
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 215–218,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

Practical dialogue manager development using POMDPs

Trung H. Bui, Boris van Schooten, and Dennis Hofs
University of Twente

PO Box 217 Enschede, The Netherlands
{buith, schooten, hofs}@ewi.utwente.nl

Abstract
Partially Observable Markov Decision Pro-
cesses (POMDPs) are attractive for dialogue
management because they are made to deal
with noise and partial information. This pa-
per addresses the problem of using them in a
practical development cycle. We apply fac-
tored POMDP models to three applications.
We examine our experiences with respect to
design choices and issues, and compare per-
formance with hand-crafted policies.

1 Introduction
Partially Observable Markov Decision Processes
(POMDPs) are attractive for dialogue management
in the cases where the dialogue manager has to
make choices which depend on statistical informa-
tion. They can determine optimal strategies in the
face of error and partial information. POMDPs can
take advantage of statistical information about be-
havior or error to the fullest extent, and take into ac-
count extensive hidden information.

Using POMDPs for spoken dialogue manage-
ment has been examined thoroughly in (Williams
and Young, 2007). Current POMDP-based dialogue
managers model a complete slot-�lling dialogue in-
cluding all slots with all values. Large numbers of
slots and values lead to a large state space, which
is not tractable for current POMDP solvers. Usu-
ally, this restricts us to toy problems. Recent ef-
fort to scale up POMDP-based models is reported
in (Williams and Young, 2007; Bui et al., 2007).

It is not yet clear enough how to employ POMDPs
in a systematic development cycle. A number of
practical issues with POMDPs has not really been
addressed yet. How do you obtain the user model
and the probability distributions? How do you test
and debug POMDPs? How do you tweak reward

values? How do you evaluate and compare per-
formance of the POMDP policy which other ap-
proaches? We address these questions by using
the factored POMDP models (Williams and Young,
2007; Bui et al., 2007) as a basis, and applying them
to three dialogue management systems.

2 Methodology
Design guidelines. The state space represents the
user's state and action. It is de�ned as a set of fea-
tures. We should keep it compact. This can be
done by specifying only features which are relevant
in selecting the system action and by pruning all
unreachable states. For example, when analyzing
the Williams's 1945-state travel problem (Williams
and Young, 2007), we found that could increase
tractability by pruning 1626 states1, leaving only
319 reachable states. The system actions are not
only the actions toward the user but also actions for
other dialogue manager tasks such as querying the
database. Similar to the state space, the observation
space is also de�ned as a set of observation features
such as user's action with noise (from the ASR) and
observed user's emotional state.

Designing a reward model that leads to a good
policy is a very challenging task. The typical param-
eters used to design a reward model are task success,
the number of turns, and dialogue act appropriate-
ness (for example, the system should not con�rm a
value if it has not yet been provided by the user). The
precise numerical values used may have signi�cant
impact on the policy and convergence behaviour.
Evaluation setup and toolset. From the literature,
the typical approach is �rst to test the quality of
the POMDP-based dialogue policy with a simulated
user. The real-user evaluation is considered at the

1For example, the states which the user's goal feature is ab
and the user's action feature is c

215



�nal step. An advantage of modeling dialogue as a
POMDP is that we can use the POMDP environment
model itself as a simulated user model. The prob-
ability distributions of the simulated user (testing
model) might be varied with the ones of the dialogue
manager (training model). The probability distribu-
tions of all the user models used in our three appli-
cations are handcrafted. We have developed a soft-
ware toolkit to conduct our experiments, which in-
cludes a factored POMDP to �at POMDP translator,
and an interactive simulator for both the user and the
system. The POMDP problem is �rst solved with a
POMDP solver (we used Perseus (Spaan and Vlas-
sis, 2005) and ZMDP (Smith and Simmons, 2005)).
The generated alpha �le is then used to carry out
the performance test with simulated user models.
Section 3 shows our test results on three different
problems. We conducted a large number of dialogue
episodes (≥ 10, 000) to guarantee the statistical sig-
ni�cance.

3 Evaluation

Ritel QA dialogue system. Ritel (Galibert et al.,
2005) is a telephone-based question answering (QA)
dialogue system. Dialogue functionality includes
con�rmation of key phrases and the type of the an-
swer sought, and handling follow-up questions. In
our model, we focus on con�rmation, modeling key
phrases and answer type as slots. In the real system,
there are thousands of possible key phrases, but an-
swer type only has a few possible values. To make
it tractable, we simpli�ed the model to one slot with
between 3 and 10 values, suitable at least for model-
ing answer type fully.

The POMDP state space consists of the user goals
and the user actions (S = Gu×Au). The user goals
are the different questions or question types that the
user may ask, Gu = q1, ..., qn. The user actions are
composed of the questions, plus positive and nega-
tive feedback, a `bye' utterance, and a `hang-up' sig-
nal, Au = q1, ..., qn, pos, neg, bye, null. The obser-
vation set Z is the same as Au. The system actions
consist of con�rming each question, answering it,
and the `ask' action, asking an open question to the
user, A = confirmqi , answerqi , ask. When the
system answers the correct question, the user poses
a new question, otherwise the user either repeats or

gives negative feedback. The user may hang up in
any dialogue turn, with a �xed probability 0.1.

We made the reward model as simple as possible:
give a reward of 1 for answering the right question,
−1 for answering a wrong one, zero otherwise. We
found that modelling dialogue state was not neces-
sary, and it increases state space to intractable levels.
This model yields the desired behaviour, though like
Williams et al., we found that the system starts con-
�rming even when the user has not yet said anything.
This can be remedied by rewarding the ask action
with a reward slightly more than 0. Note that it is
not necessary to give an explicit penalty for dialogue
length. The problem can be translated as: answer
as many questions as possible before the user hangs
up. The results of Perseus were not useable, so the
experiments were done with ZMDP only. Conver-
gence was good up till nine slot values. We ob-
served that, when the ASR error becomes high, 0.7
or above, the system actually wants to hear a ques-
tion multiple times in a row before answering it. The
policy was compared to a hand-crafted policy (�g-
ure 1), similar to the actual Ritel policy, which is
based on counting the number of times a particular
keyword was heard. It was optimised to each partic-
ular problem by determining the optimal number of
times a question should be heard before con�rma-
tion is suf�cient, just as the POMDP does.

Figure 1: Performance comparison of POMDP and
optimised hand-crafted models for different prob-
lem sizes and ASR error rates. The solid line is the
POMDP, the dashed line is the hand-crafted model.
For three values, an error more than 0.6 would re-
sult in the probability of hearing the wrong question
being higher than the right one. For nine values and
error=0.8, no sensible policy could be calculated.

ICIS route navigation system. In the ICIS
project2, we are developing a multimodal human-

2http://www.icis.decis.nl/

216



computer framework for crisis management (Fitri-
anie, 2007). A subtask of the system is to assist res-
cuers to �nd a route description to evacuate victims
from an unsafe tunnel. This task has been imple-
mented as a multimodal route navigation dialogue
system (Bui et al., 2007).

The simpli�ed POMDP for this problem (one slot
case) is represented by S = 〈Gu×Au×Eu×Du〉 =
〈{v0, ..., vm} × {v0, ..., vm, yes, no} ×
{stress, nostress} × {notstated, stated}〉,
A = {ask, confirm-v0, ..., confirm-vm, ok-v0,
..., ok-vm, fail}, and Z = 〈OAu × OEu〉 =
〈{v0, ..., vm, yes, no} × {stress, nostress}〉.
The full �at-POMDP model is composed of
(4m2 + 8m + 1) states (including a special end
state), (2m+2) actions, and (2m+4) observations.

The transition and observation models are gen-
erated from the two time-slices Dynamic Decision
Network (Bui et al., 2007). We assume that the ob-
served user's action only depends on the true user's
action (i.e. P (oau|au) = (1 − poa) if oau = au,
otherwise P (oau|au) = 1/(m + 1) × poa). The
observed user's emotional state is computed in a
similar way. The reward model is de�ned as fol-
lows: if the system confirms when dialogue state
is notstated, the reward is -2, the reward is -5
for action fail, the reward is 10 for action ok-x
where gu = x (x ∈ v0, ..., vm), otherwise the re-
ward is -10. The reward for any action taken in the
absorbing end state is 0. The reward for any other
action is -1.

We set different values for parameters
m, pe, poa, poe

3 and use two POMDP solvers
Perseus and ZMDP to compute the near-optimal
policy. Previous research showed that the optimal
policy depends on the user's stress level in case
pe > 0 and the POMDP policy outperforms hand-
crafted policies (Bui et al., 2007). The size of the
state space of POMDP model increases as the square
of slot numbers and computing the optimal policy
is not possible when the number of slot values is
greater than 30 because the POMDP parameter �le
size rapidly increases (for example with m = 30,
the size is bigger than 200MB). Therefore, the
POMDP solver got stuck in initializing the problem.

3pe is the probability of the user's action error being induced
by stress. poa and poe are the probabilities of the observed
user's action and observed user's stress errors.

An alternative solution is to use DDN-POMDP (Bui
et al., 2007) or summary POMDP (Williams and
Young, 2007). However, when the number of slot
values is greater than 100, the belief update task is
not tractable. Therefore, a further research on the
POMDP problem representation is necessary. A
practical issue is that ZMDP is more suitable for
the more complex problem (10 ≤ m ≤ 30). This
is because ZMDP is able to handle a larger state
space by more effective use of sparsity (Smith and
Simmons, 2005). On the other hand, Perseus solves
small problems very well. The reason for this was
not theoretically indicated in the Perseus paper, but
they found the same result when testing with the
standard POMDP problems from the literature.

Virtual Guide application. The Virtual Guide is
a character in a Virtual Reality model of the Music
Centre in Enschede (Hofs et al., 2003). The charac-
ter can help users �nd their way in the building. It
encompasses a multimodal dialogue system that al-
lows users to refer to locations and objects with spo-
ken or written language or by pointing at a location
on a map. The system uses clari�cation questions
and implicit con�rmations. The user can continue a
dialogue with follow-up questions.

It is currently impossible to create a tractable
POMDP model for the system. In our simpli�ed
models the user can only ask for the route between
two objects, and the world is limited to three or eight
objects. Moreover we made a closed model where
follow-up questions are not allowed. We have �t the
problem into a POMDP dialogue model of Williams.
A reward is given when the system gives the correct
route and the user provided both locations.

Evaluations were performed for four models. For
each of them we compared the solutions of Perseus
and ZMDP and an adapted hand-crafted system. The
solvers were run for ten minutes, when convergence
was usually slowing down, although it had not al-
ways reached a desirable level. We then ran dia-
logues with an automatic user simulation based on
the user model of the POMDP.

The �rst model stops after giving any answer, has
observation error 0.2, and three locations. We var-
ied the observation error of the simulator. The re-
sults in �gure 2 show that with increasing errors the
POMDP solutions produced higher returns than the

217



hand-crafted system.

Figure 2: Average returns for simulation with differ-
ent observation errors

For the second model, we increased the observa-
tion error to 0.6. The Perseus solution contained a
state from which the dialogue never ended. ZMDP
did not converge acceptably. Therefore its solution
performed worse than the hand-crafted system.

The third model has observation error 0.2 again,
but the dialogue only stops after giving a correct an-
swer. The average returns for Perseus, ZMDP and
the hand-crafted system were 8.08, 6.84 and 6.69
(higher than the �rst model, because of a reward for
an extra system action).

In the last model we increased the number of lo-
cations to eight, resulting in 729 POMDP states in-
stead of about 80. Perseus was not able to load this
problem. The average returns obtained with ZMDP
and the hand-crafted system were 5.08 and 4.04.

4 Conclusions
Although our experiments indicate that POMDP-
based dialogue systems can perform better than
hand-crafted ones, we identi�ed several problems
with modelling them. One of the major problems
remains tractability. It is not possible to obtain use-
ful solutions for any but strongly simpli�ed models,
which may bear little relation to the original prob-
lem. For example, when reducing the number of
slot values, the strategy of trying them one by one
can be employed, something that may not have been
feasible for the original number of values. Another
example was the need to simplify an open model,
where the end of a dialogue is determined by the
user, to a closed model.

The de�nition of a good reward model is another
hard problem. While the reward model models psy-
chological factors such as user satisfaction, which

cannot easily be quanti�ed precisely, the POMDPs
proved very sensitive to small changes in the reward
model, in particular the relative magnitude of differ-
ent types of reward. In practice we had to experi-
ment with different reward values.

The POMDP policies sometimes came up with
surprising strategies. For example, some policies
decided to con�rm multiple times in a row, some-
thing which our original hand-crafted models did
not. We could signi�cantly improve performance of
the hand-crafted policies by adapting them accord-
ing to the strategies found by the POMDP policies.
This shows how POMDPs could be used to improve
hand-crafted systems.

Acknowledgements. This work is part of the ICIS
and IMIX programs. ICIS is sponsored by the Dutch
government under contract BSIK 03024. IMIX is
funded by the Netherlands Organization for Scien-
ti�c Research (NWO).

References
T.H. Bui, M. Poel, A. Nijholt, and J. Zwiers. 2007. A

tractable ddn-pomdp approach to affective dialogue
modeling for general probabilistic frame-based dia-
logue systems. In Proc. of the 5th Workshop on
Knowledge and Reasoning in Practical Dialogue Sys-
tems, pages 34�37.

S. Fitrianie. 2007. A multimodal human-computer inter-
action framework for research into crisis management.
In Proc. of the Intelligent Human Computer Systems
for Crisis Response and Management, pages 149�158.

O. Galibert, G. Illouz, and S. Rosset. 2005. Ritel: an
open-domain, human-computer dialog system. In In-
terspeech 2005, pages 909�912.

D. Hofs, R. op den Akker, and A. Nijholt. 2003. A
generic architecture and dialogue model for multi-
modal interaction. In Proc. of the 1st Nordic Sympo-
sium on Multimodal Communication, pages 79�92.

Trey Smith and Reid Simmons. 2005. Point-based
pomdp algorithms: Improved analysis and implemen-
tation. In Proc. of the Conference on Uncertainty in
Arti�cial Intelligence, pages 542�549.

M.T.J. Spaan and N. Vlassis. 2005. Perseus: Random-
ized point-based value iteration for pomdps. Journal
of Arti�cial Intelligence Research, 24:195�220.

J.D. Williams and S. Young. 2007. Partially observable
markov decision processes for spoken dialogue sys-
tems. Computer Speech and Language, 21:393�422.

218


