
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 438–444
July 29–31, 2021. ©2021 Association for Computational Linguistics

438

A Task-Oriented Dialogue Architecture via Transformer Neural
Language Models and Symbolic Injection

Oscar J. Romero, Antian Wang, John Zimmerman, Aaron Steinfeld, Anthony Tomasic
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
{oscarr, antianw, johnz, as7s, tomasic}@andrew.cmu.edu

Abstract

Recently, transformer language models have
been applied to build both task- and non-task-
oriented dialogue systems. Although trans-
formers perform well on most of the NLP
tasks, they perform poorly on context retrieval
and symbolic reasoning. Our work aims to ad-
dress this limitation by embedding the model
in an operational loop that blends both natural
language generation and symbolic injection.
We evaluated our system on the multi-domain
DSTC8 data set and reported joint goal accu-
racy of 75.8% (ranked among the first half po-
sitions), intent accuracy of 97.4% (which is
higher than the reported literature), and a 15%
improvement for success rate compared to a
baseline with no symbolic injection. These
promising results suggest that transformer lan-
guage models can not only generate proper
system responses but also symbolic represen-
tations that can further be used to enhance the
overall quality of the dialogue management as
well as serving as scaffolding for complex con-
versational reasoning.

1 Introduction

Building task-oriented dialogue systems using a
conventional pipeline approach, where modules
are optimized separately, increases the fine control
for dialogue management, but it does not necessar-
ily improve overall performance (Madotto et al.,
2018; Liu and Lane, 2018). In contrast, end-to-end
neural models employ a straightforward training
approach to generating system responses; however,
this approach is impractical for goal-oriented di-
alogues where the system needs to interact with
external systems or generate an explanation that
supports its decisions (Ham et al., 2020).

Recently, the use of transformer models for
building end-to-end dialogue systems has attracted
considerable attention (Budzianowski and Vulić,
2019; Yang et al., 2020); however, as far as we
know, current approaches operate solely at the text

(word) level. We extend this approach to utilize
transformer model’s versatility to generate more
complex constructs such as symbol representations.

In this paper, we propose a hybrid approach. We
first apply a fine-tuned, end-to-end transformer
model for multi-domain task-oriented dialogue.
Then, during inference, we decouple the execution
into expert modules that collaboratively process the
content of a common knowledge base (resembling
the blackboard architecture (Erman et al., 1980)).

In our experiments, we empirically demonstrate
that the transformer model can be fine-tuned to gen-
erate not only text from a given input but also sym-
bolic representations (e.g., utterances→ dialogue
states), manipulate those symbolic representations
to generate new ones (e.g., dialogue states→ sys-
tem actions), and generate natural language from
symbols (e.g., system actions→ system response).

This work led us to a new generic reasoning
architecture that leverages the ability of a trans-
former model to effectively manipulate representa-
tions that are mixtures of natural and symbolic lan-
guage. The result is a simple architecture that uses
a uniform representation to blend together dialogue
aspects of interpretation, language understanding
and generation, and behavior.

2 Method

Architecture: Our system resembles a blackboard
architecture (Erman et al., 1980) (Figure 1) with
a central memory blackboard and seven modules
that implement different steps of the dialogue.

Blackboard: It provides a global memory where
pieces of knowledge (history, user’s intents and
goals, system actions, etc.) are continuously up-
dated by modules to maintain the dialogue context.

Forget: This module shortens sequence inputs
that surpass the maximum limit of tokens that a
transformer model can process at a time (in our
case, 1,024 tokens for GPT-2). Additional input
tokens beyond this limit are truncated, potentially

439

Blackboard
(Dialogue Context)

Word-level DST (GPT-2) Dialogue
History

Dialogue Interface
user
utterance

Forget

Service
Call

Service
Results

System
Response

System
Actions

History
DST

Slot-Values Validator
POL (GPT-2)

Service Executor

Buses
Hotel
Flights

Train
Shared Ride
Events…

Service
Call

History
Modified

slot values

Va
lid

at
or

Slot values

History
DST

Serv.
Results

System
Actions

De
co

de
r

NLG (GPT-2)

History
DST

Results
Sys acts

System
Response

De
co

de
r

De
co

de
r

History

History

DST
Serv Call

Hist
ory,

 DST
DST

Serv. Call Serv. Results

Sys actions

Hist, DST
Res, Sys act

Delexicalized
Sys Resp.

sys
utterance

Hist, DST, Ser Res.

DST

Figure 1: Dialogue System Architecture. Arrows illustrate retrieving/updating information from/to the blackboard.
Boxes labeled GPT-2 (DST, POL, NLG) represent the same neural module which is invoked multiple times using
different aggregated inputs. Dotted boxes contain symbols and double-line boxes contain natural language.

discarding relevant symbols needed for dialogue
processing. Instead, this module discards only the
oldest (non-symbolic) elements in dialogue history
to keep the input token size within the limit. A
more sophisticated component that is more selec-
tive in discarding irrelevant information, chunking
information, etc., is left as future work.

Word-level Dialogue State Tracking (DST): The
transformer model takes the dialogue history as in-
put and generates a symbolic dialogue state as out-
put. Since the dialogue state’s symbols (i.e., intent,
service, and slot values) can be directly mapped
into a service call, the model also outputs a call
signature when all the required slots are met. Then,
generated symbols are injected into the blackboard.

Slot-Values Validator: It checks whether the dia-
logue state’s symbols were correctly predicted and,
if so, they are injected back into the blackboard.

Service Executor: given a generated service call,
the service executor queries the database and pub-
lishes the results on the blackboard.

Dialogue Policy (POL): Based on the current
context, this module uses the transformer model
to generate the next system actions (symbolic con-
structs that contain acts, slots, and values).

Natural Language Generation (NLG): Taking
the current context as input, this module uses the
transformer model to generate a natural language
system response.

Finally, we implemented a control component
that orchestrates modules’ activation, allowing
them to manipulate back and forth the content of
the blackboard (a mixture of multi-domain, multi-
intent symbols and natural language – see Alg. 1).

Fine-tuning: During training, we fine-tuned a pre-
trained GPT-2 transformer model using 16,548
dialogues from the DSTC8 dataset described in
section 3. To this purpose, we first pre-processed
the data by encoding dialogue annotations into se-
quences of symbolic representation segments (for
convenience, we used a Prolog-like syntax), inter-
mixed with natural language. Then, we encoded a
set of 9 special tokens, added them to our vocab-
ulary for delimiters and segment indicators, and
concatenated the segments as follows:
<bos><usr>...<sys>...<usr>...<dst>...
<svc>...<svr>...<sac>...<sut>...<eos>

Where <bos> and <eos> demarcate the begin-
ning and end of an example; <usr> and <sys>

represent the history of both user and system utter-
ances; <dst> is the symbolic segment for the dia-
logue state tracker; <svc> and <svr> correspond to
the service call and service result segments, respec-
tively; <sac> are the system actions; and <sut>

is the system utterance. Then, the forget module
truncated each example as we describe before.

Although we fine-tuned the neural model end-
to-end, during the test phase, we broke down the
generation process into 3 main steps resembling the
execution of a pipelined dialogue system (except
that inputs to each module are composite structures
of symbols and natural language that are assembled
incrementally), as we described above (i.e., DST,
POL, and NLG). This architectural breakdown al-
lowed us to add new experts that intercept each
module’s outputs, manipulate the corresponding
symbols, and inject the updates into the context
maintained by the blackboard.

440

Example: consider the following snippet of a dia-
logue from the DSTC8 data set (in json format):
"turns": [
{

"speaker": "USER",
"utterance": "I need to take a bus from

Las Vegas to San Francisco",
"user_acts": ...
...
"state": {
"active_intent": "FindBus",
"requested_slots": [],
"slot_values": {

"from_location": [
"Las Vegas"

]
...

}}
},
{

"speaker": "SYSTEM",
"utterance": "sure, I found 3 buses.
One departs tomorrow at 10am...",

"sys_acts": ...
...
"service_call": {
"method": "FindBus",
"parameters": {

"from_location": "Las Vegas",
...

}
},
"service_results": [

{
"category": "direct",
"departure_date": "2019-03-13",
...

}]}
...

]

While user/system utterances do not require any
change before being encoded as part of the fine-
tuning data set (e.g., <usr>I need to take...),
annotations for dialogue state, service calls and
results, and system actions are encoded as Prolog-
like compound terms (atoms followed by a comma-
separated list of argument terms with variable arity).
For instance, the dialogue state contains argument
terms for the type of service, user’s intent, and the
slot values provided by the user:
<dst>

has(
state,[

service(Buses),
intent(FindBus),
slot_values(

from_location,[‘‘Las Vegas’’],
...

)])

Likewise, the symbolic representation of the
service call contains argument terms that corre-
spond to mappings between active intent and ser-
vice method, and slot values and call parameters:

<svc>
call(

Buses, [
method(FindBus),
parameters(
from_location,[‘‘Las Vegas’’],
...

)])

The service results are encoded as a list of com-
pound terms, as follows:
<svr>
results([

idx1(slots,[
category(‘‘direct’’),
...

]),
idx2(slots,[
...]

])

Finally, the system action contains argument
terms for the the type of dialogue act, the slots,
and their corresponding values:
<sac>
action(

act(INFORM),
slot(departure_time),
value(10am)])

...)

3 Experiment Framework

We used the open-source implementation of GPT-
2-small transformer model1 with values for Adam
learning rate (5.75e-5), epsilon for Adam optimizer
(1e-8), and batch size (4). To generate more coher-
ent text as proposed by Welleck et al. (2020), we
set parameters top-p nucleus sampling (0.95) and
top-k sampling (50) using grid search.

We utilized the Schema-Guided data set pro-
posed at the Dialogue System Technology Chal-
lenge DSTC8-Task42. We chose this data set due
to: 1) its rich annotations across the whole dia-
logue pipeline; 2) its size that exceeds the existing
dialogue corpora in scale (with over 20K multi-
domain, task-oriented dialogues spanning 45 APIs
over 20 domains); and 3) it contains a significant
amount of dialogues for the transportation domain3.
In this work, we only tested dialogues containing
domains/services shown during training although
unseen slot values were allowed (the evaluation of
unseen domains is left as future work).

1https://github.com/huggingface/transformers
2github.com/google-research-datasets/dstc8-schema-

guided-dialogue
3Our long-term goal is to explore the limits of the proposed

hybrid approach in the context of mitigating accessibility barri-
ers when accessing transportation information, e.g., (National
Council on Disability, 2015; Steinfeld et al., 2017)

441

Since the DSTC8 challenge does not provide
SQL scripts or equivalent, we reverse-engineered
the database results from the data set and imple-
mented our own services database.

We carried out automatic evaluation of our sys-
tem on 2,361 dialogues using diverse metrics. For
DST, we used the metrics provided with the data
set, measuring: average goal accuracy (accuracy
of predicting the value of a slot correctly), joint
goal accuracy (average accuracy of predicting all
slot assignments for a turn correctly), active intent
accuracy (a fraction of user turns for which the
intent was rightly predicted), and requested slot F1
(the macro-averaged F1 score for requested slots
over all eligible user turns). In addition, we ex-
tended these metrics to measure system actions in
a similar way: service call accuracy, joint param-
eter accuracy, and joint system action accuracy.
Also, we used success rate for system performance,
and BLEU for fluency of the generated response.
Human evaluation is left as future work.

Finally, post hoc, we ran an error analysis that
let us identify the kind of error that affected system
performance the most, allowing us to build a simple
heuristic-based expert that focused on measuring
particular kinds of modeling errors to identify areas
for improving overall performance.

4 Results

We ran 3 different experiments as follows:
Expo: in order to ensure a fair comparison between
the results reported in Rastogi et al. (2020) and our
system’s performance results, this experiment uses
the ground truth values (oracle) of both user and
system utterances. This experiment uses DSTC8
metrics and data, so our results can be compared
directly to published results (26 approaches).
Expg: history is composed of gold user utterances
and system utterances generated by our system. As
opposed to the oracle experiment above, this ex-
periment captures cascading errors that propagate
from earlier steps to later steps in a dialogue.
Expv: a heuristic-based slot-value validator is
added to Expo to improve performance. For illus-
trative purposes only, this experiment measured the
impact of mitigating the most critical errors (from
error analysis) by manipulating symbols generated
by GPT-2 (Expg). These results precisely identify
weaknesses in the current model.
DST Evaluation Results: overall, when compared
to the seen-services results reported in Rastogi et al.

Approach JGA AGA IA RSF1
Team 9 0.924 0.979 0.957 0.993
Team 10 0.920 0.978 0.956 0.847
Expv 0.917 0.956 0.974 0.985
Team 8 0.910 0.970 N.A. 0.847
Team 14 0.900 0.960 0.957 0.996
Team 5 0.893 0.966 0.959 0.992
Expo 0.758 0.939 0.974 0.985
Expg 0.639 0.892 0.935 0.974
Baseline 0.412 0.677 0.950 0.995

Table 1: Overall results of DST evaluation. JGA: joint
goal accuracy, AGA: average goal accuracy, IA: intent
accuracy, and RSF1: requested slot F1 score. Due to
space constraints, we only include the top-5 results re-
ported in Rastogi et al. (2020).

(2020), our system outperformed other models on
intent accuracy (see Table 1). Correctly predicting
the intent demonstrates the ability of our system
to track user’s intentions and effectively detect do-
main switches. In addition, if we consider the 26
teams who participated in DSTC8-T4, our system
ranks among the first half positions in Expo and the
first 2/3 positions in Expg. Finally, Expv made an
improvement in JGA of 21% and 43% over Expo
and Expg, respectively. Details of the heuristic-
based module are described in the next section.
Error Analysis: from all the reported metrics,
we focused on the results obtained for the Joint
Goal Accuracy (JGA) for two reasons: 1) JGA is
the primary evaluation metric used for ranking ap-
proaches submitted to DSTC8-Task4; and 2) this
metric got the lowest scores for Expo and Expg
among all the evaluation metrics (see Table 1).

From the error analysis, we found 3 main kinds
of errors that affect JGA: 1) slot names were cor-
rectly predicted but slot values were not (10.5%
of errors); 2) slot names that appeared in the gold
DST but were not predicted by the system (29.1%);
and 3) slot names that were predicted but did not
appear in the gold DST (60.4%).

Given its significant presence, we focus on the
third kind of error. The main causes for this error
to occur are: 1) the slot value is predicted but not
mentioned by either the user or the system in the di-
alogue history (over-fitting); and 2) the slot value is
mentioned/offered by the system but not accepted
by the user (e.g., the system says “There is a direct
bus that departs at 9:50 am and costs $36.”, where
the slot trip_fare was unsolicited by the user, and
then the user says “hmm any buses departing in the

442

Appr. SCA JPA JSA SR BLEU
Expv 0.927 0.891 0.786 82.21% 2.14
Expo 0.927 0.828 0.786 80.45% 2.05
Expg 0.873 0.703 0.748 71.25% 1.63

Table 2: Overall results of the System Actions evalu-
ation. SCA: service call accuracy, JPA: joint service
call’s parameter accuracy, JSA: joint system action ac-
curacy, and SR: success rate.

afternoon?” only confirming departure_time).
We implemented a heuristic-based slot-value val-

idator to mitigate the error above. First, we ex-
tracted and classified all the slot values from the
training data set and store them in a dictionary.
Then, a set of heuristic rules based on fuzzy string
matching determine whether a slot value is present
in the dialogue history by calculating its similarity
with the values in the dictionary, fixing the first
cause of the error. Next, if the slot value is men-
tioned only by the system, the value is retained
only if the system offered the value at any prior
turn (i.e., sys_act: ‘‘OFFER’’) and the user ac-
cepted the offered slot value in the next turn (i.e.,
user_act: ‘‘SELECT’’ | ‘‘AFFIRM’’).
System Actions and Performance Results: From
Table 2, Expo mainly improved JPA, SR, and
BLEU over Expg by 18%, 13%, and 26%, respec-
tively. Clearly, some down-stream error propaga-
tion occurs. On the other hand, Expv slightly im-
proved JPA (8%) over Expo due to fixing some of
the DST issues also improved the quality of predict-
ing service parameters. Finally, although BLEU
scores are low (due to there was available only one
single reference value per turn), they are paired
with high success rates – in fact, a manual inspec-
tion of system utterances indicates an overall high
quality of language generation (see Figure 2).

5 Related Work

In comparison with traditional pipelined dialogue
architectures (Chen et al., 2017; Bohus and Rud-
nicky, 2009) where NLU (Lee et al., 2019),
DST (Williams et al., 2013), and POL/NLG (Wen
et al., 2015) modules are optimized separately; our
architecture is simpler and less prone to cascading
failures due to the folding of multiple NLP tasks
into a single transformer model and the exposure
of symbolic representation directly to the model.

More recently, pre-trained language models simi-
lar to GPT-2 have been used for building end-to-end
dialogue systems. Our approach is similar in nature

to the work proposed by (Hosseini-Asl et al., 2020;
Peng et al., 2020) in that we use a single causal
language model to generate all outputs given a dia-
logue context. However, unlike these approaches,
our model not only encodes DST and database re-
sults (which shows a labeling cost reduction) but
also encodes dialogue policy and service call tem-
plates, allowing the system to be able to monitor
errors and manipulate symbolic representations at
different stages of turn processing.

Similar to other transformer dialog sys-
tems (Wolf et al., 2019; Ramadan et al., 2018),
our model learns from text; however, our model
also learns and generates complex structures that
intermix natural and symbolic language. In par-
ticular, the work described by Budzianowski and
Vulić (2019) and Yang et al. (2020) encodes both
belief state and knowledge base constructs into
simple text representations and generates text-only
outputs. In contrast, our approach encodes, manipu-
lates, and generates more sophisticated knowledge
representations, roughly first-order logic constant
terms that are implicitly learned and which could
be used to communicate with external sources and
expert components such as a symbolic reasoner.

Dialogue systems have many similarities to con-
versational workflow systems. The Virtual Informa-
tion Officer (Tomasic et al., 2007) required more
than thirty individual models performing task clas-
sification, entity resolution, and information extrac-
tion. Moreover, (Romero et al., 2019) discuss the
challenges found when directly translating natural
language inputs into symbolic API calls in a service
composition system. Both systems would benefit
from the architecture and method presented here.

6 Conclusions

In this paper, we empirically demonstrated that sev-
eral capabilities of transformer language models
can be leveraged to construct a new dialogue archi-
tecture that is more flexible and simpler (resulting
in much lower engineering costs) and extensible
(allowing symbolic injection and manipulation),
while retaining reasonable performance.

7 Acknowledgements

The contents of this paper were developed un-
der grants from the National Institute on Disabil-
ity, Independent Living, and Rehabilitation Re-
search (NIDILRR grant numbers 90DPGE0003
and 90REGE0007).

443

References
Dan Bohus and Alexander I. Rudnicky. 2009. The

ravenclaw dialog management framework: Archi-
tecture and systems. Comput. Speech Lang.,
23(3):332–361.

Paweł Budzianowski and Ivan Vulić. 2019. Hello, It’s
GPT-2-How Can I Help You? Towards the Use of
Pretrained Language Models for Task-Oriented Di-
alogue Systems. In Proceedings of the 3rd Work-
shop on Neural Generation and Translation, pages
15–22.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. SIGKDD Explor.
Newsl., 19(2):25–35.

Lee D Erman, Frederick Hayes-Roth, Victor R Lesser,
and D Raj Reddy. 1980. The Hearsay-II speech-
understanding system: Integrating knowledge to re-
solve uncertainty. ACM Computing Surveys (CSUR),
12(2):213–253.

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang,
and Kee-Eung Kim. 2020. End-to-end neural
pipeline for goal-oriented dialogue systems using
GPT-2. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 583–592. Association for Computational Lin-
guistics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
SUMBT: Slot-utterance matching for universal and
scalable belief tracking. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5478–5483, Florence, Italy.
Association for Computational Linguistics.

Bing Liu and Ian Lane. 2018. End-to-end learning of
task-oriented dialogs. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 67–73, New Orleans,
Louisiana, USA. Association for Computational Lin-
guistics.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung.
2018. Mem2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. CoRR, abs/1804.08217.

National Council on Disability. 2015. Transportation
update: Where we’ve gone and what we’ve learned.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin
Shayandeh, Lars Liden, and Jianfeng Gao. 2020.
SOLOIST: few-shot task-oriented dialog with A

single pre-trained auto-regressive model. CoRR,
abs/2005.05298.

Osman Ramadan, Paweł Budzianowski, and Milica Ga-
sic. 2018. Large-scale multi-domain belief track-
ing with knowledge sharing. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics, volume 2, pages 432–437.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Schema-
Guided Dialogue State Tracking Task at DSTC8.
arXiv preprint arXiv:2002.01359.

Oscar J. Romero, A. Dangi, and S. A. Akoju. 2019.
NLSC: Unrestricted Natural Language-Based Ser-
vice Composition through Sentence Embeddings. In
2019 IEEE International Conference on Services
Computing (SCC), pages 126–135.

Aaron Steinfeld, Jordana L Maisel, and Edward Stein-
feld. 2017. Accessible Public Transportation: De-
signing Service for Riders with Disabilities. Rout-
ledge.

Anthony Tomasic, Isaac Simmons, and John Zimmer-
man. 2007. Learning information intent via observa-
tion. In Proceedings of the 16th international con-
ference on World Wide Web, pages 51–60.

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020. Consistency of a recurrent language model
with respect to incomplete decoding. arXiv preprint
arXiv:2002.02492.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Jason Williams, Antoine Raux, Deepak Ramachandran,
and Alan Black. 2013. The dialog state tracking
challenge. In Proceedings of the SIGDIAL 2013
Conference, pages 404–413, Metz, France. Associ-
ation for Computational Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A
transfer learning approach for neural network
based conversational agents. arXiv preprint
arXiv:1901.08149.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2020.
Ubar: Towards fully end-to-end task-oriented
dialog systems with gpt-2. arXiv preprint
arXiv:2012.03539.

https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.1109/SCC.2019.00031
https://doi.org/10.1109/SCC.2019.00031
https://www.aclweb.org/anthology/W13-4065
https://www.aclweb.org/anthology/W13-4065

444

Algorithm 1 Main Flow of Control
dialogue control():
Input: signal = start

1: while signal != end do
2: usr utt← get user input().
3: sys utt← process response(usr utt).
4: return sys utt.
5: end while

process response():
Input: usr utt
Output: sys utt

1: bb← update blackboard(usr utt).
2: dst, serv call← exec gpt2(“DST”, bb).
3: bb← update blackboard(dst, serv call).
4: dst← validate slots(bb).
5: bb← update blackboard(dst).
6: results← exec serv call(serv call).
7: bb← update blackboard(results).
8: sys acts← exec gpt2(“POL”, bb).
9: bb← update blackboard(sys acts).

10: sys utt← exec gpt2(“NLG”, bb).
11: bb← update blackboard(sys utt).
12: return sys utt.
exec gpt2():
Input: id, bb # bb: blackboard
Output: outputs

1: if id = “DST” then
2: input← encode(bb.hist).
3: else if id = “POL” then
4: input ← encode(bb.hist, bb.dst,

bb.results).
5: else if id = “NLG” then
6: input ← encode(bb.hist, bb.dst,

bb.results, bb.sys acts).
7: end if
8: if length of input > max token length then
9: input← forget(input). # truncation

10: end if
11: outputs← predict gpt2(input).
12: return outputs

update blackboard():
Input: updates
Output: blackboard

1: for element in updates do
2: update(blackboard, element).
3: end for
4: return blackboard

Turn Speaker Utterance
1 user (gold): I am in a plan to visit some nice and attractive places

for which I need your help. Please search some nice
places in LA.

2 sys (gen): Do you have any particular category in your mind to
search for and which is your selective city to search for
the attractions?

sys (gold): I found 10 places those are most attractive places.
Among them Angels Flight Railway is the best one and
which is also a Historical Landmark. Hope you like it.

3 user (gold): I need to check whether this place is a Child-friendly
place and there will be no entrance fee for this place.
Please check it for me.

4 sys (gen): Found an attraction which is Autry Museum of the
American West which is a good Museum and I think
this is the nice place to check for child-friendly
attractions Do you help me to find any other
attractions?

sys (gold): I have checked and found that this is not the suitable
place for children and also entry fees will be enable
there?

5 user (gold): That is okay. In need to go there with four persons for
which I need a bus. Please search for me.

6 sys (gen): Shall I search it for the date March 4th?

sys (gold): Let me know your planned leaving date, so that check
accordingly.

7 user (gold): search for the bus on 13th of this month.

8 sys (gen): Where are you leaving from?

sys (gold): Also I need the information about your leaving place.

9 user (gold): I have planned to leave from Sacramento.

10 sys (gen): I found a bus leaving at 2:40pm that costs $45 with 0
transfers.

sys (gold): A bus with 0 transfers which leaves at 2:40 pm and it
costs $45. What is your opinion?

11 user (gold): Let me know the leaving station.

12 sys (gen): The bus departs from Sacramento Valley Station

sys (gold): It is Sacramento Valley Station.

13 user (gold): Destination station name is what?

14 sys (gen): It is the Union Station which is the destination station
of your bus

sys (gold): It is Union Station, was that information enough?

15 user (gold): Yes, but I need to search for some other buses.

16 sys (gen): Yes, What about a bus departs at 5 pm with 0 transfers
under cost $54?

sys (gold): What about a bus leaves at 5 pm with 0 transfers
under cost $54?

17 user (gold): Yes, that is the one I want, please make a booking.

18 sys (gen): Need your confirmation to book tickets for 4 persons
in the bus leaving from Sacramento to Los Angeles on
March 13th at 5 pm

sys (gold): Please confirm to book 4 tickets in a bus leaving from
Sacramento to Los Angeles on March 13th at 5 pm.

19 user (gold): This looks okay, can you check about the origin
station?

20 sys (gen): The bus station you will leave from is Sacramento
Valley Station

sys (gold): It is Sacramento Valley Station from where the bus will
leave and your tickets are booked as per your
information.

21 user (gold): Thank you for your help.

22 sys (gen): Have a good day

sys (gold): Have a great day

Figure 2: Sample of a multi-domain dialogue. For each
gold user utterance, we provide both the gold system
utterance and the utterance generated by our system.

