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Abstract

Dialogue State Tracking (DST) is a sub-task
of task-based dialogue systems where the user
intention is tracked through a set of (domain,
slot, slot-value) triplets. Existing DST models
can be difficult to extend for new datasets with
larger domains/slots mainly due to either of the
two reasons- i) prediction of domain-slot as a
pair, and ii) dependency of model parameters
on the number of slots and domains. In this
work, we propose to address these issues us-
ing a Hierarchical DST (Hi-DST) model. At
a given turn, the model first detects a change
in domain followed by domain prediction if re-
quired. Then it decides suitable action for each
slot in the predicted domains and finds their
value accordingly. The model parameters of
Hi-DST are independent of the number of do-
mains/slots. Due to the hierarchical modeling,
it achieves O(|M | + |N |) belief state predic-
tion for a single turn where M and N are the
set of unique domains and slots respectively.
We argue that the hierarchical structure helps
in the model explainability and makes it eas-
ily extensible to new datasets. Experiments on
the MultiWOZ dataset show that our proposed
model achieves comparable joint accuracy per-
formance to state-of-the-art DST models.

1 Introduction

In a goal-oriented or task-oriented dialogue sys-
tem, Dialogue State Tracking (DST) refers to the
problem of extracting the goal or intention shown
by the user at each turn. The user’s goals are cap-
tured through a set of dialogue states which are
the system’s internal representation of the ongoing
conversation. DST is essential because it not only
helps to understand the user’s requirement but also
impacts the next dialogue generation. In this era
of immersive AI, task-based dialogue systems are
gaining popularity day by day. As a result, dealing
with a large number of domains and slots will soon

 
�Ù: Can you help me find some attractions in the east part of 
town? 

nÙ: { (attraction, area, east) }  
 
�Ú�: Definitely! My favorite place in the east is the Funky Fun 
House. It's funky and fun! 
�Ú: Can I have the number please? 
nÚ: { (attraction, area, east), (attraction, name, Funky Fun House) } 

�Û
 : It's 01223304705. Do you need anything else? 

�Û: Yeah, I need a restaurant. They need to serve Indian food and 
be in the same area as Funky Fun House. 
nÛ: { (attraction, area, east), (attraction, name, Funky Fun House), 

(restaurant, area, east), (restaurant, food, Indian) } 

�Ü�: There are 4 Indian restaurants in the area.  Two are 
moderately priced and two are expensive.  Can I ask what price 
range you would like? 
�Ü: I would prefer one in the moderate price range. 
nÜ: { (attraction, area, east), (attraction, name, Funky Fun House), 
(restaurant, area, east), (restaurant, food, Indian), (restaurant, 
price, moderate) } 
 
�Ý�: May I suggest the Rajmahal located at 7 Barnwell Road Fen 
Ditton. 
�Ý: Can I also have their phone number and postcode? 
nÝ

 : { (attraction, area, east), (attraction, name, Funky Fun House), 
(restaurant, area, east), (restaurant, food, Indian), (restaurant, 
price, moderate), (restaurant, name, Rajmahal) } 
 
�Þ�: Sure, their phone number is 01223244955 and the postcode is 
cb58rg. Is there anything else I could help you with? 
�Þ: That is all I need. 
nÞ

 : { { (attraction, area, east), (attraction, name, Funky Fun 

Figure 1: A sample conversation from the Multi-
WOZ (Budzianowski et al., 2018) dataset (dialogue id
PMUL3336).

become a real problem for task-based chatbots. In
this work, we propose a scalable and extensible
solution framework for DST to address this forth-
coming issue.

We now briefly define DST with an illustra-
tion shown in Fig 1. Let Ut and St be the user
and system utterance respectively at turn t. Then
a task-based conversation is generally expressed
as D = {U0, (S1, U1), · · · , (Sn, Un)}. Let belief
state Bt be the ground-truth dialogue state for turn
t. Bt represents the set of (domain, slot, slot-value)
triplets that have been extracted so far till turn t.
The task of DST is to predict Bt given the dialogue
history till turn t.

The solution framework for the DST model
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can be broadly categorized into three classes - i)
picklist-based, ii) generation-based, and iii) end-
to-end modeling. The first two methods approach
the DST problem explicitly, whereas the third class
solves it as a part of end-to-end modeling of the
task-based dialogue system. Picklist-based models
(Mrkšić et al., 2017; Nouri and Hosseini-Asl, 2018;
Zhong et al., 2018; Goel et al., 2019) find the value
of a given domain-slot pair from a pre-defined can-
didate set. This is why these methods need access
to the complete ontology of the dataset. This type
of modeling can be used only when the candidate
set is limited. But in reality, there are many slots
(e.g. name, time, etc.) where the range of val-
ues can be indefinitely large. Generation-based
approaches (Gao et al., 2019; Wu et al., 2019; Kim
et al., 2020; Heck et al., 2020) solve this problem
by generating the slot-value directly from the dia-
logue history. These methods usually formulate the
slot-value prediction as a reading comprehension
(Chen et al., 2017) or text summarization (See et al.,
2017) task. There are hybrid models (Zhang et al.,
2020) which take the advantages of both picklist
and generation-based methods by choosing the slot-
value prediction strategy based on the type of slot.
On the other hand, end-to-end models (Hosseini-
Asl et al., 2020; Wu et al., 2020; Lin et al., 2020;
Mehri et al., 2020) aim to unify multiple sub-tasks
of a task-oriented dialogue system using a single
model. They have the advantage of being fully gen-
erative and are usually trained as a conditional or
causal language model to generate the next system
utterance.

Although recent progress in generation-based
and end-to-end approaches has shown significant
performance gain in DST, there are still some scal-
ability and extensibility issues that need to be ad-
dressed. These issues mainly occur due to two
properties - i) predicting domain and slot as a pair,
ii) dependency of model parameters on number do-
mains and slots. All the existing DST solutions
hold either of these properties and in most cases
both. The first property leads to O(|S|) belief state
prediction time for each turn where S is the set of
all possible domain-slot pairs in a given dataset.
In the worst case, |S| = |M | × |N | where M and
N are the sets of unique domains and slots respec-
tively. Since task-based chatbots are designed to
work in real-time, reducing time complexity is of
critical need. Ren et al. (2019) tackles this issue by
predicting domain and slot sequentially and thereby

reducing the time complexity to O(N) using their
O(1) domain prediction strategy. However, their
domain prediction depends on the ordering of do-
mains which can be hard to maintain in a real setup.
They also satisfy the second property due to the
inclusion of the previous belief state as input. Even
though this kind of auxiliary feature has been help-
ful in improving the joint accuracy (Kim et al.,
2020; Heck et al., 2020), it makes the model dif-
ficult to extend. The end-to-end models also pos-
sess the second property because they encode the
previous belief state along with dialogue history
to represent a complete turn (Hosseini-Asl et al.,
2020). With the growing popularity of task-based
conversational systems, we can anticipate larger
datasets with lots of domains and slots to be used
in the future for the training and development of
such systems. Since these datasets will contain
a large set of unique domains and slots, scalabil-
ity and extensibility will become an issue for the
existing models.

In this paper, we propose a Hierarchical DST (Hi-
DST) model to tackle the issues discussed above.
We break the DST task into a hierarchy of four
generic sub-tasks - domain change prediction, do-
main prediction, slot action prediction, and slot-
value prediction. We adopt the triple copy strategy
(Heck et al., 2020) for slot-value prediction and use
the neural span-based question-answering method
to extract the slot values from the utterances di-
rectly. In contrast to others, we reduce the problem
of slot-value prediction to SQuAD (Rajpurkar et al.,
2016) to leverage transfer learning. We keep our
model parameters independent of the number of
domains/slots. This is why we refrain from using
any kind of auxiliary features that depend on the
domain/slot set. Contributions of our work can be
summarized as follows- 1

• We present Hi-DST, a scalable and extensible
DST solution that adopts hierarchical mod-
eling without any dependency on the num-
ber of domains and slots. Hi-DST achieves
O(|M |+ |N | belief state prediction for each
turn where M and N are the sets of unique
domain and slot respectively.

• We show that Hi-DST achieves a comparable
performance to existing DST models while
being scalable and extensible simultaneously.

1Code is available at github.com/SuvodipDey/Hi-DST

https://github.com/SuvodipDey/Hi-DST
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• We argue that the hierarchical structure helps
in the explainability of the model and makes it
easily extensible to new datasets with a much
larger number of domains and slots.

2 Hierarchical DST (Hi-DST)

The core idea behind our approach is to decouple
the prediction of domain-slot pairs to achieve belief
state prediction in O(|M | + |N |) time. We also
keep our model free from any kind of dependency
on the number of domains and slots to make it eas-
ily extensible. We propose Hi-DST that comprises
of four generic components: domain change pre-
diction (section 2.1), domain prediction (section
2.2), slot-action prediction (section 2.3), and slot-
value prediction (section 2.4). During prediction
(section 2.5), we first detect any change in domain.
If there is a change in domain predicted, we run
domain prediction and update the set of current do-
main(s) that keeps track of the active domains for a
given turn. We next predict the appropriate actions
necessary for relevant domain-slot pairs. Finally,
we extract the slot values using span-based method
(Chen et al., 2017) when required. We incremen-
tally update our predicted dialogue states at each
turn to get the desired belief state. Fig. 2 shows the
workflow of our proposed approach.

2.1 Domain Change Prediction

In a task-based conversation, a user can converse
about multiple domains and switch between them
if necessary. The objective of this component is to
detect the point of domain changes. We formulate
it as a ternary classification problem. A prediction
of 0 represents that there is no change in domain.
In this case, we use the domain set of the previous

Start 
turn t

Predict slot action for each slots of
the current domains

systemt, usert

Extract slot value or reference
domain using span-based method 

Update
dialogue

statesslot action: 5,6,7

label slot action
0 irrelevant (value is none)
1 request (value is ?)
2 value is don't care
3 value is yes
4 value is no
5 value resides in usert
6 value resides in systemt
7 refer previous states

Predict Domain

Domain
change? yes

no

No prediction requiredgeneral
conversation

Figure 2: Workflow of proposed DST model. System
and user utterance of turn t are represented as systemt

and usert respectively. The figure shows only the gen-
eral slot actions.

turn as current domains. Prediction 1 indicates a
domain change in the current turn. Here, we need
to run the domain prediction model to get the new
domains. Finally, class label 2 represents a general
conversation (like greeting, thanking, etc.). In this
case, we do no further prediction as the user is not
showing any additional intention. Basically, this
model component captures the theme of a dialogue
turn in an abstract way and guides the subsequent
predictions accordingly.

We model this three-class classification problem
using BERT (Devlin et al., 2019) finetuning. Let
St and Ut be the system and user utterances at turn
t. Then the objective of this model is to find the
probability of p(y|St, Ut) where y ∈ {0, 1, 2}. Let
Xt ∈ Rd be the encoding of utterance pair (St,
Ut) where d=768 be the dimension of the BERT
embedding. We compute Xt by taking an average
of the token embeddings of BERT’s second-last
hidden layer with ([CLS]St[SEP]Ut) as input. We
pass Xt through a linear layer of dimension (d ×
3) to find the class probabilities. We use a cross-
entropy loss to update the model parameters.

2.2 Domain Prediction

The objective of this component is to find the set
of relevant domains in a given user turn. We use a
binary classification model to predict 1 if a given
domain is relevant and 0 otherwise. Let D be the
set of unique domains. Then the goal of the do-
main prediction model is to find the probability of
p(y|St, Ut, dj) where y ∈ {0, 1}, and dj ∈ D. We
run this prediction for each domain to obtain the
set of current domains.

We encode a specific domain using pre-trained
GloVe (Pennington et al., 2014) embedding of di-
mension d1 followed by a linear layer and GeLu
(Hendrycks and Gimpel, 2020) activation. Let
Z be the encoding of domain dj . So, Z =
GeLu(l1(Glove(dj))) ∈ Rd2 where l1 is a linear
layer of dimension of (d1 × d2).

Next, we encode the utterances using BERT. Let
Gt be the token representation of utterance pair
(St, Ut) generated by BERT tokenization. Let
Ht ∈ Rd2×L be the output of BERT’s second-
to-last hidden layer with input Gt where L is the
maximum sequence length and d2 = 768 is the di-
mension of the BERT embedding. To put attention
on relevant tokens, we take a linear combination of
the column-vectors of Ht using scaled dot-product
attention (Vaswani et al., 2017). We express our fi-



221

nal utterance encoding asXt =
∑L

l=1 αlHtl where
Xt ∈ Rd2 , Htl ∈ Rd2 is the output vector of the lth

token, and attention α = softmax(HT
t Z/
√
d2) ∈

RL. We now concatenate Xt and Z and pass it
through a linear classification head of dimension
(2d2 × 2) to find the class probabilities. We use a
softmax classifier with cross-entropy loss. We do
not update the GloVe embeddings of the domains
during back propagation to extend the model easily
for unseen domains.

2.3 Slot Action Prediction

In this component, we find the relevant slots from
the predicted set of domains for a given turn. We
achieve this by a slot action model that predicts
suitable action for a given domain-slot pair. Let
D be the set of current domains at turn t. Let Ci

be the set of slots in the domain di and A be the
set of actions. Then the objective of this model is
to find the probability of p(y|St, Ut, cij , di) ∀i, j
where y ∈ A, cij ∈ Ci, and di ∈ D.

Based on our analysis, we define eight general
and two dataset-speficic actions described in Table
1. Slot-action 0 (NONE) indicates that a domain-
slot pair is irrelevant. All the slot-actions between
1 and 4 indicate that the slot-value needs to be in-
ferred because it cannot be extracted directly from
the utterances. Slot action 5 (EXTusr) represents
that the slot-value resides in the current user utter-
ance Ut. Slot action 6 (EXTsys) indicates that the
slot-value is informed/recommended by the system
and can be extracted from the current system utter-
ance St. Finally, slot action 7 (REF) means that the
slot-value is referred to some previous slot-value
in the belief state. Besides the general actions, we
have two non-trivial slot-actions specific to Multi-
WOZ dataset. The first one is HTLtype for (hotel,
type, hotel) triplet. We add this action because the
annotation for this triplet is inconsistent throughout
the dataset (Wu et al., 2019). The second one is
PPL1 for triplet (d, people, 1) for any domain d.
This triplet often needs to be inferred rather than
extracted directly as shown in the example in Ta-
ble 1. We found that it is better to handle such
dataset-specific non-trivial cases with a new slot ac-
tion since these values are difficult to extract using
span-based approaches.

Our slot action prediction model is very similar
to the domain prediction model of Section 2.2. In-
stead of a domain, here we encode a domain-slot
pair in a similar fashion. Here, the encoding of

Label Action Description Example

0 NONE

slot is
irrelevant,

slot-value is
“None”

In “I want an expensive
place to stay in the west
side.”, slots like Name

and Parking are
irrelevant.

1 REQ

slot is
requested

by the user,
slot-value is

“?”

In “What is their
address and phone
number?”, use has

requested Address and
Phone.

2 DNC

user doesn’t
care about

the slot,
slot-value is

“don’t care”

In “I’m looking for a
hotel in the west,

internet is optional”,
slot-value for Internet
will be “don’t care”.

3 YES slot-value is
“Yes”

In “I need free
parking”, slot-value for

Parking is “Yes”.

4 NO slot-value is
“No”

In “I don’t need
internet or free

parking”, slot-value for
Internet and Parking is

“No”.

5 EXTusr

slot-value
needs to be
be extracted

from the
current user

utterance

St : Okay, where would
you like to depart from?
Ut: I’d like to leave
from Cambridge,

please.

6 EXTsys

slot-value
needs to be
be extracted

from the
current
system

utterance

St: I recommend
Kettle’s Yard on

Castle Street which is a
museum. Ut: Could I

get the postcode for that
museum?

7 REF

the value of
the slot

needs to be
be referred

In “I’d like to go see a
college that’s in the
same area as the

hotel”, slot-value of
Area refers to a

previously extracted
value.

8 HTLtype

type of the
hotel is
“hotel”

“I also need to find a 2
star room .”

9 PPL1
number of
people is 1

St : How many tickets
would you like?

Ut : Just for myself ,
please.

Table 1: Description of slot actions with example.

a given domain-slot pair (d, c) can be expressed
as Z = GeLu(l1([Glove(c);Glove(d)])) where
Z ∈ Rd2 and l1 is a linear layer of dimension of
(2d1 × d2). The rest of the modeling remains the
same as the domain prediction model except for
the final classification head. The dimension of the
final linear layer becomes (2d2× k) where k is the
number of slot actions. GloVe embedding of the
domains or slots is not updated during training just
like our domain prediction model.
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2.4 Slot Value Prediction

The fourth and final component of Hi-DST is the
slot-value prediction for a given domain-slot pair.
We need slot-value prediction model for slot ac-
tions 5 (EXTusr), 6 (EXTsys), and 7 (REF) be-
cause for the rest it can be inferred directly. If the
predicted slot-action for a given domain-slot pair
is 5 and 6, we need to extract the slot-value from
the current user and system utterance respectively.
Whereas for slot-action 7, we have to find the refer-
ence point of the slot-value from the user utterance
and then copy its value. This kind of strategy for
slot-value prediction is called triple copy strategy
(Heck et al., 2020) and has been shown to be ben-
eficial for DST. We reduce these three kinds of
slot-value prediction to the span-based question an-
swering problem of the SQuAD dataset (Rajpurkar
et al., 2016). By doing so we can directly finetune
the span-based neural comprehension model (Chen
et al., 2017) pre-trained on SQuAD and reap the
benefits of transfer learning. In the SQuAD dataset,
the input is a pair of a question and context and
the objective is to predict the span (start and end
index) of the answer in the given context. We re-
duce our slot-value prediction problem to SQuAD
as follows:

Extract from User Utterance (EXTusr): For
slot action 5 (EXTusr), the value of a given do-
main slot pair is present in the current user utter-
ance. So, we set the context to Ut. We generate
the question by converting the given domain-slot
pair into an English sentence. For example, (hotel-
name) becomes “What is the name of the hotel?”,
(train-destination) becomes “What is the destina-
tion of the train?”, and so on. The motivation for
such question generation is to match the format of
SQuAD. In this work, we use rule-based question
generation like DS-DST (Zhang et al., 2020) as the
set of domain-slot pairs is limited. It would be nice
to have a model-based approach to handle question
generation on a large scale.

Extract from System utterance (EXTsys): In
this scenario, the value of a given domain slot pair
is present in the current system utterance. It occurs
when the user accepts the system’s recommenda-
tion/suggestion. The reduction is absolutely similar
to the earlier case except the context now being the
current system utterance St. If the set of informed
slots by the system at each turn is available, then
we do not need to extract the slot value. Instead,
we can copy the slot-value of the domain-slot pair

directly from that set during prediction.
Refer (REF): In this case, the slot-value for a

given domain-slot pair refers to a previously ex-
tracted value. Hence, our objective here is to find
the appropriate reference point in the belief state of
the previous turn and then copy its value. Let the
reference point for a given domain slot pair (d, s)
be (dref , sref ). In general, we observe that slots s
and sref remain the same. So, the main challenge
is to find the reference domain dref . We formulate
the problem of finding the reference domain similar
to the formulation of slot action 5 (EXTusr) and
6 (EXTsys). The context is set to be the current
user utterance Ut. We convert a domain-slot pair
into a question in a slightly different manner. For
example, the REF instance shown in Table 1, we
form the question as “What is the reference point
of the attraction area?” and the model is trained
to extract the reference domain “hotel”. There are
few special cases where the original slot s does
not match the reference slot sref . For instance in
the MultiWOZ dataset, slots like destination and
departure refers name. In this work, we resolve
these slot references manually while creating the
training data for this phase, since such examples
were limited in number.

2.5 Predictive Algorithm
We now briefly describe our predictive algorithm
for a single conversation. Let D be the set of cur-
rent domain(s) that keeps track of the active do-
mains for a given turn. Let B be the set of pre-
dicted belief states. Initially, both D and B are
empty. Before moving on to the next turn, B and
D are updated based on the predictions made for
the current turn. For each user turn t with input (St,
Ut, D, B), we do the following:

• Step 1: Run the domain change prediction model
(Section 2.1).

– If the prediction is a general conversation
(Class 2), we make D = ∅ and skip all
subsequent predictions for the current turn.

– If domain change is detected (Class 1), we
go to Step 2.

– If no change in the domain is predicted
(Class 0), we do the following:

* If the cardinality of the set of current
domains (D) is 1, we directly go to the
slot action prediction in Step 3.

* Otherwise, we go to Step 2 to update D.
It gives the model an extra chance to find



223

a domain when D = ∅. Whereas, it
helps to remove extraneous domains in
case of more than one relevant domain.

• Step 2: Run domain prediction model (Section
2.2) to get the set of current domains for turn t.

• Step 3: Predict slot action (Section 2.3) for
each slots of the current domains. If slot action
EXTusr, EXTsys or REF is detected, we go to
Step 4. Otherwise, the slot-values are directly
inferred and updated in the belief state for turn t.

• Step 4: Extract the slot-value or reference
domain using span-based question-answering
method (Section 2.4) and update the belief state
B accordingly.

The main purpose of steps 1 and 2 is to predict
the relevant domains that are subsequently used for
slot value prediction (wherever necessary). This
is required due to our decoupling of the domain
and slot predictions. We observe that in Step 4 for
slot action REF, the model sometimes fails to find
the reference domain. This occurs when the user
does not explicitly mention the reference domain.
For example, “Could you please book train tickets
for the same group?”. In such cases, we select the
most recent domain that contains the reference slot
sref as the reference domain dref .

3 Dataset and Experimental Setups

3.1 Dataset
We use the MultiWOZ dataset (Budzianowski et al.,
2018) for experimentation. It is one of the largest
multi-domain conversation corpus available for
task-oriented dialogue systems. We perform our
experiments on MultiWOZ 2.1 (Eric et al., 2020)
and MultiWOZ 2.2 (Zang et al., 2020). Both the
datasets are updated versions of the original Multi-
WOZ dataset and contain fixes to some noisy anno-
tations. Table 2 and 3 shows some basic statistics
of the dataset.

3.2 Evaluation Metric
Dialogue state tracking is broadly evaluated using
several metrics like joint accuracy, slot accuracy,

Data #Dialogues #Turns Avg turns per dialogue
Train 8420 56668 6.73
Dev 1000 7374 7.37
Test 999 7368 7.37

Table 2: Data statistics of MultiWOZ 2.1

Domain Slots Conversations
attraction name, type, area 33.47%

hotel
name, type, parking, area,
day, stay, internet, people,

stars, price
40.1%

restaurant name, food, area, day, time,
people, price 45.48%

taxi arrive, departure, leave,
destination 18.01%

train arrive, day, leave, destination,
departure, people 37.64%

Table 3: Unique domain-slot pairs for which slot-value
needs to be extracted in MultiWOZ 2.1.

and average joint accuracy (Rastogi et al., 2020).
The primary metric for DST is joint accuracy or
joint goal accuracy. Joint accuracy is defined by
the fraction of turns where the predicted belief state
exactly matches the ground truth (Wu et al., 2019).
In this work, we only use joint accuracy so that we
can directly compare Hi-DST with other models.

There are a lot of instances in the MultiWOZ
dataset where the labeled slot value for a given
domain-slot pair is not present in the dialogues in
its exact form. Rather some variant of the slot value
exists like cafe jello instead of cafe jello gallery,
centre instead of center, and so on. This can cause
a problem for a fair evaluation of span-based slot
value prediction. TripPy (Heck et al., 2020) ad-
dresses this issue using a label variant map 2 where
each value is mapped to a set of variants. A match
is considered if the predicted slot value exactly
matches the ground truth or any of its variants. We
follow the same to evaluate Hi-DST.

3.3 Data Preparation

We now summarize the training data generation for
Hi-DST. We use the turn-level belief state rather
than the cumulative one in our training process.
Let Bt be the set of belief state at turn t. Then
Tt = Bt \ Bt−1 be the turn-level belief state for
turn t. We ignore the turns for data preparation
where Tt = ∅.

Let Dt be the set of domains in Tt. Then for
the domain change component, we compare Dt

and Dt−1. If there is no change, we label 0, and
1 otherwise. Annotation for general conversation
is available in the MultiWOZ dataset. If this anno-
tation is not available in a dataset, we can ignore
this class and train the domain change model with
only two classes. For the domain model, we label

2gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-
public/blob/master/dataset config/multiwoz21.json

https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public/blob/master/dataset_config/multiwoz21.json
https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public/blob/master/dataset_config/multiwoz21.json
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Data Metric domain change model domain model slot action model
0 1 2 0 1 0 1 2 3 4 5 6 7 8 9

Train

Precision 0.96 0.94 1.0 0.99 0.98 0.98 0.98 0.79 0.95 0.61 0.98 0.88 0.84 0.90 0.81
Recall 0.99 0.85 0.97 1.0 0.96 0.98 0.97 0.81 0.95 0.60 0.99 0.74 0.84 0.55 0.92
F1-score 0.97 0.89 0.98 0.99 0.97 0.98 0.98 0.80 0.95 0.60 0.98 0.80 0.84 0.69 0.86
Support 31060 7377 9879 90486 16999 136797 12813 1942 3005 203 52238 5264 2747 377 1450

Dev

Precision 0.95 0.91 0.99 0.99 0.95 0.97 0.96 0.62 0.92 0.59 0.97 0.75 0.78 0.68 0.74
Recall 0.98 0.85 0.97 0.99 0.94 0.97 0.96 0.71 0.88 0.71 0.98 0.59 0.77 0.37 0.84
F1-score 0.97 0.88 0.98 0.99 0.95 0.97 0.96 0.66 0.90 0.65 0.98 0.66 0.78 0.48 0.79
Support 4052 1065 1249 11955 2227 18206 1691 160 366 14 7214 598 356 57 143

Test

Precision 0.95 0.91 0.99 0.99 0.96 0.96 0.96 0.75 0.90 0.27 0.96 0.82 0.80 0.76 0.80
Recall 0.98 0.83 0.96 0.99 0.93 0.97 0.97 0.69 0.89 0.36 0.98 0.51 0.78 0.48 0.84
F1-score 0.96 0.87 0.98 0.99 0.94 0.97 0.96 0.72 0.89 0.31 0.97 0.63 0.79 0.59 0.82
Support 4059 1078 1235 11949 2289 18646 1803 236 362 11 7168 794 359 71 170

Table 4: Class-wise performance of domain change, domain, and slot action models on MultiWOZ 2.1 dataset.

Data Accuracy Support
Train 0.983 137,185
Dev 0.979 18,293
Test 0.979 18,551

Table 5: Individual performance of slot-value predic-
tion model on MultiWOZ 2.1 dataset.

a domain d as 1 if d ∈ Dt and 0 otherwise.
Let Ct be the set of domain-slot pairs in Tt. We

use Ct to generate the labels for slot action as de-
scribed in Table 1. We take the help of the span
index annotation in MultiWOZ for generating the
data for the slot-value model. We also added neg-
ative samples for irrelevant domain-slot pairs for
which the start and end index is set to 0.

3.4 Training Details
We implemented our models using PyTorch and
Huggingface (Wolf et al., 2020) libraries in Python
3.7. All the experiments were performed on an
Nvidia Tesla P100 machine with 16GB of memory.
We used AdamW (Loshchilov and Hutter, 2019) op-
timizer and set the learning rate and adam’s epsilon
value to 2e-5 and 1e-8 respectively. We trained all
the models for 4 epochs and chose the final model
having minimum validation loss.

We used a common configuration for the do-
main change, domain, and slot action model. We
trained these three models using pre-trained bert-
base-uncased model. Besides the BERT model, we
applied a drop out of 0.3 to the input of the final
classification head. We also used gradient norm
clipping with a maximum threshold of 2. The max-
imum token length (L) was set to 200. Individual
model performances are shown in Table 4.

We finetuned bert-large-uncased-whole-word-
masking-finetuned-squad 3 model for our span-
based slot-value prediction model. The maximum
token length (L) was set to 100. We evaluate the
slot-value prediction model using accuracy i.e the

3huggingface.co/transformers/pretrained models.html

fraction of data where the predicted span exactly
matches the ground-truth. The individual perfor-
mance is shown in Table 5.

4 Result and Analysis

4.1 Result
We report our result on MultiWOZ 2.1 (Eric et al.,
2020) and MultiWOZ 2.2 (Zang et al., 2020)
dataset in Table 6. We compare our models with
SGD baseline (Rastogi et al., 2020), TRADE (Wu
et al., 2019), DS-DST (Zhang et al., 2020), TripPy
(Heck et al., 2020), and simple-TOD (Hosseini-Asl
et al., 2020). Although the performance of Hi-DST
is comparable to existing models, its performance
is generally lower than most of the recent models.
We discuss this point in Section 4.2.4 elaborately
while analyzing our method.

4.2 Analysis
We analyse Hi-DST in four different aspects: scal-
ability (Section 4.2.1), extensibility (Section 4.2.2),
explainability (Section 4.2.3), and performance
analysis (Section 4.2.4).

4.2.1 Scalability
We made Hi-DST scalable by ensuring two things:
i) making slot-value prediction completely rely on
span-based QA, ii) decoupling the prediction of
domain and slot. As a result of this kind of model-
ing, Hi-DST takes O(|M | + |N |) time to predict
a belief state for a given user turn where M and

DST Model MultiWOZ 2.1 MultiWOZ 2.2
SGD baseline 43.4% 42.0%
TRADE 46.0% 45.4%
TripPy (without
auxiliary features) 49.23% -

DS-DST 51.2% 51.7%
TripPy 55.3% -
SimpleTOD 56.45% -
Hi-DST (Ours) 49.16% 49.44%

Table 6: Joint accuracy comparison

https://huggingface.co/transformers/pretrained_models.html
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Turn 
Domain 
Change 

Current 
Domain 

Domain-
slot pair 

Slot 
Action 

Slot value Match 

0 1 
attraction 

(0.99) 
attraction-

area 
5 

(0.99) 
east 6 

1 
0 

(0.98) 
attraction 

attraction-
name 

6 
(0.86) 

Funky fun 
house 6 

2 
1 

(0.98) 
restaurant 

(0.99) 

restaurant
-food 

5 
(0.99) 

Indian 6 

restaurant
-area  

7 
(0.88) 

east  
ref: attraction- 

area 
6 

3 
0 

(0.96) 
restaurant 

restaurant
-price 

5 
(0.99) 

moderate 6 

4 
0 

(0.97) 
restaurant 

restaurant
-name 

6 
(0.91) 

Rajmahal 6 

5 
0 

(0.99) 
restaurant - - - 6 

�Ù : Can you help me find some attractions in the east part of town? 
 
�Ú�: Definitely! My favorite place in the east is the Funky Fun House. It's 
funky and fun! 
�Ú�: Can I have the number please? 
 
�Û�: It's 01223304705. Do you need anything else? 
�Û�: Yeah, I need a restaurant. They need to serve Indian food and be in 
the same area as Funky Fun House. 
 

�Ü�: There are 4 Indian restaurants in the area.  Two are moderately 
priced and two are expensive.  Can I ask what price range you would like? 
�Ü�: I would prefer one in the moderate price range. 
 
�Ý�: May I suggest the Rajmahal located at 7 Barnwell Road Fen Ditton. 
�Ý�: Can I also have their phone number and postcode? 
 
�Þ�: Sure, their phone number is 01223244955 and the postcode is 
cb58rg. Is there anything else I could help you with? 
�Þ�: That is all I need. 

 

Figure 3: Illustration of the working of Hi-DST.

N are the sets of unique domains and slots respec-
tively. It is to be noted that all turns do not require
O(|M |+ |N |). It is true only for those turns where
we need to update the set of current domains. Belief
state prediction can take O(|N |) and O(1) when
domain change prediction is 0 and 2 respectively.
Since the number of domain changes and general
dialogues in a task-based conversation is very lim-
ited, the dominating factor is O(|N |). To the best
of our knowledge, O(|M |+ |N |) is the best time
complexity for dialogue state prediction without
any kind of dependency on auxiliary features and
domain statistics.

4.2.2 Extensibility
All four components of Hi-DST are completely
independent of the number of domains and slots.
So, the number of model parameters will remain
the same for any dataset. This is why Hi-DST is
easily extensible to datasets with a large number of
domains/slots. Moreover, we convert a domain/slot
using Glove embedding which is not updated dur-
ing training. This property enables the model to be
used in zero-shot and few-shot scenarios.

4.2.3 Explainability
As described earlier, we break the DST task into
a hierarchy of generic sub-tasks. Due to this hier-
archical structure, we can look at Hi-DST as a se-
ries of meaningful actions which closely resemble
human-like decision-making. In Fig 3, we show the
details of a Hi-DST prediction along with the con-
fidence of each decision. Firstly, we can observe
that it is human-readable and self-explanatory. Sec-
ondly, the probability score quantifies each decision
and helps in debuggability. For a wrong prediction,
we can easily eyeball the probability scores and

find the root cause of the mistake. Thirdly, the
model is capable of detecting user requests which
enable the understanding of complete user intent.

4.2.4 Performance Analysis
We now do a critical analysis of our model perfor-
mance. Even though having some good properties
(like scalability, extensibility, and explainability),
our accuracy is lower in comparison to the state-
of-the-art models. There are several factors that
limit the performance of Hi-DST. Firstly, most of
the high-performing models don’t predict domain.
We introduce an extra uncertainty in our model
through domain prediction which reduces the ac-
curacy but helps in scalability. Secondly, there
are a lot of wrong and inconsistent annotations in
the MultiWOZ dataset (Zang et al., 2020). These
noisy annotations can have a big impact on the pre-
dictions since our model components are trained
independently. Thirdly, the higher accuracy models
use auxiliary features to preserve contextual infor-
mation. For example, the inclusion of the previous
belief state has been shown to be beneficial (Heck
et al., 2020) to improve accuracy. These features
can also help to adapt to the inconsistencies in the
data. We can observe in Table 6 that the joint accu-
racy of TripPy drops from 55.3% to 49.2% without
the auxiliary features which is very similar to the
performance of our model. Although these auxil-
iary features are helpful, they are dependent on the
number of domains and slots which makes them
difficult to extend to a new dataset with different
domains and slots. Whereas, due to the generic
modules and the extensible nature of Hi-DST, we
can easily adapt to a new dataset. We also do not
need to re-train or finetune all the components for
a new dataset. For example, if a newer dataset has
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the same set of domains, fine-tuning the slot-action
model is enough to get a decent result.

5 Conclusion

In this work, we propose Hierarchical-DST (Hi-
DST), a scalable and extensible solution framework
for DST. We split the task of DST into four generic
modules that not only make Hi-DST scalable and
extensible for larger datasets but also improve its
explainability. Hi-DST takes O(|M |+ |N |) time
belief state prediction per user turn and achieves
comparable performance to existing DST models.
We discuss the performance trade-off due to the en-
forcement of scalability and extensibility. As future
work, we want to continue our experimentation in
zero-shot and few-shot scenarios and investigate
the efficiency of Hi-DST in complex datasets like
SGD (Rastogi et al., 2020). We would also like to
explore the possibility of including additional infor-
mation or auxiliary features without impacting the
desirable properties of Hi-DST such as scalability,
explainability etc.
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