For simplification, we only

compared the percentage of pronouns and filled pauses

to show style differences, and the domain test data out-

of-vocabulary word (OOV) rate for content variations.

The human-machine spoken dialog corpora include much

more pronouns than the web data. There are even further

differences between the individual pronoun distributions.

For example, out of all the pronouns in the web data, 35%

is “you”, and 0% is “I”, whereas in all of the human-

machine dialog corpora, more than 50% of the pronouns

are “I”. In terms of style, both spoken dialog corpora can

be considered as similar. In terms of content, the second

application data is the most similar corpus, as it results in

the lowest OOV rate for the domain test data. In Table 3,

we show further reductions in the App. test set OOV rate,

when we combine these corpora.

Figure 3 shows the effect of using various corpora as

training data for statistical language models used in the



App. 1 App. 2 Web Data App. Training Data App. Test Data

No. of Utterances 35,551 79,792 NA 29,561 5,537

No. of Words 329,959 385,168 71,497 299,752 47.684

Table 1: ASR Data Characteristics

In-Domain

App. 1 App. 2 SWBD Web Data Training Data

Percentage of Pronouns 15.14% 9.16% 14.8% 5.30% 14.5%

Percentage of Filled Pauses 2.66% 2.27% 2.74% 0% 3.26%

Test Set OOV Rate 9.79% 1.99% 2.64% 13.36% 1.02%

Table 2: Style and Content differences among various data sources.

Corpora Test Set

OOV Rate

App 1 + App 2 Data 1.53%

App 1 + App 2 + Web Data 1.22%

App 1 + App 2 + Web + SWBD Data 0.88%

Table 3: Effect of training corpus combination on OOV

rate of the test data.

recognition of the test data. We also computed ASR run-

time curves by varying the beam-width of the decoder, as

the characteristics of the corpora effects the size of the

language model. Content-wise the most similar corpus

(App. 2) resulted in the best performing language model,

when the corpora are considered separately. We obtained

the best recognition accuracy, when we augment App. 2

data with App. 1 and the web data. Switchboard corpus

also resulted in a reasonable performance, but the prob-

lem is that it resulted in a very big language model, slow-

ing down the recognition. In that figure, we also show the

word accuracy curve, when we use in-domain transcribed

data for training the language model.

Once some data from the domain is available, it is pos-

sible to weight the available out-of-domain data and the

web-data while reusing, to achieve further improvements.

When we lack any in-domain data, we expect the UE ex-

pert to reuse the application data from the most similar

sectors and/or combine all available data.

4.2 Call-type Classification Experiments

We have performed the SLU tests using the Boostexter

tool (Schapire and Singer, 2000). For all experiments, we

have used word � -grams of transcriptions as features and

iterated Boostexter 1,100 times. In this study we have

assumed that all candidate utterances are first recognized

by the same automatic speech recognizer (ASR), so we

deal with only text input of the same quality, which cor-

responds to the recognitions obtained using the language

model trained from App. 1, App. 2, and Web data.
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Figure 3: The word accuracy of in-domain test data, using

various language models and pruning thresholds.

As the test set, we again used the 5,537 utterances col-

lected from a pharmaceutical domain customer care ap-

plication. We used a very limited library of call-types

from a telecommunications domain application. We have

made controlled experiments where we know the true

call-types of the utterances. In this application we have

97 call-types with a fairly high perplexity of 32.81.

If an utterance has the call-type which is covered by

the bootstrapped model, we expect that call-type to get

high confidence. Otherwise, we expect the model to re-

ject it by assigning the special call-type Not(Understood)
meaning that the intent in the utterance is known to be

not covered or some call-type with low confidence. Then

we compute the rejection accuracy (RA) of the bootstrap

model:

� � � � � 
 �  � � � � � � �  � � � � � 
�

 � �   � � �  � % � �  &
� � 
 �  � � � % � � � � �  � % � �  &



Transcriptions ASR Output

Coverage Rejection Acc. Classification Acc. Rejection Acc. Classification Acc.

In-Domain Model 100.00% 78.27% 78.27% 61.73% 61.73%

Generic Model 45.78% 88.53% 95.38% 85.55% 91.08%

Bootstrapped Model 70.34% 79.50% 79.13% 71.86% 68.40%

Table 4: SLU results using transcriptions and ASR output with the models trained with in-domain data, only generic

call-types, and also with call-types from the library and rules.

In order to evaluate the classifier performance for the

utterances whose call-types are covered by the boot-

strapped model, we have used classification accuracy
(CA) which is the fraction of utterances in which the top

scoring call-type is one of the true call-types assigned

by a human-labeler and its confidence score is more than

some threshold:

� � � � � � 
 � � � � � � � � � � � � � � �  " " # � # � % � � � � �  ' � � "
� � � 
 � � � �  � � � � � � �  ' � � "

These two measures are actually complementary to

each other. For the complete model trained with all the

training data, where all the intents are covered, these two

metrics are the same.

In order to see our upper bound, we first trained a clas-

sifier using 30,000 labeled utterances from the same ap-

plication. First row of Table 4 presents these results using

both the transcriptions of the test set and using the ASR

output with around 68% word accuracy. As the confi-

dence threshold we have chosen a hypothetical value of

0.3 for all experiments. As seen, 78.27% classification

(or rejection) accuracy is the performance using all train-

ing data. This reduces to 61.73% when we use the ASR

output. This is mostly because of the unrecognized words

which are critical for the application. This is intuitive

since ASR language model has not been trained with do-

main data.

Then we trained a generic model using only generic

call-types. This model has achieved better accuracies as

seen in the second row, since we do not expect it to distin-

guish among the reusable or specific call-types. Further-

more, for classification accuracy we only use the portion

of the test set whose call-types are covered by the model

and the call-types in this model are definitely easier than

the specific ones. The drawback is that we only cover

about half of the utterances. Using the ASR output, un-

like the in-domain model case, did not hurt much, since

the ASR already covers the utterances with generic call-

types with great accuracy.

We then trained a bootstrapped model using 13 call-

types from the library and a few simple rules written

manually for three frequent intents. Since the library

consists of an application from a fairly different domain,

we could only exploit intents related to billing, such as

Request(Account Balance). While determining the call-

types to write rules, we actually played the expert which

has previous knowledge on the application. This enabled

us to increase the coverage to 70.34%.

The most impressive result of these experiments is

that, we have got a call classifier which is trained with-

out any in-domain data and can handle most utterances

with almost same accuracy as the trained with extensive

amounts of data. Noting the weakness of our current call-

type library we expect even better performances as we

augment more call-types from on-going applications.

4.3 Dialog Level Evaluation

Evaluation of spoken dialog system performances is a

complex task and depends on the purpose of the desired

dialog metric (Paek, 2001). While ASR and SLU can

be fairly assessed off-line using utterances collected in

previous runs of the baseline system, the dialog manager

requires interaction with a real motivated user who will

cooperate with the system to complete the task. Ideally,

the bootstrap system has to be deployed in the field and

the dialogs have to be manually labeled to provide accu-

rate measure of task completion rate. Usability metrics

also require direct feedback from the caller to properly

measure the user satisfaction (specifically, task success

and dialog cost) (Walker et al., 1997). However, we are

more interested in automatically comparing the bootstrap

system performances with a reference system, working

on the same domain and with identical dialog strategies.

As a first order of approximation, we reused the 3,082

baseline test dialogs (5,537 utterances) collected by the

live reference system and applied the same dialog turn

sequence to evaluate the bootstrap system. According to

the reference system call flow, the 97 call-types covered

by the reference classifier are clustered into 32 DM cat-

egories (DMC). A DMC is a generalization of more spe-

cific intents.

The bootstrap system only classifies 16 call-types and

16 DMC accordingly to the bootstrapping SLU design

requirements described in 4.2. This is only half of the

reference system DMC coverage, but it actually addresses

70.34% of the total utterance classification task.

We simulate the execution of the dialog using data col-

lected from a deployed system, with the following proce-



DM Category DM Route

Transcribed ASR output Transcribed ASR output

concrete 44.65% 34.13% 47.18% 36.99%

concrete+conf 50.78% 42.20% 53.47% 44.32%

concrete+conf+vague/generic 67.27% 57.39% 70.67% 61.84%

Table 5: DM Evaluation results.

dure: for each dialog � � in the reference data set, we pass

the utterance
�

to the bootstrap classifier and select the

result with the highest confidence score � � . We use two

confidence score thresholds, � � � 
 � , for acceptance, and

� �  � , for rejection. Call-types, whose confidence scores

are in between these two thresholds are confirmed. Then:

1. the dialog is considered as successful if the follow-

ing condition is verified:

� � � � � � � � � � � � � 
 � � � �  � # % � � � �  ' � ( � � � ) �
where � � � 
 � is the acceptance threshold, � # % � is

the manually labeled reference DM category set for

the turn
�
, and ' � ( � � � ) � is the set of concrete call-

types;

2. the dialog is considered as successful with confirma-

tion if the following condition is verified:

� �  � , � � � � � � � � � 1 � � � 
 �
� � �  � # % � � � �  ' � ( � � � ) �

where � �  � is the rejection threshold;

3. if in any turn of the dialog, a mismatching concrete

call-type is found, the dialog is considered as unsuc-

cessful:

� � � � � � � � � � � � � 
 � � � � 9 � # % � � � �  ' � ( � � � ) �
If none of the conditions above are satisfied, we apply

steps 1 and 3 with a lower threshold and � �  : ; = ? � B
� �  C � ( � � D � , assuming that the dialog did not contain

any relevant user intention.

A further experiment considers only the final routing

destinations (e.g. specific type of agent or the automatic

fulfillment system destination). Both reference and boot-

strap systems direct calls to 12 different destinations, im-

plying that a few DM categories are combined into the

same destination. This quantifies how effectively the sys-

tem routes the callers to the right place in the call cen-

ter and, conversely, gives some metric to evaluate the

missed automation and misrouted calls. The test has

been executed for both transcribed and untranscribed ut-

terances. Results are shown in Table 5. Even with a mod-

est 50% DM Categories coverage, the bootstrap system

shows an overall task completion of 67.27% in case of

transcribed data and 57.39% using the output generated

by the bootstrap ASR. When considering the route desti-

nations, completion increases to 70.67% and 61.84% re-

spectively. This approach explicitly ignores the dialog

context, but it contemplates the call-type categorization,

the confirmation mechanism and the final route destina-

tion, that would be missed in the SLU evaluation. Al-

though a more completed evaluation analysis is needed,

lower bound results are indicative of the overall perfor-

mances.

5 Summary
This paper shows that bootstrapping a spoken dialog

system reusing existing transcribed and labeled data

from out-of-domain human-machine dialogs, common

reusable dialog templates and patterns, is possible to

achieve operational performances. Our evaluations on a

call classification system using no domain specific data

indicate 67% ASR word accuracy, 79% SLU call classifi-

cation accuracy with 70% coverage, and 62% routing ac-

curacy with 50% DM coverage. Our future work consists

of developing techniques to refine the bootstrap system

when application domain data become available.
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