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Abstract
Predicting the next utterance in dialogue is
contingent on encoding of users’ input text to
generate appropriate and relevant response in
data-driven approaches. Although the seman-
tic and syntactic quality of the language gen-
erated is evaluated, more often than not, the
encoded representation of input is not evalu-
ated. As the representation of the encoder
is essential for predicting the appropriate re-
sponse, evaluation of encoder representation is
a challenging yet important problem. In this
work, we showcase evaluating the text gener-
ated through human or automatic metrics is
not sufficient to appropriately evaluate sound-
ness of the language understanding of dialogue
models and, to that end, propose a set of probe
tasks to evaluate encoder representation of dif-
ferent language encoders commonly used in
dialogue models. From experiments, we ob-
serve that some of the probe tasks are eas-
ier and some are harder for even sophisticated
model architectures to learn. And, through ex-
periments we observe that RNN based archi-
tectures have lower performance on automatic
metrics on text generation than transformer
model but perform better than the transformer
model on the probe tasks indicating that RNNs
might preserve task information better than the
Transformers.

1 Introduction

The task of dialogue modeling requires learning
through interaction, often, from humans. The
model is expected to understand the input text for it
to interact, and the interaction can be meaning-
ful only when the language understanding gets
better. Approaches for solving dialogue task in-
clude information retrieval based approaches like
selecting a response from a set of canned responses
(Lowe et al., 2015a) or keeping track of very spe-
cific information which are a priori marked as in-
formative slot-value pairs (Guo et al., 2018; Asri

et al., 2017) or generating the next response with
token-by-token (Vinyals and Le, 2015; Lowe et al.,
2015a; Serban et al., 2015; Li et al., 2016, 2017;
Parthasarathi and Pineau, 2018). The evaluation of
the different approaches have mostly relied on the
output of the model – the slot predicted, response
selected or generated.

The issues in evaluation – automatic evalua-
tion metrics uncorrelated with human judgement
– showcased by Liu et al. (2016) is still an open
problem. Attempts to mimic human scores for bet-
ter evaluation metric (Lowe et al., 2017) and other
metrics that aim to correlate with the human judge-
ment (Sinha et al., 2020; Tao et al., 2018) evaluate
the quality of the text generated but do not eval-
uate the language understanding component of a
model. The language understanding component of
an agent more often than not goes unnoticed with
only token-level evaluation metrics on the gener-
ated text.

To that end, we propose evaluating the encoder
representation of dialogue models through probe
tasks1 constructed from the commonly used dia-
logue data sets – MultiWoZ (Budzianowski et al.,
2018) and PersonaChat (Zhang et al., 2018). Con-
cretely, we use the representation learnt by the en-
coders while training on dialogue generation tasks
to solve a set of dialogue related classification tasks
as a proxy to probe the information encoded in the
encoder representation. We study the performance
of language encoders in 17 different probe tasks
with varying degree of difficulties – binary classi-
fication, multi-label classification and multi-label
prediction. For example, predicting whether the
current dialogue has single or multiple tasks, iden-
tifying the number of tasks, identifying the tasks,
presence of a specific information provided by the
user among many others. The probe tasks allow

1https://github.com/ppartha03/Dialogue-Probe-Tasks-
Public

https://github.com/ppartha03/Dialogue-Probe-Tasks-Public
https://github.com/ppartha03/Dialogue-Probe-Tasks-Public
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a way to quantify the understanding of a model
and help identify biases, if any, in the task of di-
alogue prediction. We observed the performance
of the models in the probe tasks to little fluctuate
with different seed values thus allowing to analyse
the encoder representation with minimal variance.
Further, the experiments on probe tasks help in
understanding deeper differences in between re-
current neural network (RNN) and Transformer
encoders that were previously not evident from the
token-level evaluation methods.

Our contributions in the paper are:

• Showcasing the significantly high variance in
human evaluation of dialogues.

• Proposing a list of probe tasks – 2 semantic,
13 information specific and 3 downstream as
an alternate evaluation of dialogue systems.

• Finding that the representation learnt by recur-
rent neural network based models is better at
solving the probe tasks than the ones based on
transformer model.

2 Related Work

Evaluating dialogue models has been an important
topic of study. While many of the metrics have fo-
cussed on evaluating the generated text through
n-gram overlap based heuristics – BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), METEOR
(Lavie and Agarwal, 2007) – there have also been
learned metrics like ADEM (Lowe et al., 2017),
MAudE (Sinha et al., 2020), RUBER (Tao et al.,
2018) among other metrics (Celikyilmaz et al.,
2020). Though language generation has been an
important component of study, there are not many
studies that benchmark soundness of encoding in-
formation by dialogue systems.

Probe tasks in language generation (Conneau
et al., 2018; Belinkov and Glass, 2019; Elazar et al.,
2020) has been used to understand the information
encoded in continuous embedding of sentences.
Such probe tasks are set up as classification tasks
that are solved with model learnt representation.
As it is easier to control the biases in probe tasks
than in the downstream tasks, research in language
generation has analysed models on probe tasks like
using encoder representation to identify words in in-
put (WordCont) to measuring encoder sensitivity
to shifts in bigrams (Conneau et al., 2018; Belinkov
and Glass, 2019).

Analysis using probe tasks has been done also in
reinforcement learning (RL). Anand et al. (2019)
learn state representation for an RL agent in an
unsupervised setting and introduce a set of probe
tasks to evaluate the representation learnt by agents.
This includes using an annotated data set with mark-
ers for position of the agent, current score, items
in inventory, target’s location among others. The
authors train a shallow linear classifier to identify
specific entities in the embedded input that serves
as a metric for the representational soundness of
the learning algorithm.

Applications of computer vision like caption gen-
eration for images (Vinyals et al., 2015) or videos
(Donahue et al., 2015) use attention based models
to parse over the hidden states of a convolutional
neural network (ConvNet) (LeCun et al., 1998).
The attention over the ConvNet features are visu-
alized to observe the words corresponding to dif-
ferent parts of the image. Visualizing the attention
has been one of the qualitative probe task for text
generation conditioned on images (Xu et al., 2015).

3 Dialogue probe Tasks

Like other tasks, dialogue task requires a learning
agent to have sufficient understanding of the con-
text to generate a response; at times the models
have been shown to not have basic understanding
leading to incorrect response prediction. Although
dialogue models are evaluated on grammar, seman-
tics, and relevance of the generated text, seldom has
that been extended to evaluate the language encod-
ing capacity of these models. The tasks proposed
and discussed in this paper are shown in Table 1.

3.1 Basic Probe Tasks

The basic probe tasks evaluate if the encoder rep-
resentation can be used to predict the existence of
a mid-frequency token in the context (WordCont)
(Belinkov and Glass, 2019), or test if the encoding
of the context provides information of how long the
dialogue has been going on (UtteranceLoc) (Sinha
et al., 2020). For UtteranceLoc task, the conver-
sation is split into 5 different temporal blocks and
a classifier trained on the encoded context embed-
ding is used to predict the appropriate label.

3.2 Information Specific Probe Tasks

We construct 12 information specific probe tasks
to evaluate if specific information is retained in the
encoder representation of input text. The informa-
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Task Task Name Description #Classes Multi-Label
Prediction

Semantic UtteranceLoc∗ How long has the conversation been happening ? 5 No
WordCont+ Which mid-frequency word is encoded in the context ? 1000 No

Information
Specific

IsMultiTopic Does the conversation have more than one topic ? 2 No
NumAllTopics How many topics does this conversation have ? 6 No
RepeatInfo Which information provided by the user is repeated ? 11 Yes
NumRepeatInfo What many number of recent information are repeats ? 7 No
AllTopics What are all the topics discussed so far ? 8 No
RecentSlots What is the recent information given by the user ? 37 Yes
NumRecentInfo How many information did the user provide recently ? 10 No
RecentValues What are the details of the recent information ? 1060 Yes
AllSlots What all information are given by the user so far? 37 Yes
AllValues What are the details of all the information provided ? 1060 Yes
RecentTopic What is the current topic of the dialogue ? 8 No
NumAllInfo How many information did the user provide so far ? 20 No
PersonalInfo+ What keywords in USER persona does the model iden-

tify?
3754 Yes

Downstream
task

ActionSelect Which downstream task (database query) follows the
current conversation ?

32 No

EntitySlots What information is required to construct the query ? 29 Yes
EntityValues What values should be passed to the query ? 1309 Yes

Table 1: The difficulty levels of different tasks is measured with the average performance of an untrained encoder.
There is a natural grading in the selection of tasks that expects better language understanding to solve. + indicate
the task is present both in MultiWoZ and PersonaChat datasets. ∗ indicate the task is only in PersonaChat. If no
indicator is present, the task is evaluated only in MultiWoZ dataset.

tion specific tasks have different levels of difficulty.
For example, IsMultiTopic is a binary classification
task, NumAllTopics is a multi-label classification
task while AllTopics is a multi-label prediction.

3.3 Downstream probe Tasks

Further we evaluate the language understanding
of dialogue models on their performance on rel-
evant downstream tasks. Towards evaluating the
model’s understanding of the user utterance, the
downstream probe tasks verify if the encoder rep-
resentation allows to predict the user dialogue act.
The dialogue state tracking measures the perfor-
mance of a model on such tasks (Henderson et al.,
2014) but seldom is it evaluated on generative dia-
logue models. Neelakantan et al. (2019) use entity,
values and action information to train on the dia-
logue generation task but the performance of a gen-
erative dialogue model without explicitly training
on the downstream tasks are not compared. To-
wards that, we propose ActionSelect, EntitySlots,
EntityValues probe tasks. The details of the task
are shown in Table 1.

4 Experiments

4.1 Data sets

With the probe tasks we study different dialogue en-
coder architectures trained on next utterance gener-
ation on MultiWoZ 2.0 (Budzianowski et al., 2018)

and PersonaChat (Zhang et al., 2018) data sets. The
features of the data sets are shown in Table 2. To

Data set Train Validation Vocabulary
PersonaChat ∼ 10900 1500 16k

MultiWoZ ∼ 8400 1000 13k

Table 2: Distribution of the dialogues in the data sets.

comprehensively compare several model selection
criteria, we experimented with selecting models
based on BLEU (Papineni et al., 2002), ROUGE-
F1 (Lin, 2004), METEOR (Lavie and Agarwal,
2007) and Vector-Based (Average BERT embed-
ding) metrics. We present the results from BLEU
as a selection criteria in the paper. Further in the
Appendix we compare the evolution of the perfor-
mance of different models in the probe tasks over
the entire training.

The classification tasks for probing the encoder
representation are constructed for every generated
response that requires information from the dia-
logue history thus far. We split the probe tasks
in Train/Test/Valid corresponding to the splits the
tasks are constructed from. First, we train the di-
alogue models on end-to-end dialogue generation
and use the encoder representation to train and test
on the probe tasks. To that, we store the encoder
parameters after every epoch during dialogue gen-
eration training and compute the results of probe
tasks after every epoch.
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4.2 Models

We train 5 commonly used encoder architectures
on the task of next utterance generation in the two
data sets.

LSTM ENCODER-DECODER The architecture
(Vinyals and Le, 2015) has an LSTM cell to en-
code the input context only in the forward direc-
tion. For a sequence of words in the input context
(wi

1, w
i
2, . . . , w

i
T ′) LSTM encoder generates {ht}T1 .

The decoder LSTM’s hidden state is initialized with
hTt and the decoder outputs one token at each step
of decoding. For the experiments, we used two
layer LSTM cell where the first layer applies re-
current operation on the input to the model and
the layer above recurs on the outputs of the layer
below. The encoder final hidden state (from the
2nd layer) is passed as an input to the decoder. We
train the model with cross entropy loss as shown in
Equation 1.

T∑
t=1

−yt log(p (ŷt))− (1−yt) log(1−p (ŷt)) (1)

where yt is the tth ground truth token distribution
in the output sequence, ŷt is model generated token
and p is the model learned distribution over the to-
kens. We train the model with Adam (Kingma and
Ba, 2014) optimizer with teacher forcing (Williams
and Zipser, 1989).

LSTM ENCODER-ATTENTION DECODER
The architecture is similar to the LSTM Encoder-
Decoder with an exception of an attention module
to the decoder. The attention module (Bahdanau
et al., 2014) linearly combines the encoder hidden
states ht

T
1 as an input to the decoder LSTM at

every step of decoding, unlike only having the last
encoder hidden state.

HIERARCHICAL RECURRENT ENCODER DE-
CODER The model has encoding done by two
encoder modules acting at different levels (Sordoni
et al., 2015); sentence encoder to encode the sen-
tences that feeds in as input to the context encoder.
Both the encoders are LSTMs. The decoder is an
attention decoder.

BI-LSTM ENCODER-ATTENTION DECODER
The encoder is a concatenation of two LSTMs that
can read the input from forward and backward di-
rection (Schuster and Paliwal, 1997). The hidden
state is computed as the summation of the hidden

states of the two encoders. The decoding is done
with an attention decoder.

TRANSFORMER ARCHITECTURE This state-
of-the-art architecture (Vaswani et al., 2017; Rush,
2018) is a transductive model that has multiple lay-
ers of attention to predict the output. We used the
architecture in an encoder-decoder style by split-
ting half the layers for encoding and the remainder
for decoding. We perform the probe tasks on the
encoder hidden state computed as an average over
word token attention.

The size of the models used in the experiments
are detailed in Table 7 in Appendix. For the probe
tasks, we select the untrained model, model with
the best BLEU score on validation, and model from
the last training epoch. We use packages pytorch
(Paszke et al., 2017) and scikit-learn (Pedregosa
et al., 2011) for our experiments.

4.3 Motivation for Dialogue Probe Tasks
The texts generated by the models are largely de-
pendent on the choice of seed values and a slight
variation could result in a model generating a very
different response. Although the automatic metrics
have greater agreement on the score across seed
values, we see that human participants do not agree
on the consistency of the generated response. We
pose and evaluate an alternate hypothesis where we
expect the participants to identify two responses to
be similar when selected from different runs of the
same model with different seed values that have
similar BLEU scores.

Model PersonaChat MultiWoZ
BiLSTM + Attn 4.4 ± 0.06 15.5 ± 0.05

Seq2Seq 4.5 ± 0.06 15.8 ± 0.17
Seq2Seq + Attn 4.4 ± 0.15 15.7 ± 0.11

HRED 3.9 ± 0.01 12.2 ± 4.00
Transformer 7.9 ± 0.17 29.4 ± 0.61

Table 3: BLEU scores of the models from runs with
different seeds on PersonaChat and MultiWoZ data set.
(Higher the better. We measure BLEU-2 (case insensi-
tive).

For the study, we sample 2000 context-response
pairs in MultiWoZ dataset from the model with
lower variance in BLEU score (Table 3) – Bi-
LSTM Attention – from its two different runs. We
ask the participants to select the response that is
more relevant to the given context, similar to Li
et al. (2015). The annotators can select either of
the responses or a Tie2. For every context-response

2The human evaluation proposal was evaluated and ap-
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pair, we collect 3 feedback from different partici-
pants (Distribution corresponding to the 3 different
human responses are shown with legend Human-
Exp1, HumanExp2 and HumanExp3 in Figure 1).

Figure 1: The mean of the distribution of tie in three
different experiments was centered around 35%, show-
ing that the subjective scores on responses by humans
are not sufficient to evaluate a model.

Usually human evaluation is done on 100-500
responses. To understand the variance in this set
up and the lack of information at the token gener-
ation level, we sample 50000 sets of 200 human
responses from the collected 2000 responses and
compute the fraction of times there was a tie. We
observed that distribution over the fraction of times
the human participants selected a Tie was centered
around 35% (Figure 1) with all of the probability
mass within 50%. This shows that (a) text gen-
erated by the same model produce significantly
different responses with different seed values (b)
attributing the choice of seed value to the perfor-
mance of a model creates confusion in the eval-
uation because the two seeds had similar BLEU
scores. The results show that evaluating only based
on the text generated by a model is not suggestive
of the information encoding capacity of the encoder
representation. Also, the dependence of the model
generated text on seed value raises a valid concern;
whether a model parameter initialized with a spe-
cific seed value mimic the token generation of a
model that actually encodes sufficient information
in the context. The lack of clarity leads to incon-
clusiveness of studies with human evaluation to
show whether the dialogue models have sufficient
information encoded to solve the task effectively.

proved by an IRB.

4.4 Probe Tasks

We train the models with the two dialogue data sets
on next utterance generation. To understand the
evolution on the probe task, we compare with 3
different parameter configurations of every model –
Untrained, Last epoch, and BestBLEU. We use Lo-
gistic Regression classifier3 implementation from
scikit-learn (Pedregosa et al., 2011) with default
parameters except the max_iter set to 250 for all the
probe tasks. The evaluation metric is F1-score with
micro averaging in multi-class prediction tasks.

PROBE TASKS ON PERSONACHAT The mod-
els are evaluated on three probe tasks (Table 4) –
two basic and one information specific. Utterance-
Loc and WordCont measures if the encoded context
suggests semantic awareness of the model while
PersonalInfo measures the amount of knowledge
the model has about its persona from encoding of
conversation history. In other words, it evaluates
the extent to which persona can be identified from
the context encoding with a linear classifier. A
better performance in these tasks indicate that the
context encoding preserves information on persona
and the temporal order of the dialogue.

The PersonalInfo task is not very specific to iden-
tifying personal information but acts as an indicator
to the information embedded in dialogues that goes
unnoticed in the encoding. It was surprising to see
that no model scored a reasonable F1. Although
Transformer model scored higher on BLEU, (Ta-
ble 3) the performance of transformer on Person-
alInfo task was decreasing throughout the training
epochs(Table 4).

The tasks UtteranceLoc and WordCont evaluate
if encoder representations are indicative of how far
in the conversation is the model in and identify mid-
frequency words in the target response respectively.
Bi-LSTM model performed the best in Utterance-
Loc while the Transformer model was not in the
top 3.

We observe that the inductive biases of the RNN-
based models enable random projections that are
informative even without training. This correlates
with independent observations on the results in (Tal-
lec et al., 2019) that argues random projections of
temporal information hold non-negligible informa-
tion. Similar observations are also made from the
untrained Transformer model’s performance on the

3Also, we trained a nonlinear model –multi-layer percep-
tron for probe tasks and the results are similar. The discussion
in the paper is agnostic to the choice of the classifier.
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PersonaChat data set
Model UtteranceLoc WordCont PersonalInfo

Bi-LSTM Seq2Seq + Attention
Untrained 37.0 ± 0.1 43.5 ± 0.0 0.0 ± 0.0
LastEpoch 56.5 ± 0.0 39.9 ± 0.0 0.0 ± 0.0
BestBLEU 57.2 ± 0.1 39.7 ± 0.1 0.0 ± 0.0

HRED - LSTM
Untrained 1.2 ± 0.0 51.7 ± 0.0 0.0 ± 0.0
LastEpoch 12.8 ± 4.9 49.4 ± 0.3 0.0 ± 0.0
BestBLEU 10.8 ± 3.5 51.0 ± 0.1 0.0 ± 0.0

LSTM Seq2Seq + Attention
Untrained 39.9 ± 0.0 47.2 ± 0.1 0.0 ± 0.0
LastEpoch 52.0 ± 0.0 40.0 ± 0.0 0.0 ± 0.0
BestBLEU 54.1 ± 0.16 43.8 ± 0.2 0.0 ± 0.0

LSTM Seq2Seq
Untrained 40.2 ± 0.0 46.9 ± 0.0 0.0 ± 0.0
LastEpoch 50.9 ± 0.1 40.0 ± 0.0 0.0 ± 0.0
BestBLEU 52.2 ± 0.1 40.2 ± 0.0 0.0 ± 0.0

Transformer Architecture
Untrained 53.0 ± 0.0 35.9 ± 0.0 2.4 ± 0.0
LastEpoch 42.7 ± 0.1 46.9 ± 0.1 0.0 ± 0.0
BestBLEU 40.7 ± 0.1 46.2 ± 0.0 0.0 ± 0.0

Table 4: Performance of different models on the probe
tasks on PersonaChat data set. The performance is mea-
sured as F-1 score (Higher the better).

probe tasks.
The RNN encoders project the context to a

smaller manifold with its recurrent multiplication
that regularizes its representation to observe struc-
tures, whereas Transformer network’s attention op-
erations project the context on to a larger mani-
fold that prevents loss in encoding 4 making the
representation useful for the end task (Figure 2 ).
This explains the RNN based encoders performing
well on UtteranceLoc while Transformer model
performing well on WordCont. The difference be-
tween the two classes of models is much more
evident on the probe tasks in MultiWoZ data set.

PROBE TASKS ON MULTIWOZ In majority of
information specific tasks and in the downstream
tasks (Table 5), we observed that RNN based mod-
els perform significantly better than the Trans-
former model. Interestingly, we observed a pattern
in Transformer in the two data sets, that the model’s
performance on the probe tasks decreased from the
beginning of training till the end on all of the tasks,
while for the rest of the models there was learning
involved.

The downsampled encoder representation of the
encoded contexts with PCA to 2 components (Fig-
ure 2) shows that the range of the two axes are
different for RNN-based and Transformer models.
The context encoding of transformers lie in a much
larger manifold. The attention layers help in spread-
ing the data in a large manifold thereby the model

4Ramsauer et al. (2020) showed recently that the trans-
former model is a large look-up table. Our empirical results
support the authors’ view.

can retain almost all of the generation task related
information it was trained on. This can be observed
in higher BLEU score the model achieves in lan-
guage generation. But, the reverse of generalizing
from a small data is hard to come by because the
model does not have sufficient direct information
to cluster except the surface level signal of predict-
ing the right tokens. This helps the Transformer
model to perform well on the token prediction task
in language modelling, while abstracting informa-
tion and generalizing appears to be a difficult task
as is observed from its performance on probe tasks.

The RNN-based models have inductive biases
to squish the input through tanh or sigmoid op-
erations. From the visualizations and from other
results, we hypothesize that this aids the model in
learning a regularized representation in a low-data
set up. But, this can potentially be unhelpful when
the input is a large set of samples and has rich struc-
ture as that requires a model to aggressively spread
out. Transformer architecture can thrive in such a
set up and that can be validated by the performance
of large Transformer models like GPT (Radford
et al., 2018), GPT-2 (Radford et al., 2019), GPT-3
(Brown et al., 2020), BERT (Devlin et al., 2018,
2019), RoBERTa (Liu et al., 2019) etc., whereas
the results in the probe tasks show that RNN-based
models are adept at learning unsupervised struc-
tures for better understanding of the input. Also we
note that the performance in probe tasks can be a
pseudo metric to measure the capacity of the model
in generalizing to unobserved structures in inputs
in a low data scenario.

5 Discussion

Systematic evaluation of language understanding
through probe tasks is important to analyze the
correlation between input and output in complex
language understanding tasks. We observed that
most of the data collected for dialogue generation
tasks (Lowe et al., 2015b; Ritter et al., 2011) do
not provide tasks to sanity check language under-
standing through probing encoder representations.
Absence of probe tasks lead to draw imperfect cor-
relations like the one between token-level accuracy
and model’s encoding of dialogue information from
the context. At this point one may wonder, why not
train the model with all the probe tasks as auxiliary
tasks for an improved performance ? Although it
is a possibility, such a set up does not evaluate a
model’s ability to generalize to understanding in



483

(a)
MultiWoZ data set

Model UtteranceLoc RecentTopic RecentSlots RecentValues RepeatInfo NumRepeat NumRecent AllSlots
LSTM Seq2Seq + Attention

Untrained 46.5 ± 0.5 35.3 ± 0.0 39.1 ± 0.0 30.8 ± 0.0 64.2 ± 0.0 69.0 ± 0.0 41.4 ± 0.0 30.2 ± 0.0
LastEpoch 56.5 ± 0.1 87.1 ± 0.0 65.6 ± 0.0 42.2 ± 0.0 64.9 ± 0.0 70.0 ± 0.0 61.7 ± 0.1 51.5 ± 0.0
BestBLEU 58.0 ± 0.1 89.0 ± 0.0 66.5 ± 0.0 41.1 ± 0.0 64.5 ± 0.0 67.0 ± 0.0 63.4 ± 0.0 52.0 ± 0.1

HRED - LSTM
Untrained 45.3 ± 1.6 32.9 ± 0.0 41.2 ± 0.0 31.7 ± 0.0 71.0 ± 0.0 74.9 ± 0.0 40.7 ± 0.0 19.8 ± 0.0
LastEpoch 38.0 ± 10.9 54.2 ± 22.6 36.3 ± 10.1 21.3 ± 3.4 69.4 ± 0.1 74.0 ± 0.0 39.5 ± 11.7 32.8 ± 8.4
BestBLEU 38.7 ± 11.3 50.1 ± 20.5 34.3 ± 9.3 20.4 ± 3.1 71.0 ± 0.1 74.5 ± 0.1 39.3 ± 11.6 30.3 ± 7.9

LSTM Seq2Seq
Untrained 46.6 ± 0.3 35.9 ± 0.0 39.7 ± 0.0 32.0 ± 0.0 64.8 ± 0.0 69.2 ± 0.0 43.0 ± 0.0 29.5 ± 0.0
LastEpoch 55.0 ± 0.1 87.6 ± 0.0 66.0 ± 0.0 41.9 ± 0.0 66.1 ± 0.0 69.8 ± 0.0 61.0 ± 0.0 51.6 ± 0.0
BestBLEU 56.3 ± 0.0 88.6 ± 0.0 66.9 ± 0.0 41.6 ± 0.0 65.9 ± 0.0 70.2 ± 0.0 62.6 ± 0.0 52.6 ± 0.0

Bi-LSTM Seq2Seq + Attention
Untrained 44.3 ± 0.0 50.7 ± 0.1 35.3 ± 0.0 27.3 ± 0.0 64.6 ± 0.0 70.6 ± 0.0 39.9 ± 0.0 36.7 ± 0.0
LastEpoch 57.2 ± 0.0 86.7 ± 0.0 63.3 ± 0.0 38.2 ± 0.0 66.6 ± 0.0 70.8 ± 0.0 60.2 ± 0.1 53.4 ± 0.0
BestBLEU 57.5 ± 0.1 89.0 ± 0.0 64.5 ± 0.0 39.6 ± 0.0 68.5 ± 0.0 72.2 ± 0.0 62.3 ± 0.0 56.0 ± 0.0

Transformer Architecture
Untrained 51.2 ± 0.0 80.3 ± 0.0 45.6 ± 0.0 30.6 ± 0.0 70.4 ± 0.0 73.3 ± 0.0 47.5 ± 0.0 62.9 ± 0.0
LastEpoch 33.7 ± 0.5 32.1 ± 1.9 26.2 ± 1.9 22.1 ± 1.7 70.7 ± 0.0 74.6 ± 0.0 33.6 ± 3.3 21.3 ± 0.6
BestBLEU 32.0 ± 0.5 31.7 ± 5.3 29.6 ± 0.3 25.3 ± 0.2 72.2 ± 0.0 75.9 ± 0.0 37.8 ± 0.4 22.8 ± 1.44

(b)
MultiWoZ data set

Model AllValues NumAllInfo AllTopics NumAllTopics IsMultiTask EntitySlots EntityValues ActionSelect
LSTM Seq2Seq + Attention

Untrained 12.6 ± 0.0 7.0 ± 0.0 45.1 ± 0.0 70.3 ± 0.0 80.1 ± 0.0 28.0 ± 0.0 19.6 ± 0.0 28.7 ± 0.0
LastEpoch 19.3 ± 0.0 29.3 ± 0.0 73.4 ± 0.0 76.3 ± 0.0 81.5 ± 0.0 43.5 ± 0.0 28.4 ± 0.0 56.2 ± 0.0
BestBLEU 18.7 ± 0.0 29.2 ± 0.0 74.3 ± 0.0 76.9 ± 0.1 82.1 ± 0.0 42.6 ± 0.0 29.1 ± 0.0 56.9 ± 0.0

HRED - LSTM
Untrained 5.3 ± 0.0 0.0 ± 0.0 37.5 ± 0.0 77.6 ± 0.0 84.2 ± 0.0 24.9 ± 0.1 19.0 ± 0.0 27.3 ± 0.01
LastEpoch 8.7 ± 0.7 19.1 ± 2.8 48.7 ± 18.0 69.2 ± 3.7 73.5 ± 4.7 27.1 ± 5.6 20.2 ± 3.1 38.8 ± 11.3
BestBLEU 8.4 ± 0.8 18.0 ± 2.6 46.6 ± 16.9 68.6 ± 3.5 73.2 ± 4.6 24.8 ± 4.9 20.1 ± 3.0 34.4 ± 9.3

LSTM Seq2Seq
Untrained 13.3 ± 0.0 6.3 ± 0.0 43.0 ± 0.0 73.3 ± 0.0 80.4 ± 0.1 27.3 ± 0.0 20.3 ± 0.0 29.0 ± 0.0
LastEpoch 19.5 ± 0.0 28.8 ± 0.0 72.8 ± 0.0 75.7 ± 0.0 81.2 ± 0.0 44.0 ± 0.0 30.7 ± 0.0 56.7 ± 0.0
BestBLEU 18.8 ± 0.00 29.7 ± 0.02 74.3 ± 0.03 77.1 ± 0.0 81.9 ± 0.0 44.1 ± 0.0 28.9 ± 0.03 57.2 ± 0.0

Bi-LSTM Seq2Seq + Attention
Untrained 14.9 ± 0.0 10.9 ± 0.1 56.8 ± 0.0 71.4 ± 0.0 79.5 ± 0.0 24.2 ± 0.0 19.0 ± 0.0 26.1 ± 0.0
LastEpoch 20.0 ± 0.0 28.5 ± 0.0 74.8 ± 0.0 78.4 ± 0.0 84.0 ± 0.0 42.1 ± 0.0 29.6 ± 0.0 55.4 ± 0.0
BestBLEU 20.0 ± 0.0 29.6 ± 0.0 77.4 ± 0.0 79.1 ± 0.0 84.2 ± 0.0 41.6 ± 0.0 28.2 ± 0.0 56.5 ± 0.0

Transformer Architecture
Untrained 39.6 ± 0.0 27.3 ± 0.0 81.2 ± 0.0 77.6 ± 0.0 82.8 ± 0.0 30.3 ± 0.0 19.7 ± 0.1 38.5 ± 0.2
LastEpoch 5.1 ± 0.1 11.5 ± 0.5 47.7 ± 1.3 71.9 ± 0.0 82.0 ± 0.0 13.5 ± 0.4 13.4 ± 0.0 6.8 ± 0.1
BestBLEU 5.6 ± 0.1 7.3 ± 0.2 50.4 ± 1.1 73.5 ± 0.0 81.7 ± 0.0 23.3 ± 0.1 12.2 ± 0.3 7.8 ± 0.2

Table 5: F1 scores of generative dialogue models on probe tasks in MultiWoZ dialogue data set (higher the better).
SEQ2SEQ models perform significantly better than Transformer model on the probe tasks, despite the models
falling behind in BLEU score. The Transformer model’s performance decreased from initial to last epoch in
majority of the tasks while SEQ2SEQ models have a learning curve.

unseen dialogues. One could potentially train a
model with a fraction of the probe tasks as auxil-
iary tasks and evaluate on the rest, we leave that
for future work.

It is also interesting to draw parallels to Unit
Testing in software engineering (Koomen and Pol,
1999), where the smallest software components
of a system are tested for their design and logical
accuracy. The difference between a determinis-
tic application software and a stochastic decision
making ML module is that the behavior of the ML
system is data-driven while for a software system
it is driven by logic. Despite the difference, the
unit testing and probe tasks could share a common
ground towards ensuring the better representation
of the encoded contexts.

Model Easy Medium Hard
LSTM-Attn 77.6±6.2 65.7±7.6 44.4±23.7
HRED 72.1±2.7 39.3±5.1 25.4±13.6
Seq2Seq 77.2±5.3 65.7±7.6 44.9±23.5
BiLSTM 78.5±6.2 65.6±8.7 44.2±23.3
Transformer 77.2±4.9 43.3±14.7 24.4±16.4

Table 6: Aggregate F1 scores of the models on perfor-
mance in probe tasks on MultiWoZ data set.

DIALOGUE MODELS As an alternate to token-
level evaluation, comparison of different model
architectures can be meaningfully made with an
aggregate metric on the probe tasks in three groups
of difficulty – easy ((Ave. SEQ2SEQ) Untrained
F1 > .50), medium(0.25 < Untrained F1 ≥ 0.50),
and hard (Untrained F1 < 0.25). Such an analysis,
as shown in Table 6, allows better inspection of
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(a) Seq2Seq Model after Last Epoch (b) Seq2Seq Attention Model after Last Epoch

(c) Bi-LSTM Attention Model after Last Epoch (d) Transformer Model after Last Epoch

Figure 2: Downsampled encoder hidden states on MultiWoZ data set with PCA show that Transformer model has
high capacity to encode a large data set unlike the SEQ2SEQ models.

the model’s language understanding and a fairer
comparison between the models. We can see from
Table 6 that the models have difficulty in learning
to solve hard probe tasks from the encoder repre-
sentations. The results can be used to build novel
inductive biases for neural architectures that ad-
dress one or a group of aspects in the language
understanding of dialogue prediction models.

DIALOGUE DATA SETS The challenges in dia-
logue modeling has been evolving majorly because
of the complex data sets. But, data sets on chit-
chat dialogues often have little to no auxiliary tasks
to evaluate the dialogue management abilities of
a model. This limits the practitioners to validate
the models only on the text generation task which,
in this paper, is shown to have little to no correla-
tion with the model’s ability to understanding the
encoded summary of natural language context.

6 Conclusion

We propose a set of probe tasks to evaluate the
encoder representation of end-to-end generative
dialogue models. We observed that mimicking
surface level token prediction do not reveal much
about a model’s ability to understand a natural lan-
guage context. The results on probe tasks showed

that RNN-based models perform better than trans-
former model in encoding information in the con-
text. We also found some probe tasks that all
of the models find difficult to solve; this invites
novel architectures that can handle the language
understanding aspects in dialogue generation. Al-
though language generation is required for a dia-
logue model, the performance in token/response
prediction alone cannot be a proxy for the model’s
ability to understand a conversation. Hence, sys-
tematically identifying issues in language under-
standing through probe tasks can help in building
better models and collecting challenging data sets.
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Model Parameters
LSTM Encoder-Decoder 11M
LSTM Encoder-Decoder + Attention 11M
HRED 12M
Bi-LSTM Encoder-Decoder 12M
Transformer 41M

Table 7: Size of parameters of the models used in all
the experiments on the two data sets. M for Million.

Appendix

A Model Parameters

• For SEQ2SEQ models, we used a 256 unit
hidden size LSTM with 2 layers and a 128 unit
input embedding dimension. The learning rate
we used for all the models is 4E-3.

• For Transformer, we used a 512 unit hidden
size, 512 unit input embedding dimension, 2
attention header and 4 layers.

• We used Adam as the optimizer to optimize
on the cross-entropy loss.

• We averaged the results over 3 different seeds.

• We used a truncated history of last 100 tokens
as context to keep the training uniform across
the models.
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MultiWoZ Dataset
Model UtteranceLoc RecentTopic RecentSlots RecentValues RepeatInfo NumRepeatInfo NumRecentInfo AllSlots

LSTM Seq2Seq + Attention
BERT 37.12± 2.59 42.74± 16.78 43.53± 4.54 30.93± 0.63 70.82± 0.01 74.71± 0.01 44.76± 1.89 23.94± 6.31

F1 58.08± 0.09 89.31± 0.08 66.72± 0.02 39.55± 0.05 71.25± 0.01 75.10± 0.00 62.14± 0.02 52.57± 0.10
BLEU 57.55± 0.05 89.91± 0.07 67.39± 0.02 40.49± 0.04 70.92± 0.00 74.73± 0.00 62.48± 0.02 53.08± 0.11

METEOR 58.23± 0.08 89.26± 0.08 66.83± 0.02 39.72± 0.04 71.29± 0.00 75.01± 0.00 62.23± 0.01 52.58± 0.10
HRED - LSTM

BERT 18.78± 10.58 23.78± 16.97 16.41± 8.07 10.44± 3.27 71.78± 0.02 75.51± 0.01 19.27± 11.14 13.31± 5.31
F1 37.18± 10.38 49.59± 19.55 33.95± 8.98 20.81± 3.26 71.33± 0.01 74.99± 0.01 38.49± 11.14 28.49± 6.63

BLEU 37.15± 10.35 50.98± 20.94 34.84± 9.69 20.63± 3.21 71.68± 0.00 75.06± 0.00 38.59± 11.18 30.23± 7.84
METEOR 41.04± 5.85 50.78± 20.86 44.50± 2.49 28.96± 0.18 71.72± 0.00 75.28± 0.00 50.71± 1.44 30.21± 7.84

LSTM Seq2Seq
BERT 54.16± 0.94 63.24± 16.20 55.13± 4.78 34.62± 0.76 72.00± 0.00 75.90± 0.00 54.06± 2.46 37.48± 5.21

F1 57.56± 0.06 89.44± 0.04 68.00± 0.00 40.98± 0.03 71.22± 0.01 75.32± 0.01 62.78± 0.01 53.07± 0.04
BLEU 57.37± 0.06 89.45± 0.03 68.08± 0.01 39.78± 0.07 71.28± 0.01 75.36± 0.01 62.33± 0.05 53.40± 0.05

METEOR 57.84± 0.04 89.03± 0.01 67.74± 0.01 40.37± 0.10 71.10± 0.00 74.75± 0.00 61.85± 0.00 53.04± 0.02
Bi-LSTM Seq2Seq + Attention

BERT 57.98± 0.03 78.79± 3.19 57.24± 1.71 35.59± 0.34 71.35± 0.00 75.18± 0.01 57.57± 0.18 48.37± 1.11
F1 57.99± 0.05 89.63± 0.03 64.85± 0.00 39.16± 0.00 71.76± 0.01 75.30± 0.01 60.85± 0.07 54.68± 0.04

BLEU 59.04± 0.10 89.85± 0.03 65.03± 0.00 39.06± 0.00 71.98± 0.01 75.63± 0.00 60.36± 0.05 54.96± 0.05
METEOR 58.45± 0.07 89.28± 0.02 64.21± 0.00 39.19± 0.00 71.54± 0.00 75.35± 0.01 60.49± 0.05 54.65± 0.04

Transformer Architecture
BERT 39.11± 0.09 58.38± 0.14 29.97± 0.00 24.50± 0.01 72.39± 0.01 76.02± 0.00 38.80± 0.01 43.37± 0.17

F1 39.89± 0.21 67.44± 0.44 33.37± 0.14 24.96± 0.02 72.75± 0.01 76.26± 0.00 40.43± 0.05 51.19± 0.51
BLEU 39.46± 0.00 57.05± 1.50 30.10± 0.27 23.72± 0.03 72.70± 0.00 75.97± 0.00 39.11± 0.08 40.43± 1.21

METEOR 38.50± 0.25 56.26± 1.87 30.98± 0.11 24.94± 0.02 72.26± 0.01 75.79± 0.00 39.47± 0.04 38.70± 1.59

Table 8: Comparison of models selected different selection metrics on probe tasks in MultiWoZ dialogue data set.
The performance is measured with F1 on the probetasks.

MultiWoZ Dataset
Metric AllValues NumAllInfo AllTopics NumAllTopics IsMultiTask EntitySlots EntityValues ActionSelect

LSTM Seq2Seq + Attention
BERT 6.16± 0.34 8.52± 2.18 49.07± 5.13 77.98± 0.00 84.97± 0.01 27.49± 1.30 22.22± 0.47 30.25± 6.74

F1 12.54± 0.01 26.54± 0.02 75.22± 0.03 79.56± 0.02 84.70± 0.01 41.74± 0.02 31.20± 0.03 60.00± 0.00
BestBLEU 12.81± 0.01 25.73± 0.02 75.33± 0.02 79.39± 0.02 85.30± 0.00 41.29± 0.03 31.57± 0.03 60.14± 0.01
METEOR 12.53± 0.01 26.62± 0.02 75.21± 0.03 79.52± 0.02 84.67± 0.01 41.70± 0.02 31.48± 0.02 60.06± 0.00

HRED - LSTM
BERT 3.20± 0.31 7.49± 1.68 21.92± 14.41 58.94± 3.05 62.30± 4.46 10.85± 3.53 9.06± 2.46 17.04± 8.72

F1 6.40± 0.32 16.07± 1.97 45.79± 16.07 69.01± 3.62 73.72± 4.79 23.39± 4.22 19.53± 2.87 35.39± 9.73
BLEU 6.90± 0.39 14.96± 1.77 46.63± 16.93 68.66± 3.50 72.97± 4.50 24.33± 4.64 19.97± 3.01 35.66± 9.95

METEOR 6.82± 0.38 15.93± 1.93 54.09± 8.47 79.20± 0.02 85.55± 0.01 30.35± 1.29 25.88± 0.51 36.00± 9.70
LSTM Seq2Seq

BERT 9.16± 0.27 18.10± 2.47 60.55± 4.58 77.91± 0.03 84.43± 0.02 34.68± 1.90 27.23± 0.79 45.12± 7.11
F1 12.92± 0.01 26.47± 0.04 74.63± 0.03 78.44± 0.00 84.05± 0.01 43.66± 0.01 31.83± 0.01 61.11± 0.01

BLEU 12.76± 0.01 26.94± 0.04 75.03± 0.03 78.16± 0.00 83.90± 0.00 43.92± 0.01 31.96± 0.01 61.13± 0.00
METEOR 12.97± 0.00 25.97± 0.03 74.37± 0.01 78.42± 0.00 84.03± 0.01 43.79± 0.04 31.63± 0.02 61.22± 0.02

Bi-LSTM Seq2Seq + Attention
BERT 12.83± 0.10 23.74± 0.13 71.48± 1.07 78.54± 0.07 85.60± 0.00 35.96± 0.72 26.88± 0.07 50.57± 1.36

F1 14.92± 0.00 26.67± 0.07 78.01± 0.01 81.02± 0.06 86.17± 0.00 40.61± 0.00 29.38± 0.01 57.91± 0.01
BLEU 15.13± 0.01 25.87± 0.05 78.11± 0.02 80.43± 0.02 86.20± 0.00 40.82± 0.01 29.91± 0.02 57.76± 0.00

METEOR 14.81± 0.00 26.53± 0.07 78.04± 0.01 80.02± 0.01 86.25± 0.00 41.02± 0.00 30.11± 0.02 57.90± 0.01
Transformer Architecture

BERT 11.81± 0.04 9.01± 0.06 65.01± 0.09 76.23± 0.02 84.38± 0.01 20.60± 0.00 18.87± 0.02 15.48± 0.14
F1 17.97± 0.64 11.26± 0.17 71.08± 0.24 77.82± 0.03 85.27± 0.01 22.47± 0.02 19.06± 0.03 20.24± 0.34

BestBLEU 10.43± 0.14 9.71± 0.00 64.42± 0.88 76.10± 0.07 84.20± 0.01 19.83± 0.00 18.34± 0.03 15.35± 0.54
METEOR 10.77± 0.37 7.92± 0.11 63.64± 0.80 76.58± 0.05 84.50± 0.01 20.17± 0.06 18.38± 0.01 15.03± 0.72

Table 9: Comparison of models selected different selection metrics on probe tasks in MultiWoZ dialogue data set.
The performance is measured with F1 on the probetasks.


