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Abstract

Sentence ordering is the task of arranging a
given bag of sentences so as to maximise the
coherence of the overall text. In this work, we
propose a simple yet effective training method
that improves the capacity of models to cap-
ture overall text coherence based on training
over pairs of sentences/segments. Experimen-
tal results show the superiority of our proposed
method in in- and cross-domain settings. The
utility of our method is also verified over a
multi-document summarisation task.

1 Introduction and Background

Document coherence understanding plays an im-
portant role in natural language understanding,
where a coherent document is connected by rhetor-
ical relations, such as contrast, elaboration, narra-
tion, and justification, allowing us to communicate
cooperatively in understanding one another. In this
work, we measure the ability of models to capture
document coherence in the strictest setting: sen-
tence ordering (Barzilay and Lapata, 2005; Elsner
et al., 2007; Barzilay and Lapata, 2008; Prabhu-
moye et al., 2020), a task of ordering an unordered
bag of sentences from a document, aiming to max-
imise document coherence.

The task of sentence ordering is to restore the
original order for a given bag of sentences, based on
the coherence of the resulting document. The abil-
ity of a model to reconstruct the original sentence
order is a demonstration of its capacity to capture
document coherence. Figure 1 presents such an
example, where the (shuffled) sentences are from a
paper abstract discussing the relationship between
word informativeness and pitch prominence, and
the gold-standard sentence ordering is (4, 5, 1, 7,
3, 2, 6). Furthermore, the task of sentence order-
ing is potentially beneficial for downstream tasks
such as multi-document summarisation (Nallapati

(1) But there are others who express doubts about such a
correlation.
(2) They also show that informativeness enables statisti-
cally significant improvements in pitch accent prediction.
(3) Our experiments how that there is a positive correla-
tion between the informativeness of a word and its pitch
accent assignment.
(4) In intonational phonology and speech synthesis re-
search, it has been suggested that the relative informative-
ness of a word can be used to predict pitch prominence.
(5) The more information conveyed by a word, the more
likely it will be accented.
(6) The computation of word informativeness is inex-
pensive and can be incorporated into speech synthesis
systems easily.
(7) In this paper, we provide some empirical evidence to
support he existence of such a correlation by employing
two widely accepted measures of informativeness.

Figure 1: An example of shuffled sentences from the
same document.

et al., 2017), storytelling (Fan et al., 2019; Hu et al.,
2020), cooking recipe generation (Chandu et al.,
2019), and essay scoring (Tay et al., 2018; Li et al.,
2018), where document coherence plays an impor-
tant role.

Traditional approaches to sentence ordering used
hand-engineered features to capture document co-
herence (Barzilay and Lapata, 2005; Elsner et al.,
2007; Barzilay and Lapata, 2008; Elsner and Char-
niak, 2011; Mesgar and Strube, 2016), e.g. using an
entity matrix (Barzilay and Lapata, 2005, 2008) or
graph (Guinaudeau and Strube, 2013) to represent
entity transitions across sentences, and maximising
transition probabilities between adjacent sentences.

Neural work has modelled the task either gen-
eratively (Li and Hovy, 2014; Li and Jurafsky,
2017; Gong et al., 2016; Logeswaran et al., 2018;
Cui et al., 2018; Wang and Wan, 2019; Oh et al.,
2019; Cui et al., 2020; Yin et al., 2020; Kumar
et al., 2020) or discriminatively (Chen et al., 2016;
Prabhumoye et al., 2020). As example genera-
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tive approaches, Cui et al. (2020) obtain sentence
and paragraph representations from BERT (Devlin
et al., 2019) and then use a pointer network to de-
code the sentence ordering for a given paragraph,
whereas Yin et al. (2019) use a graph-based neural
network over sentences and entities. The shortcom-
ing of generative methods is the difficulty in ob-
taining good paragraph representations, especially
for longer paragraphs. To mitigate this, various at-
tention mechanisms have been explored (Cui et al.,
2018; Wang and Wan, 2019; Kumar et al., 2020).

Discriminative approaches, on the other hand,
can readily capture the relative order between sen-
tence pairs, and paragraph decoding can then be
achieved through methods such as beam-search
(Chen et al., 2016) or topological sort (Tarjan, 1976;
Prabhumoye et al., 2020). However, even with ex-
act decoding methods such as topological sort, is-
sues remain, including: (1) coherence scores for
sentence pairs that are distant in the document tend
to be noisy; and (2) it can be difficult to determine
the relative order of adjacent sentences without
broader context. To mitigate these two drawbacks,
we propose a simple yet effective training method.
Instance pairs are only constructed from adjacent
segments to provide stronger coherence signals,
but to capture broader context, up to 3 continu-
ous sentences are combined to form a single seg-
ment in an instance pair. The effectiveness of our
method is demonstrated across multiple datasets,
in in- and cross-domain settings, and the setting of
multi-document summarisation.

2 Methodology

The method proposed by Prabhumoye et al. (2020)
exploits the relative order between any two sen-
tences in a given paragraph. As in Figure 2a, the
pairs connected by blue and red lines (pointing
right and left, resp.) are the resulting positive and
negative coherence instances for sentence s2, re-
spectively. These instances are used to train a text
coherence model, which we denote as “allpairs”.

In contrast, our method utilises the relative order
between adjacent segments only, resulting in an
order of magnitude less training data than allpairs
(O(n) vs. O(n2)) but stronger supervision signal;
we denote this as “adjonly”. As in Figure 2b, the
blue/red lines connect adjacent sentences for sen-
tence s2, resulting in positive/negative coherence
instances. To capture broader context, we also con-
struct pairs based on segments made up of multi-

s1 s2 s3 s4 ... sn

(a) all-pairs comparison method.

s1 s2 s3 s4 ... sn

(b) adjacent pairs-only segment comparison method.

Figure 2: Illustration of the baseline method of Prab-
humoye et al. (2020) (a) and our proposed training
method (b), where blue and red lines indicate positive
and negative segment pairs, respectively.

ple continuous sentences (not shown in the figure),
such as (s1:2, s2:3) and (s1:3, s2:4) as positive in-
stances, and (s2:3, s1:2) and (s2:4, s1:3) as negative
instances, where si:i+j denotes the concatenation
of sentences si to si+j inclusive (j ≥ 0). In this
work, we experiment with j ∈ {0, 1, 2} (i.e. sen-
tence unigrams, bigrams, and trigrams), resulting
in (at most) 6(n−2) instances for a paragraph with
n sentences (noting that the segment cannot extend
beyond the extremities of the document).

At test time, following Prabhumoye et al. (2020),
we predict the relative order of each sentence pair
(only sentence unigram), then order the sentences
with topological sort.

We also trialled other training methods — in-
cluding regressing over the distance between two
sentences, and training with constraints over sen-
tence triplets inspired from Xu et al. (2019a) in
computer vision — but observed no improvement.

3 Experiments

3.1 Datasets
We perform experiments over six publicly available
datasets from Logeswaran et al. (2018) and Xu et al.
(2019b), resp.:
• NeurIPS, ACL, and NSF: abstracts from

NeurIPS papers, ACL papers, and NSF grants
(ave. sentences = 6.2, 5.0, and 8.9, resp.).
• Athlete, Artist, and Institution: paragraphs

with >10 sentences from Wikipedia articles
of athletes, artists, and educational institutions
(ave. sentences ≈ 12).

3.2 Evaluation Metrics
Following previous work, we use 4 evaluation met-
rics (higher is better in each case):
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• Perfect Match Ratio (PMR): % of para-
graphs for which the entire sequence is correct
(Chen et al., 2016).
• Accuracy (Acc): % of sentences whose abso-

lute positions are correct (Logeswaran et al.,
2018).
• Longest Common Subsequence (LCS): %

overlap in the longest common subsequence
between the predicted and correct orders
(Gong et al., 2016).
• Kendall’s Tau (τ ): rank-based correlation be-

tween between the predicted and correct order
(Lapata, 2006).

3.3 Model Configuration

We benchmark against Prabhumoye et al. (2020),
using a range of text encoders, each of which is
trained separately over allpairs and adjonly data.

LSTM: each segment is fed into a separate biL-
STM (Hochreiter and Schmidhuber, 1997) with the
same architecture and shared word embeddings to
obtain representations, and the segment representa-
tions are concatenated together to feed into a linear
layer and softmax layer. We use 300d pre-trained
GloVe word embeddings (Pennington et al., 2014)
with updating, LSTM cell size of 128, and train
with a mini-batch size of 128 for 10 epochs (with
early stopping) and learning rate of 1e-3.

BERT: predict the relative order from the “CLS”
token using pre-trained BERT (Devlin et al., 2019),
or alternatively ALBERT (Lan et al., 2020) (due
to its specific focus on document coherence) or
SciBERT (Beltagy et al., 2019) (due to the domain
fit with the datasets). For BERT and ALBERT, we
use the base uncased version,1 and finetune for 2
epochs in each case with a learning rate of {5e-5,
5e-6}.

BERTSON (Cui et al., 2020): the current SOTA
for sentence ordering, in the form of a BERT-based
generative model which feeds representations of
each sentence (given the context of the full doc-
ument) into a self-attention based paragraph en-
coder to obtain the document representation, which
is used to initialise the initial state of an LSTM-
based pointer network. During decoding, a deep
relational module is integrated with the pointer net-
work, to predict the relative order of a pair of sen-

1For SciBERT, we use scivocab base uncased version,
where the vocabulary is based on scientific text.

tences.2

3.4 In-domain Results

Table 1 presents the results over the academic ab-
stract datasets. The adjacency-only method per-
forms better than the all-pairs method for all en-
coders over all evaluation metrics, underlining
the effectiveness of our proposed training method.
Comparing sentence encoders, the pretrained lan-
guage models outperform LSTM, with ALBERT
and SciBERT generally outperforming BERT by a
small margin, demonstrating the importance of ex-
plicit document coherence training (ALBERT) and
domain knowledge (SciBERT). Overall, SciBERT-
adjonly achieves the best over NeurIPS and ACL,
and ALBERT-adjonly achieves the best over NSF.

As BERTSON is trained on BERT base,
the fairest comparison is with BERT-adjonly.
Over NeurIPS, BERTSON has a clear advantage,
whereas the two models are perform almost iden-
tically over ACL, and BERT-adjonly has a clear
advantage over NSF. Note that this correlates with
an increase in average sentence length (NSF >
ACL > NeurIPS), suggesting that our method is
better over longer documents.

Looking to the results over the Wikipedia
datasets in Table 2, once again the adjacency-
only model is consistently better than the all-pairs
method. Here, ALBERT-adjonly is the best of
BERT-based models (noting SciBERT has no do-
main advantage in this case), and despite the doc-
uments being longer again than NSF on average,
there is remarkable consistency with the results in
Table 1 in terms of the evaluation metrics which
are explicitly normalised for document length (LCS
and τ ).

3.5 Cross-domain Results

To examine the robustness of our method in a
cross-domain setting, we focus exclusively on AL-
BERT, given its overall superiority in an in-domain
setting. We finetune ALBERT over the Athlete
dataset, and test over the Artist, Institution, and
NeurIPS datasets, resulting in different degrees of
topic and domain shift: Athlete→ Artist (similar

2Note that the code for BERTSON has not been released,
and given the complexity of the model, we were not confident
of our ability to faithfully reproduce the model. As such, we
only report on results from the paper, for those datasets it
was evaluated over. Similar to Prabhumoye et al. (2020), all
sentence pairs are used to learn the sentence representations,
aiming to capture the pairwise relationship between sentences.



157

Models
NeurIPS ACL NSF

PMR Acc LCS τ PMR Acc LCS τ PMR Acc LCS τ

BERTSON 48.01 73.87 — 0.85 59.79 78.03 — 0.85 23.07 50.02 — 0.67

LSTM-allpairs 14.18 43.62 71.58 0.66 26.76 50.19 75.05 0.66 6.05 23.20 56.82 0.48
LSTM-adjonly 18.16 47.10 74.44 0.69 30.66 53.08 76.94 0.70 9.34 34.98 67.36 0.65

BERT-allpairs 33.83 61.91 83.10 0.82 50.34 69.35 85.94 0.83 14.43 38.58 71.05 0.70
BERT-adjonly 42.29 68.06 86.23 0.85 59.79 75.96 89.72 0.86 23.24 54.23 81.12 0.81

ALBERT-allpairs 37.31 65.12 85.00 0.83 54.01 71.71 87.36 0.85 14.33 38.79 71.22 0.70
ALBERT-adjonly 41.79 68.95 86.23 0.84 60.97 76.40 90.09 0.87 25.34 56.71 82.62 0.82

SciBERT-allpairs 37.31 65.55 84.65 0.84 54.74 72.23 87.40 0.85 14.84 39.56 71.80 0.71
SciBERT-adjonly 44.53 71.00 87.74 0.87 63.04 78.98 90.87 0.89 24.65 55.91 82.18 0.82

Table 1: Results over the academic abstract datasets (results for BERTSON are those reported in Cui et al. (2020);
“—” indicates the number was not reported in the original paper).

Models
Athlete Artist Institution

PMR Acc LCS τ PMR Acc LCS τ PMR Acc LCS τ

LSTM-allpairs 0.00 15.31 49.32 0.28 0.00 12.62 46.23 0.20 9.04 28.59 58.47 0.40
LSTM-adjonly 0.89 30.54 64.91 0.63 0.00 24.32 60.24 0.51 21.16 45.56 72.07 0.70

BERT-allpairs 2.53 32.81 68.24 0.63 0.66 24.45 61.16 0.50 22.01 43.94 71.85 0.64
BERT-adjonly 10.17 50.52 79.56 0.79 6.93 46.59 76.82 0.76 25.94 56.12 80.60 0.79

ALBERT-allpairs 2.78 35.03 69.99 0.65 1.23 29.57 66.25 0.59 21.84 47.64 75.19 0.71
ALBERT-adjonly 14.89 56.25 82.59 0.82 9.31 49.66 79.64 0.78 28.50 58.86 82.93 0.81

SciBERT-allpairs 1.14 27.97 64.47 0.56 0.38 22.36 59.72 0.47 17.41 40.06 70.11 0.61
SciBERT-adjonly 6.08 45.40 76.27 0.75 2.18 39.42 72.40 0.71 21.33 51.71 77.96 0.77

Table 2: Results over the Wikipedia datasets.

Models
Artist Institution NeurIPS

PMR Acc LCS τ PMR Acc LCS τ PMR Acc LCS τ

ALBERT-allpairs 1.14 29.37 66.15 0.58 0.34 26.69 64.12 0.54 20.90 49.57 76.18 0.66
ALBERT-adjonly 8.83 48.74 78.93 0.78 4.78 41.43 74.31 0.72 35.82 61.41 83.29 0.78

Table 3: Cross-domain results, with finetuning over the Athlete dataset.

topic), Athlete→ Institution (topic change), Ath-
lete→ NeurIPS (topic and domain change).

From Table 3, we can see that both ALBERT-
adjonly and ALBERT-allpairs only experience
marginal performance drops over Artist (similar
topic), but for Institution and NeurIPS, perfor-
mance drops substantially, but the relative drop
for the adjacency-only method is smaller, suggest-
ing that it captures a more generalised represen-
tation of coherence. Indeed, the performance of
ALBERT-adjonly in the cross-domain setting is
superior or competitive with that for ALBERT-
allpairs in the in-domain setting except for PMR
over Institution, demonstrating the effectiveness of

our training method.

3.6 Evaluation over Multi-document
Summarisation

For multi-document summarisation, extractive doc-
ument summarisation models extract sentences
from different documents, not necessarily in an
order which maximises discourse coherence. Thus,
reordering the extracted sentences is potentially re-
quired to maximise the coherence of the extracted
text.

We apply our proposed method to multi-
document summarisation, in applying ALBERT-
allpairs and ALBERT-adjonly to reorder sum-
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λ=0.0 λ=0.3 λ=0.5 λ=0.7 λ=1.0

TextRank 91.28 69.97 55.76 41.55 20.24
allpairs 91.02 70.88 57.45 44.03 23.89
adjonly 91.94 71.76 58.30 44.85 24.67

Table 4: Coherence scores for reordered summaries.
“allpairs” indicates ALBERT-allpairs and “adjonly” in-
dicates ALBERT-adjonly (our model).

maries generated by an extractive multi-document
summarisation system. Following Yin et al. (2020),
we finetune ALBERT-allpairs and ALBERT-
adjonly over 500 reference summaries randomly
sampled from a large-scale news summarisation
dataset (Fabbri et al., 2019). We then generate
extractive summaries from DUC 2004 documents
(Task 2) with TextRank (Barrios et al., 2016), and
use ALBERT-allpairs and ALBERT-adjonly to re-
order the summaries.

To evaluate the coherence of generated sum-
maries, Nayeem and Chali (2017) and Yin et al.
(2020) use the weighted sum of cosine similarity
and named entity similarity,3 defined as:

Coherence =
1

n− 1

n−1∑
i=1

Sim(si, si+1),

Sim(si, si+1) = λ ∗NESim(si, si+1)

+(1− λ) ∗ Sim(si, si+1),

where n is the number of sentences, Sim(si, si+1)
is the cosine similarity over representations (sum
of word embeddings) of adjacent sentences, and
NESim(si, si+1) measures the fraction of shared
named entities between adjacent sentences. Higher
values indicate better performance.

Table 4 shows the results for different λ val-
ues (different emphasis on shared named entities).
We can see that ALBERT-adjonly achieves higher
scores than ALBERT-allpairs and the baseline Text-
Rank for all λ values, once again demonstrating
the effectiveness of our method.

4 Conclusion and Future Work

We propose a simple yet effective training method
to predict the relative ordering of sentences in a
document, based on sentence adjacency and topo-
logical sort. Experiments on six datasets from dif-
ferent domains demonstrate the superiority of our

3ROUGE score is not used, as it measures content similar-
ity, and does not capture intrinsic text coherence (Koto et al.,
2020).

proposed method, in addition to results in a cross-
domain setting and for multi-document summarisa-
tion.
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Rosa Wachenchauzer. 2016. Variations of the simi-
larity function of textrank for automated summariza-
tion. arXiv preprint arXiv:1602.03606.

Regina Barzilay and Mirella Lapata. 2005. Modeling
local coherence: An entity-based approach. In Pro-
ceedings of the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 141–148.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1–34.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620.

Khyathi Chandu, Eric Nyberg, and Alan W Black.
2019. Storyboarding of recipes: Grounded contex-
tual generation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6040–6046.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang.
2016. Neural sentence ordering. arXiv preprint
arXiv:1607.06952.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2018. Deep attentive sentence ordering net-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4340–4349.

Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2020.
BERT-enhanced relational sentence ordering net-
work. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6310–6320.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Micha Elsner, Joseph Austerweil, and Eugene Char-
niak. 2007. A unified local and global model for
discourse coherence. In Human Language Technolo-
gies 2007: The Conference of the North American



159

Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages
436–443.

Micha Elsner and Eugene Charniak. 2011. Extending
the entity grid with entity-specific features. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 125–129.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1074–1084.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650–
2660.

Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xu-
anjing Huang. 2016. End-to-end neural sentence
ordering using pointer network. arXiv preprint
arXiv:1611.04953.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 93–103.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Junjie Hu, Yu Cheng, Zhe Gan, Jingjing Liu, Jianfeng
Gao, and Graham Neubig. 2020. What makes a
good story? Designing composite rewards for visual
storytelling. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-
20), pages 7969–7976.

Fajri Koto, Jey Han Lau, and Timothy Baldwin.
2020. FFCI: A framework for interpretable auto-
matic evaluation of summarization. arXiv preprint
arXiv:2011.13662.

Pawan Kumar, Dhanajit Brahma, Harish Karnick, and
Piyush Rai. 2020. Deep attentive ranking networks
for learning to order sentences. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial In-
telligence (AAAI-20), pages 8115–8122.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proceed-
ings of the 8th International Conference on Learn-
ing Representations.

Mirella Lapata. 2006. Automatic evaluation of infor-
mation ordering: Kendall’s tau. Computational Lin-
guistics, 32(4):471–484.

Jiwei Li and Eduard Hovy. 2014. A model of coher-
ence based on distributed sentence representation.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2039–2048.

Jiwei Li and Dan Jurafsky. 2017. Neural net models
of open-domain discourse coherence. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 198–209.

Xia Li, Minping Chen, Jianyun Nie, Zhenxing Liu,
Ziheng Feng, and Yingdan Cai. 2018. Coherence-
based automated essay scoring using self-attention.
In Proceedings of the 17th China National Confer-
ence on Computational Linguistics, CCL 2018, and
the 6th International Symposium on Natural Lan-
guage Processing Based on Naturally Annotated Big
Data, NLP-NABD 2018, pages 386–397.

Lajanugen Logeswaran, Honglak Lee, and Dragomir
Radev. 2018. Sentence ordering and coherence mod-
eling using recurrent neural networks. In Proceed-
ings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence (AAAI-18), pages 5285–5292.

Mohsen Mesgar and Michael Strube. 2016. Lexical
coherence graph modeling using word embeddings.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1414–1423.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence (AAAI-17), pages
3075–3081.

Mir Tafseer Nayeem and Yllias Chali. 2017. Ex-
tract with order for coherent multi-document sum-
marization. In Proceedings of TextGraphs-11: the
Workshop on Graph-based Methods for Natural Lan-
guage Processing, pages 51–56.

Byungkook Oh, Seungmin Seo, Cheolheon Shin, Eu-
nju Jo, and Kyong-Ho Lee. 2019. Topic-guided co-
herence modeling for sentence ordering by preserv-
ing global and local information. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2273–2283.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1532–1543.

Shrimai Prabhumoye, Ruslan Salakhutdinov, and
Alan W Black. 2020. Topological sort for sentence
ordering. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2783–2792.



160

Robert Endre Tarjan. 1976. Edge-disjoint spanning
trees and depth-first search. Acta Informatica,
6(2):171–185.

Yi Tay, Minh C. Phan, Luu Anh Tuan, and Siu Che-
ung Hui. 2018. SkipFlow: Incorporating neural co-
herence features for end-to-end automatic text scor-
ing. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence (AAAI-18), pages
5948–5955.

Tianming Wang and Xiaojun Wan. 2019. Hierarchical
attention networks for sentence ordering. In Pro-
ceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence (AAAI-19), volume 33, pages
7184–7191.

Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie,
and Yueting Zhuang. 2019a. Self-supervised spa-
tiotemporal learning via video clip order prediction.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 10334–
10343.

Peng Xu, Hamidreza Saghir, Jin Sung Kang, Teng
Long, Avishek Joey Bose, Yanshuai Cao, and Jackie
Chi Kit Cheung. 2019b. A cross-domain transfer-
able neural coherence model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 678–687.

Yongjing Yin, Fandong Meng, Jinsong Su, Yubin Ge,
Linfeng Song, Jie Zhou, and Jiebo Luo. 2020. En-
hancing pointer network for sentence ordering with
pairwise ordering predictions. In Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI-20), pages 9482–9489.

Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng,
Chulun Zhou, and Jiebo Luo. 2019. Graph-based
neural sentence ordering. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI, pages 5387–5393.


