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Abstract

There is a growing interest in virtual assis-
tants with multimodal capabilities, e.g., infer-
ring the context of a conversation through
scene understanding. The recently released Sit-
uated and Interactive Multimodal Conversa-
tions (SIMMC) dataset addresses this trend by
enabling research to create virtual assistants,
which are capable of taking into account the
scene that user sees when conversing with the
user and also interacting with items in the
scene. The SIMMC dataset is novel in that
it contains fully annotated user-assistant, task-
oriented dialogs where the user and an assis-
tant co-observe the same visual elements and
the latter can take actions to update the scene.

The SIMMC challenge, held as part of the
Ninth Dialog System Technology Challenge
(DSTC9), propelled the development of vari-
ous models which together set a new state-of-
the-art on the SIMMC dataset. In this work, we
compare and analyze these models to identify

‘what worked?’, and the remaining gaps; ‘what
next?’. Our analysis shows that even though
pretrained language models adapted to this set-
ting show great promise, there are indications
that multimodal context isn’t fully utilised, and
there is a need for better and scalable knowl-
edge base integration. We hope this first-of-
its-kind analysis for SIMMC models provides
useful insights and opportunities for further re-
search in multimodal conversational agents.

1 Introduction
The Situated Interactive MultiModal Conversations
(SIMMC) challenge1 at DSTC9 (Gunasekara et al.,
2020) aims to lay the foundations for virtual as-
sistant agents that can engage with the real-world,
handle multimodal inputs, and perform multimodal
actions. It focuses on task-oriented dialogs that
encompass a situated multimodal user context in
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Figure 1: Illustration of a SIMMC dialog: a user and an
assistant interact in a co-observed, evolving multimodal
environment for a shopping scenario. For the sake of
brevity, the annotations shown are incomplete. For de-
tails of the annotation schema, see Moon et al. (2020).
Figure adapted from Moon et al. (2020).

the form of a co-observed image or virtual reality
(VR) environment, which is dynamically updated
on each turn based on the user input and the assis-
tant action.

Figure 1 illustrates an exemplary SIMMC dia-
log, where a user interacts with an assistant with
the goal of browsing for furniture. Here, the assis-
tant updates the co-observed environment leading
to a new multimodal context based on the dialog,
e.g., visually presenting recommended chairs in a
VR environment, or responding to the request “I
like the brown one. Show me the back of it." by
executing the actions of focusing on, and rotating
the indicated item. These actions in turn update the
co-observed multimodal context, which grounds

github.com/facebookresearch/simmc
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Dataset Modality Task Provided Context Updated Annotation

Q’er A’er Context Granularity

Visual Dialog (Das et al., 2017) Image Q&A N/A Visual N/A N/A
CLEVR-Dialog (Kottur et al., 2019) Simulated Q&A N/A Visual N/A N/A
GuessWhat (de Vries et al., 2017) Image Q&A N/A Visual N/A N/A

Audio Visual Scene-Aware Dialog (Hori et al., 2018) Video Q&A N/A Visual N/A N/A
TalkTheWalk (de Vries et al., 2018) Image Navigation Visual Visual + Meta Location U↔ A

Visual-Dialog Navigation (Thomason et al., 2019) Simulated Navigation Visual Visual + Meta Location U↔ A
Relative Captioning (Guo et al., 2018) Image Image Retrieval Visual Visual + Meta New Image U↔ A

MMD (Saha et al., 2018) Image Image Retrieval Visual Visual + Meta New Image U↔ A

SIMMC (Moon et al., 2020) Image/VR Task-oriented Visual Visual + Meta Situated U↔ A + Semantic

Table 1: Comparison with the existing multimodal dialog corpora (Moon et al., 2020). Notation: (U ↔ A)
Utterance to action pair labels. (Task-oriented) Includes API action prediction, Q&A, recommendation, item /
image retrieval and interaction. (Semantic) Dialog annotations such as NLU, NLG, DST, and Coref. (Situated) VR
environment and/or new highlighted images.

the next turn of the dialog. The example highlights
challenges such as multimodal action prediction
(italics above) and multimodal coreference resolu-
tion (underlined elements).

2 SIMMC Challenge Details

We briefly review the datasets, task definitions,
and evaluation used in the SIMMC challenge. See
Moon et al. (2020) for additional details.
Datasets. Two SIMMC datasets in the domain of
interactive shopping have been provided: (1) Fur-
niture and (2) Fashion. These datasets collectively
contain about 13k human-to-human dialogs (to-
taling about 169k utterances). Moon et al. (2020)
argue that shopping domains provide a dynamic
environment, where rich multimodal interactions
happen around visually grounded items.
Annotations. The SIMMC datasets are accompa-
nied with the semantic-level annotation of utter-
ances (dialog acts), multimodal state tracking, mul-
timodal co-reference, actions and also ground truth
semantic information about each scene. The latter
allows training of virtual assistant models without
the necessity of focusing on computer vision.
Tasks and Evaluation. There are three subtasks in
the challenge with a priority list of metrics:

(Subtask 1) Structural API Call Prediction fo-
cuses on predicting the human-assistant action as
an API call given the dialog and the multimodal
contexts. Metrics for this subtask: action accuracy,
action attribute accuracy, and action perplexity.

(Subtask 2) Assistant Response Prediction
evaluates the relevance of the assistant response
in the current turn; (a) as a conditional language
model generation problem that uses BLEU-4 to
score the similarity to the ground-truth response,

and, (b) as a retrieval problem, where the goal is to
retrieve ground-truth responses from a pool of 100
candidates (randomly chosen and unique to each
turn). Priority metric list is mean reciprocal rank,
recall@k (k = {1, 5, 10}), and mean rank.

(Subtask 3) Dialog State Tracking (DST) aims
to systematically track the dialog acts and the as-
sociated slot pairs across multiple turns, as repre-
sented in the flexible ontology developed to repre-
sent the SIMMC multimodal context (Moon et al.,
2020). The metrics for this subtask are slot and in-
tent prediction F1, in line with prior work in DST.

3 Related Datasets and Challenges

Table 1 presents main distinctions of SIMMC
compared to the the existing multimodal dialog
datasets/challenges. The SIMMC dataset provides
scenarios in which the situated multimodal context
is dynamically updated, reflecting the agent actions.
In the SIMMC settings, agent actions can be en-
acted on both the object-level – changing the view
of a specific object within a scene, and the scene-
level – introducing a new scene or an image. While
the dialog-based image retrieval tasks (Guo et al.,
2018; Saha et al., 2018) and the visual navigation
tasks (Thomason et al., 2019; de Vries et al., 2018)
do comprise context updates, they are limited to the
introduction of new visual scenes, e.g., new images
or locations.

Compared with previous multimodal dialog
datasets SIMMC offers four key advantages : (a)
SIMMC assumes a co-observed multimodal con-
text between a user and an assistant and records the
ground-truth item appearance logs of each item that
appears. (b) Compared with the conventional task-
oriented conversational datasets, the agent actions
in the SIMMC dataset span across a diverse mul-
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Systems Models Eval. Joint Train Ens. Pretrain
Model MM Rep. Discrim.

Train
Approx. Rank

subtasks x-domain sub1 sub2a sub2b sub3

Kung et al. (2021)
GPT-2 + FullCon. 1, 2a, 3 1, 2a, 3 yes yes GPT-2 stringified · 4 5 · 5

above + BLEU/METEOR 2b 1, 2a, 3 yes yes GPT-2 stringified no · · 6 (7) ·

Kim et al. (2021)
MM Fusion Ens.A 1 1, 2a no yes – MAG/MMI · 1 · · ·
MM Fusion Ens.B 2a 1, 2a no yes – MAG/MMI · · 7 · ·
MM Fusion Ens.C 2b 1, 2a no yes GPT-2 MAG/MMI no · · 7 (8) ·

Jeong et al. (2021)

GPT-2 Ens.A 1 1, 2a, 3 no yes GPT-2 stringified · 5 · · ·
GPT-2 Ens.B 2a, 3 2a, 3 no yes GPT-2 stringified · · 3 · 2
GPT-2 Ens.C 2a, 3 2a, 3 no yes GPT-2 stringified · · 1 · 1
GPT-2 Ens.D 2a, 3 2a, 3 no yes GPT-2 stringified · · 2 · 3

B,C,D + cosine sim. 2b 2a, 3 no yes GPT-2 stringified no · · 3-5 (4-6) ·

Huang et al. (2021)

BART-Base 1, 2a, 3 1, 2a, 3 no no BART stringified · 3 6 · 6
BART-Large 1, 2a, 3 1, 2a, 3 no no BART stringified · 2 4 · 4

BART-L Bi-Encoder 2b 2b no no BART
adapted on

1, 2a, 3

stringified yes · · 1 (1) ·
BART-L Poly-Encoder 2b 2b no no stringified yes · · 2 (2) ·

Senese et al. (2021) BERT+log-likelihood 2b 2b no no BERT stringified no · · - (3) ·

Table 2: Summary of the developed models. Rank in parenthesis is for SIMMC-Fashion only.

System : This is our Hedon Kitchen Island with Stainless Steel Top. It
features a natural wood countertop. User : and what are the dimensions?
<SOM> OBJECT_0 : pos left color [’White’] class_name Kitchen Islands decor_style
[’Rustic’, ’Sophisticated’] OBJECT_1 : pos center color [’White’] class_name
Kitchen Islands decor_style [’Traditional’, ’Modern’] <EOM> System : The width
is 52 inches, depth 18 inches, and height is 36 inches. User : and how much is it

Table 3: Example of “stringified” multimodal context concatenated with user and system utterances.

timodal action space (e.g., ‘rotate,’ ‘search,’ and
‘add to cart’). (c) Agent actions can be enacted
on both the object level (e.g., changing the view
of a specific object within a scene) and the scene
level (e.g., introducing a new scene or an image).
(d) SIMMC tasks emphasize semantic processing,
while work in this area has traditionally focused
heavily on raw image processing. The SIMMC
annotation schema allows for a more systematic
and structural approach for “visual” grounding of
conversations, which is essential for solving chal-
lenging problems in real-world scenarios.

4 Survey of the Developed Systems

Table 2 provides a comparative summary of the 13
models that were developed by 5 different groups.
As an example of how to read this table; Jeong et al.
(2021) proposed four different ensembles (Ens.) of
GPT-2 (Radford et al., 2019) models (A, B, C, D).
Ens.A was evaluated (Eval.) only for subtask 1 but
was jointly trained on three subtasks. Multimodal
context was ingested by the model as a string of
“word” tokens (stringified), i.e. formal descriptions
of the scenes were flattened into a sequence of to-
kens and concatenated along with assistant and user
utterances as shown in Table 3. Other ingestion ap-
proaches used specialized multimodal fusion (MM
Fusion) gates; MAG (Rahman et al., 2020) and
MMI (Yu et al., 2020). Ens.B, C and D were trained

and evaluated on 2 substasks and adapted to the re-
sponse retrieval task (2b) using cosine similarly
over word vectors between the predicted response
(2a) and candidate responses. Discriminative train-
ing (Discrim. Train) on subtask 2b was used only
by Huang et al. (2021). Approx. Rank is the model
rank using the top metric for each subtask without
std. err considerations and is thus only indicative.
We provide the detailed descriptions of each entry
below.
Kung et al. (2021) proposed an ensemble of GPT-
2 (Radford et al., 2019) models trained jointly on
all three subtasks and across both domains. Specif-
ically, they added a discriminative classifier con-
sisting of multiple fully connected layers for sub-
task 1 (API Prediction), while keeping subtasks
2a (Response Generation) and 3 (DST) as gen-
erative tasks, following the baseline provided by
Moon et al. (2020). For the response retrieval sub-
task 2b, they ranked the retrieval candidates based
on their BLEU and METEOR similarity scores
with the generated responses from subtask 2a. In
addition, auxiliary features such as segment em-
beddings were used as input to better leverage the
visual information.
Kim et al. (2021) proposed an ensemble of mod-
els based on the baselines by Moon et al. (2020).
While the baselines model subtask 1 and 2 jointly
and subtask 3 separately, Kim et al. (2021) used
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the predicted dialog state outputs from subtask 3
baseline as inputs for subtasks 1 and 2. Addition-
ally, they used two sophisticated multimodal fusion
models designed for transformer architectures—
MAG (Rahman et al., 2020) and MMI (Yu et al.,
2020) in their implementation—to fuse the pre-
dicted dialog state with the utterance encoding at
the current turn. The final predictions from the en-
semble was obtained by averaging the individual
model scores for subtask 1 and 2. Though this aug-
mentation hurt their performance for subtask 2,
their model achieved a gain of about 3 points on
action accuracy and 6 points on action attribute
accuracy for API call prediction (subtask 1).
Jeong et al. (2021) proposed a varied set of ensem-
bles of GPT-2 models that were of differing sizes
(large, medium and small) and trained on differing
partitions of the training data; train only, or train
plus dev. For the ensemble evaluated for subtask 1,
each GPT-2 model was independently trained on
three joint tasks—subtask 1, subtask 2a and subtask
3—using a simple language model loss that opti-
mized over the concatenated string containing the
dialog history, multimodal context, user utterance,
dialog state, system response, and API call. This
model can predict all three subtasks on which it
was trained, but its results were only evaluated for
subtask 1. In the ensemble developed for subtasks
2a and 3, each GPT-2 model was again indepen-
dently trained with a simple language model loss
but only on the joint tasks of subtask 2a and subtask
3, i.e., the above concatenated string excluding API
call. For subtask 2b, the generated response of the
model trained on subtask 2a and 3 was compared to
each candidate response using word tokenization
and cosine similarity to select the response. For
all models, the dialog state representation was pre-
processed to remove camel-case and non-natural
punctuation before training. An ensemble beam
search over each model’s prediction was used to
generate the final prediction.

With reference to Table 2; (a) Ens.A by Jeong
et al. (2021) consists of a medium and small GPT-2
model, both trained on the train and dev sets, (b)
Ens.B is two large GPT-2 models, one trained on
just the training set and other trained on both train
and dev sets, (c) Ens.C is a large and small GPT-2
model, both trained on the train and dev sets, and,
(d) Ens.D is two large and one small GPT-2 model,
where all but one large model were trained on train
and dev sets, while the large model was trained on
just the training set.

Huang et al. (2021) proposed two BART (Lewis
et al., 2020) models (BART-Large and BART-Base)
for subtasks 1, 2a, and 3. Both were trained to
jointly predict the dialog state (subtask 3), API call
(subtask 1) and response (subtask 2a) as a single
string target when given the dialog history, mul-
timodal context and user utterance. For response
retrieval, they proposed two BART-encoder based
models; Bi-encoder and Poly-encoder (Humeau
et al., 2020; Mazaré et al., 2018; Dinan et al.,
2019). In both of these models, the encoder weights
were initialized from the jointly trained BART mod-
els trained on subtasks 1, 2a, and 3. These model
weights are then further adapted. Four model com-
binations exist for this subtask (2b), i.e., BART-
Large or BART-Base with Bi-encoder or Poly-
encoder, but Table 2 only includes results for BART-
Large Bi/Poly-encoders.
Senese et al. (2021) proposed a BERT-based
model addressing the Assistant response retrieval
task (subtask 2b), trained using the cross-entropy
loss. Specifically, the proposed model includes a
self-attention module, an encoder-decoder attention
module, and an item-attention module. The item-
attention module (part of the decoder) computes
attention over the states of a transformer which en-
codes the attributes of the reference item, e.g. the
shared item in the scene. At inference time, the
log-likelihood of each candidate response (given
the input utterances and multimodal context) is
calculated for each token. To rank the candidate
responses, two scoring modules were used: (1) nor-
malized sum of log-likelihood scores for each token
(to avoid a scoring bias towards short responses),
and (2) token match rate of the annotated item at-
tributes in each candidate response. The latter score
rewards responses that mention item attributes that
appear in the reference item. Candidate responses
with the highest sum of these two scores were used
as final predictions.

5 Performance Analysis

5.1 Summary

The developed models set a new state-of-the-art
in all three subtasks. Table 4 summarizes their
performance. For the structural API call predic-
tion subtask (subtask 1), the BART-Large model by
Huang et al. (2021) achieved the best overall perfor-
mance (taking into account both API and attribute
accuracy). This model also achieved the second-
best performance on subtask 2a, and on subtask
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Systems Subtask 1. API Prediction Subtask 2. Response Generation Subtask 3. DST

Acc↑ A.Acc↑ Perp↓ BLEU↑ MRR↑ r@1↑ r@5↑ r@10↑ Mean↓ Slot F1↑ Intent F1↑

Baseline (Moon et al., 2020) 79.3 63.7 1.9 0.061 0.145 7.2 19.8 27.3 39.2 62.4 62.1

Kung et al. (2021) 80.2 74.6 2.0 0.105 0.326 21.1 43.6 56.8 18.8 77.8 76.7
Kim et al. (2021) 82.5 69.8 1.8 0.082 0.074 2.5 8.3 13.6 47.7 - -

Jeong et al. (2021) 79.4 73.2 - 0.128 0.381 26.3 50.3 61.8 15.5 79.1 78.1
Huang et al. (2021) 81.3 73.9 3.5 0.108 0.673 52.6 87.4 95.1 3.2 78.6 77.7

Senese et al. (2021)* - - - - 0.390 26.7 52.1 66.0 14.8 - -

Table 4: Summary of the results on Test-Std split, average of Furniture and Fashion (*Senese et al. (2021) submitted
results only for Fashion). Best results from each system are shown. (1) API prediction via Accuracy, Perplexity
and Attribute Accuracy, and, (2) Response Generation via BLEU, recall@k (k=1,5,10), Mean rank, and mean
reciprocal rank (MRR). (3) Dialog State Tracking (DST), via Slot and Intent prediction F1. ↑: higher is better, ↓:
lower is better.

3. For the response retrieval subtask (subtask 2b),
the BART-Large Bi-encoder model by Huang et al.
(2021) achieved the best performance. For the re-
sponse generation (subtask 2a) and DST subtasks
(subtask 3), the GPT-2 model ensemble by Jeong
et al. (2021) achieved the best performance.

5.2 Subtask 1: Structural API Call
Prediction

Figure 2 shows the breakdown of action accuracy
by type for both datasets. The key observations are:
• All systems successfully predict AddToCart

and SpecifyInfo with 90% and 95% ac-
curacy respectively, for both the domains. Intu-
itively, the models seem to pick up on important
cues informing the user intents for these particu-
lar API calls. For example, “Can you please add
this to my cart?" indicates the intention to add the
discussed product to the cart. Similarly, “What is
its price and customer rating?" denotes a request
to provide additional product information.

• On the other hand, all models perform poorly
on NavigateCarousel and None actions
for SIMMC-Furniture, and SearchMemory for
fashion. The accuracy for these actions are in the
20%–40% range for most models. A possible ex-
planation is due to the equally valid choice of
either showing items from the catalog with exist-
ing filters (mapped to SearchFurniture or
SearchDatabase) or requesting more infor-
mation to refine the search (mapped to None).

• Note that Huang et al. (2021) (winner) and Kim
et al. (2021) (runner-up) perform similarly on the
API call prediction task with an overall accuracy
of 81.3% and 82.5% respectively (Table 4). The
winner was declared based on the action attribute
accuracy.
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Figure 2: Breakdown of the API Call Prediction accu-
racy (subtask 1) according to actions.

5.3 Subtask 2: Assistant Response
Generation

We compare BLEU-4 scores (generation category)
based on: (a) length of ground-truth assistant utter-
ance in Figure 3a, and (b) corresponding ground-
truth API call in Figure 3b. Following are the take-
aways:
• As expected, BLEU-4 score decreases (on aver-

age) with the length of the utterances.
• Though the smoothing for BLEU-4 contributes

partially to the low values for utterance lengths
of 1–3, a good proportion of these utterances con-
tained information about the catalog item, e.g.,
price and dimension. On further investigation,
we found that most of the models were unable to
correctly respond with these attributes. This high-
lights the need for a better catalog integration
with the response generation model.

• Comparing BLEU-4 scores for AddToCart,
models perform better on SIMMC-Fashion on av-
erage compared to SIMMC-Furniture. This could
be due to a larger percent of AddToCart in the
former (18%) when compared to the latter (3%),
leading to this discrepancy.

• BLEU-4 for SpecifyInfo is lower than the
overall score for all models, points to the need
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Ground Truth Winner (Team 3) Runner-up (Team 4) Category

It is reasonable priced at
$69.99.

The price is $69.99. It is priced at $69.99 Both models predict the
right attributes

It’s $48.00. It is $135.99. It is $82.81. Both models are incor-
rect

The dimensions for that
one is 53.5” × 30” ×
36”(L×W ×H)

The dimensions are Width 60 Depth
44.92 Height 44.33

The dimensions are
60”W × 44.92”D ×
44.33”H.

Both models are incor-
rect but consistent with
each other

The width is 18, depth
15.06 and height is 16.5.

It is 18 inches wide, 15.06 inches
deep and 16.5 inches high.

The dimensions are
18.5”W × 15.5”D ×
35.5”H.

Winner model is correct
while the runner-up is in-
correct

Sure. Dimensions are
86× 37× 32 inches and
cost is $829.

This sofa is made by Jarrard. If you
would like to know details such as
price or see a different angle, tell me
and I can show you.

This is the Jarrard Sofa.
It has tapered wood legs
and a plush back.

Both models respond
with mismatched
attributes about the
catalog items

Table 5: Examples of assistant responses generated by the winner (Team 3) and runner-up (Team 4) for subtask
2a from SIMMC-Furniture, where the ground-truth API call is SpecifyInfo, i.e., seeking information about
catalog items. The category of examples compared to the ground-truth assistant response is mentioned in the last
column.
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assistant utterance. All utterances longer than 25 are mapped
to 25.
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(b) Breakdown of Assistant Response Generation BLEU-4
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Figure 3: Analysis of the entries for Assistant Response
Generation (Subtask 2). See text for more details.

for a better catalog modeling again.
Interestingly, Huang et al. (2021) (the best model

for subtask 2) used discriminative training for this
subtask to achieve superior performance (26 points
lead on the r@1). Specifically, they train not only
to increase the likelihood of ground-truth response
(similar to a language model) but also to decrease
that of other response targets in the batch that act as
negative examples. This enables the model to dis-

criminatively pick the ground truth over the other
distractor candidates. Das et al. (2017) also observe
a similar phenomenon.

5.4 Subtask 3: Dialog State Tracking (DST)

Figure 4a shows a breakdown of the DST re-
sults based on slot types. Specifically, we re-
port F1 scores for attribute slot types that de-
scribe objects (e.g., “How many [O.color green]
ones do you have?") or intents (e.g., “I am
looking for [.intendedRoom bedroom] lamps"),
and for object slots, which represent object in-
dices that correspond to their parent intents
(e.g. “[DA:REQUEST:GET:TABLE Please add
[TABLE_1 it] to the cart.]") The object slot pre-
diction task thus can also be framed as multimodal
coreference resolution problem. F1 scores for at-
tribute slots have higher variances across different
entries compared to those for object slots. This
shows that the different approaches proposed by
each system had relatively small influences on the
multimodal coreference resolution performance.

Figure 4b and Figure 4c show the object slot
F1 tracking snapshots at varying turn indices as
cohorts, averaged over the dialogs, for SIMMC-
Furniture and SIMMC-Fashion, respectively. For
both domains, we observe that the object slot F1
performances decrease in general as more objects
are mentioned and introduced in the multimodal
context. Note that none of the proposed models
showed significant improvement over other base-
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(a) F1 per slot types (Average) (b) Object F1 for SIMMC-Furniture (c) Object F1 for SIMMC-Fashion

Figure 4: Analysis for Dialog State Tracking (Subtask 3). (a) Breakdown of Slot F1 results by slot types (object &
attribute slots). (b, c) Average object slot tracking results at varying turn indices. See text for more details.

Model Subtask 1. API Prediction Subtask 2. Response Generation Subtask 3. DST

Acc↑ A.Acc↑ Perp↓ BLEU↑ Slot F1↑ Intent F1↑

Original (Huang et al., 2021) 79.6 79.5 5.9 0.099 61.3 62.6
multimodal-context-ablated 79.2 78.3 5.9 0.098 55.7 63.2

Table 6: Summary of multimodal-context-ablation results on Dev-Std split, average of Furniture and Fashion. (1)
API prediction via accuracy, perplexity and attribute accuracy, and, (2) Response Generation via BLEU, (3)
Dialog State Tracking (DST), via slot and intent prediction F1. ↑: higher is better, ↓: lower is better.

lines in suppressing the degradation in the object
slot predictions over time.

5.5 Breakdown based on “all” and “none”

We identify instances on which all and none of the
developed models were able to accurately predict
the ground-truth API call. We breakdown each of
these instance categories further into the ground-
truth actions in Figure 5. For SIMMC-Furniture,
the all and none categories compose 62% and 8%
of all the test instances, respectively. The corre-
sponding numbers for SIMMC-Fashion are 77%
and 10%. Using these categories as weak indicators
of easy and hard instances for subtask 1, one could
conclude that SIMMC-Furniture contains a smaller
percent of both easy and difficult instances when
compared to SIMMC-Fashion.

6 Ablation Study

To further test the extent to which the available mul-
timodal context is improving model results on the
subtask metrics, we conduct an ablation experiment
where we prepare a version of the datasets with the
multimodal context removed. We then train and
test the BART-Large model (Huang et al., 2021) on
the original and ablated versions of the datasets.
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Figure 5: Breakdown of instances categorized based on
whether all or none of the model entries predicted ac-
curately.
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6.1 Methodology

For model training, we conduct a parameter search
over batch size and learning rate, and train three
models for each combination of parameters. We
select models that achieved the lowest dev set
loss during training. We repeat this process for
the four combinations of SIMMC-Furniture or
SIMMC-Fashion with original or multimodal-
context-ablation versions of the dataset. The aim
is to ensure that the models trained on the ablated
datasets are trained and selected under the same
conditions as the models that have the multimodal
context available. Note that this process does not
guarantee to reproduce the reported results for this
model.

6.2 Results

Results are presented in Table 6. Multimodal con-
text does boost performance on slot F1 metric in
subtask 3 (DST) in line with findings by Moon et al.
(2020). It also provides a marginal improvement in
attribute accuracy in subtask 1 (API calls). Other
metrics like BLEU are largely unmoved. Given
that the multimodal context should inform the as-
sistant’s responses, this is somewhat surprising.

7 Findings & Conclusions

Pretrained language models show promise in
multimodal settings. The strong performance of
pretrained language models such as GPT-2 and
BART when adapted to these task indicate their
flexibility to ingest relatively simple multimodal
context and thus be used in a multimodal setting
with a high degree of success.
Multimodal context helps but gaps remain. To
examine how effectively models use the multi-
modal context we conduct an ablation experi-
ment where we train the BART-Large-based model
(Huang et al., 2021) on two versions of the datasets;
including and excluding multimodal context. The
results (Table 6) indicate that multimodal context
does boost performance on slot F1 metric in sub-
task 3 (DST) and provides a marginal improvement
in attribute accuracy in subtask 1 (API calls). How-
ever BLEU scores for response generation (subtask
2a) are relatively unaffected. In SIMMC-Furniture,
the multimodal context provides, for each turn, a
grounded set of items which are likely to be the
most salient. Given this, the ablation results when
considered alongside both the overall relatively low
BLEU scores, and the accuracy falloff in DST met-

rics with increasing dialog length, suggests that
the multimodal context isn’t currently utilized to
the fullest extent and indicates that there remains
a significant opportunity for improving assistant
response prediction.
Need for a better and scalable catalog integra-
tion. Generated responses (see Table 5) indicate
that these models are powerful enough to avoid
returning bland and safe responses (often observed
in generative models (Li et al., 2015)) but fail to
reliably integrate catalog information. This maybe
indicative of a failure of model architectures to
utilise the knowledge in the catalog or a more gen-
eral problem with utilisation of multimodal context
in response generation.

Approaches that may address this issue include:
encoding additional information from the catalog,
such as price and description, for each item in the
scene; integrating explicit database API calls to the
catalog and database responses as part of predic-
tion task and model input respectively (c.f. Peng
et al. (2020); Hosseini-Asl et al. (2020)); discour-
age memorization of the catalog by randomly vary-
ing attributes, such as price, (while maintaining
consistency in the data between model input and
target); extending the test set with examples drawn
from a held out catalog to penalize memorization.

Better and scalable multimodal integration for
knowledge bases, e.g. catalogs, is crucial in task-
oriented settings where systems are expected to
relay accurate information to users.
Scaling up multimodal complexity. An addi-
tional area for future investigation is to examine
the related question of how well does the simple
‘stringified’ approach to ingesting multimodal con-
text handle increasingly complex scenarios. As the
number of items in the scene increases, so does
the string representation making it harder for the
model to capture scene related information due to
increased nesting.
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