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Abstract

We propose a novel on-device neural sequence
labeling model which uses embedding-free
projections and character information to con-
struct compact word representations to learn
a sequence model using a combination of
bidirectional LSTM with self-attention and
CRF. Unlike typical dialog models that rely
on huge, complex neural network architec-
tures and large-scale pre-trained Transformers
to achieve state-of-the-art results, our method
achieves comparable results to BERT and even
outperforms its smaller variant DistilBERT
on conversational slot extraction tasks. Our
method is faster than BERT models while
achieving significant model size reduction–our
model requires 135x and 81x fewer model pa-
rameters than BERT and DistilBERT, respec-
tively. We conduct experiments on multiple
conversational datasets and show significant
improvements over existing methods includ-
ing recent on-device models. Experimental re-
sults and ablation studies also show that our
neural models preserve tiny memory footprint
necessary to operate on smart devices, while
still maintaining high performance.

1 Introduction

In today’s world, people rely on their digital de-
vices like mobile phones, smartwatches, home as-
sistants like Google and Alexa to alleviate mun-
dane tasks like play favorite songs, recommend
food recipes among others. A big part of the lan-
guage understanding capabilities of such assistive
devices happens on cloud, where the relevant slots,
entities and intents are extracted in order for the
request to be fulfilled. However, is it not always
safe to send data to cloud, or when we travel it is
not always possible to have internet connectivity,
yet we want to enjoy the same capabilities.

These challenges can be solved by building on-
device neural models that can perform inference

on device and extract the slot (entity) information
needed for language understanding. The model
will operate entirely on the device chip and will not
send or request any external information. Such on-
device models should have low latency, small mem-
ory and model sizes to fit on memory-constrained
devices like mobile phones, watches and IoT.

Recently, there has been a lot of interest and
novel research in developing on-device models.
Large body of work focuses on wake word detec-
tion (Lin et al., 2018; He et al., 2017), text classifi-
cation like intent recognition (Ravi and Kozareva,
2018), news and product reviews (Kozareva and
Ravi, 2019; Ravi and Kozareva, 2019; Sankar et al.,
2021b,a).

In this paper, we propose a novel on-device neu-
ral sequence tagging model called SoDA . Our
novel approach uses embedding-free projections
and character-level information to construct com-
pact word representations and learns a sequence
model on top of the projected representations using
a combination of bidirectional LSTM with self-
attention and CRF model. We conduct exhaustive
evaluation on different conversational slot extrac-
tion datasets. The main contributions of our work
are as follows:

• Introduced a novel on-device neural sequence
tagging model called SoDA .

• Our novel neural network dynamically con-
structs embedding-free word representations
from raw text using embedding-free projec-
tions with task-specific conditioning and CNN
together with a bidirectional LSTM coupled
with self-attention and CRF layer. The re-
sulting network is compact, does not require
storing any pre-trained word embedding ta-
bles or huge parameters, and is suitable for
on-device applications.
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• Conducted exhaustive evaluation on multi-
ple conversational slot extraction tasks and
demonstrate that our on-device model SoDA
reaches state-of-the-art performance and even
outperforms larger, non-on-device models like
Capsule-NLU (Zhang et al., 2019), StackProp-
agation (Qin et al., 2019), Interrelated SF-
First with CRF (E et al., 2019), joint BiLSTM
(Hakkani-Tur et al., 2016), attention RNN
(Liu and Lane, 2016), gated attention (Goo
et al., 2018) and even BERT models (Sanh
et al., 2019).

• Our on-device SoDA model also significantly
outperforms state-of-the-art on-device slot ex-
traction models of (Ahuja and Desai, 2020),
which are based on convolution and are fur-
ther compressed with structured pruning and
distillation.

• Finally, we conduct a series of ablation studies
that show SoDA ’s compact size needed for
conversational assistant devices like Google
and Alexa, smart watches while maintaining
high performance.

2 SoDa: On-device Sequence Labeling

In this section, we describe the components of our
SoDA architecture as shown in Figure 1.

2.1 Input Word Embeddings

Given an input text X containing a sequence of
words (x1, x2, ..., xn), where xi refers to i-th word
in the sentence, we first construct a sequence of
vectors E(X) = (e1, e2, ..., en) where ei denotes a
vector representation for word xi.

2.1.1 Word Embedding via Projection
Learning good representations for word types from
the limited training data (as in slot extraction)
is challenging since there are many parameters
to estimate. Most neural network approaches
for NLP tasks rely on word embedding matri-
ces to overcome this issue. Almost every recent
neural network model uses pre-trained word em-
beddings (e.g., Glove (Pennington et al., 2014),
word2vec (Mikolov et al., 2013)) learned from a
large corpus that are then plugged into the model
and looked up to construct vector representations
of individual words and optionally fine-tuned for
the specific task. However, these embedding ma-
trices are often huge and require lot of memory

Figure 1: Model architecture for SoDA On-device Se-
quence Labeling Neural Network.

O(V · d) which is infeasible for on-device applica-
tions where storage is limited. Here, V is the vocab-
ulary size and can be huge from 100K to millions of
entries, and d is the embedding dimension. For ex-
ample, using 300-dimensional Glove embeddings
with 400K entries and float32 values requires
480MB in storage for the embedding table alone.
Even without any pre-training, O(V · d) parame-
ters still need to be estimated which contributes
to the model size and latency. Even methods that
resort to sub-word sequences and reduce vocabu-
lary size requires explicitly storing and looking up
these parameters. For English, simple character
trigrams with 36 alphanumeric characters requires
V = 363 = 47K entries in the embedding matrix.
Embedding-free Projections: For generating
E(X), we compute ei word vector representations
dynamically building on a locality-sensitive projec-
tion approach similar to (Ravi, 2017).

For each word x, we extract character-level in-
formation (i.e., character sequences) from the word
to construct a sparse feature vector F(xi).

F(x) = {〈f1, w1〉, ..., 〈fK , wK〉} (1)
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where, fk represents each feature id
(Fingerprint of the raw character skip-
gram) and wk its corresponding weight (observed
count in the specific input x).

We use locality-sensitive projections (Ravi,
2017) to dynamically transform the intermediate
feature vector F(x) to binary representation P(x).

P(x) = P(F(x)) (2)

= P({〈f1, w1〉, ..., 〈fK , wK〉}) (3)

This step uses locality-sensitive hashing
(LSH) (Charikar, 2002) to convert the high-
dimensional sparse feature vector F(x) into a very
compact, low-dimensional binary representation
on-the-fly. The transformation uses a series of d
binary hash functions P1,P2, ...,Pd to generate
a binary value (-1 or +1) for each dimension j
resulting in a d-dimensional binary vector. Each
binary hash function is parameter-free since we
only use the dimension id j and observed features
ids fk to construct a randomized vector Rj(x)
with same number of non-zero entries rK as F(x).

Rj(x) = {〈f1, r1〉, ..., 〈fK , rK〉} (4)

Pj(x) = sgn(Rj(x) · F(x)) (5)

P(x) = 〈P1(x),P2(x), ...,Pd(x)〉 (6)

For our sequence tagging model, we use δ ·d pro-
jection dimensions to model character sequences
occurring in the word (up to 5-grams, 0-skip
character-level features). We use the remaining
(1 − δ) · d dimensions to model the whole word
feature. For sequence tagging experiments, we
set δ = 0.9. The projection operations Pj can be
computed fast and on-the-fly during training and
inference without any embedding tables or addi-
tional parameters. The locality-sensitive nature of
the projections enable learning a compact repre-
sentation that captures semantic similarity (at word
and sub-word level) in the high-dimensional space
with a small memory footprint. For more details
on projection operations, refer (Ravi, 2017).
Conditioning Projections: We could use the dy-
namically constructed projection vector P(x) di-
rectly instead of embeddings to build the rest of
our model. But to prevent the models from depend-
ing on static projection representations too strongly,
we further condition or fine-tune the projections on
specific sequence tagging task during training to
learn better task-specific representations E(x).

Note that unlike prior approaches that use pre-
trained embeddings and fine-tune the O(V · d) pa-
rameters on individual tasks, we use far fewer pa-
rameters O(M);M � V · d for the projection
conditioning step so as to keep the resulting model
size compact and not incur huge additional memory
or time complexity for inference on device.

For sequence tagging, we apply two types of
conditioning operators on the projection output P(.)
to generate the final E(.) vector representations for
words in the input sequence.

• Hadamard product (◦):

E(X) = P(X) ◦WcH + bcH (7)

where, E(X) is the embedding for the input
sequence of size n × d. WcH and bcH are
d trainable weight and bias parameters used
for projection conditioning which are shared
across all words. Using point-wise operations
for this conditioning requires only d multiply
and d add operations, keeping the number of
parameters M = 2d in this step very small.

• Dense product (D):

E(X) = P(X)×WcD + bcD (8)

here WcD is a trainable shared weight matrix
of size d × m and WcD represents bias pa-
rameters. We choose m ≤ d, so total number
of conditioning parameters M = d · (m+ 1).

As noted, both projection conditioning operators
result in a tiny number of additional model param-
eters M � V · d that are tuned during training.

2.1.2 Extending Character-level
Representation using CNN

Earlier work (Chiu and Nichols, 2016; Ma and
Hovy, 2016) showed that CNNs can be effec-
tive to model morphological information within
words and encode it within neural networks using
character-level embeddings. However, these ap-
proaches typically compute both word-level (from
pre-trained tables) and character-level embeddings
(to model long sequence contexts) and combine
them to construct word vector representations in
their neural network architectures.

However as we noted, word embedding lookup
tables incur significant memory that are not suit-
able for on-device usecases. Previous results on
sequence labeling (Ma and Hovy, 2016) show that
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character embeddings by themselves do not have
the same generalizability power of word embed-
dings trained on large corpora, especially for names
and common words appearing in regular text.

Our model SoDA uses the best of both ap-
proaches, by first constructing word embeddings
using conditioned projections as described in Sec-
tion 2.1.1. We further extend this with a character
CNN model with shared, trainable parameters to
augment the morphology information. The CNN
used in our model is similar to (Chiu and Nichols,
2016; Ma and Hovy, 2016). The combined em-
bedding layer in the SoDA model still maintains a
small number of parameters (� V · d), correspond-
ing to projection conditioning and convolutions.

E(X) = concat(EP(X), ECNN (X)) (9)

A dropout layer (Srivastava et al., 2014) is then
applied to the joint embedding E(X) for regulariza-
tion before being passed as input to the next layer
in the SoDA neural network.

2.2 Bi-directional LSTM

Next, we apply a recurrent neural network (RNN)
to operate on the sequence of projected vectors
E(X) = (e1, e2, ..., en) . We use LSTMs (Hochre-
iter and Schmidhuber, 1997) over the projected
word sequences to model the temporal dynam-
ics across the sequence to produce a state se-
quence H(X) = (h1, h2, ...., hn), where hi cap-
tures higher-level information about the sequence
at time step i. LSTM is a variant of RNN with
memory cells that enable capturing long-distance
dependencies. LSTMs are composed of multiple
gates to control the proportion of information to
forget and pass through to the next time step. We
use the following implementation in SoDA

For an input sentence X = (x1, x2, ..., xn) and
corresponding sequence of projected embeddings
E(X), where each et = [ePt · eCNNt ] is a d-
dimensional vector, the LSTM layer in SoDA uses
input, forget and output gates to compute a new
state ht at time step t. For sequence tagging tasks,
both left and right contexts are useful to represent
information at any time step. Standard LSTM as
well as other sequence models only account for
previous history and know nothing about the future.
We use a bi-directional LSTM (Dyer et al., 2015) to
efficiently model both past and future information
in our SoDA model. The only change required is

that model a separate forward and backward hid-
den state, which are updated in the same manner
and concatenated to form the final output state. We
also create deeper SoDA sequence models by stack-
ing multiple bi-LSTM layers to get the projected
sequence output Pbi−LSTM (X).

2.3 Self-Attention for Sequence
Attention mechanisms have become a core compo-
nent of powerful neural networks used for various
sequence labeling tasks (Bahdanau et al., 2014;
Kim et al., 2017). Adding this to a neural se-
quence network allows modeling of positional de-
pendencies without regard to their distance in the
input or output sequences. This has proven par-
ticularly useful for modeling complex sequence
tasks such as machine translation and led to power-
ful deep, attention-based neural network architec-
tures (Vaswani et al., 2017) in recent years.

We add self-attention on top of the bi-LSTM out-
put Pbi−LSTM (X) in SoDA to model positional de-
pendencies in the sequence. Self-attention relates
different positions of an input sequence to compute
a representation of the sequence and has been suc-
cessfully applied to tasks such as reading compre-
hension, abstractive summarization, and learning
task-independent sentence representations (Cheng
et al., 2016; Paulus et al., 2018; Lin et al., 2017).
We use a multi-head attention (Vaswani et al., 2017)
with H heads that allows SoDA sequence model
to jointly attend to information from multiple rep-
resentation sub-spaces at different positions. The
output from the projected bi-LSTM network fol-
lowed by self-attention layer in SoDA is a sequence
representation denoted by SPbi−LSTM

(X).

2.4 CRF Tagging Model
For structured prediction tasks like sequence tag-
ging, it is useful to model the dependencies be-
tween neighboring labels (Ling et al., 2015) and
perform joint decoding of the label sequence for
a given input sentence. For example, in sequence
labeling tasks with BIO tagging scheme I-LOC la-
bel cannot follow B-PER. So, instead of decoding
labels at every position separately, similarly to prior
work, we perform joint decoding in our model us-
ing a condition random field (CRF) (Lafferty et al.,
2001).

For an input sentence X = (x1, x2, ..., xn),
the intermediate output vector from the projected
bi-LSTM network is denoted by SPbi−LSTM

=
(s1, s2, ..., sn), where si represents the concate-
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nated vector combining the forward and back-
ward states of the projected bi-LSTM at position i.
Y = (y1, y2, ..., yn) represents the final output tag
sequence for the sentence given S , output from the
previous layer. Y ∈ Y(S), where Y(S) denotes
the set of all possible tag sequences for S. We
define the probabilistic CRF sequence model as a
conditional probability p(Y |S; θ) over all possible
label sequences Y given S as follows:

p(Y |S; θ) =

n∏
i=1

φi(yi−1, yi,S)∑
y′∈Y(S)

n∏
i=1

φi(y′i−1, y
′
i,S)

(10)

where, φi(yj , yk,S) = exp(WT
θ si + bθ) is a

parameterized transition matrix with weights Wθ

and bias bθ that scores transition from tag yj to yk
for each position i in the sentence. The transition
matrix is a square matrix of size L, where L repre-
sents the number of distinct tag labels that includes
special begin and end tags for a sentence.

We use maximum-likelihood estimation to
jointly optimize the CRF parameters θ along with
other network parameters during training Lθ(.) =∑

i log p(Y |S; θ). Since we only use first-order
transition dependencies between labels, the parti-
tion functions can be computed efficiently using
the Viterbi algorithm for both training and infer-
ence. Once trained, we perform sequence decoding
as follows y∗ = argmaxY ∈Y(S) p(Y |S; θtrained).

2.5 Putting it all together: SoDA Network

Finally, we construct our end-to-end on-device neu-
ral network SoDA by combining all components
progressively: word representation (using condi-
tioned projections + CNN), projected bi-LSTM se-
quence model with self-attention layer and CRF
layer. The input sequence X is passed through
the on-device SoDA network and final layer to get
decoded output tag sequence Y .

3 SoDA Training and Parameters

We now describe details for training the on-device
SoDA neural network. We implement the model
using TensorFlow. For each sequence labeling task,
we train the parameters of the model on the cor-
responding dataset, then apply the same steps in
order for inference and evaluate the decoded tag
sequence output against the gold label sequence.

3.1 Optimization
During training, we estimate the SoDA parameters
with Adam optimizer (Kingma and Ba, 2014) that
is applied over shuffled mini-batches of size 20.
We choose an initial learning rate of 1e-3 with
gradient clipping.
Early Stopping: We use early stopping (Caruana
et al., 2000) based on performance on held-out dev
sets. In our experiments, we typically observe good
validation performance within 10-20 epochs.
Conditioning Projections: As described in Sec-
tion 2.1.1, we condition the dynamically con-
structed projected word representations to learn
task-specific projection parameters. We use two dif-
ferent types of conditioning operators: Hadamard
(◦), and Dense (D). We choose m = d for the
dense version, yielding M = d2 + d parameters
and M = 2d for the former. We observed that the
Dense version with slightly more parameters per-
formed better overall on sequence tasks and hence
use this as the default version for SoDA in our ex-
periments. We did not do any data or task-specific
tuning or processing.
Dropout: During training, we apply dropout (Sri-
vastava et al., 2014) for regularization in our model
with a fixed rate 0.3.

3.2 Hyper-Parameters
Word Representations: We use d = 300 projec-
tion size for EP(.). Unlike other neural models,
our on-device network does not require storing and
loading any pre-trained word embedding matrices
and does not need any O(V · d) parameters for
modeling the vocabulary. Hence, we do not have to
apply any pruning techniques to keep vocabularies
small.
Projected Sequence Layer: For the sequence
layer we use 2-layer bi-LSTM with 100 state size.
Self-Attention Layer: We set H = 4 heads for
the multi-head attention model and attention size =
bi-LSTM state size.
CRF Tagging: We use CRF model as the default
output model for all SoDA networks.

4 Datasets and Experimental Setup

4.1 Dataset Description
We evaluate our on-device SoDA model on widely
used and popular conversational slot extraction
datasets.
• ATIS: Slot Extraction The Airline Travel In-

formation Systems dataset (Tür et al., 2010) is
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ATIS SNIPS
Model F1 Sent. Acc. F1 Sent. Acc.
SoDA (our on-device model) 95.8 88.1 93.6 85.1
DistillBERT (66M) (Ahuja and Desai, 2020; Sanh et al., 2019) 95.4↑ - 94.6 -
BERT (110M) (Ahuja and Desai, 2020; Devlin et al., 2019) 96.0 - 95.1 -
Capsule-NLU (Zhang et al., 2019) 95.2 ↑ 83.4 ↑ 91.8 ↑ 80.9 ↑
StackPropagation (Qin et al., 2019) 95.9 86.5↑ 94.2 86.9
Interrelated SF-First with CRF (E et al., 2019) 95.7 ↑ 86.8 ↑ 91.4↑ 80.6↑
GatedFullAtten. (Goo et al., 2018) 94.8 ↑ 82.2 ↑ 88.8 ↑ 75.5 ↑
GatedIntentAtten. (Goo et al., 2018) 95.2 ↑ 82.6 ↑ 88.3 ↑ 74.6 ↑
JointBiLSTM (Hakkani-Tur et al., 2016) 94.3 ↑ 80.7 ↑ 87.3 ↑ 73.2 ↑
Atten.RNN (Liu and Lane, 2016) 94.2 ↑ 78.9 ↑ 87.8 ↑ 74.1 ↑

Table 1: Comparison of SoDA against other Non-On-Device Conversational Slot Extraction Methods. All meth-
ods are significantly larger in model size than SoDA ; ↑ indicates SoDA improvement

Model ATIS (F1) SNIPS(F1)
SoDA (our on-device model) 95.83 93.6
Convolution (Ahuja and Desai, 2020)

Single-task 94.01↑ 85.06 ↑
Multi-task 94.30↑ 84.38↑

Convolution-Compressed (Ahuja and Desai, 2020)
Structured Pruning Single-task 94.61↑ 85.11↑
Structured Pruning Multi-task 94.42↑ 83.81 ↑

Table 2: Comparison of SoDA against other On-Device Conversational Slot Extraction Methods; ↑ indicates
SoDA improvement

widely used in spoken language understanding re-
search. The dataset contains audio recordings of
people making flight reservations. We used the
same data as (Tür et al., 2010; Goo et al., 2018).
• SNIPS: Slot Extraction To verify the gen-

eralization of the proposed model for slot extrac-
tion, we use another natural language understand-
ing dataset with custom intent-engines collected by
the Snips personal voice assistant. We used the data
from (Goo et al., 2018). Compared to the single-
domain ATIS dataset, Snips has multiple domains
resulting in larger vocabulary.

Table 3 shows the characteristics of the two con-
versational slot extraction datasets such as number
of entity/slot types, number of sentences in train
and test data.

Dataset #Slot Types Train Test
ATIS 120 4,478 893

SNIPS 72 13,084 700

Table 3: Conversational Slot Extraction Dataset Char-
acteristics

4.2 Experimental Setup & Metrics

We setup our experiments as given a sequence label-
ing task and a dataset, we train an on-device SoDA
model. Similarly to prior work, for each ATIS and
SNIPS datasets, we report F1 score on the test set
and the overall sentence accuracy (Hakkani-Tur
et al., 2016; Goo et al., 2018).

5 Results for Conversational Slot
Extraction

This section presents results from the conversa-
tional slot extraction task on the ATIS and SNIPS
datasets. Tables 1 and 2 show the obtained results
from our on-device SoDA approach, which outper-
formed prior state-of-the-art on-device slot extrac-
tors based on single and multi-task convolution in-
cluding the compressed convolution models (Ahuja
and Desai, 2020). Our on-device SoDA even out-
performed prior non-on-device state-of-the-art neu-
ral models like Capsule-NLU, StackPropagation,
RNN, CNN, Gated full attention, joint intent-slot
modeling and even BERT models on ATIS and
SNIPS datasets.
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5.1 Comparison with On-Device
State-of-the-art Slot Extractors

An important study in this work is a comparison
between our on-device model against prior state-
of-the-art on-device slot extraction models (Ahuja
and Desai, 2020). The models of (Ahuja and Desai,
2020) are based on simple convolution model com-
pressed with structured pruning. Two variations of
this model are developed: single task where only
one task is performed like slot extraction and multi-
task model where two conversational tasks (slot ex-
traction and intent detection) are jointly optimized.
The multi-task approach was commonly used in
earlier works (Hakkani-Tur et al., 2016) to improve
the performance of the individual tasks. (Ahuja
and Desai, 2020) further compressed these models
with structured pruning and distillation. As shown
in Table 2, SoDA outperforms the convolution sin-
gle and multi-task approaches by 1.82% for ATIS
and 8.54% for SNIPS datasets. Similarly, SoDA
outperforms even the compressed single and multi-
task model variants by 1.22% ATIS and 9.76%
for SNIPS without relying on pruning or distilla-
tion. The significant performance improvements
for SoDA model stem from the memory-efficient
and robust projection representations which better
capture word and semantic similarity.

5.2 Comparison with Non-On-Device Slot
Extractors

The main objective of on-device work is to de-
velop small and efficient models that fit on devices
with limited memory and capacity. In contrast,
non-on-device models do not have any memory
and capacity constraints, as they use all resources
available on the server side. Therefore, a direct
comparison between on-device and non-on-device
models is not fair. Taking into consideration these
major differences, we show in Table 1 results from
SoDA and state-of-the-art non-on-device models
with the objective to highlight the power of our on-
device work in achieving competitive results and
even outperforming widely used approaches such
as Capsule-NLU, StackPropagation, RNN, CNN,
Gated full attention, joint intent-slot modeling and
even BERT models on ATIS and SNIPS datasets.

SoDA on-device model significantly improves
over Capsule-NLU (Zhang et al., 2019) which uses
capsule networks to model semantic hierarchy be-
tween words, slots and intent using dynamic rout-
ing by agreement schema. SoDA also improves

over the Interrelated SF-First with CRF approach
(E et al., 2019), which uses BiLSTM with attentive
sub-networks for slot and intent modeling. Sim-
ilarly, improvements are seen over the attention
RNN model (Liu and Lane, 2016) on ATIS and
SNIPS. SoDA also achieves better performance
than the joint BiLSTM model of (Hakkani-Tur
et al., 2016), which uses intents to guide the pos-
sible slot types associated with the intent. Unlike
those approaches, SoDA does not use any addi-
tional information such as the intent classes to
further constraint the slot types nor it uses any
pre-trained embeddings, yet SoDA achieves bet-
ter performance than the joint BiLSTM models and
capsule networks on both datasets.

Finally, we also compare results against the most
recent state-of-the-art neural models of (Goo et al.,
2018). Both models are non-on-device. One uses
full attention, while the other uses gated intent at-
tention for the slot extractor. Overall, SoDA signif-
icantly improves over both gated attention neural
models (Goo et al., 2018) with +0.6% to +1% ac-
curacy on ATIS and +4.8% to +5.3% accuracy on
SNIPS. This is pretty impressive given that SoDA
does not rely on any intent information to constraint
the slot type during extraction and also SoDA is an
embedding free method that learns the representa-
tions on the fly resulting in producing magnitudes
smaller models, which remain highly accurate.

We also compare our approach SoDA against
much larger, contemporary BERT models (Devlin
et al., 2019; Sanh et al., 2019) that rely on large-
scale, pre-trained Transformer networks. Surpris-
ingly, SoDA achieves comparable results to BERT
and even outperforms its memory-optimized vari-
ant DistilBERT (Sanh et al., 2019) while achieving
135x and 81x compression rates, respectively.

6 SoDA Performance Analysis

Next, we show various ablation studies that evalu-
ate the performance of different SoDA components.

6.1 Parameters vs F1

We study the impact of the number of parameters
on SoDA F1 performance. We control the model
size by varying the parameters corresponding to
the projection and BiLSTM state sizes. For in-
stance, on ATIS SoDA achieves 95.83% F1 with
814556 parameters; 94.75% with 212540 parame-
ters; 93.85% with 73290 parameters; 92.69% with
as few as 59365 parameters. This study shows that
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even with less parameters, SoDA achieves high
performance.

6.2 Model Size vs F1

We study how the model size affects SoDA ’s per-
formance. Figure 2 shows results of the model size
with the corresponding F1 of SoDA on ATIS slot
extraction. Even with very small memory size of
286KB SoDA still achieves high performance of
93.85 F1. Moreover, SoDA achieves results com-
parable to BERT Transformer models but at a tiny
fraction of the model size.

Figure 2: Effect of SoDA and BERT Model Sizes on
Slot Extraction Accuracy for ATIS.

6.3 Impact of Projection Conditioning on F1

We compare the projection conditioning mecha-
nisms we introduced. On ATIS, the Hadamard
(◦) conditioning reaches 94.8% F1 vs Dense (D)
conditioning reaches 95.8% F1. This comparison
shows that Dense conditioning is better.

6.4 Impact of CNN on F1

We evaluate the impact of CNN model on SoDA
for ATIS. SoDA without CNN reaches 88.85%
F1 compared to 95.8% F1 for SoDA with CNN.
This shows that adding character information to
embedding-free projections further boosts perfor-
mance for on-device sequence tagging.

6.5 Impact of CRF on F1

We evaluate the impact of CRF model on SoDA
for ATIS. Adding CRF to the SoDA model yields
+1.07% going from 94.73% to 95.80% F1, which
shows the benefit of CRF also for on-device.

6.6 Efficiency/Speed of Training Time on
Single CPU

Training SoDA on a single machine with CPU
1.3GHz Intel core and 8GB memory for ATIS

takes 9.6 min to converge with 0.8 min per epoch
with 56K tokens. Inference takes << 10ms on
Nexus 5 smartphone device which is an order mag-
nitude faster than DistilBERT and BERT models
running on CPU.

7 Conclusion

We introduced a novel on-device conversational
slot extraction model called SoDA which uses
embedding-free projections and character informa-
tion to construct compact word representations, and
then learn a sequence model using a combination
of bidirectional LSTM with self-attention and CRF.
We evaluate our approach on multiple slot extrac-
tion datasets. Our on-device model SoDA achieves
state-of-the-art results and also improved over non-
on-device models like Capsule-NLU (Zhang et al.,
2019), StackPropagation (Qin et al., 2019), Interre-
lated SF-First with CRF (E et al., 2019), joint BiL-
STM (Hakkani-Tur et al., 2016), attention RNN
(Liu and Lane, 2016), gated attention (Goo et al.,
2018) and even BERT models (Sanh et al., 2019).

Our on-device SoDA model also significantly
outperforms state-of-the-art on-device slot extrac-
tion models of (Ahuja and Desai, 2020), which are
based on convolution and are further compressed
with structured pruning and distillation.

As shown in the evaluation and ablation stud-
ies, unlike existing large neural networks that rely
on additional information such as pre-trained em-
beddings, intent information and knowledge bases,
SoDA does not use any external resources, and yet
it achieves good performance, while maintaining
compact size.
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