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Abstract

We present a method for resolving definite ex-
ophoric reference to visually shared objects
that is based on a) an automatically learned,
simple mapping of words to visual features
(“visual word semantics”), b) an automat-
ically learned, semantically-motivated utter-
ance segmentation (“visual grammar”), and c)
a procedure that, given an utterance, uses b)
to combine a) to yield a resolution. We evalu-
ated the method both on a pre-recorded corpus
and in an online setting, where it performed
with 81% (chance: 14%) and 66% accuracy,
respectively. This is comparable to results re-
ported in related work on simpler settings.

1 The Task

The method described in this paper is a module of
a dialogue system that acts as a collaborator of a
human player in the task of manipulating visually
present puzzle objects. An example scene is shown
in Figure 1 (the indicesa andb are added here for
illustrative purposes). Given utterances like those in
(1), the task of the module is to identify the likely
referents (here,a andb, respectively).1

(1) a.Take the piece in the middle on the left side.
b.Take the piece in the middle.

More formally, the task can be characterised as fol-
lows: possibly starting with ana priori assump-
tion about likely referents (e.g., from knowledge of

1Our system is implemented for German input; for ease of
description we use examples from our corpus translated into
English here.

Figure 1: Example Scene

discourse salience), the module uses the evidence
present in the utterance (words, syntax) and in the
visual scene (visual features) to derive at a new as-
sumption about likely referents. If we call such an
assumption aconfidence functionc that assigns to
each object in the domainO, a number between 0
and 1; i.e.,c : O → R, thenreference resolutionis a
functionr that takes a triple of an initial confidence
function c, an utteranceu, and a visual scene repre-
sentationv to yield an updated confidence function
c
′. Formally:r : C × U × V → C.

In the following, we describe the resources
needed to set up the module, its subcomponents, and
the evaluation we performed. We close by relating
the proposed method to prior work and discussing
future extensions.
2 Resources
2.1 Corpus
As our method is based on automatically learned
models, a corpus is required. Our intended use case
is similar to the setting described in (Schlangen and
Fernández, 2007), but with the addition of a shared
visual context. We collected 300 scene descriptions
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(of scenes containing between 1 and 12 distinct,
monochrome shapes, randomly placed and rotated
on a rectangular area) using the two-part methodol-
ogy of (Siebert et al., 2007) that yields recordings
and quality assessments (here: attempts to follow
other subjects’ instructions). We also later recorded
an additional 300 scene descriptions by a single
speaker, to further increase our data base.

After transcription of the recordings (239 min-
utes of audio material), we discarded roughly 6%
of the instructions because they could not be fol-
lowed by the evaluators, and a further 4% because
the complexity of the descriptions was outside the
scope of what we wanted to model. The remaining
instructions were then automatically cleaned from
dysfluencies, morphologically lemmatised and POS
tagged, and annotated as described below.

2.2 Computer Vision
The other required resource is a visual perception
algorithm. We use it to compute a feature repre-
sentation of every visual scene as presented in the
data collection:2 First, each object is represented by
a number ofobject featuressuch as size / length /
height of the bounding box, center of gravity, num-
ber of edges. Second,topological featuresnote for
each object the distance to certain points on the
board (edges, center, etc.) and to other objects.
(For details on the computation of such features see
for example (Regier and Carlson, 2001).) Lastly,
we also compute groupings of objects by clustering
along columns and rows or both (see Figure 2 for an
illustration). For each group, we compute two sets
of topological features, one for the objects within
the group (e.g., distance to the center of the group),
and one for the configuration of groups (distance of
group to other objects). This set of features was se-
lected to be representative of typical basic visual fea-
tures.

3 Components
3.1 Visual Grammar

The ‘visual grammar’ segments utterances accord-
ing to functional aspects on two levels. The first

2At the moment, the input to the algorithm is a symbolic
representation of the scene (which object is where); the features
are designed to also be derivable from digital images instead,
using standard computer vision techniques (Shapiro and Stock-
man, 2001); this is future work, however.

Figure 2: Scene with Horizontal Group Detection

describes the macro-structure of a spatial expres-
sion, i.e., the division intotarget (the denoted ob-
ject; T) and optionallandmarks (other objects; LM)
and theirrelation to the target (R; see example in Ta-
ble 2). The second level annotates the spatial-lexical
function of each word, e.g., whether the word de-
notes a piece or a configuration of pieces (Table 1).
A fully ‘parsed’ example is shown in Table 2.

Name Description Examples
l lexical reference T,piece,cross

d r topological direction top left Corner
d s topological distance outer left
d n numeric second column
p g group (perceptually active) from the leftcolumn
g s synthetic group the threepieces on the left
f landmark field N in theMiddle
r prepositional relation in the middle

grad grading function exactly right

Table 1: Visual Lexical Functions of Words

the cross from the second column from left at the top

l r d n p g r d r d r
(a) -Annotation of spatial lexical functions

T R LM LM LM LM T
(b) - Segmentation of visual spatial parts

Table 2: Example Annotation / ‘Parse’

Given the requirement for robustness, we decided
against a hand-written grammar for deriving such
annotations; the moderate size of our corpus on
the other hand made for example Markov model-
based approaches difficult to apply. We hence chose
transformation-based learning to create this (shal-
low) segmentation grammar, converting the seg-
mentation task into a tagging task (as is done in
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(Ramshaw and Marcus, 1995),inter alia). In our ap-
proach, each token that is to be tagged is itself repre-
sented in three different forms or layers: lemmatised
word, as POS-tag, and by its spatial-functional tag
(as in Table 1; added by simple look-up). All these
layers can be accessed in the learned rules. Apart
from this, the module is a straightforward imple-
mentation of (Ramshaw and Marcus, 1995), which
in turn adapts (Brill, 1993) for syntactic chunking.

3.2 Visual Word Semantics

To learn the visual semantics of words we imple-
mented a simple technique for grounding words in
perceptions. Roughly, the idea is to extract from
all instances in which a word was used in the train-
ing corpus and all associated scenes a prototypical
visual meaning representation by identifying those
features whose values best predict the appropriate-
ness of the word given a scene. (This is similar in
spirit to the approach used in (Roy, 2002).)

As material for learning, we only used the sim-
ple expressions (target only, no landmark) in the
corpus, to ensure that all words used were in some
way ‘about’ the target. The algorithm iterates over
all pairs of utterance and scene and saves for each
lemma all visual information. This creates for each
lemma a matrix of feature values with as many rows
as there were occurrences of the lemma. The values
in each column (that is, for each feature) are then
normalised to the interval [-1, 1] and the standard
deviation is recorded.

The next tasks then are a) to compute one sin-
gle representative value for each feature, but only
b) for those features that carry semantic weight for
the given word (i.e., to compute a dimensionality re-
duction). E.g., for the lemma ’left’, we want the fea-
ture x distanceto centerto be part of the semantic
model, but noty distanceto center.

One option for a) is to simply take the average
value as representative for a feature (for a given
word). While this works for some words, it causes
problems for others which imply a maximisation
and not a prototypisation. E.g., the lemmaleft is
best represented bymaximalvalues of the feature
x distanceto center, not by the average of all val-
ues for all occurrences ofleft (this will yield some-
thing like leftish). Perhaps surprisingly, representa-
tion through the majority value, i.e., choosing the

most frequent value as representative for a feature
(for a given word), performed better, and is hence
the method we chose.

For b), dimensionality reduction, we again chose
a very simple approach (much simpler than for ex-
ample (Roy, 2002)): features are filtered out as ir-
relevant for a given lemma features if their variance
is above a certain threshold. To give an example,
for the lemmaleft the distribution of values of the
featurex distanceto centervaries with aσ of 0.05,
that of y distanceto center with a σ of 0.41. We
empirically determined the setting of the threshold
such that it excluded the latter.3

3.3 Combination

Figure 3: Steps of the Algorithm for Example Utterance

The combination algorithm works through the
segmented utterance and combines visual word se-
mantics to yield a reference hypothesis. Figure 3
illustrates this process for the example from Table 2.
On detecting a landmark segment (Step 1), the res-
olution algorithm ‘activates’ the appropriate group;
which one this is is determined by thep g item in
the landmark segment. (Here:column). The group
is then treated as a single object, and (Step 2) the
semantics of topological terms (dr or d s) in the
landmark segment is applied to it (more on this in
a second). For our example, this yields a ranking
of all columns with respect to their ‘left-ness’. The
ordinal ‘second’ finally simply picks out the second
element on this list–the second group w.r.t. the prop-
erty of leftness (Step 3). The expressions in the tar-
get segment are now only applied to the members
of the group that was selected in this way; i.e., the
semantic models of ‘top’ and ‘cross’ are now only
applied to the objects in that column (Steps 4 to 6).

3With more data and hence the possibility to set aside a de-
velopment set, one could and should of course set such a thresh-
old automatically.
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Semantic word models are applied through a sim-
ple calculation of distance between values (of se-
mantic model and actual scene): the closer, the bet-
ter the match of word to scene. (Modulo selectivity
of a feature; for a feature that occurred for all lem-
mata with a high specificity (smallσ), good matches
are expected to be closer to the prototype value than
for features with a high variability.)

This method encodes parts of the utterance se-
mantics procedurally, namely the way how certain
phrases (here grouped under the labellandmark) se-
mantically modify other phrases (here grouped un-
der the labeltarget). This encoding makes the al-
gorithm perhaps harder to understand than seman-
tic composition rules tied to syntactic rules, but it
also affords a level of abstraction over specific syn-
tactic rules: our very general concepts oflandmark
and target cover various ways of modification (e.g.
through PPs or relative clauses), adding to the ro-
bustness of the approach.

4 Evaluation

With an f-score of 0.985 (10-fold cross validation),
the transformation-based learning of the segmen-
tation performs quite well, roughly at the level
of state-of-the-art POS-taggers (albeit with a much
smaller tag inventory). Also evaluated via cross-
validation on the corpus, the resolution component
as a whole performs with an accuracy of 80.67%
(using frequency-based word-semantic features; it
drops to 66.95% for average-based). There were on
average 7 objects in each scene in the corpus; i.e.
the baseline of getting the reference right by chance
is 14%. Our system significantly improves over this
baseline.

We also evaluated the system in a more realis-
tic application situation. We asked subjects to refer
to certain pieces in presented scenes (via typed ut-
terances); here, the system reached a success-rate
of 66% (7 subjects, 100 scene / utterance pairs).
While this is considerably lower than the corpus-
based evaluation, it is still on a par with related
systems using more complicated resolution methods
(Roy, 2002; Gorniak and Roy, 2004). We also think
these results represent the lower end of the perfor-
mance range that can be expected in practical use,
as in an interactive dialogue system users have time

to adapt to the capabilities of the system.

5 Conclusions

We have presented a method for resolving defi-
nite, exophoric reference to objects that are visu-
ally co-present to user and system. The method
combines automatically acquired models (a ‘visual
word semantics’, a simple, but effective mapping be-
tween visual features and words; and a ‘visual gram-
mar’, a semantically motivated segmentation of ut-
terances) and hard-coded knowledge (combination
procedure). To us, this combines the strengths of
two approaches: statistical, where robustness and
wide coverage is required, hard-coding, where few,
but complex patterns are concerned.

We are currently integrating the module into a
working dialogue system; in future work we will in-
vestigate the use of digital images as input format.
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